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Machine Learning-Based Channel Prediction in

Massive MIMO with Channel Aging
Jide Yuan, Hien Quoc Ngo, Member, IEEE,

and Michail Matthaiou, Senior Member, IEEE

Abstract—To support the ever increasing number of devices
in massive multiple-input multiple-output (mMIMO) systems,
an excessive amount of overhead is required for conventional
orthogonal pilot-based channel estimation schemes. To circum-
vent this fundamental constraint, we design a machine learning
(ML)-based time-division duplex scheme in which channel state
information (CSI) can be obtained by leveraging the temporal
channel correlation. The presence of the temporal channel corre-
lation is due to the stationarity of the propagation environment
across time. The proposed ML-based predictors involve a pattern
extraction implemented via a convolutional neural network, and
a CSI predictor realized by an autoregressive (AR) predictor
or an autoregressive network with exogenous inputs recurrent
neural network. Closed-form expressions for the user uplink
and downlink achievable spectral efficiency and average per-user
throughput are provided for the ML-based time division duplex
schemes. Our numerical results demonstrate that the proposed
ML-based predictors can remarkably improve the prediction
quality for both low and high mobility scenarios, and offer great
performance gains on the per-user achievable throughput.

Index Terms—Achievable spectral efficiency, channel estima-
tion, machine learning, massive multiple-input multiple-output.

I. INTRODUCTION

Channel estimation (CE) is an essential procedure to obtain

channel state information (CSI) which is required for the

uplink and downlink transmission in massive multiple-input

multiple output (mMIMO) [2]. However, with the exponential

growth of devices, as well as the spectrum of new applications,

an excessive amount of overhead is required to support an ever

increasing number of devices. According to [3], the number of

devices serviced in one cell may be up to in the order 105. As

a result, the conventional orthogonal pilot based CE schemes

are undoubtedly incompetent considering the limited overhead

resources and the latency constraints.

Non-orthogonal multiple access (NOMA) can be considered

as one of the possible solutions for this issue [4, 5]. In NOMA,
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users are partitioned into clusters, and users in one cluster are

encouraged to share the same channel or bandwidth resource.

Compared to orthogonal CE methods, the pilot length can

be reduced by multiple times as it only needs to be larger

than the number of clusters rather than the number of users.

The main drawback of CE in NOMA is that the CSI of

different users in one cluster are coupled, which severely

limits the system performance due to the channel mismatch.

As an alternative, grant-free user access schemes have been

proposed, where user activity detection and CE are performed

in one shot employing compressed sensing techniques [6–8].

A key observation made in [6, 7] is that the user activity

pattern is sparse, therefore the pilot length can be reduced

to the number of activated users instead of all users. However,

the performance of grant-free scheme highly depends on the

sparsity of user activity pattern. Specifically, if the proportion

of the active users is high, the grant-free schemes may fail due

to the inherent drawback of compressed sensing techniques

[8]. Furthermore, when the number of users exceeds the length

of the pilot sequences, the CSI prediction accuracy of such

scheme deteriorates significantly.

In practice, the channel does not vary independently across

time due to the nearly stationary scattering environment [9].

This phenomenon is known as channel aging. The impact of

such feature has been characterized in prior literature. For

example, [10] studied the achievable rate at the uplink and

downlink in mMIMO with channel prediction over an aging

channel; [11] showed that channel aging does not impact

the power scaling law in mMIMO; [12] points out that the

performance degradation caused by such phenomenon can be

partially compensated by applying channel prediction, which

implies that this practical impairment can be learned and used

for estimating CSI. By leveraging this critical observation,

the CE overhead has tremendous potential to be reduced by

rigorous CSI prediction. An effective method to model an

aging channel is an autoregressive (AR) stochastic model

whose parameters are computed based on the channel corre-

lation matching property among adjacent coherence intervals

[12, 13]. A key observation on the one-step prediction of

AR predictor is that the prediction accuracy improves with

increasing the AR model order [13]. However, according to

the Levinson-Durbin recursion, which is used for computing

the model parameters, the model order is bounded by the

data amount of previous CSI samples, and the computational

complexity is proportional to the square of model order. As it

is impractical for a mMIMO base station (BS) to collect and

buffer large datasets of previous CSI samples, the performance
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of the existing CSI predictors can be rather limited.

Recently, machine learning (ML) based non-linear methods

have been successfully applied in wireless communications

[1, 14, 15], which motivates us to adopt relevant techniques

to forecast CSI. First, by considering the channel aging

property, the CSI forecasting becomes a typical time series

learning problem. In the case of time series learning, re-

current neural networks (RNNs) have been proved to be a

potentially powerful tool, which are considered as non-linear

approximators to map the undetermined feature within the

data. [16–18] RNNs belong to a class of neural networks

which are naturally designed for learning sequential data.

However, it is extremely difficult for simple RNNs to learn

from distant data due to the vanishing gradient problem [16].

Therefore, several powerful architectures, which are able to

track the long-term correlation within the sequential data, are

proposed, including autoregressive network with exogenous

inputs (NARX) [16], long short-term memory (LSTM) [17],

gated recurrent unit (GRU) [18], etc. In [19], the authors use

LSTM for addressing the power allocation problem in the

downlink of mMIMO networks. The use of deep learning

significantly reduces the complexity of power allocation, and

is able to guarantee near-optimal performance. Also, [20]

proposes a real-time CSI feedback framework for point-to-

point mMIMO by extending the CsiNet, a deep learning-based

NN for reconstructing the CSI, with LSTM. The simulation

results demonstrate that the proposed architecture can achieve

excellent recovery quality without considerably increasing

the feedback overhead. Second, as the temporal correlation

is related to the Doppler-shift, in mMIMO scenarios, it is

reasonable to assume that CSI series from each antenna at

the BS have the same autocorrelation pattern for a particular

terminal [12]. By leveraging this property, and by mapping

multiple CSI series into a matrix, we are able to apply a similar

technique from the field of image recognition and sentence

classification [21–23], i.e, convolutional NN (CNN) to detect

the pattern of CSI variation. CNNs treat the feature extraction

and the classification identically; in particular, feature extrac-

tion is implemented by convolution layers and classification

is approached by full-connection layers [24, 25]. As the

shared weights in convolution layers and the weights in full-

connection layers are trained together, the total classification

error of a well designed CNN can be significantly minimized

[26]. In [27], the authors construct a CNN-based network,

called PowerNet, to approximate the reweighted minimum

mean-square error (MMSE) algorithm for power allocation.

With the help of the PowerNet, the runtime of power allocation

reduces to the millisecond level, demonstrating the feasibility

of DL for real-time power control in mMIMO. In [28], a CNN-

based scheme for predicting downlink (DL) CSI from observed

uplink (UL) CSI for frequency division duplex (FDD) is

proposed. The new scheme outperforms the classic Wiener

filter-based approach in both single-input single-output and

MIMO scenarios.

In this paper, we aim to reduce CE overhead via CSI

prediction by taking advantage of the autocorrelation across

CSI series. By leveraging the same aging pattern of CSI series

from massive antennas to a particular user, we are able to

create a simple structure NN which can significantly improve

the tradeoff between prediction accuracy and CE overhead

only by some simple training. Our work is motivated by

[29] in the field of video representation and reconstruction, in

which a CNN and an RNN are used to extract spatial features

and interframe correlation, respectively. Specifically, the main

contributions of this paper are summarized as follows.

• We provide an ML-based time-division duplex (TDD)

scheme in which CSI is obtained via an ML-based predic-

tor instead of conventional pilot-based channel estimator.

• Two ML-based structures are designed to improve the

CSI prediction, namely, CNN combined with AR predic-

tor (CNN-AR) and NARX RNN (CNN-RNN). The main

idea is to use CNN to identify the channel aging pattern,

and adopt AR predictor or NARX-RNN to forecast CSI.

• To give a full picture of the proposed ML-based TDD

scheme, we provide a closed-form expression for the

per-user achievable spectral efficiency (SE) for the ML-

based TDD scheme, and consider the tradeoff between

CE overhead and achievable throughput. Note that our

derivations differ substantially from the bulk of mMIMO

literature (e.g. [11, 30]) as we leverage tools of AR

prediction.

• We numerically evaluate the performance of the proposed

TDD scheme, as well as the ML-based CSI predictors.

The results demonstrate that the CNN-AR outperforms

other architectures, including CNN-RNN, in terms of

prediction accuracy for low and medium mobility scenar-

ios. Regarding the achievable throughput, the proposed

ML-based TDD scheme exhibits a remarkable tradeoff

between throughput and CE overhead. Even for high

mobility scenarios, a significant performance gain can be

observed due to the reduced CE overhead.

The rest of this paper is organized as follows: Section II

presents the system model including the channel model and the

proposed ML-based scheme. Section III presents the proposed

ML-based CSI predictors. We provide the discussion of our

scheme in Section IV, and the numerical results in Section

V, respectively. Section VI summarizes the main observations

and proofs are relegated to Appendices.

Notation—Throughout this paper, vectors and matrices are

denoted in bold lowercase letters and bold uppercase letters,

respectively. The operation ‖A‖p denotes the p-norm of the

matrix A, and diag (a) denotes the diagonal matrix of vector a.

The superscripts (·)∗ and notation E {·} denote the conjugate

transpose and the expectation operations, respectively.

II. SYSTEM MODEL

A TDD single-cell multi-user mMIMO system is consid-

ered, where a BS having N antennas serves K single-antenna

users simultaneously. We assume that the channel is static dur-

ing each coherence interval, but it changes from one interval

to the next. Furthermore, the channel in a given coherence

interval is correlated with the channels in previous coherence

intervals, a phenomenon known as channel aging [10]. More

precisely, there is a so called autocorrelation pattern over the

channel coherence intervals [31, 32]. The reasoning for this
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assumption is two fold: 1) The scattering environment in many

scenarios is nonisotropic, which strongly affects the second-

order statistics of the channel. 2) The scattering environment

shares a high degree of stationarity across several intervals,

over which the real and imaginary Gaussian sequences in

channel response exhibit cross-correlations [12, 13].

The N × 1 channel vector between the BS and the kth user

at the lth coherence interval is modeled as

gk [l] = hk [l]
√

βk, (1)

where βk represents large-scale fading (LSF), which remains

constant over many coherence time intervals,1 and hk [l] is the

small-scale fading. The effective channel from K users to the

BS can be represented in matrix form as

G [l] = H [l]B
1
2 , (2)

where B is a diagonal matrix whose (k, k)th element is βk,

and H [l] = [h1 [l] , . . . ,hK [l]] ∈ C
N×K .

A. Channel Aging Model

In general, the aging property is mainly caused by the

movement of the users, and such feature can be approximately

characterized via the second order statistics of the channel, i.e.,

autocorrelation function (ACF) [13].

We assume that the propagation path experiences two-

dimensional isotropic scattering, whose corresponding normal-

ized discrete-time ACF at the BS is [13]

R [l] = J0 (2πfn |l|) , (3)

where J0 (·) is the zeroth-order Bessel function of the first

kind, |l| is the delay in terms of the number of coherence

intervals, and fn = νTsfd represents the normalized Doppler

shift, with the maximum Doppler frequency fd, the sampling

duration Ts, whilst the number of samples in a coherence

interval is ν.

In this paper, we assume the same temporal autocorrelation

among all channels from a particular user to the BS antennas.2

Hence, given the desired ACF as (3) for l > 0, we model the

small-scale fading series as [13]

hk [l] = −
∑Q

q=1
ak,qhk [l − q] + ω [l] , (4)

where ω [l] is the complex white Gaussian noise vector inde-

pendent of hk with zero mean and variance

σ2
ω = R [0] +

∑Q

q=1
ak,qR [−q], (5)

and {ak,q}Qq=1 are the AR coefficients which are evaluated via

the Levinson-Durbin recursion via [13]

ak = −R−1w, (6)

1This assumption is reasonable since the path-loss is inherently related to
the distances between the users and the BS, and thus, the value of βk changes
very slowly with time.

2The temporal channel correlation is determined by the scattering envi-
ronment [13]. For a particular user, the N channels from a user to the BS
antennas experience nearly identical scattering environment, which justifies
our assumption.

where

ak = [ak,1, . . . , ak,Q]
T
,

R =







R[0] R[−1] ··· R[1−Q]
R[1] R[0] ··· R[2−Q]

...
...

. . .
...

R[Q−1] R[Q−2] ··· R[0]






,

and

w = [R [1] , . . . , R [Q]]
T
,

with R [l] = R [−l] and R [0] = 1.

Remark 1: Given a desired ACF, the fitting accuracy of the

AR model improves with higher order Q. However, according

to the Levinson-Durbin recursion, Q is upper bounded by

the amount of collected CSI samples, which implies that

the performance of channel prediction via the AR estimator

is limited by the number of coherence intervals used for

collecting CSI.

Intuitively, according to (4), the small-scale fading vector is

generated as the weighted sum of independent complex white

Gaussian vectors in an iterative manner. Thus, the small-scale

fading vector follows the Gaussian distribution with zero mean

and same variance. Denote by ḣk the small-scale fading in a

typical interval from the kth user to a typical antenna at the

BS; its variance can be calculated via the Green’s function

[33]

σ2
ḣk

=
∑∞

j=1
G2

jσ
2
ω, (7)

where

Gj ,

{

1, j=0,
∑j

q=1 ak,qGj−q, j6Q,
∑Q

q=1 ak,qGj−q, j>Q.

B. Conventional TDD Scheme

The frame structure in conventional TDD consists of three

main blocks that correspondingly represent: CE, UL payload

and DL payload phases, in which the channels estimated dur-

ing the CE phase are further used for UL and DL transmission.

1) CE scheme: We assume that orthogonal pilots are used

in the CE phase, and the channel is estimated using the MMSE

estimator. Consider the pilot vector assigned to the kth user is

ψk with ‖ψk‖22 = 1; by considering that the length of pilot

signal is equal to number of users, the overall pilot matrix Ψ =
[

ψT
1 , . . . ,ψ

T
K

]T

∈ C
K×K satisfies ΨΨH = IK . The users

use the same power pp to transmit pilots, and the received

training signal at the BS is

Yp [l] =
√

KppG [l]Ψ+N [l] , (8)

where N [l] is white additive Gaussian noise matrix whose

elements have variance σ2
n. Correlating Yp [l] with the pilot

matrix Ψ, the BS obtains

Rp [l] =
1

√

Kpp
Yp [l]Ψ

H , (9)

and the received noisy channel vector from the kth user at the

lth interval is

rp,k [l] = gk [l] +
1

√

Kpp
N [l]ψH

k . (10)
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Recalling the channel model in (1), the channel vectors from

the kth user to the BS is distributed as gk [l] ∼ CN
(

0, β̇kIN

)

according to (7) with β̇k = βkσ
2
ḣk

. Thus, the MMSE estimate

of gk [l] follows

ĝmmse
k [l] = γmmse

k rp,k [l] ∼ CN (0, β̇kγ
mmse
k IN ), (11)

where γmmse
k = β̇k

β̇k+µ
with µ =

σ2
n

ppK
, and the variance of the

estimation error

emmse
k = ĝmmse

k − gk ∼ CN (0, (1− γmmse
k )β̇kIN ). (12)

We recall that the performance of pilot-based schemes

deteriorates significantly when the number of devices is higher

than the pilot length, due to the pilot contamination phe-

nomenon [34]. Allocating more resources for pilot training

will indeed sustain the CE accuracy, however, it will compro-

mise the resources for UL/DL payload transmissions. Thus,

a fundamental tradeoff between pilot length and throughput

always exists.

2) UL Data Transmission: Without loss of gener-

ality, we assume that the K users send their data

su,k

(

E
{

|su,k|2
}

= 1
)

to the BS simultaneously with the

same power pu. The received signal yu,k [l] ∈ C
N×1 from

the kth user at the BS is given by

yu,k [l] =
√
pu
∑K

k=1
gk [l] su,k + nu, (13)

where nu is additive zero-mean Gaussian noise whose el-

ements has variance σ2
n. Consider maximal-ratio combining

(MRC) receiver at the BS, we multiply received signal with

the conjugate of estimated CSI, and the detected signal at the

BS is given by

rmmse
u,k [l] =

√
pu
∑N

n=1

∑K

k′=1
(ĝmmse

k,n [l])∗gk′,n [l] su,k′

+
∑N

n=1
(ĝmmse

k,n [l])∗nu,n, (14)

where ĝmmse
k,n represents the CSI estimated from the kth user

to the nth antenna at the BS.

3) DL Data Transmission: In the downlink, the BS treats

the estimated channel as the true channel and adopts conjugate

beamforming to transmit its signal. Hence, the transmitted

signal with power pd from nth antennas at the BS is given

by

xmmse
d,n [l] =

√

pd

ηmmse
k

∑K

k=1

(

ĝmmse
k,n [l]

)∗
sd,k, (15)

where E
{

|sd,k|2
}

= 1, and

ηmmse
k [l] = E

{∥

∥

∥

∥

∑K

k=1
ĝmmse
k,n [l]

∥

∥

∥

∥

2

}

=
∑K

k=1
β̇kγ

mmse
k,n [l] ,

(16)

is the power control coefficient that normalizes the power of

the precoding signal. The received signal at the kth user is

given by

rmmse
d,k [l] =

√

pd

ηmmse
k

N
∑

n=1

K
∑

k′=1

(

ĝmmse
k′,n [l]

)∗
gk,n [l] sd,k′+nd,k,

(17)

PV
U

J

Fig. 1. Conventional TDD versus ML-based TDD. In learning-based block
(LB), the CE overhead is removed from the frame structure for P intervals
due to the introduction of ML-based CSI prediction.

where nd,k is the additive CN (0, 1) noise at the kth user.

One main drawback of conventional TDD is that the CE

overhead becomes extremely large to support massive connec-

tivity demands. Therefore, an ML-based TDD scheme, as well

as the corresponding ML-based CSI predictor, are proposed in

the following section aiming to reduce the CE resources.

III. ML-BASED CHANNEL FORECASTING APPROACHES

We aim to implement multi-step prediction for CSI to

minimize the CE overhead. We first propose an ML-based

TDD scheme in which the CE phase is removed from parts

of TDD intervals. Then, two types of NN architectures, i.e.,

CNN-AR and CNN-RNN, are discussed for CSI forecasting.

The idea behind the two architectures is identical; more

specifically, the architecture adopts a CNN to extract the ACF

pattern across the channels, and then, loads the pretrained

time-series predictors according to the ACF pattern to forecast

the propagation channel.

A. ML-based TDD Scheme

Different from conventional TDD, the proposed ML-based

TDD scheme increases the resources for data transmission by

reducing the CE overhead from the frame structure, while

CSI is obtained using an ML technique via exploring the

correlation among adjacent intervals. The ML-based TDD

scheme contains two types of blocks, namely, head block (HB)

and learning-based block (LB), shown in Fig. 1. The following

considerations are made in the ML-based TDD scheme:

• In the ML-based TDD scheme, one HB and U LBs form

a loop. After each loop, the system restarts a new loop

to track the variation of the environment.

• A HB consists of V conventional TDD coherence inter-

vals, in which channels are estimated using the MMSE

estimator. These channel estimates are the CSI data used

for extracting the aging pattern.

• A LB consists of P coherence intervals without CE phase

and J (J < V ) conventional TDD coherence intervals,

in which the CSI of first P intervals is predicted by the

ML-based channel predictor.

• The overall procedure of ML-based TDD is described

as follows: i) Collecting CSI data in HBs using MMSE

estimator; ii) After a HB, CSI is predicted for P intervals,
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and is then updated for the following J intervals via

the MMSE estimator in order to further improve the

prediction accuracy for the subsequent LB; iii) After

U LBs, the system restarts to track the change of the

propagation environment.

Similarly to conventional TDD scheme, the uplink and

downlink received uplink for the kth user are given by

rml
u,k [l] =

√
pu
∑N

n=1

∑K

k′=1
(ĝml

k,n [l])
∗gk′,n [l] su,k′

+
∑N

n=1
(ĝml

k,n [l])
∗nu,n (18)

and

rml
d,k [l] =

√

pd

ηml
k

N
∑

n=1

K
∑

k′=1

(

ĝml
k′,n [l]

)∗
gk,n [l] sd,k′+nd,k, (19)

respectively, where

ηml
k [l] = E

{∥

∥

∥

∥

∑K

k=1
ĝml
k,n [l]

∥

∥

∥

∥

2

}

(20)

with ĝml
k,n [l] representing the CSI estimated by the ML-based

scheme, which is detailed in the next section.

B. ML-based channel predictors

Accuracy and timeliness are the major demands for online

prediction. A CNN is therefore adopted in both NN architec-

tures for its ability in extracting spatial correlation and its low

complexity.

1) CNN-AR Approach: For the proposed architecture

shown in Fig. 2(a), a correct detection of the ACF pattern

is of paramount importance for accurate channel prediction.

The great success of CNNs in image recognition application

motivates us to adopt such architecture to extract the ACF

pattern by treating the CSI data as the image data. More

importantly, as the channels from N antennas to a particular

user vary according to the same ACF, and by mapping multiple

CSI series into a matrix, the input data can thus be regarded

as 2D image pixels.

Therefore, by collecting the CSI data for V intervals in a

HB, we separate them into real part and imaginary part, and

reform the data as

G̈k = [op (ĝ
mmse
k [1]) , . . . , op (ĝ

mmse
k [V ])] , (21)

k

N V

N V

k

k

k

D

N

N

N

N

Fig. 2. The proposed CNN-AR and CNN-RNN CSI predictor.

k
l

k
l

k

Fig. 3. The schematic diagram of the input structure.

shown in Fig. 3. The corresponding ACF is thought as label

λ. The operator op(·) is a designed manipulation to map

the complex-valued CSI vector into a 2N -dimensional real-

valued vector, i.e., op (gk [l]) =
[

Re{gk [l]}T , Im{gk [l]}T
]T

.

By classifying the pattern of the ACF from G̈k, we are able to

regenerate the channel series using pre-trained CSI predictor

without real time calculation.

The CNN-AR predictor can boost the prediction quality

because of two main reasons. First of all, the simple AR

predictor has an order which is upper bounded by V according

to Remark 1; this fundamental constraint limits the achievable

performance. Another one is that, a simple AR predictor

requires a huge amount of data to obtain the accurate AR

coefficients {aq}Qq=1, where a CSI series with length of V

is obviously insufficient. In contrast, the proposed CNN-AR

predictor can avoid these two problems since the predictor can

load the pre-computed accurate AR coefficients with arbitrary

orders as long as the network recognizes the variation pattern

correctly.

We employ tanh and sigmoid as the activation functions

in the convolutional layers and full-connection layers, respec-

tively. We choose the adaptive moment estimation as the

optimizer, and use the mean-square error (MSE) as the loss

function, which is defined by

Ccnn =
1

2

M
∑

m=1

LP
∑

lP=1

(

λm
lP

− λ̃m
lP

)2

, (22)

where M represents the training data amount, LP represents

the total number of ACF patterns, λm
lP

represents the lPth

dimension of pattern label for the mth input data, and λ̃m
lP

is the estimates of λm
lP

.

The procedure for CNN-AR scheme is described in Fig.

2(a). Given G̈k as inputs, CNN transforms the complex matrix

into a real-valued matrix and identifies the CSI ACF pattern.

Then, the system loads the pre-computed AR coefficients of

the corresponding aging pattern, and predicts the CSI for the

subsequent interval as

ĝcnn−ar
k [l] = −

∑Q

q=1
aqĝ

mmse
k [l − q]. (23)

According to the proposed ML-based TDD scheme, for the

first P intervals in LB, the NN output of the current interval

is used as the input to forecast CSI for the next interval.
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Mathematically speaking,

ĝcnn−ar
k [l + l′] = −

∑Q

q=l′+1
aqĝ

mmse
k [l + l′ − q]

−
∑l′

q′=1
aq′ ĝ

cnn−ar
k [l + l′ − q′], l′ ∈ P, (24)

until the next conventional coherence interval.

Note that the given CNN structure is a simple NN which

can only distinguish dozens of ACF patterns with acceptable

accuracy. As ACF is dominated by the Doppler shift, which

has hundreds of patterns, the engineering implementation of

such architecture should be much deeper. In this paper, we

aim to demonstrate the feasibility of our scheme, and simplify

the system structure for ease of training.

C. CNN-RNN Approach

As CNN in the CNN-RNN structure is identical to that in

CNN-AR, we only introduce the CSI predictor, i.e., NARX-

RNN in this part. The general form of RNN is commonly

described as [35]

f [l] = f (x [l] , f [l − 1] ,θ) , (25)

where an one-step prediction of f [l] depends on the previous

f [l − 1], input x [l], and some parameters θ. This simple RNN

cannot fit our problem properly since the channel aging model

in (4) indicates that the there is a long-term correlation within

the sequential CSI data. Hence, we adopt the NARX-RNN to

track the correlation, which is generally described as

f [l] = f (x [l] , f [l − 1] , f [l − 2] , . . . ,θ) . (26)

Such an architecture is implemented by introducing delays

in the original simple RNN where the output has direct

connections to the past. In this paper, we adopt a widely used

NARX RNN form, specifically given in [35]

f [l] = tanh

(

W [0]x [l]+
∑D

d=1
W [d] f [l − d]+b

)

, (27)

where D is the maximum number of delays, the weight matrix

W[d] ∈ R
2N×2N , W[0] ∈ R

2N×2N , and the bias vector b ∈
R

2N×1 are the parameters trained in the NN.

As there is no input from the MMSE estimator at the first

P intervals in LB, to fit our problem, we make a minor

modification in (27). Taking the channel of the kth user as

example, the NARX RNN is described as

op

(

ĝcnn−rnn
k [l]

)

=tanh(W [0] op (ĝ
mmse
k [l − 1])

+
∑D

d=1
W [d] op (ĝ

mmse
k [l − d]) + b

)

, (28)

where ĝrnn
k [l] is the NARX-RNN prediction. Therefore, the

corresponding refine-unit for transforming the output from a

real value into a complex value is given by

ru (op (gk [l]))n = (op (gk [l]))n + i(op (gk [l]))n+N
,

where (op (gk [l]))n is the nth element of op (gk [l]), and i =√
−1.

Consistent with typical RNNs, the training of this network

is based on minimizing the sum-of-squared error cost function

Ccnn−rnn

=
1

2
op

(

ĝcnn−rnn
k [l]−gk [l]

)H
op

(

ĝcnn−rnn
k [l]−gk [l]

)

. (29)

The weight matrix W[0] is updated via its gradient

△W [0] = η∇W[0]Ccnn−rnn, (30)

where η is a learning rate and ∇W[0] is the matrix operator

∇W[0] =







∂
∂w[0]1,1

··· ∂
∂w[0]1,2N

...
. . .

...
∂

∂w[0]2N,1
··· ∂

∂w[0]2N,2N






,

where w [0]i,j is the (i, j)-th element of matrix W [0]. By

assuming that the weights at different time instances are

independent, the gradient can be expanded over l − d time

steps via the chain rule

∇W[0]C =
N
∑

n=1

(

ĝcnn−rnn
k [l]− gk [l]

)H∇ĝmmse
k

[l]ĝ
cnn−rnn
k,n [l]

·
(

∑D

d=1
∇W[d]ĝ

mmse
k [l]

)

, (31)

where ĝcnn−rnnk,n represents the estimated CSI from kth user

to nth antenna at BS. The methodology of training is called

backpropagation through time algorithm, and is detailed in

[16].

The procedure for CNN-RNN is described in Fig. 2(b). At

the beginning, NARX-RNN loads the pre-trained parameters

according to the received ACF pattern from CNN, and use

g̃mmse
k as input to predict the CSI for the next interval. In the

subsequent interval, same as CNN-AR, the NN output of the

current interval is used as input to predict the CSI, and we

repeat this procedure for P intervals.

Note that NARX-RNN also suffers from the vanishing

gradient and long-term dependencies problem [16]. However,

this drawback will not cause a major issue to our formulation

since the channel series only have strong relation within

adjacent intervals.

IV. PERFORMANCE METRICS

The following parameters are considered as our performance

metrics:

• Prediction quality of ML-based CSI predictors;

• Trade-off between the CE overhead and the prediction

quality;

• Trade-off between the average per-user throughput of

ML-based TDD scheme and the CE overhead.

We now provide some important definitions for further discus-

sion.

A. Prediction Quality

The normalized MSE (NMSE) is chosen to evaluate the

prediction performance, which is defined as

NMSE [l] = E

{

1

K

K
∑

k=1

‖ĝk [l]− gk [l]‖22
/

‖gk [l]‖22

}

, (32)
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where ĝk [l] represents the estimated CSI vector via both the

MMSE and ML-based predictor.

B. CE Overhead

As orthogonal pilots are used for conventional TDD, we

consider the average ratio of pilot length to the number of

samples in a coherence interval ν as our metric, which is

defined by

Ocon = K/ν (33)

for a conventional TDD system, and

OML = φK/ν (34)

for ML-based TDD system, where

φ ,
JU + V

PU + JU + V
. (35)

Note that the introduced factor φ reveals the reduced CE

overhead for the proposed ML-based TDD scheme.

C. Uplink Throughput

Assume that the channel statistics are known at the BS [36],

while ĝcek,n represents the CSI estimated via either MMSE

estimator or ML-based predictors; then, the received signal

at lth interval rceu,k [l] can be written as

ru,k [l] = DSk [l] su,k + BUk [l] su,k +

K
∑

k′ 6=k

UIk′ [l] su,k′ + Nk,

(36)

where

DSk [l] =
√
puE

{

∑N

n=1
(ĝcek,n [l])

∗gk,n [l]

}

, (37)

BUk [l] =
√
pu

(

∑N

n=1
(ĝcek,n [l])

∗gk,n [l]

− E
{

(ĝcek,n [l])
∗gk,n [l]

}

)

, (38)

UIk′ [l] =
√
pu
∑N

n=1
(ĝcek,n [l])

∗gk′,n [l], (39)

Nk [l] =
∑N

n=1
(ĝcek,n [l])

∗nu,n, (40)

which represents the desired signal, the channel estimation

uncertainty, the interference caused by the k′th user, and

AWGN, respectively.

We treat the sum of the second to the fourth terms in (36), as

the noise-plus-interference (NPI) power, to which the desired

signal is uncorrelated, i.e.,

E {DSk × NPIk} = 0. (41)

As the proposed CNN-AR architecture uses the AR predictor

to forecast CSI, and by recalling that the uncorrelated Gaussian

noise represents the worst case, the achievable uplink SE of

the kth user at lth interval for MMSE and CNN-AR estimator

is given by (42) at the top of next page. Note that the

expression in (42) represents the individual achievable SE for

each interval.3 As the AR predictor has been applied to the

estimate channel, we first prove that the channel estimates via

AR predictor are uncorrelated with the estimation error.

Lemma 1: Denote by ĝark,n [l] and eark,n [l] the estimated CSI

and the estimation error from the kth user to the nth antenna

at the BS in the lth interval via the AR predictor, respectively.

It can be proved that

E
{

(ĝark,n [l])
∗eark,n [l]

}

= 0, l ∈ P. (43)

Proof: See Appendix A.

Proposition 1: The worst-case (and thus achievable) uplink

SE of the kth user at lth interval using MMSE or CNN-AR

predictor is given by

Ru,k (γ
ce
k [l]) = log2

(

1 +
Npuβ̇kγ

ce
k [l]

pu
∑K

k′=1 β̇k′ + σ2
n

)

, (44)

where γce
k [l] = γmmse

k,n=1,...,N when we use MMSE, and

γce
k [l] = γcnn−ar

k,n=1,...,N [l] = 1− NMSEcnn−ar[l]

represents the prediction accuracy of CSI at lth interval when

we use the CNN-AR predictor.

Proof: Following a similar method as in [36], and by

harnessing the fact that the channel estimates and estima-

tion error for the MMSE estimator and AR predictor are

uncorrelated (as proved in Lemma 1), we have DSk [l] =√
puNβ̇kγ

ce
k [l]. The power of the channel uncertainty can be

then obtained as E
{

|BUk [l]|2
}

= Npuβ̇
2
kγ

ce
k [l]. The power

of interference from the k′th user and the power of the noise

can be derived as E
{

|UIk [l]|2
}

= Npuβ̇k′ β̇kγ
ce
k [l], and

E
{

|Nk|2
}

= Nσ2
nβ̇kγ

ce
k [l], respectively. Substituting these

results into (42), we complete the proof.

Note that (1) cannot represent the worst-case achievable

SE for the architecture using CNN-RNN predictor. This is

because it is challenging, and if not impossible, to analytically

determine, whether the estimation error of RNN is correlated

with the RNN output.

We now consider that the durations of uplink and down-

link transmission are identical. The average per-user uplink

throughput for the conventional TDD scheme and ML-based

TDD schemes are provided in the following proposition.

Proposition 2: The average per-user uplink throughput (in

bit/s) for the conventional TDD scheme is given by

TPcon
u =

(1− Ocon)W

2K

K
∑

k=1

Ru,k (γ
mmse
k ), (45)

where W is the bandwidth.

Proof: The result can be obtained directly from (33) and

Proposition 1.

Proposition 3: The average per-user uplink throughput of

the ML-based TDD scheme with CNN-AR predictor is given

3According to (42), it is required to estimate the LSF at each coherence
interval, which, unfortunately, is not possible for a single subcarrier system
since small scale fading also remains constant during a coherence interval.
However, in the widely used OFDM systems, the expectation over small scale
fading is still reasonable since the LSF across all subcarriers is the same
[30, 37].
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Ru,k (γ
ce
k [l]) = log2



1 +
|DSk [l]|2

E
{

|BUk [l]|2
}

+
∑K

k′ 6=k E
{

|UIk′ [l]|2
}

+ E
{

|Nk|2
}



 . (42)

TABLE I
SIMULATION PARAMETERS.

Number of ACF patterns LP
4

10

Number of intervals in HB V 8

Transmit power pp, pu, pd 0 dBm, 0 dBm, 0 dBm

Bandwidth W 10MHz

Background noise power σ2
n −174 dBm/Hz

Hidden layers in full-connection 3

Nodes in layers 1024, 1024, 256

by

TPcnn−ar
u (P, J, V, U) = φTPcon

u

+
φUW

2 (JU + V )K

P
∑

p=1

K
∑

k=1

Ru,k

(

γcnn−ar
k [p]

)

. (46)

Proof: The result can be obtained directly from (34) and

Proposition 1.

D. Downlink Throughput

Using a similar methodology as in Proposition 1, we obtain

the worst-case (achievable) downlink SE in the following

proposition.

Proposition 4: The worst-case (and thus achievable) down-

link SE of the kth user at lth interval using MMSE and CNN-

AR predictor is given by

Rd,k (γ
ce
k [l]) = log2






1 +

Npd

(

β̇kγ
ce
k [l]

)2

ηcek [l]
(

pdβ̇k + σ2
n

)






. (47)

Similarly, the average per-user downlink throughput is given

in the next proposition.

Proposition 5: The average per-user downlink throughput

of the conventional TDD scheme is given by

TPcon
d =

(1− Ocon)W

2K

K
∑

k=1

Rd,k (γ
mmse
k ). (48)

Proposition 6: The average per-user downlink throughput

of the ML-based TDD scheme with CNN-AR predictor is

given by

TPcnn−ar
d (P, J, V, U) = φTPcon

d

+
φUW

2 (JU + V )K

P
∑

p=1

K
∑

k=1

Rd,k

(

γcnn−ar
k [p]

)

. (49)

Therefore, the overall transmission throughput can be cal-

culated as

TPcnn−ar (P, J, V, U)

= TPcnn−ar
u (P, J, V, U) + TPcnn−ar

d (P, J, V, U) ,
(50)

and the maximum total throughput among all possible config-

urations is described by

TPcnn−ar
max = max

P,J,V,U
TPcnn−ar

max (P, J, V, U) . (51)

V. NUMERICAL RESULTS

In our simulations, the BS deploys 128 antennas, and K

users are randomly distributed in a 1 km2 area. We also set

a guard zone of 100meter for each user, i.e., the distance

between any user and the BS is no less than 100m. The large-

scale fading βk is modeled as a function of user at distance

dk, and is given as [38]

βk (dk) = 30.8 + 24.2 log10 (dk) . (52)

Some of the important parameters related to the simulation are

shown in Table I. Training, and testing sets have 80,000, and

20,000 samples, respectively, for offline training. The epochs

and the batch size are set as 300 and 50 with learning rate

equals 0.001. It is worth noting that Lp used in simulations is

small. In practice, the number of ACF pattern can be hundreds

which requires to extend ML-based architecture to a much

deeper and larger structure for recognizing. However, to best

of our knowledge, there is no general criterion to design the

NN size, and the choice of parameters that depend on Lp

remains an implementation-level.

We first verify the performance of feature extraction of CNN

included in the proposed ML-based architecture. Fig. 4 shows

the prediction accuracy with respect to number of epochs.

Clearly, after 300 of epochs training, the CNN can recognize

the aging pattern with over 95% accuracy for both kernel sizes.

More importantly, we observe that the proposed NN structure

with the 3 × 3 kernel outperforms that with 5 × 5 kernel.

The reason is that, in contrast to image recognition problem,

only the columns of input data series G̈k are correlated while

the rows of G̈k are independent. Therefore, a kernel with

larger size may not improve the decision accuracy because

of increased “interference”.

4While Lp = 10 is seemingly a low value, our simulations indicate that
the ACF pattern can be extracted by the NN and the channel prediction can be
improved as long as the network recognizes the variation pattern accurately
enough. Moreover, a larger value of Lp will not substantially improve the
achievable throughput. This is because by reducing the “spacing” between
normalized Doppler shifts, the distinction between each set of AR coefficients
becomes marginal, making the prediction results considerably similar. At the
cost of increased complexity of NN structure, such slight improvement on
throughput becomes questionable. Nevertheless, a more powerful NN structure
that can recognize more ACF patterns can further improve the prediction
quality, and we prefer to leave this to our future work.
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Fig. 4. Comparison of performance with different kernel size of CNN for
V = 8.

Then, we verify the accuracy of the CSI prediction for the

proposed ML-based architecture, and choose the AR estimator

and nonlinear (NL) Kalman predictor [37, 39] as the bench-

marks to illustrate the performance improvement. It is worth

noting that the parameters in NL Kalman predictor require

real-time training, and the results for NL Kalman in Fig. 5 and

Fig. 6 are shown for V = 500. Fig. 5 compares the NMSE

of estimation of different predictors against the normalized

Doppler shift fn. It is intuitive that the CNN-AR structure

outperforms other predictors in all situations. Compared with

simple AR and NL Kalman predictors, significant gains can be

observed due to the fact that the pre-computed AR coefficients

are much more precise than real-time computations based on

limited CSI information. Moreover, the performance of CNN-

RNN is slightly superior to that of AR predictor which indi-

cates that RNNs indeed support functionalities similar to those

provided by AR predictors. Compared with the performance of

CNN-RNN in one-step prediction, the accuracy improvement

in the second step prediction improves remarkably for small

fn. More importantly, for large fn, all structures perform

poorly. The reason is that the independency of CSI over

different intervals increases with larger Doppler shifts. This

implies that the proposed ML-based TDD scheme is not so

suitable for super high mobility scenarios.

Fig. 6 shows the NMSE of estimation of different predictors

against the prediction step P . Obviously, the performance of

CNN-AR architecture is superior than that of other predictors

on every step prediction, and significant gains can be observed

for CNN-RNN compared with AR predictors from 2nd to

12th step prediction. Moreover, via the comparison between

Q = 16 and Q = 24 of the AR predictor, the limited

improvement implies that the prediction accuracy can be

hardly improved by expanding the order of AR predictor. This

is because the real-time calculation of AR coefficients is not

accurate enough with only a small number of CSI data as

inputs. In addition, the poor performance of the simple AR

predictor implies the infeasibility of such architecture in multi-

step prediction. Also, the CNN-AR predictor provides at least

Fig. 5. Comparison of prediction NMSE among the AR predictors, NL
Kalman predictor, CNN-AR and CNN-RNN with respect to the normalized
Doppler shift fn. Results are shown for J = 4 and U = 10.

3 dB of gain than CNN-RNN for each step prediction, which

shows that the CNN-AR is a better ML-based predictor on

CSI prediction for an aging channel. This is due to the fact

the aging patterns are formulated by the AR model, thereby

making AR predictors represent the variation of channel more

precisely than the approximation used by NARX-RNN. It

must be pointed out that, although the prediction accuracy of

NL Kalman outperforms AR predictors when P < 14, such

predictor since it requires real-time training, thereby requires

a huge amount of overhead.

According to the proposed ML-based TDD scheme shown

in Fig. 1, U is an important parameter that determines how

often the system resets itself. Fig. 7 illustrates the NMSE

of estimation for different predictors against U . First, we

observe that the NMSE of all predictors converge. Specifically,

for the ML-based architectures, the performance of CNN-AR

Fig. 6. Comparison of prediction NMSE among the AR predictors, NL
Kalman predictor, CNN-RNN and CNN-AR for the first P intervals, i.e.,
U = 1. Results are shown for fn = 0.1, J = 4 and V = 8.
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Fig. 7. Comparison of prediction NMSE among the AR model, CNN-RNN
and CNN-AR with respect to U . Results are shown for J = 4, V = 8 and
fn = 0.1.

Fig. 8. Convergence of the prediction NMSE among the AR predictors,
CNN-AR and CNN-RNN with respect to P . Results are shown for J = 4,
U = 10, and fn = 0.1.

predictor slightly deteriorates with increasing U , while that of

CNN-RNN predictor remains constant. For AR predictors, the

prediction performance experiences a slight improvement after

a sharp decline. This is because AR coefficients can be updated

continuously via the Levinson-Durbin recursion during the

communication. However, since the real-time computation of

AR coefficients depends strongly on the CSI data, using

predicted CSI as true CSI to update coefficients may cause

more error. ML-based architectures can avoid this fundamental

problem since the predictor parameters are pre-computed.

More importantly, the slight performance decline indicates that

it is not necessary to reset the system frequently for ML-based

TDD schemes which can further reduce the CE overhead.

Fig. 8 shows the average NMSE over 10 LBs against the

number of intervals in a LB P . Obviously, both ML-based

structures outperform the AR predictors, while CNN-AR can

TABLE II
ESTIMATION ERROR NMSE (in dB)

J P
AR model

CNN-RNN CNN-AR
Q = 8 Q = 16 Q = 24

1
1 -3.89 -4.61 -4.91 -12.5 -19.1
2 -3.76 -4.58 -4.84 -10.7 -15.9
4 -3.56 -3.78 -4.08 -8.15 -11.6

2

1 -6.73 -5.29 -4.93 -12.9 -18.9
2 -3.89 -4.35 -4.64 -11.1 -14.7
4 -2.98 -3.74 -4.03 -8.66 -10.5
8 -2.42 -3.29 -3.35 -4.83 -4.29

4

1 -8.44 -6.91 -6.14 -13.3 -18.4
2 -5.53 -5.75 -5.98 -11.9 -13.9
4 -3.43 -3.63 -3.93 -9.16 -10.8
8 -2.23 -3.23 -3.38 -5.23 -6.54

8

1 -15.7 -8.77 -8.15 -14.1 -19.4
2 -10.9 -7.80 -7.30 -12.4 -15.8
4 -5.54 -5.45 -5.55 -9.73 -12.1
8 -0.82 -1.02 -2.26 -5.66 -7.17
16 -0.12 -0.28 -0.54 -0.21 -2.31

further yield at least 1.5 dB gain on every step prediction.

The reason is two-fold: One is that the channel series is

modeled strictly according to its ACF, and with CNN ex-

tracting the aging pattern correctly, the coefficients loaded for

AR predictor are precisely accurate. Another one is that the

designed NARX-RNN may be not powerful enough to explore

the hidden feature within the CSI series; in this case, other

time-series architectures, such as LSTM RNN [17], should

be considered. We also provide more results in TABLE II.

From the table, a significant observation is that there is slight

improvement of the prediction quality by increasing J for

CNN-RNN and CNN-AR, which implies that the prediction

results are mainly determined by the latest input, meaning that

the ML-based TDD can achieve most of the performance gain

with J = 1. Therefore, we conclude that, the CE overhead

can be further scaled down by reducing the conventional TDD

intervals in a LB.

The above results showcase that CNN-AR outperforms the

other architectures in any circumstances. Therefore, we inves-

Fig. 9. Optimal φ with respect to P under different NMSE requirements.
Results are shown as (P,NMSE, φ) with fn = 0.1 and Ocon = 0.3.



11

Fig. 10. The average per-user throughput TPcnn−ar under different CNN-AR configurations. (a). P = 2; (b). P = 5; (c). P = 8. Results are shown for
fn = 0.1.

tigate the tradeoff between the CE overhead and prediction

accuracy with CNN-AR predictor for ML-based TDD, and

is shown in Fig. 9. First, the CE overhead can be sharply

reduced by adopting the ML-based TDD scheme. For example,

to achieve -18.5 dB of NMSE for P = 1 case, the ML-based

TDD scheme can save 77% amount of overhead; and given

for P = 5, the ML-based TDD scheme can save more than a

half amount of overhead while achieving an NMSE less than

-10 dB. Also, the figure illustrates the limits of the proposed

ML-based TDD scheme, where a strict prediction requirement

is not achievable for multi-step prediction.

We now verify the average per-user throughput by consid-

ering the CNN-AR in ML-based TDD scheme in Fig. 10.

The results of conventional TDD are included in the figure

as benchmark. All the results are averaged over 1000 runs.

A key observation from the three subfigures is that the per-

user throughput TPcnn−ar undergoes a significant decline after

a slight increase with increasing Ocon. The phenomenon is

different from the conventional TDD in which the average

per-user throughput decreases monotonically with respect to

the number of users. The reason is that by reducing the

CE overhead, the BS can allocate more resources for data

transmission, thereby we can improve TPcnn−ar by reasonably

increasing the number of users. In some extreme cases, such

as, when all resources are used for CE to support massive users

in conventional TDD, i.e., Ocon = 1, the ML-based TDD still

provides considerable serving quality, e.g., at least 10 Mbits/s

and 20 Mbits/s for P = 2 and P = 5, respectively. Also,

we note that TPcnn−ar decreases more or less with increasing

J in all simulations, which implies that the configuration of

J that maximizes TPcnn−ar is 1 which is consistent with

our previous results in TABLE II. Moreover, by comparing

the average per-user throughput across the three subfigures,

we note that an optimal P that maximizes TPcnn−ar exists.

However, the optimal P highly depends on prediction quality

which, in turn, varies with respect to the ACF pattern.

To evaluate the performance gain of ML-based TDD

scheme, we illustrate the joint impact of P and Ocon on the

ratio of TPcnn−ar to TPcon in Fig. 11. First, different from the

behavior of per-user achievable throughput, we observe that

the performance gain increases monotonically with increasing

Ocon. This is reasonable because of the inherently poor behav-

ior of conventional TDD for massive user scenarios. Moreover,

regarding the parameter P , when Ocon = 0.2, the ratio of

the per-user achievable throughput between ML-based TDD

scheme and conventional TDD scheme decreases, and reduces

below than 1. In contrary, when Ocon > 0.6, the ML-based

TDD scheme can obtain significant performance gain. This

result indicates that, the proposed ML-based TDD scheme is

most suitable for future dense wireless networks in which the

support of massive user scenarios is a prerequisite.

To further illustrate the performance gain provided by the

optimal configuration of CNN-AR, we introduce an indicator

δ =
TP

cnn−ar
max

TPcon as our metric. Fig. 12 illustrates δ against

the normalized Doppler-shift fn. First of all, a significant

gain can be observed even for the high speed scenarios. The

reason is, although the small-scale fading is hard to track in

high mobility scenarios, the channel statistics, i.e., the LSF

can be observed from predicted CSI. More specifically, the

performance improvement decreases with higher fn since the

temporal channel correlation gradually vanishes in high speed

Fig. 11. Comparison of TP
cnn−ar

TPnon with respect to P and Ocon. Results are
shown for fn = 0.1 and J = 1.
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Fig. 12. Comparison of δ with respect to fn.

scenarios. Also, we observe more performance gain for an

increasing number of users. For instance, when fn = 0.1,

the ML-based TDD scheme can achieve more than 2 times

per-user achieve throughput than conventional TDD does for

Ocon = 0.5, while only a slight improvement can be obtained

for Ocon = 0.1. Besides, the performance of ML-based

architecture, i.e., CNN-AR, is significantly superior to that of

conventional AR predictor, and such benefit gets bigger with

increasing number of users. This phenomenon demonstrates

that our proposed ML-based TDD scheme can support massive

users for both low and high mobility scenarios.

VI. CONCLUSION

To reduce the excessive amount of CE overhead, we de-

signed an ML-based TDD scheme as well as the corresponding

ML-based architecture to predict the channels in massive

MIMO systems under channel aging effects. Different from

conventional CE schemes, the proposed ML-based architecture

extracts the ACF pattern via a CNN, and loads a pre-trained

NARX-RNN or an AR predictor to forecast the CE. The

simulation results demonstrate that the proposed architecture

achieves significant gains in prediction quality, and remark-

able tradeoff between prediction quality and CE overhead by

leveraging the ACF pattern. In terms of the average per-user

throughput, the proposed ML-based TDD scheme can offer

remarkable gains for both low and high mobility scenarios,

and such improvements are even more significant for massive

user cases. These characteristics showcase the great potential

of the proposed ML-based TDD scheme for future wireless

networks in the 5G era.

Note that the proposed ML-based TDD scheme, as well as

the ML-based CSI predictor, can be extended by considering

the effects of shadowing and time delaying in the channel

model. These extensions will be part of our future work.

APPENDIX A

PROOF OF LEMMA 1

To obtain Lemma 1, we first prove the following lemma as

preliminary knowledge.

Lemma 2: For an aging channel modeled as in (4), the

estimated CSI via MMSE at any interval is uncorrelated with

the estimation error at any interval; mathematically speaking,

E
{

(

ĝmmse
k,n [i]

)∗
emmse
k,n [j]

}

= 0, ∀i, j. (53)

Proof: We can prove this lemma using a recursive pro-

cedure. Firstly, consider the channel estimation for a typical

channel coefficient gk,n in the first interval. It is well known

that, in a coherent interval, the channel estimate via MMSE

estimator is uncorrelated with estimation error, i.e.,

E
{

(

ĝmmse
k,n [1]

)∗
emmse
k,n [1]

}

= 0. (54)

Then, for the second interval, substituting the channel model

(2) and (4) into (11), we reach

ĝmmse
k,n [2]=γmmse

k

(

−a1gk,n [1]+ω [2]+
1

√

Kpp
n [2]ψH

k

)

.

(55)

Rewriting ĝk,n [1] as a function of ĝmmse
k,n [1] using (11), we

have

gk,n [1] =
ĝmmse
k,n [1]

γmmse
k

− 1
√

Kpp
n [1]ψH

k . (56)

Substituting (56) into (55), we can observe that

E
{

(

ĝmmse
k,n [2]

)∗
emmse
k,n [1]

}

= 0. (57)

Similarly, the estimation error at the second interval can be

described as

emmse
k,n [2] = ĝmmse

k,n [2]− gk,n [2]

= (γmmse
k −1) (−a1gk,n [1]+ω [2])

γmmse
k
√

Kpp
n [2]ψH

k . (58)

Again, rewriting emmse
k,n [2] as a function of emmse

k,n [1] using

(11), we have

emmse
k,n [2] = −a1e

mmse
k,n [1]

+ γmmse
k

(

1
√

Kpp
(a1n [1] + n [2])ψH

k + ω [2]

)

, (59)

which leads to

E
{

(

ĝmmse
k,n [1]

)∗
emmse
k,n [2]

}

= 0. (60)

Regarding to the subsequential intervals, we can prove that the

estimated CSI at any interval is uncorrelated with estimation

error at any interval using same procedure.

Having established Lemma 2, we are ready to prove Lemma

1. Denoting p1, . . . , pP the P intervals in a LB, we can

estimate the channel according to (23)

ĝark,n [p1] = −
∑Q

q=1
aq ĝ

mmse
k,n [p1 − q]. (61)

Recalling that the real channel is given by

gk,n [p1] = −
∑Q

q=1
aqgk,n [p1 − q] + ω [p1] , (62)



13

the estimation error eark,n [p1] can be calculated as

eark,n [p1]=

Q
∑

q=1

aq ĝ
mmse
k,n [p1−q]−

Q
∑

q=1

aqgk,n [p1−q]+ω [p1]

=

Q
∑

q=1

aqe
mmse
k,n [p1 − q] + ω [p1] , (63)

which leads to

E
{

(ĝark,n [p1])
∗eark,n [p1]

}

= E







−
Q
∑

q′=1

Q
∑

q=1

aqaq′(ĝ
mmse
k,n [p1 − q])∗emmse

k,n [p1 − q′]







(a)
= 0, (64)

where (a) is obtained via Lemma 2.

Now, consider the prediction of the second interval p2, we

have

ĝark,n [p2] = −
∑Q

q=2
aq ĝ

mmse
k,n [p2 − q]− a1ĝ

ar
k,n [p1] , (65)

and the estimation error can be addressed as

eark,n [p2]=

Q
∑

q=2

aqe
mmse
k,n [p2− q]+a1e

ar
k,n [p1]+ω [p2] . (66)

After some manipulations, the expectation of channel esti-

mates and the estimation error can be computed as

E
{

(ĝark,n [p2])
∗eark,n [p2]

}

= E
{

−a21(ĝ
ar
k,n [p1])

∗eark,n [p1]
}

= 0. (67)

Similarly, we can obtain E
{

(ĝark,n [pi])
∗eark,n [pi]

}

= 0, i > 2

step by step. Thus, we complete the proof.
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