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Structured light is attracting significant attention for its diverse applications in both classical and quantum

optics. The so-called vector vortex beams display peculiar properties in both contexts due to the non-trivial

correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible

experimental approach to the classification of vortex vector beams. We first describe a platform for generating

arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine

learning methods – namely convolutional neural networks and principal component analysis – to recognize and

classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use

of machine learning-based protocols for the construction and characterization of high-dimensional resources for

quantum protocols.

Introduction– Light is endowed with Orbital Angular Mo-

mentum (OAM) [1, 2], a degree of freedom associated with

structured, non-plane wavefronts, and characterized by an az-

imuthal phase dependence. When a nontrivial phase depen-

dence is coupled with a helicoidal transverse polarization pat-

tern, one talks of a Vector Vortex Beam (VVB) [2, 3]. The

interest in such states is motivated by the applications in mul-

tiple fields of classical and quantum optics [4, 5]: from parti-

cle trapping to metrological applications in microscopy [6, 7],

and for OAM-based communications schemes in free-space

and in-fibre [8, 9]. VVBs are also often employed in quan-

tum information protocols due to the hyperentanglement be-

tween their polarization and spatial degrees of freedom. Pho-

tonic platforms for quantum sensing and metrology leveraging

such encoding have also been reported [10, 11]. OAM-based

schemes for investigating quantum causal structures [12],

quantum communication and cryptography [13–18], quan-

tum walks [19–21], quantum simulation [22, 23], and quan-

tum state engineering [24, 25], have been previously demon-

strated.

Despite the potential of VVBs, many questions regard-

ing the decoding of information stored in OAM and polar-

ization remain unanswered. Various techniques of OAM-

demultiplexing envisage the need of additional instruments

– such as interferometry [26–28] or spatial filtering [29–31]

– to be efficiently implemented. These introduce detrimen-

tal effects of loss and noise [32]. Moreover, the challenge

of performing state tomography in such a high-dimensional

framework, a fundamental task in quantum information pro-

cessing [33, 34], can hardly be overestimated. The design

and demonstration of reliable techniques for the generation

and classification of VVBs is thus highly desirable. Indeed,

substantive efforts on finding novel platforms are subject of

intense research activities [6, 7, 35, 36], including in inte-

grated photonics [37–39] and generation by plasmonic meta-

surfaces [40, 41].

Recently, Machine Learning (ML) has emerged as a ver-

satile toolbox to tackle a variety of tasks arising in experi-

mental platforms. It has proven useful, in particular, to ease

the characterization of quantum protocols and dynamics [42–

52]. In the context of structured light, Neural Networks (NNs)

have been used to classify OAM states of classical light for

long distance free-space communication, even in the presence

of environmental turbulence [53–58]. In this Letter, we ap-

ply ML to characterize experimental VVBs generated using

a platform based on photonic Quantum Walks (QWs) in the

OAM and polarization degrees of freedom [24, 25]. Our ap-

proach requires neither additional interferometry stabilization

nor spatial filtering, thus providing a robust strategy to de-

code information stored in VVBs, and is therefore a promis-

ing pathway towards managing higher-dimensional quantum

systems.

We leverage both supervised and unsupervised learning

techniques. We start by training a Convolutional Neural Net-

work (CNN) to classify experimental images belonging to

predefined classes of states. This method gives good predic-

tion accuracy, while remaining fairly problem-agnostic and

thus useful for diverse applications. However, while providing

high prediction accuracy, NN-based methods are difficult to

interpret. We thus also propose an alternative technique based

on the joint application of Dimensionality Reduction (DR)

and supervised learning. This method provides a geometrical

description of the underlying space associated to the experi-

mental data. While significantly easier to use, such approach

gives comparable results to CNN, at the cost of being more

tailored to the specifics of the problem.

Our work makes significant steps forward with respect to

previous endeavours: while Refs. [53–58] leverage NNs to

process OAM states, our work is the first to tackle VVBs.

Moreover, owing to the variety of techniques we deploy, we

can address both classification and regression tasks, thus en-

abling the reconstruction of the input states in relevant cases

of structured light beams. Our findings demonstrate the re-

liability of a broader class of ML methods, providing novel

recognition methods to deal with VVB, which are a building

block for several information protocols with high-dimensional
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Figure 1. a, Higher-order Poincaré sphere representation for

|m1,2| = 1. Each point on the sphere surface corresponds to spe-

cific polarization patterns. b, A radially polarized VVB: at a given

point in the transverse plane the polarization vector has a different

orientation. The Stokes parameters vary accordingly in the plane. c,

Color encoding of the polarization pattern. The legend reports the

correspondence between colors and the various polarizations. On

the right we have the resulting color pattern for the VVB in panel b.

Grey color corresponds to unpolarized light. d, Experimental appa-

ratus for the generation of VVBs. A continuous-wave laser emits a

Gaussian beam TEM00 at 808 nm. Light undergoes a 5-step quan-

tum walk realized through a sequence of waveplates and q-plates.

A CCD camera-based detection stage acquires information on the

Stokes parameters and the polarization pattern. Based on the inten-

sity measured at each pixels of the camera, Stokes parameters are

evaluated and converted into RGB-colored pictures.

systems.

Experimental generation of Vector Vortex Beams– OAM-

endowed states of light can be described using Laguerre-

Gauss (LG) modes. These are solutions of the Helmholtz

equation in the paraxial approximation, indexed by two in-

teger numbers (m, p), the former describing the azimuthal

phase structure of the beam, and the latter describing its ra-

dial intensity profile. Each LG mode carries a set amount

of angular momentum, which in the single-photon regime

equals ~m [1]. VVBs can be obtained by superposing or-

thogonal polarizations to LG modes [2]. More specifically,

the electric field ~Em1m2p of a VVB decomposes as the sum of

two LG modes with same p and different azimuthal numbers

m1 > m2 carried by orthogonal polarizations: ~Em1m2p =
~eL cos θ

2
LGm1p + ~eRe

iφ sin θ
2

LGm2p, where θ ∈ [0, π], φ ∈
[0, 2π] and the unit vectors ~eL,R stand for left and right circu-

lar polarization, respectively. For the purpose of this work

we can ignore the radial number, setting p = 0. For any

given value of the parameters (m1, m2, θ, φ), the polariza-

tion pattern of a VVB can be mapped onto a generalized

Poincaré sphere (cf. Fig. 1). In particular, we use the higher-

order Poincaré representation in which the poles represent

eigenstates of the total angular momentum but with opposite

signs [59]. These polarization patterns are reconstructed via

the Stokes parameters Sj (j = 1, 2, 3), obtained by measuring

the output intensities Ibj ,1, Ibj ,2 associated to a given choice

of polarization basis {bj} = {b1 = (H,V ), b2 = (D,A),
b3 = (L,R)} as Sbj = (Ibj ,1 − Ibj ,2)/(Ibj ,1 + Ibj ,2). For a

VVB, the values of Sj depend on the coordinates in the trans-

verse propagation plane [60]. To visualize the polarization

patterns of VVBs, we use an RGB color encoding in which

the values of Sj are interpreted as strengths of the correspond-

ing color. In Fig. 1b and c we report an example of such

color-map for radially polarized VVBs. A natural way to gen-

erate VVBs is using q-plates [60, 61], which are inhomoge-

nous birefringent plates modifying the OAM of the incoming

light conditionally to its polarization. In our scheme, VVBs

are generated via a sequence of polarization-controlling wave-

plates interspersing 5 cascaded q-plates (cf. Fig. 1d). The

apparatus implements a discrete-time QW in the angular mo-

mentum, where the order of LG modes takes the role of the

walker and it is changed according to the polarization state,

which embodies the coin degree of freedom [19–21, 24, 25].

This allows to generate several classes of VVBs with OAM

quantum numbers taking odd values in the interval {−5, .., 5}.

We then collect images associated with different VVBs and

use them to train and benchmark our ML-based approaches to

classification , as discussed in the next sections.

Classification via Convolutional Neural Networks– We

show here how to train a CNN to retrieve the parameters

(m1,m2) characterizing a given VVB from experimentally

measured Stokes parameters. CNNs are translation-invariant

deep NNs well-suited for image classification [62], to rec-

ognize off-center images and segmented handwritten dig-

its [63, 64], and for facial recognition tasks [65]. In their

simplest form, CNNs work by first applying a convolutional

layer, which consists of a series of nonlinear transformations

applied to the input images, followed by a max-pooling layer,

which downsamples and filters the information extracted by

the previous layer. Finally, a fully connected layer operates

as a classifier, categorizing the information extracted in the

previous layers into one of a small number of possible output

categories (cf. [66–70] and Fig. 2).

The network is first fed with a training set made out of sim-

ulated images of VVBs achievable with a five-step QW. The

task is then to discern between 15 classes, corresponding to

Figure 2. a, Schematic representation of VVBs classification via

CNNs. b, Classification scheme using linear PCA. After reducing

the dimensionality of the dataset via PCA, a linear SVM is used to

classify experimental images.
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Figure 3. a, Simulated and experimental images of VVBs corre-

sponding to some of the values (m1,m2) given in the table. b, Scal-

ing of the average accuracy A when classifying states into one of the

15 VVB classes, against the fraction of experimental images added

to the training set. The leftmost point refers to the case in which only

simulated images are used to train the network. Inset: truth table re-

porting how the network classifies images belonging to each class.

Each row (column) corresponds to a possible pair (m1,m2). The

matrix elements have been averaged over 100 experimental images

per class.

the pairs (m1,m2) in Fig. 3a. For each class we generate

states with θ = π/2 and φ ∈ [0, 2π]. The size of the train-

ing set is 400 images per class. Additional 100 simulated im-

ages per class are used to benchmark the performance during

training. In these conditions, the network achieves an accu-

racy of 100%. The term accuracy is used here to refer to the

fraction of correctly classified images. We then collect 100
experimental images per class, to use as new validation set

(cf. Fig. 2a). Fig. 3a-b shows the average accuracy per class

against the fraction of experimental images added to the train-

ing set. The addition of a small fraction of experimental im-

ages to the training set improves the capability of the network

to take into account deviations of the experimental states from

ideal LG modes [71–75] (cf. Fig. 3b). An average accuracy

of ∼ 0.989 is already obtained when 12.5% of the training

set is composed of experimental images. To further highlight

the performance of the network, we also trained a CNN using

exclusively experimental images, but using a small number of

images in the training phase. Using only 20 images per class,

we already get an accuracy of 0.99 to classify the rest of the

experimental images (which are 1668 in total).

We use a similar approach to retrieve the position on the

Poincaré sphere corresponding to states generated with fixed

(m1,m2). In particular, we test the performance of CNNs to

retrieve the values (θ, φ) of VVBs corresponding to m2 =

−m1 = 1. The CNN is thus trained to discriminate both rota-

tions in the polarization patterns (corresponding to changes of

φ), and variations in the color tone (corresponding to changes

of θ). To frame this as a classification task, we partition

the sphere in 26 disjoint sectors. Working in spherical co-

ordinates, we partition θ in 3 intervals
[

k π
8
, (k + 2)π

8

]

with

k = 1, 3, 5, and φ in the 8 intervals
[

tπ
4
, (t+ 1)π

4

]

with

t ∈ {0, ..., 7}. This leaves two classes, surrounding the two

poles, corresponding to θ ∈
[

0, π
8

]

and θ ∈
[

7

8
π, π

]

. We train

the CNN with 500 simulated images per class in the training

set, and 125 per class in the validation one. The maximum

achieved accuracy is ∼ 0.90. The sub-optimality of this result

is likely a consequence of framing the problem as a classifica-

tion task. Indeed, partitioning makes VVBs close to the bor-

der of two sectors naturally hard to classify. Training a CNN

for the corresponding regression task will potentially improve

performance.

Dimensionality reduction– We now present an alternative

approach to classify VVBs from experimental data, lever-

aging Dimensionality Reduction (DR). Such algorithms are

typically used to obtain efficient representations of large

datasets [76, 77]. This has several advantages, from easing

data visualisation, to improving the efficiency of classifica-

tion and regression algorithms, which can be used on the re-

duced representation of the data. In particular, we employ a

linear Principal Component Analysis (PCA) algorithm, which

works by representing each datapoint as a vector in some

high-dimensional space Rn, and finding the directions in such

space that capture the maximum amount of information about

the dataset [78, 79]. The rationale for using PCA in this con-

text is that, although experimental images live in extremely

high-dimensional spaces (whose dimension is of the order of

the number of pixels in the CCD camera), the underlying di-

mension of the generated VVBs is typically much lower. This

means that, although the experimental dataset will a priori

seem like a complicated bundle of high-dimensional vectors,

the underlying data is actually characterizable by a small num-

ber of parameters. Furthermore, the linearity of the mapping

preserves the convexity of the VVB space and thus its geo-

metrical structure. We then expect that the new description

for expressing the experimental images in the reduced space

provides a synthetic description for capturing the features of

VVBs encoded in the measurements (the intensities in three

polarization bases {bj}, cf. [66]). This resembles a form of

unsupervised learning, as we gain useful information about

the origin of the images without feeding the algorithm with

any knowledge of the underlying process.

As a notable example, we apply these observations to VVBs

with m2 = −m1 = 1, which can be represented on a sphere

in the higher-order Poincaré representation. Indeed, apply-

ing PCA to the experimental dataset of Fig. 4b, reveals that

three directions are sufficient to capture most of the informa-

tion content of the images. Projecting the images along these

three principal components, we find that the data are arranged

in the form of a three-dimensional sphere embedded in the

experimental high-dimensional space. We refer to the sup-
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Figure 4. a, Higher-order Poincaré sphere for VVBs with |m1,2| =
1. Magenta-colored parallels (Blue-colored meridians) mark inter-

vals between consecutive values of θ (φ). Along a meridian the col-

ors of the pattern vary from the hottest to the coldest one. Along

a parallel, the patterns rotate. b, Comparison between experimental

and simulated VVB images for different angles (θ, φ). c, Distribu-

tion of fidelities obtained comparing each experimental VVBs with

its reduced 3D representations given by PCA. d, Average prediction

accuracy A of a linear SVM classifier, trained and tested after apply-

ing linear DR to the data, against the number of reduced dimensions

nc. For each of the 15 classes (cf. Fig. 3a) in which the experimental

dataset was divided, we show in the inset the truth table.

plementary material for the distribution of radii of the three-

dimensional representation of the images [66] that allows to

retrieve the state’s position on the Poincaré sphere overcom-

ing the border problem characterizing the previous classifi-

cation method. Remarkably, this was not obvious from the

experimental dataset alone, but was easily revealed using DR.

This result highlights the potential of DR to reveal features of

the underlying states generating a given experimental dataset

in realistic experimental conditions (cf. [66, 67]). Interpret-

ing this reduced three-dimensional representation as a Bloch

sphere, we can use PCA to retrieve a complete description of

the state generating a given experimental image. To assess the

accuracy of such reconstruction, we compute the average fi-

delity Favg between the state generating a given image and the

one retrieved from said image via PCA, averaging over many

experimental images. The fidelity between two states is here

defined in the usual way as F(ρ, σ) ≡ Tr |√ρ
√
σ|. As shown

in the histogram of Fig. 4c, this is found to be Favg ∼ 0.96,

with standard deviation ∼ 0.01, thus showcasing the quality

of the reconstruction.

Classification via SVMs– We now show how the reduced

representations provided by PCA can function as starting

point to train a classifier with accuracy comparable with the

CNN, whilst requiring a significantly reduced amount of com-

putational resources. More precisely, we use as classifiers lin-

ear Support Vector Machines (SVMs) [80, 81]. These super-

vised learning algorithms categorize data by finding the hy-

perplane that optimally separates the training dataset in accor-

dance with the corresponding labels.

As done for the CNN, we consider the task of classifying

experimental dataset of VVB states, indexed by (m1,m2).
We train the SVM on the reduced space obtained via PCA, ap-

plied to the experimental dataset reported in Fig. 3a. This sig-

nificantly improves the efficiency of the classifier, which only

has to operate on a compressed representation of the images.

This method gives an average accuracy of ∼ 98% when reduc-

ing the dimensionality of the dataset to 40 [66, 67]. The SVM

was trained on half of the experimental data, with the other

half used to test the resulting accuracy. A breakdown of the

resulting classification performance is reported in the inset of

Fig. 4d, in which we give the accuracy of the classifier for

each class. Finally, we highlight in Fig. 4d how the average

overall accuracy depends on the dimensionality of the reduced

representation. In particular, we find that ∼ 25 dimensions are

already sufficient to get good average accuracies.

Discussion– We presented a novel approach to classify

VVBs leveraging ML techniques. We demonstrated how the

use of inference strategies based on CNNs and PCA (en-

hanced by SVMs) allows to extract efficiently properties of

high-dimensional photonic VVB systems. In particular, DR

was used to obtain a deeper understanding of the underlying

geometrical properties of the experimentally generated states,

without requiring prior knowledge about the physics of the

generation apparatus. By embedding a variety of ML algo-

rithms into our experimental pipeline, the task of characteris-

ing structured light is made significantly broader in the meth-

ods, ranging from supervised to unsupervised learning, and

more flexible in the applications, classification and regression

tasks. While paving the way to further experimental valida-

tions – potentially also in experimental settings that do not

rely on optical networks – we believe that numerous tasks of

relevance to modern photonics could benefit from introducing

similar ML ideas into their characterization protocols. These

techniques can prove to be useful add-on to tasks ranging from

the design of automatized approaches to the characterization

of experimental platforms and experiments, to the provision

of solutions to OAM demultiplexing in the context of classi-

cal and quantum communication and, more generally, for the

use of structured light in quantum technologies.

Note– During the reviewing process of this manuscript, the

authors became aware of a related work [82], that addresses

the classification of scalar fields with fractional topological

charge.
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