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One of the leading causes of deaths around the globe is heart disease. Heart is an organ that is responsible for the supply of blood
to each part of the body. Coronary artery disease (CAD) and chronic heart failure (CHF) often lead to heart attack. Traditional
medical procedures (angiography) for the diagnosis of heart disease have higher cost as well as serious health concerns.
Therefore, researchers have developed various automated diagnostic systems based on machine learning (ML) and data mining
techniques. ML-based automated diagnostic systems provide an affordable, efficient, and reliable solutions for heart disease
detection. Various ML, data mining methods, and data modalities have been utilized in the past. Many previous review papers
have presented systematic reviews based on one type of data modality. This study, therefore, targets systematic review of
automated diagnosis for heart disease prediction based on different types of modalities, i.e., clinical feature-based data
modality, images, and ECG. Moreover, this paper critically evaluates the previous methods and presents the limitations in
these methods. Finally, the article provides some future research directions in the domain of automated heart disease detection
based on machine learning and multiple of data modalities.

1. Introduction

A variety of conditions that affect the normal working of the
heart are known as heart diseases. Heart diseases are classi-
fied into heart failure (HF), CAD, vessel disease, heart
rhythm problems, and many more. Heart disease, also
referred to as cardio vascular disease (CVD), defines the
condition where the blood vessels are narrowed or blocked
leading to a heart attack (myocardial infarction) and chest
pain (angina). Symptoms of heart disease include chest pres-
sure, chest discomfort (angina), shortness of breath, abnor-
mal heartbeats, and heart defects [1]. HF is a chronic

disease that affects the heart chambers. Cardiovascular dis-
ease abrupts the normal working of the heart that pumps
sufficient amount of blood in the human body, without
boosting the intracardiac pressure. As the heart becomes
unable to pump sufficient blood to the rest of the body, the
kidney reacts by inducing the body to retain fluid which
results in lung congestion and swelling in the arms and legs.
CHF is an expeditious healthcare problem [2] of the modern
world, and 26 million adults around the globe are suffering
from congestive heart failure [3]. Approximately 17.9 mil-
lion patients with cardiovascular disease die every year that
is 31% of the overall deaths around the world [4].
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Heart failure has many risk factors such as gender, fam-
ily history, and increased age, which are classified into
uncontrolled risk factors, while high cholesterol, smoking,
high blood pressure, and obesity are classified into controlla-
ble risk factors [5]. To understand the HF, we explore and
overview the most common types of heart failure diseases
for better problem awareness. Herein, Figure 1 depicts the
four chambers of the heart that are responsible for blood
pumping.

In recent times, a large amount of data on patients has
been generated in the healthcare sector. However,
researchers and practitioners are not efficiently using this
data for effective diagnosis of the disease. The healthcare sec-
tor is facing major challenges in quality of service (QoS)
which ensures correct and timely diagnosis of disease that
results in competent treatment of the patients. Impaired
diagnosis leads to detrimental results which are not accept-
able [7].

1.1. Major Types of Heart Diseases

1.1.1. Coronary Artery Disease (CAD). CAD is a heart dis-
ease which commonly occurs as result of the build of fatty
deposits (plaque) inside the arteries responsible for supply-
ing blood to the heart muscles. The obstruction in the arter-
ies reduces blood flow to heart muscles which results in the
impairment of the heart functions. This phenomenon is
known as myocardial ischemia. The partial or complete
blockage of arteries results in inevitable damage done to
the heart also known as a heart attack. The human heart
has four chambers that are divided into upper receiving
chamber (right and left atria) and lower pumping chambers
(right and left ventricle (LV)). The right atrium is responsi-
ble for gathering deoxygenated blood, and the right ventricle
pumps the deoxygenated blood to the lungs for oxygenation
process. Oxygenated blood from the lungs enters into the left
atrium and is then transferred to all parts of the body
through LV. The size and function of the LV chamber make
it the most efficient responsible part of the heart. As such,
the major reason for heart failure is due to damage of the
LV chamber. Echocardiography helps in detecting CAD by
examining or monitoring the heart for the evolution of
CAD and wall motion abnormalities that begin to arise [8].
CAD can be diagnosed through LV measurement and wall
motion scoring. Therefore, monitoring of LV is essential to
avoid protracted damages that will affect size, shape, and
function of the LV. Echocardiography is an imaging method
that captures different cardiac views, structure, and their
movement from ultrasound videos. Heart functional and
morphological assessment is done to diagnose the cardiac
disease through echocardiography [9]. Furthermore, echo-
cardiography is also utilized for quantitative analysis of the
LV ejection fraction and cardiac output [10].

1.1.2. Congestive Heart Failure (CHF). Congestive heart fail-
ure also known as chronic heart failure is a condition
whereby the heart fails to pump a sufficient amount of blood
to the body to meet oxygen demand [11]. CHF is a chronic
disease that affects the heart muscles. There are various risk

factors behind CHF but the most common risk factors con-
sist of high blood pressure, old age, obesity, and diabetes.
Congestive heart failure is more common in men as com-
pared to women. The term heart failure does not refer to
the complete cease of the heart, but it actually diminishes
the normal functionality of the heart as compared to a
healthy person [12]. Heart failure means the body tissues
are not getting enough blood and oxygen as needed for nor-
mal function. Systolic and diastolic are the two types of heart
failures. In systolic heart failure, the pumping action of the
heart is decreased. To test the systolic heart failure, a typical
clinical test ejection fraction (EF) is done. The ejection frac-
tion is measured as the amount of blood ejected out from the
left ventricle (LV) divided by the maximum amount of blood
remains in the left ventricle (LV) at the end of diastole. For a
normal person, the value of ejection fraction is more than
55%, while for diastolic heart failure, the threshold value of
ejection fraction is below 55%. In diastolic heart failure, the
heart contracts normally but rigid and inflexible while it is
relaxing and being filled with blood. Due to the stiffness of
the heart, it is unable to be properly filled with blood to push
back into the lungs which causes or leads to heart failure.
The ejection fraction in diastolic heart failure is normal or
hike.

1.1.3. Abnormal Heart Rhythms. Abnormal heart rhythms,
also known as arrhythmias, are a condition whereby the
heart beats too slow/too fast or irregularly due to a problem
in the heart electrical system. The electrical system provides
the heart with a clue of when to beat and supply blood to
each part of the body [13]. Palpitations, tiredness, losing
consciousness, dizziness, and breathlessness are the most
common symptoms of an abnormal heart rhythm. The
symptoms of heart failure are arduous to notice; therefore,
it is also known as the silent killer. Doctors recommend var-
ious medical tests [14] for the diagnosis of heart failure, such
as echocardiogram, where blood flow through the heart is
monitored with the help of ultrasound waves. Electrocardio-
gram (ECG) is another way to diagnose heart problems
related to the heart’s rhythm. Holter monitoring is a porta-
ble device used to record continuous ECG data of the
patient. Cardio computerized tomography (CT) scans pro-
vide the facility of an X-ray cross-sectional view of the
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Figure 1: Anatomy of the heart [6].
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patient’s heart, to detect heart failure. Cardiac magnetic res-
onance imaging (MRI) helps to generate an image of the
heart and tissues of the heart through the use of powerful
magnets and radio waves.

We have studied three major types of heart diseases for
which researcher has proposed ML-based automated diag-
nosis systems, but Figure 2 presents the detail view of the
various heart diseases.

1.2. Rationale and Aim of the Study. Previous studies that
reviewed automated methods for heart diseases mainly tar-
geted one specific type of data modality. Moreover, those
studies lacked highlighting the limitations in the previously
developed automated methods for heart disease prediction.
Hence, we provide a systematic review of automated diag-
nostic systems developed for heart disease prediction based
on three commonly used data modalities which are images,
ECG, and clinical feature-based data modalities as shown
in Figure 3. Moreover, we discuss the development of
image-based, ECG-based, and data mining-based diagnostic
systems that exploit deep learning and ML algorithms for
the automated diagnosis of heart diseases such as CAD,
HF, CHF, and CVD. All the computer-aided detection sys-
tems based on ECG, images, and clinical feature-based data
techniques have four key steps: preprocessing of data, fea-
tures extraction, significant feature selection, and classifica-
tion. Finally, we explore the potential issues in the
diagnostic systems based on the images, ECG, and clinical
feature-based data modality for heart disease detection and
propose solutions. To meet this objective, data is gathered
from various databases and sources like ScienceDirect,
PubMed, IEEE Xplore Digital Library, Springer, Hindawi,
Plos, and Google Scholar based on the keywords: automated
heart disease prediction or detection, ML-based detection of
CHF, prediction of heart failure, coronary disease detection,
data mining, and CVD. The literature used in this study was
selected on the basis of a particular criteria as given:

(i) Only CAD, HF, CVD, and CHF are targeted in this
study

(ii) The articles published from 1995 to 2021

(iii) Those papers were considered that employed ML
techniques for the diagnosis of the heart diseases

(iv) The articles published in the English language are
targeted in this study

(v) Articles that used different types of data modalities
like ECG, images, and clinical features for auto-
mated detection of heart diseases were considered

(vi) The research articles that made use of publicly avail-
able datasets and electronic health records

2. Machine Learning for Heart
Disease Prediction

Recently, large number of diagnostic systems have been
developed for automated diagnosis of different diseases like

Parkinson’s disease [15–19], hepatitis [20], carcinoma [21],
lung cancer [22], and mortality prediction systems [23, 24]
using machine learning, deep learning [25], data mining
[26], and optimization methods [27–30]. Heart disease
detection through machine learning is not an exception,
and recently, numerous approaches have also been success-
fully implemented on various datasets for automated heart
disease detection [31–37]. The proposed algorithms have
validated the efficient detection and prediction of heart fail-
ure. This study comprehensively reviews the ML approaches
for HF prediction and detection based on three modalities
(images, ECG, clinical features). This study provides the fol-
lowing key objects based on explicit analysis of the works
that have been published in last 26 years:

(i) The proposed ML techniques on the basis of the
modality used (such as images, ECG, clinical
feature-based data), their benefits, and weaknesses

(ii) The dataset properties according to modalities

(iii) Performance measurement of the ML algorithms in
terms of different evaluation metrics, namely, accu-
racy (ACC), specificity (Spec), and sensitivity (Sen)

(iv) Comparative analysis of ML techniques based on a
specific data modality

The results of this study present the best modality more
suitable for the prediction or detection of HF through ML
approaches. It also assists researchers and physicians to
improve the quality of heart disease diagnosis. The compar-
ative analysis in this study helps to identify the effectiveness
and weaknesses of previously proposed ML techniques for
the diagnosis of heart disease and also suggests challenges
in future works for accurate, reliable, and cost effective
development of automated diagnosis system. Figure 4 pro-
vides an overview procedure for automated diagnostic
system.

2.1. Article Selection. The articles selection procedure was
based on the three modalities (clinical feature-based data,
images, ECG) for heart disease diagnosis. We collected 105
research articles on CHF and CAD detection from various
publishers such as IEEE, MDPI, Springer, Elsevier, Hindawi,
and PubMed based on the keywords CAD, HF, CVD, ML,
deep learning, neural networks, etc. 35 articles were selected
for each modality. Researchers around the globe have been
working on ML-based heart disease detection system since
1992 [38] but the number of research papers in this domain
as of 2014 was very limited. In recent years, researchers have
developed a lot of CAD and HF detection systems based on
ML. Therefore, the number of research papers in this field
has seen a tremendous increase as depicted in Figure 5.

2.2. Datasets. This section describes the datasets that are
considered in the selected research articles for experiments
and performance evaluation of the developed automated
diagnostic systems. A total number of 56 datasets are consid-
ered from the selected research articles. These datasets are
collected from various organizations all over the world.
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Few datasets are publicly available while others are collected
by researchers from different hospitals and healthcare orga-
nizations. We only listed those datasets that are used for
diagnosis of HF, CVD, CHF, and CAD by using ML and
data mining techniques. As our study is based on the three
heart disease modalities, we therefore considered datasets
based on these modalities. Thus, datasets differ in terms of
samples and number of features.

Table 1 depicts the properties of datasets in terms of
number of subjects, dataset features, missing values, etc.
Based on the modalities (clinical feature-based data, images,
ECG), the nature of the datasets is diverse. For instance,
dataset IDs 01, 02, and 09 are used for patients’ medical
reports data (age, sex, chest pain type, resting blood pres-
sure, etc.). The most famous dataset used in clinical
feature-based data modality is UCI datasets, namely,

Types of heart 
diseases
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disease

Cerebrovascular 
disease

Other heart 
disease

Other cardiovascular 
disease

Chronic angina Acute coronary 
syndrome

Unstable angina Acute MI

TIA Heart failure

Stroke

NSTEM I
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RHD
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Inflammatory 
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Hypertensive
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Figure 2: Types of heart diseases.
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Figure 3: Different modalities used for automated heart failure diagnosis.
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Figure 4: Overview of ML-based diagnostic system.
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Cleveland dataset, Hungarian dataset, Switzerland dataset,
and Statlog dataset. UCI datasets consist of clinical features
(age, serum cholesterol, exercise induced angina, etc.) that
are used for automated diagnosis of HF through ML tech-
niques. Other well-known datasets that belong to the clinical
features modality are Z-Alizadeh Sani dataset and Extended
Z-Alizadeh Sani dataset. Some datasets are based on ECG
modality. ECG signals are used to record patients’ medical
data. ECG-based datasets are used by the researchers
through ML and data mining approaches for the prediction
and detection of the CVD and CHF disease. ECG signals are
sampled to extract features from the signals. The extracted
features are then used for training and testing purposes
through ML models. Dataset IDs, 19, 20, 21, etc., are exam-
ples of the ECG datasets (MIT/Beth Israel Hospital (BIH),
arrhythmia database, Physikalisch-Technische Bundesan-
stalt diagnostic ECG database). Image-based datasets consist
of features that are extracted from the medical image data.
ML approaches are deployed for extracting features from
the images. Furthermore, models are trained and tested
based on the features for automated diagnosis of the HF
and CVD disease. Dataset IDs 30, 31, 32, etc., are instances
of image based datasets (Cedars-Sinai Medical Center, Los
Angeles CA and MCG data, Hospital Fernando Fonseca
dataset). Moreover, Figure 6 depicts in detail the total num-
ber of samples in a given dataset along with total numbers of
features for different datasets.

3. Automated Heart Disease Detection Based on
Different Modalities

3.1. ML-Based HF Diagnosis: Clinical Feature-Based Data
Modality. In recent years, data mining and ML researchers
have proposed different automated methods for heart dis-
ease detection based on clinical feature-based data modality
[16, 17, 39]. For example, Verma et al. [40] developed a
hybrid system for the prediction of CAD using noninvasive

clinical data. Their hybrid system used correlation-based
subset (CFS) selection and particle swam optimization
(PSO) search technique to reduce the feature space from
the dataset for better performance. A number of optimized
feature subset are then input into the proposed model. The
model is composed of multinomial logistic regression
(MLR), multilayer perceptron (MLP), C4.5, and fuzzy unor-
dered rule induction algorithm (FURIA). The proposed
model is tested on the dataset of IGMC that has 26 features
and 335 subjects. MLR achieved the highest accuracy of
88.4% while for benchmark dataset such as Cleveland heart
disease, it obtained an accuracy of 90.28%. Shah et al. [41]
proposed a method that extracted high impact features from
the feature space by using probabilistic principal component
analysis (PPCA). PPCA was used to extract the new feature
vectors that helped to reduce the feature space. New feature
vectors were selected by parallel analysis (PA). These
reduced feature vectors were supplied to the radial basis
function (RBF) kernel-based support vector machine
(SVM). The RBF function performed the job classification
into types, i.e., normal subject and heart patient. The pro-
posed system achieved the accuracy of 91.30%, sensitivity
of 100%, and specificity of 50%. Ali et al. proposed a novel
method based on optimized and stacked support vectors
machine and obtained 92.22% of HF prediction accuracy
[42]. In another study, Ali et al. developed a hybrid system
based on χ2 statistical model and deep neural network and
further improved the HF prediction accuracy to 93.33% .
In yet another study, Ali et al. highlighted the problem of
overfitting to the testing data and proposed the development
of mutually informed neural networks for better generaliza-
tion of the decision support systems developed for HF pre-
diction [43]. Dwivedi [44] evaluated the performance of
the six ML methods on the data of StatLog heart disease
dataset [6 King RD (1992) Statlog databases. Department
of Statistics and Modelling Science, University of Strath-
clyde, Glasgow] for heart disease prediction. The
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Figure 5: Selected research articles published from 1996 to 2021 as shown in Figure 5(a). The topic has gradually attracted the attention of
researchers with the passage of time. In recent years, the topic got a peak attraction from researchers as a lot of articles have been published
in the past few years, while Figure 5(b) depicts the comparison of published articles with respect to the modality.
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Table 1: Summary of dataset properties.

Dataset_
IDa Dataset Total samplesb Featuresc

01 Cleveland (UCI), heart disease dataset 303
76 raw features, 14
prominent features

02 StatLog heart disease dataset (UCI)
150, (healthy: 150, patient:

120)
13 distinct features

03 CHF database (chf2db)
136, (healthy: 46, patient:

90)
12 distinct features

04 MIT-BIH Normal Sinus Rhythm (NSR) database 54, (male: 30, female: 24)
Sampling rate: 128
samples per second

05 Congestive heart failure database (BIDMC-CHF) 15, (male: 11, female: 4)
Sampling rate: 500
samples per second

06 Fantasia database (FD) 18, (male: 5, female: 13)
Sampling rate: 128
samples per second

07 Congestive Heart Failure RR Interval Database (CHF-RR) 29
Sampling rate: 500
samples per second

08 Normal Sinus Rhythm RR Interval Database (NSR-RR) 40
Sampling rate: 500
samples per second

09 Cleaveland(UCI), Hungarian heart disease dataset 590 76 features

10 mARSupio database, Italy 14616, (patients: 347) 572 features

11 NHANES CVD dataset 4434 23-65 features

12 MIMIC-II clinical database 8059 32 features

13 Z-Alizadeh Sani dataset 303 54 features

14 Heart disease dataset, Andhra Pradesh, India N/A 14 features

15 Physionet databases 40, (male: 20, female:20) 95300 segmented ECG

16 MITDB database, Physionet 47 22 features

17 China Kadoorie Biobank (CKB) 520000 86 features

18 MIT-BIR arrhythmia database 47 Sampling rate of 360Hz

19 MIT/Beth Israel hospital (BIH), arrhythmia database 4,000 ambulatory ECGs 360 samples per second

20 PTB diagnostic ECG database
52 healthy, 7 HCM, 8

DCM, and 148 MI subjects
Sampled at 1,000Hz, 250

samples per second

21 Physikalisch-Technische Bundesanstalt diagnostic, ECG database
200 (patients: 148, healthy:

52)
Sampling rate of 1000Hz

22 1st China Physio-logical Signal Challenge 6877 Sampled at 500Hz

23 Mayo Clinic ECG laboratory
180922, (patients: 116061,

healthy: 64931)
Sampling 1500Hz

24
Subrogated fragmented database (Sfrag-DB) + subrogated wide-

fragmented database (SWfrag-DB) + fragmented database (FHCM-
DB) + fibrosis database (HCM-DB)

616 records Sampling rate: 500Hz

25 Collected at the University of Pennsylvania 209 20 features

26 MICCAI 2017 challenge on Automated Cardiac Diagnosis 100
567 features, 13 optimal

features

27 STACOM 2015 challenge 200 11 features

28 St.Francis Heart Hospital in Roslyn, New York 200 3 feature

29 Nuclear Medicine Department 288 10 features

30 Cedars-Sinai Medical Center, Los Angeles, CA 713 13 features

31 MCG data 800 2 features

32 Hospital Fernando Fonseca dataset 496 80 features

33 Siemens Somatom sensation 137 N/

34 ACS dataset (Mersin University Research and Training Hospital) 228 6 features

35 University Hospital Arnau de Vilanova, Lleida, Spain 56
Image resolution: 8.5

pixels per mm
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Table 1: Continued.

Dataset_
IDa Dataset Total samplesb Featuresc

36 Sutter Palo Alto Medical Foundation 58652000 2 attribute

37 LIDC-IDRI public dataset 802 NoGT transformation

38 SunnyBrook Cardiac Data (SCD)
45 (male: 32 and female:

13)
Sampling: 30 frames per

second

39 NSTEACS 2302 patients N/A

40 Hospital Universiti Kebangsaan Malaysia 10 N/A

41 Department of Medicine, University of Alabama at Birmingham 109 9 features

42 UK Biobank 9135867 N/A

43 SPECT 135 30 Fourier components

44 Ham-mersmith Hospitals 1093 subjects N/A

45 Cohn-Kanade dataset (CK+) 400 N/A

46 Sacred Heart Medical Center, Eugene 215 N/A

47 Sacred Heart Medical Center 2619 50 features

48 AGES-I Dataset
628 (male: 419, female:

209)
11 Radiodensitometric

features

49 Clinical Research Centre of Medical University of Bialystok, Poland 67 63 features

50 Sugam Multispecialty Hospital, India
507 patients (35 to 90 years

of age)
22 features

51 Germany 15510 observations N/A

52 Italian Local Health Authority (ASL) 2722 06 features

53 ML repository 3000 13 features

54 USA 1000
15 echocardiographic

variables

55 USA 340
15 echocardiographic

variables

56
Faisalabad Institute of Cardiology and at the Allied Hospital in

Faisalabad (Punjab, Pakistan)
299 13 features

aDataset_ID is a reference number used for the identification of the dataset. bTotal samples represent the total number of records in a dataset. cFeature
represents the total number of features a dataset consist.
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Figure 6: Demonstrates the number of samples and features in each dataset. X-axis of the graph represents the dataset ID while the Y-axis
displays the number of samples and number of features. Blue bar in the figure depicts number of sample, and the orange line denotes
number of features.
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performance of the ML techniques was evaluated through k
-fold crossvalidation test. The highest accuracy of classifica-
tion was reported in this study (85%) with sensitivity of 89%
and specificity of 81% through logistic regression.

An ML-based system was proposed by Guidi et al. [45]
for the assistance of heart failure patient. Clinical decision
support system (CDSS) has two major components for pro-
viding the assistance to heart patients. One of the compo-
nent evaluates the severity of the HF while the other
component predicts the HF. Additionally, CDSS also pro-
vides an interface for the comparison of various patient’s
follow-ups. The core of the CDSS was developed based on
ML techniques such as SVM, NN, RF, and fuzzy-genetic
rules. A supervised database was populated for ML tech-
niques. The number of patients in the database was 90 with
136 records. The proposed CDSS was tested through the K
-fold crossvalidation scheme. The prediction performance
was reported with respect to the ML models as NN:
84.73%, SVM: 85.2%, fuzzy-genetic: 85.9%, CART: 87.6%,
random forest: 85.6%, and severity performance given as
NN: 77.8%, SVM: 80.3%, fuzzy-genetic: 69.9%, CART:
81.8%, and random forest: 83.3%.

Pawlovsky [46] designed an ensemble model using dis-
tance for KNN (k nearest neighbor) method for the diagno-
sis of heart disease. The proposed model was implemented
by using three distances and five-distance configuration. A
weight is also added at the base of the average accuracy that
was calculated through KNN. The dataset used in this study
was Cleveland, UCI dataset, and an average accuracy
reported through the proposed system was 85%. Yu and
Lee [47] proposed a system for CHF recognition based on
heart rate variability through bispectrality analysis and
genetic algorithms. Bispectrality analysis and genetic algo-
rithm were used for the feature selection while SVM
employed was a classifier. The proposed system obtained
the accuracy of 98.79%.

Wang et al. [48] proposed a deep ensemble model for the
detection of CHF through short-term RR intervals and deep
neural network. For the experiments, they selected five
open-source databases, namely, BIDMC Congestive Heart
Failure Database (BIDMC-CHF), MIT-BIH Normal Sinus
Rhythm (NSR) database), Congestive Heart Failure RR
Interval Database (CHF-RR), Normal Sinus Rhythm RR
Interval database (NSR-RR), and Fantasia database (FD).
To evaluate the proposed method, three RR segment length
types (N = 500, 1000, and 2000) were used. Deep learning
features were automatically extracted from the expert feature
of RR intervals, a long/short-term memory-convolutional
neural network-based. The proposed method achieved the
accuracy of 99.85%, 99.41%, and 99.17% on N = 500, 1000,
and 2000 length RRIs.

Methaila et al. [49] designed a heart disease prediction
system based on data mining techniques. The proposed sys-
tem used ML methods, i.e., decision tree, NB, and NN for
the prediction of heart disease. An online dataset from the
Cleveland Heart Disease database was utilized for the exper-
iments. To reduce the feature dimension, apriori algorithm
and frequent pattern mining using MAFIA were deployed.
Significance weight calculation of the features was evaluated

for better feature selection. Results from the proposed
research suggest that decision tree outperformed the other
ML techniques with accuracy of 99.62% while using 15
features.

Jan et al. [50] proposed an ensemble model based on
multiple classifiers for better prediction accuracy of the heart
disease. In this study, SVM, Naive Bayesian, linear regres-
sion, ANN, and random forest were combined to improve
the prediction accuracy. An open source dataset from Cleve-
land and Hungarian CVD had been utilized for the experi-
ments to evaluate the performance of the proposed model.
The dataset had 76 features, but for the experiments, Jan
et al. focused on 13 key features of the dataset that highly
contributed to obtain the highest accuracy. K-fold crossvali-
dation (with k = 10) scheme was employed to validate the
results of the proposed model. The proposed model obtained
the accuracies according to classifiers as given, Naive Bayes-
ian: 93.223%, ANN: 94.915%, SVM: 98.136%, and LR:
93.22%.

Pecchia et al. [61] developed a remote health monitoring
system for the detection of heart failure. Data mining tech-
nique was employed with CART method and HRV for fea-
ture extraction. The proposed system achieved the
accuracy of 96.39% and precision of 100.00%, respectively,
for heart failure detection. In regards to severity assessment
of HF, the achieved accuracy was 79.31%, and precision
was 82.35%. A public dataset of Congestive Heart Failure
RR Interval Database was utilized for the experiments. The
total number of subjects in the dataset was 83 of which 54
were healthy and 29 were suffering from HF. Kurnar [62]
proposed a method for heart disease detection using fuzzy
resolution mechanism. The proposed method was based on
the combination of ANN and fuzzy logic. The method is
tested on an online open source dataset of heart disease from
Cleveland. The proposed ANFIS model achieved the accu-
racy of 91.83%. All the experiments were done through
MATLAB.

Khumar et al. [82] proposed an ML-based method for
the diagnosis of CVD. Dataset used in their work was col-
lected from UCI, Cleveland, for testing the performance of
the proposed model. Data cleaning techniques were
employed for eliminating noise from the data. The processed
data was input to the ML method for classification. The
result reported from the proposed method obtained an accu-
racy of 86%.

Panicacci et al. [63] evaluated ML algorithms for identi-
fication of the heart failure patient. The dataset used for this
study was collected from the Agenzia Regionale Sanit’a
(ARS) in Florence, Tuscany, Italy. Panicacci et al. obtained
the highest accuracy of 99.75% by random forest trained
with SMOTE28 set. Latha et al. [64] investigated the ensem-
ble classification method for improving the accuracy of weak
algorithms through combination of multiple classifiers. The
proposed method used dataset from the Cleveland heart dis-
ease dataset. The ensemble classification method of Latha
et al. obtained an accuracy of 85.48%. Zikos et al. [65] con-
ducted a Bayes study for the dynamic effect of comorbidities
on hospital care for CHF patients. For this study, medical
claimed data from centers for medicare and medicaid service
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(CMS) was collected. Bayesian scenario-based graphs and
Bayes-networks were used to visualize the results.

Das et al. [5] developed a neural network ensemble
model for effective diagnosis of heart disease. Their method-
ology used SAS base software 9.1.3 for heart disease detec-
tion. The neural network ensemble was the key element in
their proposed method that developed new models from
the posterior probabilities. The proposed model obtained
the accuracy of 89.01% with 80.95% and 95.91% sensitivity
and specificity, respectively. Mohan et al. [66] proposed a
hybrid random forest with linear model (HRFLM) for
CVD prediction. Their proposed model found the key fea-
tures on which ML techniques provided improved accuracy
for CVD. To test the effectiveness of the proposed model, an
online open source dataset for Cleveland heart disease from
UCI was collected. The accuracy achieved by HRFLM model
was 88.7%.

A hybrid neural network system based on ANN and
FNN was proposed by Kahramanli and Allahverdi [67]. To
validate the performance of the proposed model, an online
line dataset from the ML repository was collected. The
UCI heart disease dataset was employed for performance
evaluation. The proposed system obtained an accuracy of
86.8%. Maji and Arora [68] presented a hybrid method
based on ANN and decision tree for improved prediction
of the heart disease. The UCI dataset is used to evaluate
the effectiveness of the proposed model with WEKA tool.
Tenfold crossvalidation testing is used to report the accu-
racy, sensitivity, and specificity of the proposed system.
The system achieved the accuracy, sensitivity, and specificity
of 78.14%, 78%, and 22.9%, respectively.

Polat et al. [69] proposed an artificial immune recogni-
tion system (AIRS) for heart disease diagnosis. Their pro-
posed system used fuzzy weighted preprocessing method
for extracting new features from the features space. The
new features were input to the AIRS for prediction of the
heart disease. The proposed system achieved an accuracy
of 96.28% on an open source dataset of heart disease from
UCI ML repository. To evaluate the performance of the pro-
posed system, 10 k-fold crossvalidation testing was done. A
comparative study of neural networks with traditional
methods of medical diagnosis was done by Ster and Dobni-
kar [70]. In this study, five types of datasets were utilized for
diagnosis of three kinds of diseases which were CAD, breast
cancer, hepatitis, diabetes, and heart disease. The results of
the study were obtained on default parameters. The highest
accuracy achieved for heart disease by LDA was 84.5% and
59.7% for CVD by SNB.

Chen et al. [71] developed a CHF detection method
through deep learning with RR intervals. Features from the
dataset were extracted through the use of autoencoder.
Extracted features were then supplied to deep neural net-
work. The proposed system obtained an accuracy of
72.41% with sensitivity and specificity of 48.78% and
85.72%, respectively. Rajliwall et al. [73] proposed an ML-
based CVD prediction model. A scalable algorithm named
as the neuron network was presented which attained accu-
rate results on fuzzy data. To evaluate the performance of
the proposed model, two open source datasets were collected

for the experiments. The best accuracy of 98.5% was
obtained by random forest. Samuel et al. [74] proposed a
model based on the fuzzy analytic hierarchy process
(Fuzzy_AHP) technique that computed the global weight
of the features for their individual contribution. Higher
global weight features were supplied to the ANN classifier
for prediction of heart failure. Cleveland dataset on heart
disease from the UCI online repository was utilized for eval-
uating the performance of the proposed model. The pro-
posed model obtained an accuracy of 91.10%.

Venkatalakshmi and Shivsankar [75] developed a pre-
dictive model for the heart disease diagnosis. The proposed
model was based on the Naive Bayes and decision tress.
The dataset used for the experiments was heart disease data-
set from UCI. Wake tool was utilized for the extraction of
useful features from the dataset. The proposed model
achieved an accuracy of 85.03% for Naive Bayes and
84.01% for decision tree. Maio et al. [76] developed a predic-
tive model of hospital mortality for heart failure patients
through improved random survival forest. A public dataset
of MIMIC II clinical database which consisted of 8059
patients with 32 features was used for the experiments. The
proposed system achieved the accuracy of 82.01%.

A computer-aided decision-making system based on
hybrid neural network-genetic algorithm for heart disease
detection was developed by Arabasadi et al. [34]. To evaluate
the performance of the hybrid system, Z-Alizadeh Sani dataset
was used for the experiments. 10-fold crossvalidation was used
as performance measurement metric. The proposed system
achieved an accuracy, sensitivity, and specificity of 93.85%,
97%, and 92%, respectively. A normalized technique was devel-
oped for the preprocessing of the data. A genetic algorithm
along with particle swarm optimization was utilized for improv-
ing the performance. For performance evaluation of the pro-
posed method, 10-fold crossvalidation was performed. A new
optimization method N2Genetic optimizer was proposed in
this study. Experimental results of the proposed method
N2Genetic-nuSVM demonstrated that the proposed method
achieved an accuracy of 93.08% and f1-score of 91.51%.

Laskshmi and Haritha [79] proposed a ML model using
SVM and Naive Bayes. In this study, an online dataset from
the Cleveland heart disease dataset was collected for the
experiments purpose. The result of the proposed model
was validated from the ROC chart, and reported accuracy
was 84.87%. Javeed et al. [81] presented an intelligent learn-
ing system based on a random search algorithm and opti-
mized random forest model for improved heart disease
detection. For feature selection, random search algorithm
was used by the proposed diagnostic system while the grid
search algorithm was used for optimization. Experiments
were performed using an online heart failure database,
namely, Cleveland dataset. The proposed system used only
7 features for the detection of heart disease. The accuracy
obtained by the newly proposed system was 93.33%.
Figure 7 presented the various ML models based on clinical
feature-based data modality.

3.2. ML-Based HF Diagnosis: Image Modality. Apart from
the automated diagnostic systems based on clinical features,
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many researchers also exploited the use of imaging data
modality for the development of automated methods for
heart disease detection. For example, Nirsch et al., [83] pro-
posed a deep learning classifier for the identification of heart
failure patients based on whole slide images of H&E tissue.
The gold-standard for the diagnosis of heart failure is an
end myocardial biopsy (EMB) when the cause of the heart
failure is not identifiable. The proposed method used the
CNN for the detection of heart failure from H&E stained
whole-slide images from a dataset collected from the univer-
sity of Pennsylvania with 209 patients. To evaluate the per-
formance of the proposed model, a 3 k-fold crossvalidation
method was deployed, and the reported accuracy with sensi-
tivity and specificity of the proposed method was 97.4%,
99%, and 94%, respectively.

Cetin et al. [84] developed a radiomic approach of
computer-aided diagnosis through cardiac cine-MRI. To
reduce the feature dimensionality, sequential forward feature
selection (SFFS) algorithm was selected, while for the classi-
fication purpose, SVM classifier was used in the proposed
model. To evaluate the performance of the proposed model,
a dataset of 100 patients was collected from the university of
the Hospital of Dijon (France), and crossvalidation metric
was used for performance evaluation. Bai et al. [85] pro-
posed a method for myocardial patient classification through
shape and motion features. The proposed method used prin-
cipal component analysis (PCA) for features selection of the
shape features, whereas motion features helped to identify
the wall motion and thickness of the wall. The performance
of the proposed model was evaluated on the dataset of STA-
COM 2015 challenge. SVM was used for the classification
which achieved a maximum accuracy of 97.5%.

Qazi et al. [86] proposed a spare linear classifier for the
automated detection of heart abnormality. The proposed
model was developed from linear fisher’s discriminant
(LFD). The dataset used in this study was collected from
the St. Francis Heart Hospital in Roslyn, New York. This
dataset consists of a total 200 subjects amongst which 141
cases were used for the training purpose, while 59 cases were
marked for testing. The performance of the proposed model
was valuated with other ML methods such as SVM, RVM,
and LED. The accuracy achieved by the proposed model
was 89.6%, which outperformed the other ML methods. Sanj
and Kukar [87] studied the image processing and ML
method for medical imaging. The proposed approach sug-
gested that significant improvement could be achieved in
automated diagnostic system by improving the posttest diag-
nostic probabilities, using multiresolution image parameter-
ization and feature subset selection in conjunction with ML
approaches. The proposed approached achieved an accuracy
of 81.3% with PCA on ArTex/Ares parameters.

Arsanjani et al. [88] proposed a method for earlier pre-
diction of CVD through image features derived from SPECT
(MPS) by a ML approach. For automatic feature selection,
boosted ensemble ML algorithm (LogitBoost) was utilized
for the prediction revascularization. To validate the effective-
ness of the proposed model, tenfold crossvalidation scheme
was adopted. The proposed model achieved an accuracy of
81% and was also tested through receiver operator charac-
teristics (ROC) area under the curve. Udovychenko et al.
[89] proposed a binary classification method for heart failure
detection based on myocardial current density distribution
maps. In this proposed method, KNN was utilized for the
classification, while for performance validation of the
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Figure 7: Performance of clinical feature-based data modality based on ML models is depicts from this figure. The performance of each ML
model is measured in term of accuracy along with number of samples in the dataset.
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proposed method, Matthews correlation coefficient (MCC)
performance evaluation metric was selected. The proposed
method reported an accuracy in the range of 80-88% with
70-95% sensitivity, 78-95% specificity, and 77-93% preci-
sion, respectively.

Berikol et al. [93] proposed a method for the diagnosis of
the acute coronary syndrome through SVM. Laboratory tests
and ECG data were used for the experiment. Data was col-
lected and proved by the Mersin University Research and
Training Hospital Ethics Committee for this study. The
dataset consists of 228 patients image records. The proposed
system based on SVM classifier obtained the accuracy, sensi-
tivity, and specificity of 99.13%, 98.22%, and 100, respec-
tively. Leader et al. [94] developed an approach for
automatic characterization of plaque composition in carotid
ultrasound using convolutional neural network. CNN was
used to extract information from the medical images that
helped in the identification of different plaque constituents.
For this study, 90000 patches extracted from the dataset of
images were obtained from the University Hospital Arnau
de Vilanova, Lleida, Spain. To validate the performance of
the proposed model, k − -fold crossvalidation scheme was
adopted. The proposed approach obtained the accuracy of
90%.

Sundaresan et al. [95] proposed an automated character-
ization approach for the fetal heart through ultrasound
images based on a fully convolutional neural network
(FCN). FCN was trained on 10,000 random sample frames
with 10 subjects and tested on 2178 frames with 2 subjects.
ROC chart was used to validate the performance of the pro-
posed approached. The classification error reported through
the proposed model was 23.48%. Choi et al. [96] designed a
model for early detection of heart failure from the onset by
using recurrent neural network (RNN). The proposed model
used gated recurrent units (GRUs) for the detection of rela-
tionship of time-stamped events. The dataset used for the
experiments was collected from the Sutter Palo Alto Medical
Foundation. The performance of the proposed model was
evaluated against various ML models like SVM and KNN.
The proposed model achieved the highest accuracy of
83.3% as compared to the other ML models SVM (74%)
and KNN (73%).

Mariachi et al. [98] proposed a framework for the detec-
tion of fetal presentation and the heartbeat through linear
ultrasound video. The proposed framework classified frames
into a 2D slice of the video. A conditional random field
model was deployed for the regularized classification scores
through temporal relationship between video frames. The
kernelized linear dynamic model identified that heartbeat
was detected in the frame sequence. For experiment pur-
pose, a dataset of 323 predefined free-hand video was taken.
The proposed framework reported a classification accuracy
of 93.1% for the detection of a heartbeat.

Kurgan et al. [99] proposed a knowledge discovery
method for automated cardiac SPECT diagnosis. A dataset
of 267 patients consisting of SPECT images with 3000 2D
images was used. A user friendly algorithm was designed
for automated diagnosis. The proposed approach achieved
an accuracy of 83.96%. Allsion et al. [104] proposed a model

for detecting extensive CAD through artificial neural net-
work for the modeling of stress single-photon emission com-
puted on tomographic imaging. The dataset consisting of
109 patients of stress single-photon emission was collected
for the experiments. The proposed model reported a sensi-
tivity of 92%. Curiale et al. [106] proposed a method for
automated myocardial segmentation through deep learning
network in cardiac MRI. To evaluate the performance of
the proposed method, Dice’s coefficient and a mean squared
error scheme are utilized. The proposed method achieved an
accuracy 90%.

Moreno et al. [109] proposed a model for cardiac disease
prediction through regional multiscale motion representa-
tion. The dataset was collected from the MICCAI challenge,
Sunnybrook Cardiac Data (SCD) for the experiments. The
SCD consist of 45 cine-MRI images. For classification of
the heart disease, random forest algorithm (RAF) was
employed. The performance of the proposed model was
evaluated through two performance measurement metrics
which are F1 score and the number of true positive from
the total sample space. The proposed model obtained the
average accuracy of 77.83% and F1 scored accuracy of
76.92%. Gulsun et al. [110] proposed a method for coronary
centerline extraction via optimized flow paths along CNN
path pruning. The proposed method automatically extracted
the blood vessel centerlines. CNN is used as a classifier in the
proposed method for removing extraneous paths. The pro-
posed method was evaluated against 106 clinically annotated
coronary arteries data. The proposed method achieved a
specificity and sensitivity of 90% and 97%, respectively.
Betancur et al. proposed a method of prognostic value of
combined clinical and myocardial perfusion imaging data
through ML. The predictive value of combined clinical
information and myocardial perfusion single-photon emis-
sion was computed on tomography (SPECT) imaging
(MPI) data based on ML for predicting the major adverse
cardiac events. For the experiments, a total of 2619 patients’
data were collected. The performance of the proposed model
was evaluated through 10 k-fold crossvalidation. The accu-
racy achieved by the proposed model was 81%.

Wolterink et al. proposed an automatic coronary cal-
cium scoring in cardiac CT angiography through convolu-
tional neural networks. The proposed method presented a
pattern recognition method that helped to identify coronary
artery calcium (CAC) in coronary computed tomography
angiography (CCTA). The dataset consists of 50 patients
which was used for the experiments based on five cardiovas-
cular risk categories. CNN was deployed for the identifica-
tion of the coronary artery calcium (CAC), and an
accuracy of 95% was achieved by the method. Figure 8 pre-
sented the performance various ML techniques based on
image data modality.

3.3. ML-Based HF Diagnosis: ECG Modality. Similar to the
clinical features and imaging modalities, numerous
researchers also developed diagnostic systems based on
ECG data modality for the detection of heart disease. For
example, Zhao et al. [118] studied the simultaneous analysis
of heart rate variability (HRV) and pulse transit time
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variability (PTTV) on healthy subjects and heart patients
with the purpose of examining the improvement of HRV-
based HF detection by using PTTV. For this objective, a data
of 40 subjects through standard limb lead-II electrocardio-
gram (ECG) and radial artery pressure waveforms (RAPW)
was collected. Moreover, SVM was deployed for the classifi-
cation purpose along with probabilities generated from the
distance distribution matrix- (DDM-) based CNN. The
study demonstrated the accuracy, sensitivity, and specificity
of 90%, 93%, and 88%, respectively. Sudarshan et al. [119]
proposed a novel method for automated diagnosis of CHF
based on dual tree complex wavelet transform and statistical
features extraction from ECG signals. Dual tree complex
wavelet transform (DTCWT) was performed on ECG seg-
ments for 2 seconds to obtain the six level coefficients. Fea-
tures from the DTCWT were extracted through rank

implementation using Bhattacharyya, entropy, minimum
redundancy maximum relevance (mRMR), receiver-
operating characteristics (ROC), Wilcoxon, t-test, and relief
methods. For classification, ranked features were tested
through K-nearest neighbor (KNN) and decision tress
(DT). The proposed method reported the accuracy, specific-
ity, and sensitivity of 99.86%, 99.94%, and 99.78%,
respectively.

Acharya et al. [120] proposed a model that automatically
detected the CAD using various durations of ECG segments
with CNN. For this study, a dataset of fantasia was collected
from the Physionet database to evaluate the performance of
the proposed model. ECG signal (lead II) from 40 healthy
subjects (20 males, 20 females) and 7 CAD patients (1 male
and 6 females) data was collected. The proposed method
reported the accuracy, specificity, and sensitivity of 99.86%,
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99.94%, and 99.78%, respectively. Chen et al. [121] proposed
an early predictor of heart problems by using predictive
analysis of ECG signals. The proposed method was based
on a two-step predictive framework for ECG signal process-
ing. A global classifier factor was employed to compare the
abnormalities against a universal reference model. The pro-
posed model obtained a classification accuracy of 96.6%.

Shen et al. [122] analyzed the ECG data for the risk pre-
diction of CVD. ML techniques were employed for the
improved risk evaluation of CVD through ECG. Their work
investigated the detection of heart abnormality by using 3
one-class classification, predicting probabilities of normality,
ischemia, hypertrophy, and arrhythmia through multiclass
approach. One-class approach obtained the accuracy of
75.6% and an area-under-curve (AUC) of 83%. With a
four-class approach, a classifier accuracy of 75.1% was
achieved. Acharya et al. [123] designed an automated char-
acterization of arrhythmias through nonlinear feature from
tachycardia ECG beats. For classification, KNN and decision
tree (DT) were employed. Open source datasets from MIT-

BIH A-Fib Database, MIT-BIR arrhythmia database, and
Creighton University VT Database were collected for acquir-
ing the ECG signals. The proposed model achieved an accu-
racy of 96.3% with specificity and sensitivity of 84.1% and
99.3%, respectively. Mathews et al. [124] proposed a deep
learning-based method for ventricular and superventricular
heartbeat detection by using single-lead ECG classification.
The proposed method was evaluated with data collected
from the MIT-BIH database. Restricted Boltzmann machine
(RBM) and deep belief network (DBN) were utilized to
obtain an average identification accuracy of 93.63% for ven-
tricular ectopic beat and supraventricular ectopic beats
(95.57%) at a low sampling rate of 114Hz.

Adam et al. [125] proposed an automated characteriza-
tion of CVD through relative wavelet nonlinear feature
extraction of ECG signals. A novel discrete wavelet trans-
form (DWT) method along with nonlinear features was used
for automated characterization of CVD. Relative wavelet
from four nonlinear features such as fuzzy entropy, sample
entropy, signal energy, and fractal dimension was extracted

Table 2: Summary of state-of-the-art research articles.

P_
ID

Author Technique Data Feature selection Data sampling Conclusion

PI_
106

Ricciardi
et al.,(2020)

[51]
Logistic regression + tree-based ML

AGES-I dataset
+ AGES-II
dataset

Nonlinear trimodal
regression analysis

(NTRA) +RF

k-fold
crossvalidation

k = 12

CVD
(AUC:
91.4%)
CHD
(AUC:
93.6%)
CHF
(AUC:
99.4%)

PI_
107

Butun et.al.
(2020) [52]

Capsule networks (DNN)
Physionet
database

Layer of CNN
Crossvalidation, 5-

fold
Accuracy:
99.44%

PI_
108

Ramachandran
et al., (2020)

[53]

Softmax discriminant classifier (SDC)
and Gaussian mixture model

classifier (GMM)

IEEE TMBE
pulse oximeter

dataset

Singular value
decomposition (SVD)

F-measure
Accuracy:
97.88%

PI_
109

Ghiasi et al.
(2020) [54]

Decision tree
Z-Alizadeh Sani
CAD dataset

Classification and
regression tree (CART)

Crossvalidation,10-
fold

Accuracy:
100%

PI_
110

Joloudari et al.
(2020) [55]

RT + SVM+C5.0
Z-Alizadeh Sani

dataset
Random trees

Crossvalidation,
10-fold

Accuracy:
91.47%

PI_
111

Ali et al. (2019)
[42]

L1-regularized-linear-SVM stacked
with nonlinear SVM

Cleveland
(UCI), heart
disease dataset

L1-regularized-linear-
SVM

Matthews relation
coefficient (MCC)

Accuracy:
92.22%

PI_
112

Ali et al.,(2020)
[43]

Mutual information based feature
selection and deep neural network

Cleveland
(UCI), heart
disease dataset

Mutual information
Matthews relation
coefficient (MCC)

Accuracy:
93.33%

PI_
113

Gjoreski et al.
(2020) [56]

Fully connected neural network
(FCNN)

947 subjects
openSMILE feature
extraction tool

Crossvalidation
10-fold

Accuracy:
93.2%

PI_
114

Hussain et al.
(2020) [57]

DT+ SVM+KNN
Physionet
databases

Multimodal features
Crossvalidation

10-fold

Accuracy:
97%

(SVM)

PI_
115

Aouabed et al.
(2019) [58]

Nested ensemble (NE) model
Cleveland

(UCI), heart
disease dataset

GA
Crossvalidation

10-fold
Accuracy:
98.34%

PI_
116

Liu et al. (2020)
[59]

Multiscale convolutional neural
networks (CNN)

1000 OCT
images

Layers of CNN
Matthews relation
coefficient (MCC)

Accuracy:
94.12%
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from the DWT coefficients. Features were then supplied to
sequential forward selection (SFS) algorithm to rank relief
method. The proposed methodology achieved an accuracy,
sensitivity, and specificity of 99.27%, 99.74%, and 98.08%,
respectively, with KNN classifier using 15 features ranked
by relief. Tang et al. [126] developed a system for accurate
identification of the CAD through stacked CNN and long
short-term memory management network from ECG sig-
nals. CNN was utilized to extract features from the dataset
of ECG samples. The proposed method based on a deep
learning technique successfully detected CAD from the
ECG signals with a diagnostic accuracy of 99.85%.

Sharma et al. [127] proposed a novel automated diagnos-
tic system for myocardial infraction through ECG signals,
based on the optimal biorthogonal filter bank for classifica-
tion. Physikalisch-Technische Bundesanstalt database was
used to get the raw ECG signals. An optimal biorthogonal
filter bank (FB) was employed for the ECG signal analysis.
The ECG signal was decomposed into six sub bands (SBs)
through a newly developed wavelet FB. For features extrac-
tion, fuzzy entropy, renyi entropy, and signal-fractal-
dimension (SFD) were used to compute the six SBs. KNN
was used for the classification problem based on the features
obtained through SBs. The proposed system obtained an
accuracy of 99.62% for raw data and 99.74% for clean data.

Pucer et al. [128] proposed a topological method for
delineation and arrhythmic beat detection from unprocessed
long-term ECG signals. The proposed approach was based
on the subject, specific adaptation of the one-dimensional
discrete Morse theory (ADMT). The ADMT technique was

used for noise removal and detection of the characteristic
waves of the subject ECG beats. The waves were labeled with
the help of ADMT technique. A decision tree algorithm was
used for classification based on the input labeled beats. The
proposed system used MIT-BH dataset for the performance
evaluation and a classification accuracy of 92.73%, sensitiv-
ity, and specificity of 73.35% and 96.70%, respectively, were
reported. Huang et al. [129] proposed a vector cardiogram-
based classification system for the myocardial infarction
detection. For the experiments, an open source VCG dataset
of PTB database from the Physionet was collected. The data-
set consists of 448 VCG recording (80 healthy controls
(HCs) and 369 MIs). For the features, selection FFS and
BFS were employed. The proposed method used four classi-
fiers (MLC, k-NN, GLM, and SVM) for the classification.
The proposed system obtained an overall accuracy of
96.96% with 99.89% sensitivity and 92.51% specificity. Zhou
et al. [130] designed a model for premature ventricular con-
traction detection from ambulatory ECG using recurrent
neural networks (RNN). The proposed model tested with
MIT-BIH arrhythmia database and the accuracy reported
in range of 96%-99%.

Sudarshan et al. [119] proposed a method for an auto-
mated diagnosis of CHF based on dual tree complex wavelet
transform. From experiments, the coefficients were obtained
through DTCWT implementation on ECG segments of 2
second duration to six levels. The statistical features were
extracted and ranked by using Wilcoxon, t-test, relief
methods, entropy, minimum redundancy maximum rele-
vance (mRMR), receiver-operating characteristics (ROC),
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Figure 10: Performance analysis of ML techniques based on datasets for automated diagnosis of heart failure. This figure shows the highest
accuracy achieved by the clinical feature-based data modality-based methods while average accuracy of ECG modality-based methods is
higher. As the number of samples in dataset is increased, the performance of the clinical feature-based data modality reduces. The image
modality has shown lower performance as compared to the other two modalities.
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Table 3: Summary of clinical features-based data modality articles.

P_
ID

Author Technique Data Feature selection Data-sampling Conclusion

PI_
01

Verma et al.
(2016) [40]

FURIA + MLR+
clustering
+ MLP

Cleveland heart
disease dataset,
IGMC data

CFS + PSO
k-fold

crossvalidation
k =10

Accuracy: 90.28%
Accuracy: 88.4%

PI_
02

Shah et al.
(2017) [41]

Radial basis
function (RBF)
kernel-based

SVM

Cleveland heart
disease dataset, 303

instances
PPCA+PA

k-fold
crossvalidation

k=10

Accuracy: 91.30%
Sensitivity: 100%

PI_
03

Dwivedi (2018)
[44]

LR +KNN
+ANN+NB+
classification
tree + vector
machines
(SVM)

StatLog heart
disease dataset

N/A
k-fold

crossvalidation
k =10

Accuracy: 85%
Sensitivity: 81%
Specificity: 89%

PI_
04

Haq et al. (2018)
[60]

Logistic
regression
(LR) +KNN
+ANN+NB+
DT+ SVM

Cleveland heart
disease dataset, 303

instances
Relief + mRMR + LASSO

k-fold
crossvalidation

k=10

Accuracy: 89%
Sensitivity: 96%
Specificity: 98%

PI_
05

Guidi et al.
(2014) [45]

NN+ SVM
+ fuzzy-genetic
+ regression tree
+ random forest

Cardiology
Department at the
St. Maria Nuova

Hospital in
Florence, Italy
Records, 90
patients

N/A
k-fold

crossvalidation
k=10

Prediction accuracy:
NN: 84.73%, SVM:
85.2%, FG: 85.9%,
CART: 87.6%, RF:

85.6%

PI_
06

Pawlovsky
(2018) [46]

An ensemble
based on

distances for a
kNN (k nearest

neighbor)

Cleveland heart
disease dataset, 303

instances

Distances(Mahalanobis) + voting
scheme using weights

k-fold
crossvalidation

k=10
Accuracy: 84.83%

PI_
07

Yu and Lee
(2012) [47]

SVM+
bispectral
analysis

CHF database
(chf2db),

Physionet database
(nsr2db)

Bispectrum-related features + GA
K-fold

crossvalidation
k=10

Accuracy: 98.79%

PI_
08

Wang et al.
(2019) [48]

DNN
+ ensemble

learning method

BIDMC-CHF,
NSR-RR

Time, frequency domain,
nonlinear features

Blindfold
validation

Accuracy: 99.96%

PI_
09

Methaila et al.
(2014) [49]

NN+NB+DT
+ apriori

(algorithm +
MAFIA

algorithm)

Cleveland heart
disease dataset, 303

instances

Significance weightage
calculation

Crossvalidation
Accuracy: 99.62%

(DT)

PI_
10

jan et al. (2018)
[50]

Ensemble model
+ NB+ANN
+weight+

random forest +
SVM

Cleveland heart
disease Hungarian

dataset, 590
instances

N/A
K-fold

crossvalidation
(k = 10)

NB: 93.22%accuracy
ANN: 94.91%,

accuracy
SVM: 98.13%,

accuracy
LR: 93.22%, accuracy

PI_
11

ali et al.(2019)
[42]

Optimized
stacked support
vector machines

Cleveland heart
disease dataset, 303

instances

SVM with kernels including
linear + RBF.

Matthews
correlation
coefficient
(MCC)

Accuracy: 92.22%

PI_
12

Pecchia et al.
(2010) [61]

CART
CHF RR interval

database
Short-term HRV analysis MCC+ROC Accuracy: 96.39%,

PI_
13

Kurnar (2012)
[62]

ANN+ fuzzy
logic

Fuzzy resolution
Matthews
correlation

Accuracy: 91.83%
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Table 3: Continued.

P_
ID

Author Technique Data Feature selection Data-sampling Conclusion

Cleveland heart
disease dataset, 303

instances

coefficient
(MCC)

PI_
14

Kurnar (2012)
[62]

LR+RF +NB
+GB+ SVM

Cleveland,
Hungarian,
Switzerland

Data cleaning
Confusion
matrix

Accuracy: 86%

PI_
15

Panicacci et al.
(2019) [63]

RF+ MACRO
+SMOTE28 S

mARSupio
database, Italy.

14616 subjects, 347
patient

N/A
F1-score, F2-

score
Accuracy: 98.74%

PI_
16

Beulah et al.
(2019) [64]

Majority vote
with NB, BN,
RF, and MP

Cleveland heart
disease dataset, 303

instances

Bagging, MV, stacking,
boosting

F1-score, F2-
score

Accuracy: 85.48%

PI_
17

Zikos et al.
(2019) [65]

Conditional
probability
+Bayesian

Medicare and
Medicaid services
CMS, 564,875

records

Clinical Classification
Software (CSS)

N/A Mortality rate: 2.61%

PI_
18

Daset et al.
(2009) [5]

Neural networks
ensembles

Cleveland heart
disease dataset, 303

instances

SAS base software 9.1.3 for
diagnosing

MCC+ROC Accuracy: 89.01%

PI_
19

Mohan et al.
(2019) [66]

Hybrid random
forest

with a linear
model

Cleveland heart
disease dataset, 303

instances

NB, GLM, LR, DL, DT,
RF, GBT, and SVM

Confusion
matrix

Accuracy: 88.4%
Sensitivity: 90.8%
Sensitivity: 82.6%

PI_
20

Kahramanli and
Allahverdi
(2008) [67]

ANN+FNN
Cleveland heart

disease dataset, 303
instances

N/A
k-fold

crossvalidation
Accuracy: 86.8%

PI_
21

Maji and Arora
(2018) [68]

Decision tree
+C4.5 +ANN

UCI, dataset with
13 attributes and
270 instances

Pruning
k-fold

crossvalidation
Accuracy: 78.14%

PI_
22

Polat et al.
(2005) [69]

Fuzzy weighted
+ AI

Cleveland heart
disease dataset, 303

instances

Fuzzy weighted
preprocessing

k-fold
crossvalidation

Accuracy: 96.30%

PI_
23

Ster and
Dobnikar (1996)

[70]
Neural networks

CAD:263 subjects,
UCI: 297

N/A
k-fold

crossvalidation.
HD accuracy: 84.5%
CAD accuracy: 59.7%

PI_
24

Chen et al.
(2017) [71]

Deep learning
with

RR intervals

72 healthy persons
and 44 CHF
patients

Autoencoder
k-fold

crossvalidation
Accuracy: 72.41

PI_
25

Purushottam
and Sharma
(2015) [72]

Decision trees
Cleveland heart

disease dataset, 303
instances

C4.5
Confusion
matrix

Accuracy: 87%

PI_
26

Rajliwall et al.
(2018) [73]

ML-based
models for

cardiovascular
risk

prediction

NHANES dataset
+ Framingham

heart study dataset
C4.5

Fivefold
crossvalidation

Accuracy (RF): 98.5%

PI_
27

Samuel et al.
(2017) [74]

ANN and
Fuzzy_AHP

Cleveland heart
disease dataset, 303

instances
Fuzzy_AHP ROC Accuracy: 91.10%

PI_
28

Venkatalakshmi
and Shivsankar
(2014) [75]

Decision tree +
naive

Bayes (NB)

Cleveland heart
disease dataset, 303

instances
Weka tool

Confusion
matrix

NB: 85.03%accuracy

DT: 84.01%accuracy
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and Bhattacharyya. For automated diagnosis of the CHF,
ranked features were classified through decision tree and
KNN. The proposed method obtained an accuracy of
99.86%, with sensitivity and specificity of 99.78% and
99.94%, respectively. Diker et al. [132] proposed a new tech-
nique for heart disease detection through ECG signal classi-
fication, genetic algorithm, and wavelet kernel extreme
learning machine. For the experiment, they utilized the
Physikalisch-Technische Bundesanstalt Diagnostic ECG
Dataset (PTBDB) from the Physionet Database. The critical
points QRS complex, PR, QT, and ST from ECG signals
were extracted through discrete wavelet transform (DWT)
methods. Then, extreme learning machine (ELM) tech-
niques were implemented on the ECG signals to find out
the coefficients that were used in the wavelet kernel extreme
ML. The proposed method achieved an accuracy of 95%
along with sensitivity and specificity of 100% and 80%,
respectively.

Acharya et al. [133] proposed a deep neural network
based method for automated detection of the myocardial
infraction through ECG signals. The dataset for the experi-
ments was collected from the Physikalisch-Technische Bun-
desanstalt Diagnostic ECG Database (PTBDB) from
Physionet. The proposed method was implemented without
features extraction or feature selection method. The average
accuracy of the proposed method using ECG beats with
noise and without noise was 93.53% and 95.22%, respec-
tively. Yao et al. [134] proposed a method based on the
attention-based time-incremental convolutional neural net-
work (ATI-CNN) for multiclass arrhythmia detection. The
proposed model had flexible input length and halved param-
eter amount that reduced computation in real-time process-
ing by 90% as compared to the conventional CNN model.
The ATN-CN model achieved an accuracy of 81.2%. Vafaie
et al. [135] proposed a heart disease prediction model

through ECG signal classification using genetic-fuzzy sys-
tem. The proposed fuzzy classifier method achieved an accu-
racy of 93.34%. Furthermore, with the application of genetic
algorithm, the accuracy was enhanced up to 98.67%. Sahoo
et al. [136] proposed a method for the detection of QRS
complex features through multiresolution wavelet transform
for the classification of four types of ECG beats. Features
were extracted through principal component analysis
(PCA). NN and SVM were used for the classification. The
proposed system achieved an accuracy of 96.67% for NN
and 98.39% for SVM.

Dohare et al. [137] developed a system for myocardial
infraction detection in 12-lead ECG through SVM. The
average beat of ECG was determined through the 12-lead
ECG by using four clinical features such as ST-T complex
interval, QT interval, P duration, and QRS duration. The
principal component analysis (PCA) was used in the pro-
posed method for the reduction of feature dimension. The
dataset used for the validation of the proposed method was
collected from Physikalisch-Technische Bundesanstalt
(PTB) database. SVM was employed for the classification.
The proposed MI detection method achieved an accuracy
with specificity and sensitivity of 98.33%, 100%, and
96.66%, respectively.

An artificial intelligent- (AI-) enabled electrocardiograph
(ECG) based on CNN for the detection of electrocardiogra-
phy signature of atrial fibrillation was proposed by Attia
et al. [138]. The patients data was collected from the Mayco
Clinic ECG laboratory consisting of 180922 patient records
with 649931 normal subjects. The receiver operating charac-
teristic (ROC) curve was used to validate the results of the
proposed method. The proposed model obtained an accu-
racy, specificity, and sensitivity of 87%, 79%, and 79.5%,
respectively. Melgare et al. [139] explored ML approaches
for the detection of electrocardiography fragment activity.

Table 3: Continued.

P_
ID

Author Technique Data Feature selection Data-sampling Conclusion

PI_
29

Maio et al.
(2017) [76]

Random
survival forest

MIMIC II clinical
database, 8059

N/A
OOB, C-
statistics

Accuracy: 82.01%

PI_
30

Arabasadi et al.
(2017) [34]

Hybrid neural
network-genetic

algorithm

Z-Alizadeh Sani
dataset

Genetic algorithm
10-fold

crossvalidation
Accuracy: 93.85%

PI_
31

Abdar et al.
(2017) [77]

N2Genetic
optimizer +
N2Genetic-
nuSVM

Z-Alizadeh Sani
dataset

GA+PSO
Crossvalidation
10-fold + F1-

score

Accuracy: 93.08%
F-score: 91.51%

PI_
32

Mezzatesta et.al.
(2019) [78]

LR +KNN
+CART + NB

+ SVM

HEMO clinical
trial + IFC-CNR,

Italy
Scaling techniques

Crossvalidation
K-fold

LR: 80%, SVM: 80%

PI_
33

Lakshmi et al.
(2016) [79]

NB classifier +
SVM

Cleveland heart
dataset

Reprocessing ROC
NB: 84.87%, accuracy

SVM: 93.08%

PI_
34

Bashir et al.
(2019) [80]

DT+NB+ LR
+ SVM

Cleveland heart
disease dataset, 303

instances
MRMR

5-fold
crossvalidation

Accuracy: 84.85%

PI_
35

javeed et al.
(2019) [81]

RSA+ORFA
Cleveland heart

dataset
Hybrid Feature Subset MCC Accuracy: 93.33%

17Computational and Mathematical Methods in Medicine



RE
TR
AC
TE
D

Table 4: Summary of image modality based research articles.

P_ID Author Technique Data Feature selection Data sampling Conclusion

PI_
36

Nirschl et al.
(2018) [83]

CNN+ whole-slide images
of H&E tissue

209 patients WND-CHARM
k-fold

crossvalidation
Accuracy: 97.4%

PI_
37

Cetin et al.
(2017) [84]

Radiomic approach +
cardiac cine-MRI+ SVM

MICCAI 2017 challenge
on automated cardiac

diagnosis

Sequential
forward feature
selection (SFFS)

Crossvalidation Accuracy: 98%

PI_
38

Bai et al.
(2016) [85]

SVM STACOM 2015 dataset
ED+ES phases +

PCA
k-fold

crossvalidation
Accuracy: 97.5%

PI_
39

Qazi et al.
(2007) [86]

SLFD 200 cases LFD
ROC + k-fold
crossvalidation

Accuracy: 89.1%

PI_
40

Sajn and
Kukar (2011)

[87]
Image processing + ML 288 patients PCA

ROC + k-fold
crossvalidation

Accuracy: 81.3%

PI_
41

R.Arsanjani
et al.,(2015)

[88]

Myocardial perfusion
SPECT + ML

Cedars-Sinai Medical
Center

LogitBoost
ROC + k-fold
crossvalidation

Accuracy: 81%

PI_
42

Arsanjani
et al. (2013)

[89]

SPECT for detection of
CVD

Cedars-Sinai Medical
Center

LogitBoost
ROC + k-fold
crossvalidation

Accuracy: 87.2%

UPI_
43

Udovychenko
et al. (2015)

[90]

k-NN binary classification
of heart failures

MCG data
Variance, kurtosis,

and skewness
MMC Accuracy: 80-88%

PI_
44

Carneiro and
Nascimento
(2013) [91]

Multiple dynamic models
and deep learning

architectures

Hospital Fernando
Fonseca dataset, 496

images
PCA

HMD, AV,
MAD, AVP

d_HMD:
83%accuracy

d_AV:
91%accuracy
d_MAD:

94%accuracy
d_AVP:

83%accuracy.

PI_
45

Zheng et al.
(2008) [92]

3-D cardiac CT volumes
using marginal space

learning

Siemens Somatom
Sensation

Steerable features
k-fold

crossvalidation
Mean error: 2.3%

PI_
46

Berikol et al.
(2016) [93]

SVM
Mersin University

Research
N/A

k-fold
crossvalidation

Accuracy: 99.13%

PI_
47

Lekadir et al.
(2016) [94]

Plaque CNN architecture Arnau de Vilanova
Deep learning

CNN
k-fold

crossvalidation
Accuracy: 80%

PI_
48

Sundaresan
et al. (2017)

[95]

Fully convolutional neural
networks (FCN)

C.Ioannou
Rectified linear
units (ReLUs)

ROC
Classification error

rate: 23.48%

PI_
49

Choi et al.
(2016) [96]

Recurrent neural network
Sutter Palo Alto Medical

Foundation
Gated recurrent

unit GRU

k-fold
crossvalidation

k=6
Accuracy: 88.3%

PI_
50

Toth et al.
(2018) [97]

Convolutional neural
networks

LIDC-IDRI public
dataset

(ReLU)
Qualitatively +
quantitatively

Error rate: 2.92%

PI_
51

Maraci et al.
(2017) [98]

Analysis of linear
ultrasound videos to detect

fetal presentation and
heartbeat

Dataset of 323
predefined free-hand

videos
PCA

k-fold
crossvalidation

k= 5
Accuracy: 93.1%

PI_
52

Kurgan et al.
(2001) [99]

Automated cardic SPECT
diagnosis

Database of
features(DF)

CLIP algorithm
Qualitative and
Quantitative test

Accuracy: 83.08%

PI_
53

Moreno et al.
(2019) [100]

Multiscale motion for
cardiac disease prediction

SPECT images dataset
RF +CLIP
algorithm

F1-score + k-fold
crossvalidation

Accuracy: 51.06%
F1-score: 37.8%.

PI_
54

Liu et al.
(2016) [101]

ML prediction for
cardiovascular

NSTEACS PCA+MCE
k-fold

crossvalidation
Accuracy: 75%

Accuracy:95%
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For this reason, four different datasets were utilized along
with three additional databases. For the classification prob-
lem, SVM, decision tree (DT), and Gaussian Naive Bayes
(NB) were used for deep analysis of the selected datasets.
The best results obtained for the fragmented dataset were
94% sensitivity, 88% specificity, 89% positive predictive

value, 93% negative predictive value, and 91% accuracy
when using SVM with Gaussian kernel.

Feng et al. [140] proposed a model for myocardial
infarction classification through CNN and Recurrent_NN.
A raw data was processed with the proposed algorithm to
extract heart beat segments. After feature extraction, CNN

Table 4: Continued.

P_ID Author Technique Data Feature selection Data sampling Conclusion

PI_
55

Shin et al.
(2016) [102]

Deep convolutional neural
networks for computer-

aided detection

ImageNet dataset for
CAD

CNN features of
AlexNet

pretrained +
GoogleNet-RI

k-fold
crossvalidation

k= 5

PI_
56

Hisham et al.
(2011) [103]

Grid independent
technique

10 patients Grid the images
Linear

correlation
Accuracy:80%

PI_
57

Allison et al.
(2005) [104]

ANN LAD model Crossvalidation Accuracy: 92%

PI_
58

Welikala et al.
(2017) [105]

Automated arteriole and
venule classification using

deep learning
UK Biobank

RGB and HSI
color spaces

Crossvalidation Accuracy: 86.97%

PI_
59

Curiale et al.
(2017) [106]

Deep learning network in
cardiac MRI

Sunnybrook Cardiac
Dataset (SCD)

RGB and HSI
color spaces.

Dice’s coefficient Accuracy: 90%

PI_
60

Lindahl et al.
(20197) [107]

Interpretation of
myocardial SPECT

perfusion images using
ANN

Sunnybrook Cardiac
Dataset (SCD)

Two-dimensional
Fourier trans form

technique

ROC + k-fold
crossvalidation

k= 2

Sensitivity: 54.4%
Specificity: 70.5%

PI_
61

Bai et al.
(2015) [108]

Statistical parametric
mapping(SPM) + linear

model

Hammersmith
Hospitals

PCA
Dice overlap
metric + mean
surface distance

LV_
cavity:0:950 ± 0:024
Myocardium: 0:824

± 0:062
RVcavity: 0:909 ±

0:03

PI_
62

Moreno et al.
(2019) [109]

Regional multiscale motion
representation for cardiac

disease prediction

Sunnybrook Cardiac
Data (SCD)

Random Forest
algorithm (RaF)

No. true positive
over total of
samples + F1-

score

Accuracy: 77.83%
F1-score:76.92%

PI_
63

Gulsun et al.
(2016) [110]

Coronary centerline
extraction + CNN

CTA datasets CNN
Up-to-first-error

evaluation
Sensitivity: 97%
Specificity = 90%

PI_
64

Narula et al.
(2016) [111]

Automate morphological
and functional assessments
in 2D echocardiography

77 ATH+62 HCM
patients

Information gain
(IG) algorithm

K-fold
crossvalidation

Sensitivity: 96%
Specificity = 77%

PI_
65

Carneiro et al.
(2011) [112]

Deep learning architectures
and derivative-based search

methods

Cohn-Kanade dataset
(CK+)

PCA
ROC + HMD,
HDF, MAD,

MSSD
d_AVP: 95%

PI_
66

Xu et al.
(2012) [113]

Transient ischemic dilation
for coronary artery disease
in quantitative analysis

Nuclear Medicine
Department, Sacred
Heart Medical Center,

Eugene

Mibi-Mibi TID
Standard

deviation (SD)
Sensitivity: 76%

PI_
67

Betancur et al.
(2017) [114]

ML
Sacred Heart Medical

Center
k − fold

crossvalidation
Quantitative

imaging analysis
Accuracy: 81%

PI_
68

Coenen et al.
(2018) [115]

ML+ coronary computed
tomographic

351 patients ROC
ML-based CT-
FFR model

Accuracy: 73%

PI_
69

Wolterink
et al. (2015)

[116]
CNN 116 CT patients

k − -fold
crossvalidation

ML-based CT-
FFR model

Accuracy: 95%

PI_
70

Nakazato et al.
(2010) [117]

Perfusion imaging for
detection of CAD

142 patients N/A
k − -fold

crossvalidation
Accuracy: 95%
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Table 5: Summary of ECG modality based research articles.

P_
ID

Author Technique Data Feature selection Data sampling Conclusion

PI_
71

Zhao et al.
(2019) [118]

HRV+PTTV + SVM 40 heart failure patients RR +PTT
k-fold

crossvalidation
Accuracy: 90%

PI_
72

Sudarshan,
et al. (2017)

[119]

DTCWT-based
methodology

BIDMC + rhythm
(NSR) + fantasia

ROC + t-test
k-fold

crossvalidation
Accuracy:
99.86%

PI_
73

Acharya
et al. (2017)

[120]
CNN+ECG signal Physionet databases Single CNN structure

k-fold
crossvalidation

Accuracy: 95.1%

PI_
74

Chen et al.
(2019) [121]

Two-step predictive
framework for ECG

MITDB + Physionet
Daubechies wavelet +

PCA
k-fold

crossvalidation
Accuracy:
96.26%

PI_
75

Shen et al.
(2016) [122]

Generative kernel density
estimator

China Kadoorie biobank
(CKB)

RR interval + P wave
duration

k-fold
crossvalidation

One-class: 75.6%
Acc

Four-class:
75.1% Acc

PI_
76

Acharya
et al. (2016)

[123]

Automated diagnosis of
serious arrhythmias

MIT-BIH A-fib + MIT-BIR
arrhythmia

Approximate entropy
Confusion
matrix

Accuracy: 96.3%
%

PI_
77

Mathews
et al. (2018)

[124]
Deep learning

MIT/Beth Israel Hospital
(BIH)

Heartbeat interval
features + RR

intervals
MCC

Accuracy:
96.94%

Sensitivity:
85.22%.

PI_
78

Adam et al.
(2018) [125]

DWT+nonlinear features
PTB Diagnostic ECG

Database
SFS

10-fold
crossvalidation

Accuracy:
99.27%

PI_
79

Tan et al.
(2018) [126]

Stacked convolutional +
long short-term memory

network
Physionet database CNN

10-fold
crossvalidation

Accuracy:
99.85%

PI_
80

Sharma
et al. (2018)

[127]

Two-band optimal
biorthogonal filter bank

(FB)

Physikalisch-Technische
ECG database

Fuzzy entropy +
signal-fractal-

dimension+ Renyi
entropy

10-fold
crossvalidation

Noisy
data:99.62%, Acc

Clean data:
99.74%, Acc

PI_
81

Puceret
et.al. (2018)

[128]
Topological approach MIT-BIH database ADMT

10-fold
crossvalidation

Accuracy:
92.73%

PI_
82

Huang et.al.
(2011) [129]

Vector cardiogram-based
classification

PTB database from
Physionet

FFS +BFS
10-fold

crossvalidation

Accuracy:
96.96%

Sensitivity:
99.89%

Specificity:
92.51%

PI_
83

Zhou et.al.
(2018) [130]

Premature ventricular
contraction + RNN

MIT-BIH arrhythmia
database

Long short-term
memory (LSTM)

Detection
indexes

Accuracy: 96-
99%

Sensitivity: 99-
100%

Specificity: 94-
96%

PI_
84

U.Satija
et al.,(2018)

[131]

ECG signal quality
assessment algorithms

MIT-BIH arrhythmia
database

CEEMD + temporal
features

10-fold
crossvalidation

Accuracy:
98.80%

PI_
85

Sudarshan
et al. (2017)

[119]

Dual tree complex wavelet
transform

PhysioBank MIT-BIH
NSR+ fantasia + BIDMC

CHF

Statistical features
extracted from 2
seconds of ECG

signals

10-fold
crossvalidation

Accuracy:
99.86%

Sensitivity:
99.78%

Specificity:
99.94%
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Table 5: Continued.

P_
ID

Author Technique Data Feature selection Data sampling Conclusion

PI_
86

Diker et al.
(2019) [132]

Genetic algorithm wavelet
kernel

Physikalisch-Technische
Bundesanstalt diagnostic
ECG database (PTBDB)

Discrete wavelet
transform (DWT)

10-fold
crossvalidation

Accuracy: 95%
Sensitivity: 100%
Specificity: 80%

PI_
87

Acharya
et al. (2017)

[133]
Deep CNN PTBDB N/A

10-fold
crossvalidation

Accuracy:
95.22%

Sensitivity:
95.49%

PI_
88

Yao et al.
(2020) [134]

Attention-based time-
incremental convolutional
neural network (ATI-CNN)

1st China Physiological
Signal Challenge

CNN-LSTM, 1st layer
Matthews
correlation

coefficient(MCC)
Accuracy: 81.2%

PI_
89

Vafaie et al.
(2014) [135]

Genetic-fuzzy + dynamical
model of ECG signals

Physionet database IF, THEN rules N/A
Accuracy:
93.34%

PI_
90

Sahoo et al.
(2017) [136]

Multiresolution wavelet
transform + ECG

classification

MIT-BIH arrhythmia
database

Principal component
analysis (PCA)

10-fold
crossvalidation

NN: 93.34% Acc
SVM: 98.39%

Acc

PI_
91

Dohare et al.
(2018) [137]

Myocardial infarction (MI)
detection + SVM

Physikalisch-Technische
Bundesanstalt (PTB)

Principal component
analysis (PCA)

10-fold
crossvalidation

Accuracy:
96.66%

Sensitivity:
96.66%

Specificity:
96.66%

PI_
92

Attia et al.
(2019) [138]

(AI)-enabled
electrocardiograph (ECG)
using a convolutional neural

network

Mayo Clinic ECG
laboratory

Non-linear ReLU ROC

Accuracy: 87%
Sensitivity: 79%

Specificity:
79.5%

PI_
93

Melgare
et al. (2019)

[139]

ML approach +
electrocardiographic

fragmented

Sfrag-DB+ SWfrag-DB
+ FHCM-DB+HCM-DB

Statistics + PCA

Matthews
correlation
coefficient
(MCC)

Accuracy: 90%
Sensitivity:
94.1%

Specificity:
87.5%

PI_
94

Feng et al.
(2019) [140]

CNN+RNN PTB database CNN and LSTM
10-fold

crossvalidation
Accuracy: 95.4%

PI_
95

Raka et.al.
(2017) [141]

Time-based detection
SDDB + MIH-BIH
database (NSRDB)

R-R interval duration
5-fold

crossvalidation
Accuracy: 83.9%

PI_
96

Kumar et al.
(2017) [142]

ECG beat with flexible
analytic wavelet transform

(FAWT) + LS-SVM

ECG database from the
Physiobank

Sample entropy
(SEnt)

10-fold
crossvalidation

Accuracy:
99.31%

PI_
97

Yin et al.
(2019) [143]

LS-SVM+multidomain
electrocardiogram

MIT-BIH arrhythmia
database

RR intevals, DWT,
SampEn

10-fold
crossvalidation

Accuracy:
99.31%

PI_
98

Sahoo et al.
(2017) [144]

SVM+NN
MITBIH arrhythmia

database
Multiresolution
wavelet transform

10-fold
crossvalidation

Accuracy:
98.39%

PI_
99

Masetic
et al. (2016)

[145]
Random forest

BIDMC CHF database
(CHFDB) +NSRDB.

Autoregressive burg
method

10-fold cross
validation

Accuracy: 100%

PI_
100

Isler and
Kuntalp

(2007) [146]

Classical HRV indices with
wavelet entropy measures

MIT/BIH database Genetic algorithm Crossvalidation
Accuracy:
91.33%

Sensitivity: 100%

PI_
101

Bhurane
et al. (2019)

[147]

Frequency localized filter
banks

NSRDB +BIDMC Feature extraction
10-fold

crossvalidation
Accuracy:99.66%

PI_
102

Orhan
(2013) [148]

Discretization method NSRDB + BIDMC EFiA-EWiT
10-fold

crossvalidation
Accuracy:
99.33%

PI_
103

Liao et al.
(2015) [149]

SVM
CHFDB + MIT-BIH NSR

database NSRDB
QRS wave Ratio (ACC/SV)

Accuracy:
97.27%
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and LSTM were deployed for ECG classification. The dataset
used for validating the proposed model was collected from
Physikalisch-Technische Bundesanstalt (PTB). The pro-
posed algorithm reported an accuracy, sensitivity, and spec-
ificity of 95.4%, 98.2%, and 86.5%, respectively. Kumar et al.
[142] proposed a technique for automated diagnosis of myo-
cardial infarction ECG signals based on the sample entropy
in flexible analytic wavelet transform framework (FAWT).
The FAWT model was implemented on every ECG beat
which decomposed the ECG beats into the subband signal.
Subband signals were used for computing the sample
entropy (Sent) that was fed into the random forest, BRNN,
and LS-SVM for classification. The highest accuracy of
99.31% was achieved through the LS-SVM.

Yin et al. [143] proposed a multidomain feature extrac-
tion method for arrhythmia classification. Dataset for the
experiments was collected from the MIT-BIH arrhythmia
database. 1-fold crossvalidation scheme was selected for per-
formance evaluation of the proposed method and genetic
algorithm used for the optimized selection of parameters.
The average accuracy of 99.70% with sensitivity and specific-
ity of 99.68% and 99.96%, respectively, was reported through
the proposed method (SVM-RBF). Li and Zhou [152] pro-
posed a method for ECG classification based on wavelet
packet entropy and random forests. The dataset used in this

study was collected from the MIT-BIH arrhythmia database.
The proposed method used WPE+RR for feature extraction
and random forest (RF) for classification and for which an
accuracy of 94.61% was reported. Yang et al. [151] proposed
a method for automatic recognition of arrhythmia using
principal component analysis network and linear SVM.
The principal component analysis network (PCANet) was
used for the extraction of features from ECG signals while
SVM was deployed for classification. For the experiment,
MIT-BIH arrhythmia database was used to validate the
effectiveness of the proposed model which achieved an accu-
racy of 97.94%. Figure 9 provide the overview of various ML
techniques performance based on ECG modality.

4. State-of-the-Art Work

Ricciardi et al. [51] presented a tree-based ML method based
on radiodensitometeric distribution for assessing the cardio-
vascular risks through mid-thigh CT image. The dataset was
collected from AGES-I and AGES-II for the experimental
purpose. The proposed method tested against the CHD,
CVD, and CHF. The proposed method based on logistic
regression and tree-based ML model achieved the accuracy
for CHD (AUCROC: 0.936), CVD (AUCROC: 0.914), and
CHF (AUCROC: 0.994). Butun et al. [52] developed a deep

Table 5: Continued.

P_
ID

Author Technique Data Feature selection Data sampling Conclusion

PI_
104

Yıldırım
et.al. (2018)

[150]
Deep CNN

MIT-BIH arrhythmia
database

PCANet algorithm
Confusion
matrix of

Accuracy:
95.20%

PI_
105

Yang et al.
(2018) [151]

LS-SVM+PCA MIT-BIH database PCANet algorithm
10-fold

crossvalidation
Accuracy:
97.94%
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Figure 11: The performance of ML models with respect to modality can be seen in this figure. SVM, RF, and DNN models have obtained
higher accuracy as compared to the other ML models. Modalities of the ML models can also be seen in this figure.
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capsule network for the detection of CAD using ECG sig-
nals. The capsule network was designed through deep
learning-based methods. The proposed method was given
as 1D-CADCapsNet. The dataset was obtained from Physi-
onet databases for the experiments. The accuracy reported
by the 1D-CADCapsNet was 99.44%.

Ramachandran et al. [53] proposed a computerized diag-
nostic system for CVD based on photoplethysmography sig-
nals. The proposed system extracted the features from
photoplethysmography through singular value decomposi-
tion (SVD), statistical features, and wavelets while Softmax
Discriminant Classifier (SDC) and Gaussian mixture model
classifier (GMM) were used for classification. The newly
proposed system obtained an accuracy of 97.88%. Dataset
used for the experiments was obtained from IEEE TMBE
pulse oximeter dataset to evaluate the performance of the
proposed computerized diagnostic system. Ghiasi et al.
[54] proposed a decision tree-based diagnosis of CAD model
named as CART. The newly designed CART model obtained
the accuracy of 100% on Z-Alizadeh Sani CAD dataset.

Gjoreski et al. [56] proposed a deep learning-based
method for the detection of chronic heart failure using heart
sound. The dataset used in this study for experiments con-
sisted of recordings from 947 subjects from six publicly
available datasets. The newly proposed system achieved an
accuracy of 93.2%. Hussain et al. [57] proposed a novel
CHF based on multimodal extracting features and ML
approaches. The RR interval time series data was used for
experiments that were obtained from the Physionet data-
bases. The highest accuracy of 97% was achieved by SVM
linear kernel. Aouabed et al. [58] developed an ensemble
model for early detection of CAD. The ensemble model is
based on four different kernel functions (linear, polynomial,
radial basis, and sigmoid). To analyze the performance of
the proposed model, an online dataset from UCI repository
was obtained. Genetic algorithm was employed for feature
extraction. The proposed model achieved an accuracy of
98.34%. Liu et al. [59] proposed a multiscale convolutional
neural network for coronary artery fibrous plaque detection.
The coronary OCT images were collected from Peking
Union Medical College Hospital, China, for experiments
purpose. The proposed method obtained an accuracy of
94.12%. Moreover, the summary of state-of-the-art pro-
posed models is reported in Table 2.

5. Discussion

Herein, we scrutinized the top ten research articles from
each modality based on accuracy and performance that were
achieved on various datasets. Furthermore, a comparison of
modality-based ML techniques is depicted in Figure 10,
where modality-based ML models are ranked according to
accuracy and number of samples used in the dataset. It can
also be observed from Figure 10 that ML techniques based
on ECG modality have better accuracy and performance as
compared to clinical feature-based data modality. Further-
more, image modality has shown less accuracy in compari-
son to ECG and clinical feature-based data modality.
Another factor that can be observed from Figure 10 is that

clinical feature-based data modality and image modality-
based ML techniques lose accuracy and performance when
the number of samples or subjects were huge in the dataset,
whereas ECG modality-based ML models performed well in
case of huge or small number of samples in the datasets.

One of the key factor for an ML model to obtain the best
performance is based on the nature of data that exists in the
dataset. As we have observed, the three modalities used
diverse datasets that means nature of data varies for each
such as ECG signals, images, and medical reports data.
Therefore, ECG modality-based ML models used signal data
and obtained higher performance and accuracy as compared
to other modalities for prediction and detection of the HF
and CAD.

Feature selection/extraction is also an important part of
ML-based models where we select the most appropriate fea-
ture from the feature space. The feature space is reduced by
eliminating features from the feature space which helped to
improve the performance and accuracy of ML models. Fea-
ture selection process differs from feature extraction in that,
in the features selection process, only those features are
selected from the feature vector that heavily contribute to
achieving a better accuracy, while in the feature extraction
process, new features are produced from the features space
which increases the accuracy of the proposed ML models.
Therefore, feature processing is an important part in ML
models that not only does contribute to achieve higher accu-
racy but also reduces the model’s computational cost. For
example, in the ECG modality, features are extracted from
the ECG signals through sampling of the signals. The most
widely used methods for extracting features from the ECG
signals are QR wave and R-R interval.

Performance evaluation of the ML model is another key
factor of ML pipeline. Numerous types of performance met-
rics are utilized to measure the performance of ML models,
e.g., F1 score, area under the curve (AUC), ROC, Matthews
correlation coefficient (MCC), specificity, sensitivity, and
accuracy [153]. Another important factor is validation
methods. Different validation methods, namely, train-test
holdout validation, k-fold crossvalidation, and leave-one-
out (LOO) crossvalidation methods have been used by dif-
ferent researchers. The ML-based model for automated diag-
nosis of HF and CAD detection mostly used k-fold
crossvalidation metric for the evaluation of the newly devel-
oped model. The modalities (Tables 3–5) also show that k
-fold crossvalidation method has been widely used by the
researchers, while the performance of ML models with
respect to modality can be seen from Figure 11 where
SVM, RF, and DNN models have obtained higher accuracy
as compared to the other ML models.

5.1. Limitations in the Previously Developed Methods. ML
algorithms are applied to various problems in different
application domains. However, they suffer from some limi-
tations which make them imperfect for every problem. In
the area of clinical support systems, most ML methods for
automated diagnosis of HF, CAD, and CHF belong to the
supervised learning category. Since supervised learning has
some limitations, automated diagnosis systems also suffer
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from, if not all but some of these limitations. In this section,
we address these limitations of ML-based methods

(i) Supervised ML models requisite training on the
dataset; however, training on large amount of data
is complex and time consuming task

(ii) ML models may suffer from the data overfit prob-
lem. As discussed above, k-fold crossvalidation
method has been widely utilized by many
researchers for evaluating the performance of their
developed diagnostic system. However, it may result
in overfitted or highly biased results due to data
leakage

(iii) In recent years, deep learning technology has shown
state-of-the-art performance on heart disease detec-
tion problem. However, the deep learning technol-
ogy requires huge amount of data for model
training which is a costly and difficult job

(iv) Time complexity is another issue in automated
detection of heart disease based on ML approaches.
ML model can predict only after they have been
trained on the training data which requires process-
ing time. Moreover, ML models have many param-
eters, which needs to be tuned manually in case of
supervised learning. Therefore, a lot of time is
required to fine tune the hyper parameters of the
ML model for achieving better performance

(v) Another drawback in many previously proposed
methods and reported results is the biased compar-
ative study in many papers, for example, comparing
results of two studies which have used different val-
idation methods (holdout and crossvalidation) or
different evaluation metrics. For an unbaised com-
parison, it is important to use same dataset with
same validation scheme and evaluation metrics

5.2. Future Research Directions. Several ML models have
been proposed for the prediction of CAD and HF in the past
few years; however, there are some areas that still need to be
explored by researchers and professionals. In this section, we
have addressed the potential research areas and directions
for further improvement in ML methods for CAD detection.
Through this study, we conclude that there are three key fac-
tors that participate for efficient detection of the CAD and
HF.

Firstly, data is very significant in case of ML-based auto-
mated detection of heart disease, especially, when deep
learning models are brought into account. However, many
of the publicly available datasets are small sized. Hence,
future studies focus should be on collection of the large
amount of datasets.

Secondly, as discussed above, k-fold crossvalidation-
based model performance gives biased performance owing
to data leakage. Hence, in future studies, in order to develop
models that would show better generalization performance,
an independent dataset should be used. After development
of the model using crossvalidation, the developed model

generalization capabilities should be blind tested on the
independent dataset. Such type of generalized models would
be of great help and could be deployed in hospitals for real
time diagnosis.

Thirdly, ML is an emerging field; therefore, there are still
open challenges for development of novel methods that will
provide efficient performance.

Fourth, recently on many other disease detection prob-
lems, multimodal processing has provided reliable and effi-
cient results. Hence, in future, researchers should exploit
multimodal approaches for a better heart disease detection.

6. Conclusion

Unlike previous studies, in this study, we scrutinized various
ML approaches for the development of automated diagnos-
tic systems for heart disease detection based on different
kinds of modalities (clinical features-based data, imaging,
and ECG). Research articles were collected from various
databases published between 1995 and 2021. Based on dif-
ferent data modalities, the previously proposed studies were
critically analyzed and systematically organized. Moreover,
in this study, we also pointed out the limitations and loop
holes in the previously proposed methods for automated
heart disease detection. Finally, to mitigate the problems
present in previously developed methods and to provide bet-
ter heart disease detection, some future directions were dis-
cussed for onward research in the domain of automated
heart disease detection based on ML. We hope that this
review will be helpful to those who intend to work in the
domain of automated heart disease detection.
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