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Air pollution is increasing profusely in Indian cities as well as throughout the world, and it poses a major threat to climate as well
as the health of all living things. Air pollution is the reason behind degraded indoor air quality (IAQ) in urban buildings. Carbon
dioxide (CO2) is the main contributor to indoor pollution as humans themselves are one of the generating sources of this
pollutant. The testing and monitoring of CO2 consume cost and time and require smart sensors. Thus, to solve these
limitations, machine learning (ML) has been used to predict the concentration of CO2 inside an office room. This study is
based on the data collected through real-time measurements of indoor CO2, number of occupants, area per person, outdoor
temperature, outer wind speed, relative humidity, and air quality index used as input parameters. In this study, ten algorithms,
namely, artificial neural network (ANN), support vector machine (SVM), decision tree (DT), Gaussian process regression
(GPR), linear regression (LR), ensemble learning (EL), optimized GPR, optimized EL, optimized DT, and optimized SVM,
were used to predict the concentration of CO2. It has been found that the optimized GPR model performs better than other
selected models in terms of prediction accuracy. The result of this study indicated that the optimized GPR model can predict
the concentration of CO2 with the highest prediction accuracy having R, RMSE, MAE, NS, and a20-index values of 0.98874,
4.20068 ppm, 3.35098 ppm, 0.9817, and 1, respectively. This study can be utilized by the designers, researchers, healthcare
professionals, and smart city developers to analyse the indoor air quality for designing air ventilation systems and monitoring
CO2 level inside the buildings.

1. Introduction

Human health, performance, satisfaction, and productivity
inside built environments are affected primarily by indoor
environment quality (IEQ). Among major IEQ parameters
like thermal comfort, acoustic comfort, and visual comfort,
the indoor air quality (IAQ) is directly linked to sick build-
ing syndrome (SBS) which affects occupants’ comfort and

health negatively [1–4]. Generally, the most effective and
usual method to improve IAQ is to bring in enough fresh
air from outside [5]. Previous research, however, has
revealed that the majority of the focus on air quality had
been on the outdoor air quality and its impact on human
health [6–8]. This can also be seen clearly in the history of
the Clean Air Act, which began with the Air Pollution Con-
trol Act of 1955 and then tailed by the 1963 and 1970 Clean
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Air Acts, the Air Quality Act of 1967, and the amendments
in 1977 and 1990, all of which focused on pollution control
from outdoor sources [9]. The major pollution in urban
areas and big cities is primarily due to transportation. Mas-
sive investment to develop transport networks and infra-
structure along with a growing economy is inevitable in
developing countries. With the rapid growth of travel
demand along with better finance and investment options,
vehicular air pollution is emerging and dominating other
pollution sources in cities. Transportation is the prime sector
contributing to the air pollution in urban agglomerations
followed by the industry and the agriculture sector. This
growth leads to more emissions of pollutants in the air. This
polluted air has mild to severe adverse effects on all living
beings depending upon the duration of exposure, the con-
centration of the pollutants in the air, and the health status
of the living one. While most people know the effects of air
pollution, less are aware that the quality of their indoor air
may be worse than that of their outside air. Around the
world, an increasing proportion of the population works in
office buildings. Existing research on office building IAQ
has concentrated on particular concerns such as photocopier
and printer emissions as well as some other indoor sources.
Workplaces and offices are generally situated near busy
roads and marketplaces for economic reasons. The outer
air pollutant enters the building and enhances the concen-
tration of indoor air pollutants (IAPs). IAPs have recently
been acknowledged as having an equivalent impact on
human health as outside air pollution [4]. People spend
most of their waking time inside different types of buildings
and full sleeping time in residential buildings majorly. IAPs
can be classified into 3 categories [10] (i) gases, (ii) biological
contaminants, and (iii) particulate matter. Adequate outdoor
fresh air is necessary to ensure excellent IAQ. If outdoor air
quality is not good, then it is difficult to maintain good IAQ
in naturally ventilated buildings. Throughout the globe,
investigations on volatile organic compounds (VOCs), alde-
hydes, ammonia, particulate matter (PM), and other pollut-
ants in office buildings were conducted. BASE, IAQ-AUDIT,
HOPE, AIRMEX, and OFFICAIR are some of the major
milestone projects in the development of the existing knowl-
edge on IAQ in the office-built environments [11]. Some of
these studies also included energy efficiency, occupant per-
formance, and satisfaction as additional important parame-
ters along with IAQ. Apart from these, several studies have
been undertaken to forecast the ventilation performance of
buildings and occupant’s perceptions [12–14]. Low ventila-
tion rates in houses are linked to asthma and allergic symp-
toms [15]. Inadequate ventilation will result in sick building
syndrome (SBS), and excessive outdoor air will result in
increased energy demand for buildings to maintain thermal
comfort indoors. If the nearby roads are busy, then it is not
easy to prevent degradation of IAQ when using natural ven-
tilation to ventilate the stale air out having a high concentra-
tion of unwanted gases like CO2 and other resuspended
particulate matters due to worker’s activity. Outer CO2 con-
centration and conditions affect inner concentrations of CO2
along with inner sources like humans and other indoor
anthropogenic activities. It is also not feasible to open win-

dows and doors in office buildings situated in or near any
noisy area as this results in hampering the concentration
and performance of the worker (due to reduced acoustic
comfort) inside the building. Increased IAPs lead towards
health issues in building occupants. SBS is a phenomenon
in which inhabitants of a structure may have a feeling of dis-
comfort along with a variety of health symptoms that cannot
be ascribed to a single cause or sickness and which generally
improve once they left that particular building and space
[16]. Apart from SBS, some occupants are affected by
building-related illness (BRI) which affects for a longer dura-
tion than SBS. According to a report in 2010 by the WHO
[17], IAPs are the main reason behind 2.7% of all the dis-
eases globally. Additionally, a report in 2018 presented by
the WHO [18] revealed that 3.8 million people die every
year due to diseases that can be attributed to poor indoor
environments. The usage of motorised vehicles such as
heavy-duty and light-duty vehicles contributes to ambient
air pollution caused by traffic activities. Carbon compounds,
hydrocarbons, nitrogen oxides, sulphur oxides, particulate
matter (PM) with a diameter less than 2.5μm (PM2.5) as well
as diameter less than 10μm (PM10), and ultrafine particles
(UFP) are only a few of the pollutants released by these vehi-
cles [19]. After infiltration or by natural ventilation and
wind, these pollutants enter inside the built environment
and enhance IAP concentration. Additionally, pollution
from indoor sources also nudges the poor IAQ conditions.
Worldwide studies have been done to address ventilation
strategies to reduce CO2 and other pollutants using artificial
intelligence (AI). Fuzzy logic (FL), artificial intelligence (AI),
and genetic algorithms (GA) are commonly used in intelli-
gent control modelling for enhancing IAQ. Vanus et al.
[20] predicted CO2 levels inside smart homes considering
relative humidity and temperature as input using the deci-
sion tree regression method. Pantazaras et al. [21] look at
the possibility of developing predictive models that are
suited to certain regions in order to forecast future CO2 con-
centrations in their study. Kallio et al. [22] predicted CO2 in
the office environment. Their study investigated the suitabil-
ity of four ML approaches for simulating the future CO2
concentration in the indoor office environment: multilayer
perceptron, random forest, decision tree, and ridge regres-
sion. The authors explore that the decision tree model was
equally accurate as of the computationally more difficult
random forest model. Khazaei et al. [23] used ML to predict
the concentration of CO2 in indoor offices. On the basis of
the mean-square-error approach, the authors determined
that the most accurate model was the four-steps-ahead pre-
diction model, which had an average difference of less than
17 ppm from the actual CO2 content in the room. Skön
et al. [24] modelled CO2 concentration in apartment build-
ings using artificial neural networks. They considered tem-
perature and relative humidity as input parameters. Taheri
and Razban [25] developed a dynamic indoor CO2 model
to predict CO2 levels. The data set includes temperature, rel-
ative humidity, dew point, and CO2. The authors compared
six learning algorithms including multilayer perceptron
(MLP), logistic regression (LR), gradient boosting (GB), ran-
dom forest (RF), AdaBoost, and support vector machine
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(SVM). The MLP surpasses other algorithms in terms of
accuracy and can accurately forecast CO2 behavior. Moham-
madshirazi et al. [26] tested four different ML methods, roll-
ing average, random forest, gradient boosting, and long
short-term memory for the prediction of indoor concentra-
tion levels of carbon dioxide, total volatile organic com-
pound, formaldehyde, PM10, PM2.5, PM1, ozone, and
nitrogen dioxide. The study concluded that the best
approach for forecasting indoor pollutants was consistently
long short-term memory, while the optimum combinations
of input factors varied depending on the pollutant of inter-
est. The predicted results show that the LSTM training and
validation MSEs from interpolating data varied from 0.001
to 0.007 and 0.001 to 0.003. ML models were used by Lill-
strang et al. [27] to forecast the quality of indoor air in smart
campuses. Predicting energy loads and inferring space occu-
pancy status are critical activities that increase building
energy efficiency and user comfort. The findings can be used
to assess and improve the quality of sensor-based indoor
data used in machine learning models, to determine whether
a data set is representative enough to build a model that is
robust under changing building conditions, and to deter-
mine the appropriate number of sensors per space when
constructing an indoor wireless sensor network. The pro-
posed work uses artificial neural networks (ANN) and other
machine learning methods to forecast CO2 level inside an
office building. As the severity of CO2 concentration affects
the human health. Every machine leaning method has some
pros and cons. The performance of individual machine
learning models depends on the type and number of data
sets. Various literatures are available on predicting the CO2
level inside buildings; however, an accurate mathematical
model to determine the quantity of CO2 emission is difficult,
as the input parameters are complex in nature. Therefore,
monitoring and prediction of CO2 concentration inside
buildings are an important aspect. The objective of this study
is to address the research gaps identified from the selective
literature review using the ANN and other ML methods to
predict CO2 concentration inside the office building. Also,
the performance comparison of different machine learning
models used for predicting the CO2 level inside the building
has been presented.

The main contribution in this study is listed below:

(i) Identified the critical parameters used as input for
prediction the CO2 concentration

(ii) The identified critical parameters used as input for
predicting the CO2 concentration are number of
occupants, area per person, outdoor temperature,
outer wind speed, relative humidity, and air quality
index

(iii) Collected real-time CO2 concentration data from
the office building

(iv) Modelled six machine learning algorithms, namely,
artificial neural network (ANN), support vector
machine (SVM), decision tree (DT), Gaussian pro-
cess regression (GPR), linear regression (LR), and

ensemble learning (EL), and four optimized
machine learning algorithms GPR, EL, DT, and
SVM for predicting the CO2 concentration inside
the office building

The work in the research article is divided into five sec-
tions: Section 2 provides the details of data generation, data
normalization, and performance indices which are used to
evaluate the prediction of ML models. Section 3 describes
all the machine learning (ML) approaches. The results and
discussion part are presented in Section 4, and the conclu-
sion of this study is presented in Section 5.

2. Materials and Methods

To predict the CO2 concentration inside the office room due
to internal emission, exterior transportation movement and
industry emissions are studied in this article. The total number
of 169 data sets was used to construct the prediction models
which include the input variables such as temperature, relative
humidity, air quality index, wind speed, occupancy, area per
person, and one output variable, that is, carbon dioxide. The
concentration of carbon dioxide inside the room mainly
affected the occupancy inside the room as humans themselves
are the emitting source. The concentration of CO2 inside any
building also depends upon the exterior environment sur-
rounding the building. Buildings near industrial areas and
busy roads are mostly seen affected by the pollutants.

2.1. Data Generation. The data used in this work was gener-
ated in the lab of CSIR. The area of the office room was
approximately 24m2. The office is situated on the ground
floor and contains one window on the north-faced wall hav-
ing a width and height of 2.5m and 1.5m, respectively. The
office room contains two doors; the dimensions of door 1
and door 2 are 1:2m × 2:9m and 0:9m × 2:0m, respectively.
The 3D diagram of the office room with two doors and one
window with the arrangement of furniture is shown in
Figure 1. The collected seven parameters are indoor carbon
dioxide (CO2), number of occupants (O), area per person
(A), outdoor temperature (To), outer wind speed (WS), rel-
ative humidity (RH), and air quality index (AQI). The data
were collected six times a day. The timing of the data collec-
tion is shown in Figure 2, where the watch represents the
office hours 9 AM to 6 PM. One reading was recorded every
day after one hour later than office hours at 7 PM.

The maximum observed CO2 level inside the office room
was 572 ppm, while the minimum value observed was
445 ppm. The other statistical analysis of the collected data
such as minimum value, maximum value, mean, standard
deviation, kurtosis, and skewness for input and output data-
base is shown in Table 1. Figure 3 shows the distribution of
all data in terms of contributing parameters on CO2.

2.2. Evaluation Criteria. For evaluating the accuracy of ML
models, four commonly used performance indices such as
correlation coefficient (R), mean absolute error (MAE), root
mean square error (RMSE), mean square error (MSE), mean
absolute percentage error (MAPE), Nash-Sutcliffe (NS) effi-
ciency index, and a20-indices were used. Equations (1)–(7)
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Figure 1: 3D diagram of an office room.
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Figure 2: Data collection details (hrs).

Table 1: Statistical data for every major parameter in the study.

Parameter Symbol Unit Min Max Mean Std. Kurtosis Skewness Type

Occupants O Nos. 1 4 2.1479 1.0157 1.3274 -0.0938 Input

Office area AO m2 6 24 14.7929 7.8322 1.1397 0.3022 Input

Air quality AQI — 51 155 94.8639 24.7369 2.6583 0.5255 Input

Air temp. T °C 22 42 31.6923 4.0473 2.3903 0.2013 Input

Rel. humidity RH % 21 100 63.0178 19.1552 2.1424 -0.0733 Input

Wind speed WS m/s 1.3 23.1 8.7183 3.9735 3.3857 0.8041 Input

Indoor CO2 CO2 Ppm 445 572 509.7515 27.0277 2.2640 0.0202 Output
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Figure 3: Continued.
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[28] represent the performance indices considered in this
study.
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where T is the number of samples in the data set, As is the
measured values, Ps is the predicted values, and Ps is the
mean of the predicted values. m20 is the number of samples
with value rates measured/predicted values (range between
0.8 and 1.2).

2.3. Normalization of Selected Data. Data normalization was
performed to decrease undesirable feature scaling effects and

increase computational stability. In this work, data was nor-
malized in the range of 0 and 1 using equation (8) [29].

Y∗ = yI,i − yI,min
� �

yI,max − yI,min
� � , ð8Þ

where yI , is the measured value (given value of CO2) of the I
th input (I = 1, 2, 3, 4, 5, 6) in the ith database
(i = 1, 2,⋯:, 169). yI,max and yI,min are the maximum and
minimum values in the Ith input, respectively.

3. Machine Learning Algorithms

In the literature, there are various studies available that mea-
sured the concentration of CO2 inside different types of
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Figure 3: Frequency distribution of collected data.

Input
variables

Input features

Neurons

Output

Input layer

Hidden layer

Output layer

Figure 4: Basic structure of ANN.

6 Wireless Communications and Mobile Computing



buildings using ML algorithms. But very limited studies are
available to predict the effect of outside pollution on the
inside concentration of CO2. In this study, ML algorithms
are used to predict the concentration of CO2 in the office
building and suggest the best-predicted model. Gaussian
process regression (GPR), support vector machine (SVM),
artificial neural network (ANN), decision tree (DT), ensem-
ble learning (EL), and linear regression (LR) are used to pre-
dict the concentration of CO2. In addition to that, optimized
algorithms such as GPR, SVM, EL, and DT are also used.
Each model’s predictions were analysed and compared to
achieve the best accurate model.

3.1. Artificial Neural Network (ANN). In the late 19th and
early 20th centuries, the groundwork for the area of ANN
was done. This mostly comprised of psychology, neurophys-
iology, and physics multidisciplinary work. This early study
focused on general learning, vision, conditioning, and other
ideas, rather than particular mathematical models of neuron
activity. The field of neural networks has been revitalized as
a result of these new advances. Many studies have been pub-
lished in the previous two decades, and many different forms
of ANNs have been studied. ANN models were first
employed in the ecological field in the early 1990s, but they
became increasingly popular in the late 1990s.

Around 1010 neurons, or computing components, make
up the human brain, which interacts via a connecting net-
work. ANNs are parallel distributed computer networks that
share certain fundamental features with biological neural
systems. Neurons (X = ½x1 ; x2 ;⋯ ; xn�) receive a variety of
signals as input. Every input is given a relative weight
(W = ½w1 ;w2 ;⋯ ;wn�), which influences its impact. The
strength of the input signal is determined by weights, which
are adjustable coefficients inside the network. The summa-
tion block, which approximately corresponds to the actual

cell body, generates the neuron output signal (NET), which
algebraically sums all of the weighted inputs. The basic
structure of ANN is presented in Figure 4.

Several types of ANNs have been produced over the last
10-15 years; however, two primary groups may be distin-
guished based on how the learning process is carried out:
“In ‘supervised learning,’ a ‘teacher’ ‘tells’ the ANN how well
it performs or what the right behaviour would have been
throughout the learning phase.” The ANN independently
examines the features of the data set and learns to reflect
these properties in its output in “unsupervised” learning.
The relevant information regarding ANN is mentioned in
the literature [30].

3.2. Support Vector Machine (SVM). SVM is a moderately
new concept in the field of environmental science. In com-
parison to other disciplines, researchers employing remote
sensing in environmental and ecological applications
adopted SVMs initially, possibly due to the prompt growth
of data-intensive technologies and the accompanying gap
in the development of analytical tools. The application of
SVMs in the environmental research domain has increased
in recent years. SVMs are used in the detection of pollution,
mapping of contaminated areas and disease distributions,
and air quality estimates. Indeed, whenever there is high-
dimensional data and a related lack of understanding about
the underlying distribution, SVMs offer tremendous poten-
tial to resolve the ensuing data processing issues. The graph-
ical representation of SVM regression is shown in Figure 5.

Support vector classification is based on a specific form
of statistical learning machine, with Vapnik’s supporting
theory. Except for the assumption that the data are identi-
cally distributed and independent, support vector classifica-
tion makes no assumptions about the underlying
population’s distribution. Furthermore, rather than
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estimating error via asymptotic convergence to normalcy,
SVMs use theorems limiting the real risk in terms of the
empirical risk. As a result, even with tiny sample sizes, reli-
able estimates of the prediction error may be obtained with-
out making any distributional assumptions. The ideal
machine strikes a compromise between consistency in the
training set and future data set generalization. Furthermore,
SVMs allow us to avoid the degraded computing efficiency
that is common in high-dimensional problems. Support vec-
tor classification is a suitable choice for the typically noisy,
high-dimensional, and chaotic data encountered in environ-
mental research because of these key features. More details
of SVM can be found in [32].

3.3. Decision Tree (DT). One approach to demonstrate the
links between samples in classification is to display them
visually in the form of a “phylogenic tree.” The tree-like
structure represents the feature space in a hierarchical man-
ner and helps to create links between the data: The charac-
teristics identify the leaves of the tree, and all branches join
together at the base, just as they do in a real tree. A DT,
unlike a genuine tree, is generally portrayed as growing from
top to bottom. Beginning at the root and working through
the branches to a leaf that identifies the class, the member-
ship of unknown data can be determined.

A DT is also a technique of encoding a series of choices
produced by applying a set of classification rules in a

Data Random
sample

Weighted
sample

Weighted
sample

Model

Model

Model

Weighted
vote

Figure 6: Boosted regression tree.
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Figure 7: Framework of developing a CO2 prediction model for office room.

Table 2: Comparison of various models on the basis of statistical parameters.

S.N. Methods
Statistical parameters for CO2 Standard deviation

R R2 MSE RMSE MAE MAPE NS

1 Optimized GPR 0.98874 0.97761 17.64568 4.20068 3.35098 0.4325 0.9817 25.5432

2 GPR 0.98259 0.96548 27.08724 5.20454 4.25433 0.8393 0.9627 25.1313

3 Optimized EL 0.96447 0.93020 53.23267 7.29607 5.88308 1.1669 0.9267 24.4882

4 Optimized DT 0.95758 0.91696 60.30003 7.76531 6.00405 1.8131 0.9169 25.8812

5 DT 0.93714 0.87823 88.42094 9.40324 7.14055 1.4101 0.8782 25.3288

6 ANN 0.92064 0.84758 111.5761 10.56296 8.24138 1.7404 0.8314 25.7913

7 EL 0.89592 0.80267 156.4927 12.50970 9.97965 1.9695 0.7845 20.5966

8 LR 0.89566 0.80221 143.6322 11.98467 9.78463 1.9341 0.8022 24.2076

9 Optimized SVM 0.89349 0.79832 147.8662 12.16002 9.64578 1.9098 0.7964 24.5402

10 SVM 0.89044 0.79288 153.0833 12.37268 9.90023 1.9642 0.7892 24.1408
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Figure 8: Continued.
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sequential order to distinguish data. This method of classifi-
cation has the benefit that, at least for small sets of rules, a
graphical explanation of the set of rules is typically simple
to comprehend. The discovery of such principles by
methodical examination of the behavior of a set of known
instances induces or creates a decision tree. More details of
DT can be found in [33].

3.4. Gaussian Process Regression (GPR). GPR is the nonpara-
metric, Bayesian method to regression and is used frequently
in the field of ML. GPR offers numerous advantages, com-
prising the capacity to deal with tiny data sets along with
providing uncertainty assessments on predictions. “Gaussian
process regression is nonparametric (i.e., not constrained by
a functional form), rather than computing the probability
distribution of parameters of a single function, GPR com-
putes the probability distribution of all admissible functions
that fit the data. However, in order to calculate the posterior
using the training data and compute the predicted posterior
distribution on our points of interest, a prior specification
(on the function space) is required.” More information
related to GPR can be found in [34]. Various studies on
GPR are available in the literature for the forecasting of var-
ious parameters. Gaussian process regression (GPR) models
have been widely used in ML applications because of their

representation flexibility and inherent uncertainty measures
over predictions.

3.5. Linear Regression (LR). In statistics and ML, LR is one of
the most well-known and well-understood techniques. Many
variables (or measures) are gathered for each individual or
unit investigated in many scientific researches. Regression
analysis is a statistical technique for predicting the value of
one (or more) variables from a set of others. Basic or simple
LR, multiple LR, and multivariate LR are the three forms of
linear regression. The basic linear regression model is a model
that is linear in these parameters. This model, often known as
a straight-line model, is fitted using the least-squares method.
When we want to model the link between one answer variable
and more than one regression variable, we utilize multiple
regression analysis. When we have more than one response
variable and want to model the link between these variables
and a collection of regression variables, we use multivariate
multiple regression analysis. For more information, the reader
should refer to a statistics textbook and [35].

3.6. Ensemble Learning (EL). EL is the process of intention-
ally generating and combining numerous models, such as
classifiers or experts, to tackle a specific computational intel-
ligence issue. Ensemble learning is generally used to increase
the performance of a model (classification, prediction,
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Figure 8: Comparison of concentration of CO2 prediction with various algorithms: (a) optimized GPR; (b) GPR; (c) optimized EL; (d)
optimized DT; (e) decision tree; (f) ANN; (g) EL; (h) LR; (i) optimized SVM; (j) SVM.
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function approximation, etc.) or to minimize the chance of
an unintentional selection of a poor one. Other uses of
ensemble learning include providing a confidence level to
the model’s conclusion, nonstationary learning, data fusion,
selecting optimal features, error correction, and incremental
learning. The best-fitted model in the EL algorithm was
boosted tree as shown in Figure 6 [36].

4. Results and Discussion

4.1. Implementation of Machine Learning Algorithms to
Predict CO2. Based on the training process of ML algo-
rithms, the data were split into two ratios. To avoid the over-
fitting phenomenon, the distribution ratio of the two sets is
adjusted to 7 : 3, 70% (130 samples) of the data used in the
training process and the other 30% (56 samples) of the data
utilized as testing data as shown in Figure 7. To validate the
results of ML algorithms, the 5-fold cross-validation method
is used. In 5-fold cross-validation, the data is further divided
into 5 subsets. Then, each subset would be chosen in order
for the validation process, the remaining 4 subsets being uti-
lized for training inside the training stage.

4.2. Results of Machine Learning Models. The concentration
of CO2 inside the office room was predicted using various
ML algorithms. The predicted values were compared with
the actual results and estimated the errors based on perfor-
mance indices.

4.2.1. ANN Model. A single hidden layer was investigated,
with the number of neurons increased from 5 to 20, and
the optimal model was discovered by trial and error. The
performance parameters of the ANN model are presented
in Table 2. As observed from the table, ANN attained almost
84.7% (R2 = 0:84758) accuracy for the whole data set. In
terms of MAE (8.24) and RMSE (10.56), the optimal feed-
forward ANN structure with six inputs delivered the best
training outcome. Figure 8(f) shows a comparison of the
experimental and predicted values of the ANN model.

4.2.2. GPR Model. As we all know, the S (width of rbf) and ε
(Gaussian noise) are two crucial factors that can be found by
a trial-and-error procedure. S = 0:40 and ε = 0:07 are the
final optimum values that are considered to design the opti-
mum GPR model. In the training stage, the GPR model pre-
dicts the concentration of CO2 practically perfectly, whereas,
in the testing stage, there is a small difference. Figure 8(b)
shows a comparison of the experimental and predicted
values of the GPR model. The prediction accuracy of the
GPR model with R2, RMSE, and MAE values is 0.96548,
5.20, and 4.25, respectively, for the whole data set.

4.2.3. SVMModel. In the SVMmodel, the quadratic SVM is the
best-fitted model and shows good accuracy. The values of the
box constraint, epsilon, and kernel scale are 0.3, 0.03, and 1,
respectively, for the best-fitted model. The comparison between
predicted and experimental results is shown in Figure 8(j). The
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prediction accuracy of the SVM model is 79.29% with RMSE
and MAE values being 12.51 and 9.98, respectively.

4.2.4. EL Model. In ensemble tree learning, the boosted tree
is the best suitable model with minimum leaf size = 12, num-
ber of learners = 40, and learning rate = 0:2. The prediction
accuracy of the EL model is 80.27% with RMSE and MAE
values being 12.37 and 9.90, respectively. Figure 8(g) shows
a comparison of the experimental and predicted values of
the GPR model.

4.2.5. LR Model. In the linear regression model, the robust
linear shows good results among linear, interaction linear,
and stepwise linear models. The comparison between pre-
dicted and experimental results is shown in Figure 8(h).
The prediction accuracy of the EL model is 80.22% with
RMSE and MAE values being 11.98 and 9.78, respectively.

4.2.6. DT Model. In the decision tree model, the fine tree
model shows the perfected fitted model than a medium
and coarse tree. The minimum leaf size = 5 and maximum
surrogates per node = 10 were considered as the best-suited
hyperparameters. The prediction accuracy of the DT model
is 88.42% with RMSE and MAE values being 9.40 and

7.14, respectively. The comparison between predicted and
experimental results is shown in Figure 8(e).

The comparison between R2, RMSE, and MAE indica-
tors of different algorithms is presented in Figure 8. The
optimized GPR model R2 value is the highest among all
models, the R2 of optimized GPR is 1.24% greater than
GPR, 4.84% greater than optimized EL, 6.20% more than
optimized DT, 10.16% more than DT, 13.30% more than
ANN, 17.89% more than EL, 17.94% more than LR,
18.34% more than optimized SVM, and 18.89% more than
SVM. Similarly, both the performance indices RMSE and
MAE of the optimized GPR model are the lowest among
all the opted techniques and can be seen in the pictorial rep-
resentation in Figure 8. On comparison, the RMSE values of
GPR, optimized EL, optimized DT, DT, ANN, EL, LR, opti-
mized SVM, and SVM models are 23.90%, 73.69%, 84.86%,
123.85%, 151.46%, 197.80%, 185.30%, 189.48%, and
194.54% higher than the optimized GPR model, respectively.
Similarly comparing MAE values of GPR, optimized EL,
optimized DT, DT, ANN, EL, LR, optimized SVM, and
SVM models are 21.23%, 59.52%, 62.36%, 89.08%,
114.95%, 155.81%, 151.23%, 147.96%, and 153.94% higher
than the optimized GPR model, respectively.
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Figure 10: Representations of absolute error (CO2 ppm): (a) optimized GPR; (b) GPR; (c) optimized EL; (d) optimized DT; (e) decision tree;
(f) ANN; (g) EL; (h) LR; (i) optimized SVM; (j) SVM.
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The best-predicted model is optimized GPR with the R
-value of 0.98874, R2 of 0.977607, MSE of 17.64568, and
MAE of 3.350982 and having a standard deviation of
25.5432 as tabulated in Table 2. The worst prediction was
from the SVM model with the R-value of 0.89044, R2 of
0.792883, MSE of 153.0833, RMSE of 2.37268, and MAE of
9.900226 and having a standard deviation of 24.1408. The
intermediate models analysed were GPR, optimized ensem-
ble, optimized DT, DT, ANN, EL, LR, and optimized SVM
with corresponding R-value of 0.98259, 0.96447, 0.95758,
0.93714, 92064, 0.89592, 0.89566, and 0.89349. The compar-
ison between experimental and predicted optimized GPR,
optimized EL, optimized DT, and optimized SVM is shown
in Figures 8(a), 8(c), 8(d), and 8(i), respectively. The plotted
graphs between measured CO2 values and predicted output
of indoor CO2 by all the above-mentioned methods are pre-
sented below in Figure 8. The a20-index of all the ML
models was having a value of 1. The performance of different
ML models is shown in Figure 9.

In the optimized GPR model, the 96% data lies in the
range of 10ppm as shown in Figure 10(a). In the GPR model,
the 94.67% data lies in the range of 10ppm as shown in
Figure 10(b). Similarly, in the optimized EL, optimized DT,
and DT models, the data lies in the range of 10ppm which is
82.84%, 79.29%, and 73.37%, respectively, as shown in
Figures 10(c)–10(e). In the ANN model, the 70.79% data lies
in the range of 10ppm as shown in Figure 10(f). In EL, LR,
optimized SVM, and SVM models, the data lies in the range
of 10ppmwhich is greater than 60% as presented in Figure 10.

5. Conclusion

In this study, the concentration of CO2 inside an office room
is evaluated using ANN, GPR, DT, EL, SVM, and LR algo-
rithms along with optimized GPR, EL, DT, and SVM. A total
of 169 real-time data sets were collected and used for pre-
dicting the CO2 level, containing temperature, wind speed,
air quality index, relative humidity, occupancy, and area
per person as input parameters. To obtain the accurate
result, all the data was scaled and normalized between 0
and 1, and 70% of the data is used for training and 30%
for testing with 5-fold cross-validation process to validate
the results. It has been found that the optimized GPR is quite
accurate having R, RMSE, MAE, NS, and a20-index values of
0.98874, 4.20068 ppm, 3.35098 ppm, 0.9817, and 1,
respectively.

This proposed prediction model is only valid for similar
input data having similar statistical properties. The proposed
study can help the researchers and professionals to predict
the CO2 concentration inside the office building and its
effect on individual health. In future work, efficient machine
learning models with large data sets can be used to predict
the concentrations of various parameters like PM2.5, PM10,
NOx, SOx, and CO2.

Notations

A: Area per person
AI: Artificial intelligence

AIRMEX: Air Monitoring and Exposure Assessment
ANN: Artificial neural network
AQI: Air quality index
AS: Original values
BASE: Building Assessment Survey and Evaluation
BRI: Building-related illness
CSIR: Council of Scientific & Industrial Research
DT: Decision tree
EL: Ensemble learning
FL: Fuzzy logic
GA: Genetic algorithms
GPR: Gaussian process regression
HOPE: Health Optimization Protocol for Energy-

Efficient Buildings
IAP: Indoor air pollutants
IAQ: Indoor air quality
IEQ: Indoor environment quality
LR: Linear regression
MAE: Mean absolute error
MAPE: Mean absolute percentage error
ML: Machine learning
MSE: Mean square error
NS: Nash-Sutcliffe
O: Number of occupants
PM: Particulate matter
Ps: Predicted values
R: Correlation coefficient
RH: Relative humidity
RMSE: Root mean square error
SBS: Sick building syndrome
SVM: Support vector machine
T : Number of samples
To: Outdoor temperature
UFP: Ultrafine particles
VOC: Volatile organic compounds
WHO: World Health Organization
WS: Wind speed
yI : Measured value.
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