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Abstract: Dengue fever, also known as break-bone fever, can be life-threatening. Caused by DENV,
an RNA virus from the Flaviviridae family, dengue is currently a globally important public health
problem. The clinical methods available for dengue diagnosis require skilled supervision. They
are manual, time-consuming, labor-intensive, and not affordable to common people. This paper
describes a method that can support clinicians during dengue diagnosis. It is proposed to auto-
mate the peripheral blood smear (PBS) examination using Artificial Intelligence (AI) to aid dengue
diagnosis. Nowadays, AI, especially Machine Learning (ML), is increasingly being explored for
successful analyses in the biomedical field. Digital pathology coupled with AI holds great potential
in developing healthcare services. The automation system developed incorporates a blob detection
method to detect platelets and thrombocytopenia from the PBS images. The results achieved are
clinically acceptable. Moreover, an ML-based technique is proposed to detect dengue from the images
of PBS based on the lymphocyte nucleus. Ten features are extracted, including six morphological
and four Gray Level Spatial Dependance Matrix (GLSDM) features, out of the lymphocyte nucleus of
normal and dengue cases. Features are then subjected to various popular supervised classifiers built
using a ten-fold cross-validation policy for automated dengue detection. Among all the classifiers, the
best performance was achieved by Support Vector Machine (SVM) and Decision Tree (DT), each with
an accuracy of 93.62%. Furthermore, 1000 deep features extracted using pre-trained MobileNetV2
and 177 textural features extracted using Local binary pattern (LBP) from the lymphocyte nucleus are
subjected to feature selection. The ReliefF selected 100 most significant features are then fed to the
classifiers. The best performance was attained using an SVM classifier with 95.74% accuracy. With the
obtained results, it is evident that this proposed approach can efficiently contribute as an adjuvant
tool for diagnosing dengue from the digital microscopic images of PBS.

Keywords: digital pathology; dengue; machine learning; thrombocytopenia; lymphocyte; peripheral
blood smear; Artificial Intelligence

1. Introduction

Dengue fever is the most significant arboviral disease prevailing in many parts of the
world [1,2]. According to the World Health Organization, dengue’s overall incidence has
grown dangerously, causing approximately 100–400 million infections annually [3]. The
occurrence of dengue has risen eight-fold over the last two decades [3]. Currently, dengue
is endemic in 129 countries, posing a yearly risk to approximately 3.9 billion people [3,4].
Roughly 50% of the world’s population faces infection risk, while 70% of the total risk is in
Asia [3,5]. Moreover, the combined effect of COVID 19 and dengue infections can cause
destructive results in the populations at risk [3]. The virus accountable for the dengue
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infection is an RNA virus called DENV, consisting of four closely linked serotypes (DENV1-
DENV2). These serotypes belong to the genus Flavivirus and the family Flaviviridae [6,7].
The DENV is spread through a human-to-mosquito-to-human cycle of transmission. The
primary transmitter of the virus is a female mosquito called Aedes aegypti, found in hot
regions throughout the world [6,7]. The onset of dengue symptoms is noticed after the
incubation (approx. 4–10 days) following the bite of an infected vector [7].

WHO has categorized dengue as Dengue (with or without warning signs) and Severe
Dengue [3]. A high fever (104 ◦F) characterizes the febrile phase of dengue along with two
or more of the following symptoms: headaches, pain behind the eyeballs, nausea/vomiting,
swollen glands, pain in muscles/bones/joints, and rashes [3,7,8]. The above symptoms
are usually seen for 2–7 days following incubation. The critical phase of dengue appears
3–7 days after the initiation of the symptoms. The warning signs include severe abdominal
tenderness, continuous vomiting, rapid breathing, mucosal bleeding, lethargy, restlessness,
liver enlargement, and blood in vomit/stools [3,7]. Plasma leaking, fluid accumulation,
respiratory distress, severe bleeding, or organ failure are the deadly consequences of
severe dengue [3,7,8]. Mild dengue is rarely associated with fatal complications. However,
severe dengue may lead to death without proper medical care. Hence, early and accurate
laboratory investigations and seeking appropriate medical care are crucial for the recovery
of dengue patients [3].

Several methods are used for the diagnosis of DENV infection, including the complete
blood count (CBC) test, virus isolation methods, serological methods, and peripheral blood
smear (PBS) analysis [3,6,7]. Infection in the body brings about a change in the number of
leukocytes and platelets. Usually, they are highly lowered in number [9]. Virus isolation is
a traditional method used for the diagnosis of DENV infection. However, it has recently
been replaced by molecular methods, such as RT-PCR and NS1 antigen-capture ELISAs [7].
RT-PCR methods are considered the gold standard and provide an accurate diagnosis.
Nevertheless, it requires specialized laboratory equipment, which is not affordable in
remote areas/a low resource setup where dengue is endemic [3,7]. Dengue can also be
diagnosed by detecting the presence of viral antigens (NS1) in the blood of dengue-infected
patients. This simple but effective diagnostic tool provides qualitative positive/negative
results [3,7]. Serological methods, such as IgM and IgG antibody-capture ELISAs, are useful
for detecting recent or past DENV infection. IgM and IgG in the blood serum indicate
recent and past DENV infections, respectively [3,7].

The microscopic examination of PBS images is regarded as the gold standard for inves-
tigating various diseases [10]. However, it is labor-intensive, time-consuming, and needs
an expert pathologist to interpret the blood smears. Automated image analysis of PBS
can expedite diagnosis, reduce inter and intra-observer error, and reduce the pathologists’
load [11–13]. This idea falls under the domain of digital pathology. Digital pathology is
an image-based environment that allows pathology information management from digital
glass slides [14,15]. The high-resolution digital images of slides are viewed and analyzed
using automatic image-analysis algorithms, which give precise and reproducible results.
Additionally, digital pathology coupled with AI principles has led to the development of
novel and innovative diagnostic tools that hold immense potential in improving health-
care services [14,15]. In recent years, various machine/deep learning approaches with
advanced medical image processing techniques have been explored for disease diagnosis
from PBS [16–19]. Many researchers have published studies related to the automatic diag-
nosis of various hematological disorders including leukemia, anemia, and malaria [20–22].

Platelet count in patients with dengue fever drops below the normal range (<1,00,000/µL of
blood) and can reach as low as <40,000/µL of blood, a condition called thrombocytopenia [9,23].
Thrombocytopenia is common in both mild and severe dengue cases [24,25]. Studies suggest
that thrombocytopenia is a significant cause of bleeding in dengue patients [23,26]. Thus,
counting platelets is essential to provide early treatment to dengue patients. Studies have
shown that the platelet count estimation using PBS is not significantly different from using an
automated hematology analyzer (based on the flow cytometry principle) [27,28]. Leukocytes



Diagnostics 2023, 13, 220 3 of 20

are the immunity cells that help the body to resist infections and other diseases. Each of the five
types of leukocytes plays a distinct role. However, lymphocytes are a focus throughout this
work. The dengue infection in the body, in turn, alters the lymphocytes’ morphology. Studies
show that this alteration is an essential diagnostic clue for dengue diagnosis [29–32]. Hence,
PBS analysis can considerably help the diagnosis of dengue, which can act as a complement to
the CBC test and NS1 antigen-capture method [29].

The typical microscopic images of blood smear with 40x magnification are shown in
Figure 1, representing normal and dengue cases. The figure shows fewer platelets in the
case of dengue.
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Morphological changes can be seen in the lymphocytes in the case of dengue. Morpho-
logical changes include changes in the nucleus and the cytoplasm of the lymphocytes. The
nucleus will become bigger and irregular. Cytoplasm will increase and will become bluer.

Most of the research work reported on automated diagnosis of dengue is by utilizing
symptoms, vital signs, blood profile data, or a combination of these [33–41]. In this work,
features of platelets and lymphocytes from PBS are thought out for the automated detection
of dengue fever. Just a few researchers have thought of features of Platelets/lymphocytes
for this purpose [42–45]. However, similar works carried out by various researchers for
other studies, including platelet detection and counting and leukocyte segmentation and
classification, are discussed below.

Cruz et al. proposed a raspberry-pi-based system to estimate platelet count from
microscopic blood smear images. RGB images were converted to HSV color space. After
thresholding, morphological operations were performed. Connected component labeling
was used to count platelets. They performed statistical analysis to compare this algorithm’s
results with the CBC results and reported an accuracy of 90% [46]. Evangeline et al.
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proposed an algorithm to count platelets from 40x microscopic blood smear images. RGB
images were converted into grayscale. Then, the contrast stretched, histogram equalized
grayscale images were subjected to Otsu’s thresholding. Edge detection and morphological
opening removed platelets from the image and retained only the WBC nuclei. This image
was then used as a mask to remove the WBC nuclei and retain only the platelets. The
authors reported an accuracy of 91% [47]. Meimban et al. presented a more accurate new
algorithm for counting platelets using Python OpenCV. Platelets were counted from 100x
blood smear images. RGB images were converted into HSV color space, and platelets were
segmented using Otsu’s thresholding. Then the blob detection algorithm was applied to
the segmented images, and the platelets were counted. The authors reported an accuracy
of 100% [48]. Mahanta et al. developed an Image processing technique to detect and count
platelets from blood smear images. RGB images were converted into LAB color space.
Morphological operations of opening and dilution were performed after segmentation.
Then WBCs were eliminated, and the platelets were counted. The authors reported an
accuracy of 95% [49]. Monteiro et al. worked on an image processing algorithm to detect
and count platelets from blood smear images. Images were pre-processed, and color
converted. Then the Hough transform was applied, and the platelets were counted with an
accuracy of 90% [50]. Alam et al. presented an ML approach for automatic identification
and counting platelets using the YOLO algorithm. The authors obtained an accuracy of
96% [51]. Although these approaches have yielded good results, most researchers have
implemented the algorithms on only a few samples. Moreover, they have not averaged the
platelet counts from 10 consecutive fields, which is mandatory. Furthermore, the platelet
obtained are not compared with the corresponding count from the hematology analyzer,
which is a gold standard.

Manik et al. enhanced the classification of WBCs in PBS images with a new framework.
They segmented the nucleus and cells, and extracted morphological/textural features.
The NN Pattern Recognition tool was employed to classify the WBCs. Authors reported
an accuracy of 98.9% [52]. Sajjad et al. developed a scheme to classify the WBCs in
PBS images. They employed K-means clustering to segment the nucleus. Subsequently,
they used DWT to extract geometrical/statistical/textural features. An Ensemble-SVM
classifier was employed to classify the WBCs. They achieved an accuracy of 94.7% [53].
Shahin et al. proposed a novel CNN architecture named WBCsNet to identify different
WBCs. The architecture consisted of three main convolutional layers, two pooling layers,
four ReLU units, and two fully-connected layers. An accuracy of 96.1% was obtained,
which was better than different transfer learning approaches and traditional identification
systems [54]. Hegde et al. presented a technique to find WBCs in PBS. A robust active
contour method detected and extracted WBCs using Zack’s thresholded nuclei with an
overall sensitivity of 96%. Furthermore, they correlated the conventional and convolution
neural network (CNN) concept of WBC classification. They classified the WBCs into normal
and abnormal types. In the conventional method, they extracted features, viz., shape, color
and texture and classified the WBCs using neural networks. They achieved 99.8% and 99%
accuracies for conventional and CNN techniques [55,56]. Banik et al. developed a method
to automatically segment the leukocyte nuclei from the blood smear images. Nucleus
segmentation was based on HSI & L*a*b color space and K-means clustering, making the
method independent of the database. Leukocytes were located based on the location of the
segmented nuclei. Then, the cropped leukocytes were classified using CNN. They achieved
an average accuracy of 98.61% and 96% for nucleus segmentation and classification [57].
Aziz et al. worked on a CNN-based algorithm for classifying leukocytes in PBS. They used
K-means clustering to segment the leukocytes in L*a*b space. They employed pre-trained
models—AlexNet and ResNet18 for classification and reported an accuracy of 93.30% and
93.85% for AlexNet and ResNet18, respectively [58]. Sapna et al. reported a concept to
classify leukocytes with MLP and SVM. The authors segmented the nucleus by employing
Fuzzy C-means clustering. Subsequently, they derived geometrical/color/texture features.
They achieved 92.8% and 91.5% accuracy for MLP and SVM, respectively [59]. Togacar
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et al. used deep features to classify WBCs. They employed feature extractors viz. AlexNet,
GoogleNet, and ResNet-50. MIC/Ridge extracted the most relevant features. The WBCs
were classified using quadratic discriminant, which earned an accuracy of 97.95% [60].
Cinar et al. developed a hybrid CNN model to classify WBCs. They considered pre-
trained—Alexnet and GoogleNet deep features. Subsequently, SVM classified the WBCs.
They obtained 99.73% and 98.23% accuracy for databases viz. Kaggle and LISC [61].

This work considers PBS-based features of platelets and lymphocytes for automated
dengue fever detection. Just a few articles similar to this work are found in the literature.
The dataset consists of 100x digital microscopic PBS images of dengue and normal con-
trols acquired using an Olympus DP25 digital microscope available in the Hematology
laboratory, KMC, Manipal. The significant contributions of this paper are: (i) A clinically
acceptable blob detection algorithm for the detection of thrombocytopenia in dengue cases;
and (ii) Automated dengue detection based on the morphological and GLSDM features
extracted from the lymphocyte. In addition, a comparative study of the results with the
results obtained by the classifiers considering the deep and LBP features is presented.

The remaining sections of the manuscript are arranged in the following manner:
Section 2 illustrates the materials and methods of the proposed system. Then, the results
are furnished in Section 3, followed by a brief discussion in Section 4 and the conclusion in
Section 5.

2. Methodology

This section is subdivided into four parts. The first part deals with data acquisi-
tion. The blob detection algorithm for diagnosing thrombocytopenia is discussed in the
next part. Then, in the third part, the detection of dengue by utilizing morphological
features/GLSDM-based textural features from the lymphocyte is described. Finally, the
last part describes dengue detection using lymphocyte-based MobileNetV2-based deep
features/LBP-based textural features. Figure 3. shows the conceptual layout of the planned
dengue detection scheme.
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2.1. Data Acquisition

The KMC and KH Institutional Committee issued ethical clearance (IEC Project No:
114/2020) to acquire the necessary dataset from the Hematology Laboratory, Kasturba
Hospital, Manipal. The dataset contains PBS images acquired from 94 blood smear slides of
different subjects (54 dengue-infected subjects and 40 normal controls). Hospital numbers
of Dengue patients (based on ICD codes) were obtained from the Medical Records Dept.,
KH, Manipal. The blood smear slide numbers corresponding to the hospital numbers were
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obtained from the Lab Report Viewer software. A digital microscope (Olympus DP25)
extracted the PBS images from the Leishman stained glass slides with a magnification of
100x and resolution of 2560 × 1920. The 100x image is an ‘Oil Immersion Field’ as a drop of
Liquid paraffin oil is spread over the slide before the image is captured. This gives us clean
images where the ROIs can be clearly identified. The images were captured by focusing
sharply on the area between the blood smear slide’s body and tail. The RBCs are scarce
and spaced out better in this region than in the body, where many RBCs exist. This makes
it easier to identify the platelets and lymphocytes. Segmentation also becomes easier as
there is minimal overlapping of the cells in this region.

2.2. Diagnosis of Thrombocytopenia Using a Blob Detection Algorithm

A blob detection algorithm was developed using Python OpenCV to detect and count
platelets from 100x digital microscopic PBS images. Each component of the RGB image was
analyzed individually. The green component was selected for further analysis as the ROIs
(platelets) are clearly visible in the image. Then, the blob detector was applied to the green
component to detect and count the platelets. Platelets are detected and counted from 10
consecutive oil immersion fields and then averaged.

Python OpenCV provides a convenient way to detect and filter the blobs in an im-
age [48]. A Blob (Binary large object) is a collection of connected pixels that share some
common property [62]. In this context, platelets are blobs. The blob detector is controlled
by several parameters, including Thresholds and Filters [63]. Filters include Color, Area,
Convexity, Circularity, and Inertia [63]. Depending on the application, the default values of
the parameters are fine-tuned to obtain desired results [64].

Basically, the blob detector converts the image into several binary images by applying
thresholds from minThreshold to maxThreshold with a threshold step. First, the center of
each blob is calculated, and blobs from several binary images are combined into one group
based on the minDistanceBetweenBlobs parameter. Then, the required filters are enabled and
applied after fine-tuning its parameters. Returned keypoints contain information regarding the
center and diameter of each blob detected. Draw keypoints—draw a circle around the detected
blobs. The number of keypoints is equal to the number of blobs [48,62,64]. In this application,
maxThreshold was fine-tuned. Filters—Area, Convexity, and Inertia were enabled, and its
parameters (minArea, minConvexity, and minInertiaRatio) were fine-tuned. Figure 4 shows the
sequence in the Blob detection algorithm.
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2.3. Detection of Dengue by Utilizing Morphological Features and GLSDM-Based Textural
Features from the Lymphocyte Nucleus

This sub-section presents details of the segmentation process of the lymphocyte nuclei,
the morphological/GLSDM features extracted, and the different classifiers used to classify
normal and dengue-infected smears. PBS images acquired from 94 different subjects, i.e.,
54 dengue-infected and 40 normal controls, are included in the study.

2.3.1. Lymphocyte Nuclei Segmentation

The objective here is to extract the lymphocyte nucleus from the background. Vari-
ous methods are available for segmenting blood smear images, including thresholding,
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clustering, edge-based, and transform-based [12]. However, threshold-based segmentation
methods are used by the majority of researchers [12]. Moreover, K-means and Otsu’s
methods are used extensively to segment WBC nuclei [65].

The flowchart shown in Figure 5 depicts the steps involved in segmenting the lympho-
cyte nuclei. In this work, Otsu’s global thresholding was utilized for segmentation. Herein,
the contrast of the RGB converted greyscale image is enhanced using two techniques, viz.
linear contrast stretching and histogram equalization. Subsequently, the contrast-stretched
and histogram-equalized images are subjected to necessary arithmetic operations, resulting
in a darker nucleus. Then, this image is binarized using Otsu’s thresholding [66].
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The segmentation process retains only the area of interest, and all other image compo-
nents are made part of the background. This made it easier to study the lymphocyte nuclei
morphology and to identify six appropriate features for classification.

2.3.2. Feature Extraction

Six distinctive handcrafted morphological features that distinguished normal lympho-
cytes from the Dengue-infected ones were identified following the segmentation process.
The features identified and extracted include Area, Perimeter, Major Axis Length, Minor
Axis Length, Eccentricity, and Circularity.

• Area

It Indicates the actual number of pixels in the region [67,68].

• Perimeter

It Indicates the distance covered along the boundary of the region [67,68].

• Major Axis Length

It Indicates the length (in pixels) of the ellipse’s major axis [67].

• Minor Axis Length

It Indicates the length (in pixels) of the ellipse’s minor axis [67].

• Eccentricity

It measures the ovalness of an ellipse and is given by the ratio of the distance between
the ellipse’s foci and its major axis length. The value lies in the range of 0 and 1. An
eccentricity of 0 represents a circle, while an eccentricity of 1 represents a line segment [67].

• Circularity

It measures the roundness of the object and is given by Equation (1). If the circularity
is one, it indicates a perfect circle, and zero indicates a line [67,68].

Circularity =
4 ∗ π ∗ Area
Perimeter2 (1)



Diagnostics 2023, 13, 220 8 of 20

In addition, textural features from the GLSDM were also considered. GLSDM is a
statistical method that identifies image texture by examining the spatial relationship of
pixels in an image [69,70]. GLSDM captures relationships between a pair of pixels by
calculating how often a pixel with the gray-level i occurs in a specific spatial relationship
to a pixel with gray-level j [70,71]. By default, the spatial relationship is defined as the
pixel of interest and the pixel horizontally adjacent. However, other spatial relationships
between the two pixels can be considered. The gray levels in the image determine the size
of the GLSDM. For an image I of size M× N, the GLSDM is defined by [72,73] Equation (2).

Cd(i, j) = |{(p, q), (p + ∆x, q + ∆y) : I(p, q) = i, I(p + ∆x, q + ∆y) = j}| (2)

Herein, (p, q), (p + ∆x, q + ∆y) ∈ M × N, d = (∆x, ∆y) and |.| represent the cardi-
nality of the set [74–76]. The probability of a pixel with gray-level i having a pixel with
gray-level j at a distance (∆x, ∆y) away is denoted by Equation (3) [74–76].

Pd(i, j) =
Cd(i, j)

∑i,j Cd(i, j)
(3)

The four statistical properties of the image derived from GLSDM were—Contrast,
Energy, Correlation, and Homogeneity.

• Contrast

It measures intensity variation between a pixel and its neighbors over the entire image.
Contrast is 0 if the image is constant. It is computed using Equation (4) [74,77].

Contrast = ∑
i,j
|i− j|2Pd(i, j) (4)

• Energy

It is the measure of uniformity and is given by the summation of squared values in
the GLSDM. For a constant image, energy is 1. It is computed using Equation (5) [74,77].

Energy = ∑
i,j

Pd(i, j)2 (5)

• Correlation

It measures the similarity of the image texture across the pixels [77]. A perfect posi-
tively correlated image has a correlation of 1, and a perfect negatively correlated image has
a correlation of −1. It is computed using Equation (6).

Correlation = ∑
i,j

(i− µi)
(

j− µj
)

Pd(i, j)
σiσj

(6)

Herein, µi and µj indicate mean along the row and column, respectively. σi and σj
indicate standard deviation along the row and column, respectively [77].

• Homogeneity

It measures how close the element distribution in the GLSDM is to its diagonal. For a
diagonal GLSDM, homogeneity is 1. It is computed using Equation (7) [74,77].

Homogeneity = ∑
i,j

Pd(i, j)
1 + |i− j| (7)

2.3.3. Classification

This work uses six popular supervised classifiers to classify dengue-infected and
normal smears. Fine Decision Tree (DT), Linear Discriminant Analysis (LDA), Gaussian
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Naïve Bayes (NB), Quadratic Support Vector Machine (SVM), Fine K-Nearest Neighbor
(KNN), and Narrow Multilayer Perceptron (MLP) was used to differentiate dengue-infected
and normal smears. K-fold cross-validation, with K = 10, is used to build and assess the
predictive potential of the classifiers. The cross-validation strategy alleviates the overfitting
problem [78,79]. A concise explanation of the various classifiers is presented below.

• Decision Tree (DT)

DT classifier is a binary tree that recursively splits the data set until it results in pure
leaf nodes [80]. Decision nodes contain a condition to split the data, and the leaf nodes
predict the class of a new data point. Different methods are used to decide the optimal
split [81]. Here, Gini Index, a computationally efficient method, was used.

• Linear Discriminant Analysis (LDA)

The LDA classifier maximizes the separability between the classes by projecting the
data from higher dimensional feature space to a lower one [82]. The objective here is to
simultaneously maximize the distance between the means of the classes and minimize
the variance within each class. This objective is met optimally by maximizing Fisher’s
Discriminant Ratio (FDR) [82].

• Naïve Bayes (NB)

NB is a Bayes theorem-based probabilistic classifier. It is built on the assumption that
the features are conditionally independent [83,84].

• Support Vector Machine (SVM)

SVM is very powerful and versatile. It finds a hyperplane that greatly segregates the
two classes by maximizing the margin between the support vectors [74,83,85]. Linearly
inseparable data are handled by SVM classifiers using the kernel trick [74,83,85]. Quadratic
SVM, which uses a second-order polynomial kernel, is used in this study.

• K-Nearest Neighbor (KNN)

KNN is a non-parametric distance-based classifier [81,86]. A user-defined value K
is set, and nearest K neighbors are found based on their distance from the test instance.
The most common class among the nearest K neighbors is assigned as the class for the test
instance [87].

In this work, K is set to 1, and the Euclidean distance metric was used to determine
the neighborhood.

• Multilayer Perceptron (MLP)

MLP is a feedforward neural network classifier [88,89]. In this work, ReLU is used
as the non-linear activation function. The activation at the output is always Softmax,
which produces the predicted classification scores and class labels. The weights of MLP are
modified using the backpropagation learning rule based on the Gradient Descent Procedure
(GDP) [88].

The summary of the parameters used to build the six classifiers is recorded in Table 1.

2.4. Detection of Dengue by Making Use of MobileNetV2 Deep Features and LBP Textural
Features from the Lymphocyte Nucleus

The lymphocyte nuclei segmentation was accomplished using Otsu’s global threshold-
ing, as mentioned in Section 2.3.1. Thereafter, deep and handcrafted features were extracted
out of the segmented nuclei to distinguish normal and dengue-infected lymphocytes [10].
The deep features were extracted from the fully-connected layer ‘Logits’ of the lightweight
pre-trained deep network MobileNetV2. The handcrafted textural features were extracted
using the local binary pattern (LBP) technique. Further, the features were ranked and
selected using the ReliefF feature selection algorithm [10]. The highly ranked features were
fed to various supervised classifiers mentioned in Section 2.3.3. A cross-validation strategy
with 10-fold was employed to build and evaluate the predictive potential of the classifiers.
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Table 1. Summary of parameters used to build the classifiers.

Classifier Parameters Value

DT

Preset
Splits
Split Criterion
Surrogate Decision Splits

Fine Tree
100
Gini’s Diversity Index
Off

LDA Preset
Covariance Structure

Linear Discriminant
Full

NB
Preset
Distribution of Numeric
Predictors

GaussianNaive Bayes
Gaussian

SVM

Preset
Kernel Function
Kernel Scale
Box Constraint Level
Standardize Data

Quadratic SVM
Quadratic
Automatic
1
True

KNN

Preset
Neighbors
Distance Metric
Distance Weight
Standardize Data

Fine KNN
1
Euclidean
Equal
True

MLP

Preset
Fully Connected Layers
First Layer Size
Activation
Iteration Limit
Standardize Data

Narrow Neural Network
1
10
ReLU
1000
Yes

3. Results

This section presents the results of thrombocytopenia detection using the blob detec-
tion algorithm. It also presents the performance of the classifiers in the automatic detection
of dengue from the lymphocytes. In addition, it presents the comparison of classification
results based on morphological/GLSDM textural features and deep/LBP textural features.

3.1. Results of the Blob Detection Algorithm

Platelets are detected and counted from 10 consecutive oil immersion fields and then
averaged. In order to obtain the platelet count per microliter of blood, the average value is
multiplied by a factor of 15,000. The calibration factor is used to extrapolate the averaged
value to that of a complete microliter of blood. The intermediate results of the algorithm
developed to detect platelets from 100x digital microscopic PBS images are shown in
Figure 6.

Table 2 shows the platelet counts per microliter of blood obtained for ten patients and
the corresponding machine count. The machine count indicates the ADVIA hematology
analyzer’s count. The proposed algorithm achieved an average accuracy of 90%. The
results obtained are promising and clinically acceptable. Statistical analysis performed
indicates no significant difference between the machine and automated platelet count at a
5% significance level.
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Figure 6. The sample results of the intermediate steps in the platelet detection process: (a) Original
100x RGB image, (b) Green component, and (c) Platelet detection.

Table 2. Platelet counts per microliter of blood.

Patient Number Machine Count Algorithm Count

1 42,000 45,000
2 113,000 108,000
3 35,000 36,000
4 41,000 31,500
5 80,000 81,000
6 8000 9000
7 16,000 18,000
8 18,000 13,500
9 73,000 76,500
10 61,000 67,500

3.2. Results of Segmentation, Feature Extraction, and Classification for Dengue Detection from the
Lymphocyte Nucleus Using Morphological Features/GLSDM-Based Textural Features

The process of segmenting the lymphocyte nuclei is depicted in Figure 5. Figures 7 and 8
display sample segmentation results for dengue and normal blood smears. The algorithms were
implemented using MATLAB (R2021a).
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Figure 7. Sample results of segmentation process: (a) Dengue-infected lymphocyte, and (b) Seg-
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Diagnostics 2023, 13, 220 12 of 20

Diagnostics 2023, 13, x FOR PEER REVIEW 12 of 22 
 

 

3.2. Results of Segmentation, Feature Extraction, and Classification for Dengue Detection from 
the Lymphocyte Nucleus Using Morphological Features/GLSDM-Based Textural Features 

The process of segmenting the lymphocyte nuclei is depicted in Figure 5. Figure 7 
and Figure 8 display sample segmentation results for dengue and normal blood smears. 
The algorithms were implemented using MATLAB (R2021a).  

  

Figure 7. Sample results of segmentation process: (a) Dengue-infected lymphocyte, and (b) Seg-
mented nucleus. 

  

Figure 8. Sample results of segmentation process: (a) Normal lymphocyte, and (b) Segmented nu-
cleus. 

After segmentation, six morphological and four GLSDM features, including Area, 
Perimeter, Major Axis Length, Minor Axis Length, Eccentricity, Circularity, Contrast, En-
ergy, Correlation, and Homogeneity were extracted out of the nucleus of normal and den-
gue-infected lymphocytes. Then, a feature matrix was created using Microsoft Excel with 
columns as the different features and rows as the different samples. Subsequently, the 
feature matrix was normalized and fed to the classifiers. Six classifiers (DT, LDA, NB, 
SVM, KNN, and MLP) were trained and tested. The MATLAB Classification Learner 
Toolbox (MCLT) was employed to implement the classifiers. The best result was obtained 
using SVM and DT classifiers. The hyper-parameters used to build these six classifiers are 
recorded in Table 1. Figure 9 depicts the Confusion matrices and Receiver operating char-
acteristic (ROC) curves that were derived from SVM/DT classifiers with 10-fold cross-val-
idation. In the confusion matrix, ‘1’ denotes dengue-infected class, and ‘2’ denotes normal 
class. 

(a) (b) 

(a) (b) 

Figure 8. Sample results of segmentation process: (a) Normal lymphocyte, and (b) Segmented
nucleus.

After segmentation, six morphological and four GLSDM features, including Area,
Perimeter, Major Axis Length, Minor Axis Length, Eccentricity, Circularity, Contrast, Energy,
Correlation, and Homogeneity were extracted out of the nucleus of normal and dengue-
infected lymphocytes. Then, a feature matrix was created using Microsoft Excel with
columns as the different features and rows as the different samples. Subsequently, the
feature matrix was normalized and fed to the classifiers. Six classifiers (DT, LDA, NB, SVM,
KNN, and MLP) were trained and tested. The MATLAB Classification Learner Toolbox
(MCLT) was employed to implement the classifiers. The best result was obtained using SVM
and DT classifiers. The hyper-parameters used to build these six classifiers are recorded
in Table 1. Figure 9 depicts the Confusion matrices and Receiver operating characteristic
(ROC) curves that were derived from SVM/DT classifiers with 10-fold cross-validation. In
the confusion matrix, ‘1’ denotes dengue-infected class, and ‘2’ denotes normal class.
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Six popular performance metrics (Accuracy (Acc), Sensitivity (Sen), Specificity (Spe),
Precision (Pre), F1-score (F1), and area under the ROC curve (AUC)) were adopted to
assess the performance of the classifiers. Table 3 lists these performance measures and the
corresponding AUC values achieved by the six classifiers. SVM/DT classifiers yielded
the best results with Acc, Sen, Spe, Pre, F1, and AUC of 93.62%, 92.59%, 95%, 96.15%,
94.34%, and 0.96, respectively, as indicated in Table 3. Moreover, MLP/LDA classifiers
achieved second-best results with an Acc of 92.55%, as shown in Table 3. Figure 10 depicts
the comparison of the performance of the classifiers based on the metrics derived from the
confusion matrices.
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Table 3. Performance measures achieved by the classifiers trained and tested with morphologi-
cal/GLSDM features.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) AUC

DT 93.62 92.59 95.00 96.15 94.34 0.96
LDA 92.55 94.44 90.00 92.73 93.58 0.96
NB 86.17 77.77 97.50 97.67 86.59 0.97

SVM 93.62 92.59 95.00 96.15 94.34 0.96
KNN 87.23 85.19 90.00 92.00 88.46 0.88
MLP 92.55 96.30 87.50 91.23 93.70 0.94Diagnostics 2023, 13, x FOR PEER REVIEW 14 of 22 
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3.3. Results of Feature Extraction and Classification for Dengue Detection from the Lymphocyte
Nucleus Employing MobileNetV2-Based Deep Features and LBP-Based Textural Features

Deep and handcrafted features were drawn out from the segmented lymphocyte
nuclei. The ‘Logits’ layer of Pre-trained MobileNetV2 produced 1000 deep features, and
LBP generated 59 textural features from each component of the RGB image. Thus, a total
of 1177 features were generated. The ReliefF feature selection algorithm selected the most
discriminative 100 features. Eventually, these 100 features were applied to the six classifiers
mentioned in Section 2.3.3 to classify the data into normal and dengue-infected. Classifiers
were trained and tested in the same manner as described in Section 3.2. SVM and MLP
classifiers, respectively, obtained the best and second-best results. Figure 11 depicts the
Confusion matrix and ROC curve obtained for the SVM classifier. In addition, Figure 12
represents the Confusion matrix and ROC curve for the MLP.
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Figure 12. Second best results with MLP classifier: (a) Confusion matrix, and (b) ROC curve.

Table 4 lists the performance measures achieved by the six classifiers. The best classifi-
cation performance was achieved using an SVM classifier with Acc, Sen, Spe, Pre, F1, and
AUC of 95.74%, 98.15%, 92.50%, 94.64%, 96.36%, and 0.98, respectively, as mentioned in
Table 4. Moreover, the second-best results were achieved using MLP, which yielded Acc,
Sen, Spe, Pre, F1, and AUC of 94.68%, 94.44%, 95%, 96.23%, 95.33%, and 0.96, respectively,
as mentioned in Table 4.

Table 4. Performance measures achieved by the classifiers trained and tested with Deep/LBP features.

Classifier Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) AUC

DT 75.53 77.78 72.50 79.25 73.18 0.80
LDA 93.62 96.30 90.00 92.86 94.55 0.93
NB 88.30 92.59 82.50 87.72 90.09 0.94
SVM 95.74 98.15 92.50 94.64 96.36 0.98
KNN 91.49 90.74 92.50 94.23 92.45 0.92
MLP 94.68 94.44 95.00 96.23 95.33 0.96

Figure 13 depicts the comparison of the performance of the classifiers based on the
metrics derived from the confusion matrices.
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Figure 13 depicts the comparison of the performance of the classifiers based on the 
metrics derived from the confusion matrices. 
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Figure 13. Performance comparison of the classifiers in terms of metrics derived from the confu-
sion matrix.
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4. Discussion

The microscopic examination of PBS remains the gold standard in diagnosing numer-
ous hematological conditions. However, it requires expertise and time. The main goal of
this research work is to automate the PBS analysis to assist clinicians in diagnosing dengue.
Previous studies related to this topic do not exist in the literature. Hence, this work fills the
gap in the literature.

PBS images of dengue are mainly characterized by thrombocytopenia and morpholog-
ical changes in the lymphocytes. The core component of the research is the classification
of dengue and normal controls based on the features extracted from the lymphocyte nu-
cleus. Ten features were extracted from the nucleus, including morphological and GLSDM
features. These features, coupled with SVM/DT classifier, achieved the best classification
with Acc, Sen, Spe, Pre, F1, and AUC of 93.62%, 92.59%, 95%, 96.15%, 94.34%, and 0.96,
respectively. A comparative study of these results was conducted with the results obtained
by the classifiers considering the deep and LBP textural features of the nucleus. Deep and
LBP features coupled with the SVM classifier yielded the best classification with Acc, Sen,
Spe, Pre, F1, and AUC of 95.74%, 98.15%, 92.50%, 94.64%, 96.36%, and 0.98, respectively.
While, these features coupled with MLP yielded the second-best classification with Acc,
Sen, Spe, Pre, F1, and AUC of 94.68%, 94.44%, 95%, 96.23%, 95.33%, and 0.96, respectively.
Deep and LBP features yielded marginally better results. Although a limited dataset is
used, this study successfully contributes to the classification of the dataset.

A blob detection algorithm was also developed to diagnose thrombocytopenia in
dengue cases using Python OpenCV. The results obtained were statistically significant.
Different approaches are available in the literature to detect thrombocytopenia from PBS
images, as discussed in Section 1. Unlike other approaches, which obtained platelet counts
from only one field, this approach obtained platelet counts from 10 consecutive fields and
averaged, which is a mandatory procedure. In addition, the platelet counts are compared
with the hematology analyzer, a gold standard.

Most of the research work reported on the automated diagnosis of dengue is by
utilizing symptoms, vital signs, blood profile data, or a combination of these [90]. A
comparative summary of this work with those studies is presented in Table 5. However,
the dataset used varies across the studies.

Table 5. Comparative summary of this study with other existing methods.

Article Attributes Method Validation Acc (%)

Gambhir et al.
(2017) [41]

16 features
(symptoms, vital
signs, and blood
profile data)

PSO-ANN
ANN

10-fold
cross-validation

87.27
79.09

Mello-Roman et al.
(2019) [40]

38 features
(symptoms)

MLP
SVM 90:10 split test 96.00

92.00

Katta et al. (2021)
[91] Symptoms RF

Adaboost M1 64:36 split test 94.39
92.90

Hoyos et al. (2022)
[92]

22 features
(symptoms, vital
signs, and blood
profile data)

FCM 10-fold
cross-validation 89.40

Mayrose et al.
(2021) [10]

100 Deep/LBP
features of
Lymphocyte nuclei
from PBS

SVM
MLP

10-fold
cross-validation

95.74
94.68

Proposed work
(2022)

10 Morphologi-
cal/GLSDM
features of
Lymphocyte nuclei
from PBS

SVM
DT

10-fold
cross-validation

93.62
93.62
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Gambhir et al. proposed a PSO-optimized ANN for the diagnosis of dengue. With
16 attributes, containing symptoms, vital signs, and blood profile data, they classified
the data into dengue-positive and dengue-negative and reported an accuracy of 87.27%.
Mello-Roman et al. developed a symptom-based diagnostic model for dengue fever. With
38 attributes, including symptoms, they classified the data using MLP and reported an
accuracy of 96%. Katta et al. used symptoms to develop an efficient model for dengue
detection. The RF classifier yielded an accuracy of 94.39%. Although these studies provided
good performance, most of them have not reported cross-validation. Moreover, our study
is an entirely different approach based on PBS digital images. The dataset used by us is
unique. We have systematically collected authentic hospital data using an Olympus DP25
digital microscope setup. However, this type of dataset is not available publicly. We have
not found a similar study in the literature to the best of our knowledge, except for our
previous work (Mayrose et al.), indicated in Table 5. The proposed work in this paper
yielded marginally lower performance compared to our previous work. However, we have
achieved it with a smaller number of features.

5. Conclusions and Future Work

Dengue fever is a threat to humans of all age groups. This research aimed to automate
the detection of dengue fever from PBS images using advanced ML techniques. PBS images
are considered the gold standard for diagnosing various pathological conditions. Currently,
AI is being widely used to accelerate research in the biomedical field. Therefore, the synergy
of digital pathology and AI could lead to innovative diagnostic tools that provide a more
competent diagnostic strategy for assisting pathologists.

Based on the results obtained, the proposed approach could undoubtedly contribute to
the automated detection of dengue fever. This research can complement the CBC test/NS1
antigen-capture method and has promising potential in low-resource setup. However, the
dataset contained only 94 subjects, and more subjects should be involved to further validate
the efficacy of the proposed methodology. The future scope could involve the derivation of
features from the lymphocyte cytoplasm in addition to nucleus features. This work also
intends to involve pre-trained CNNs for classification purposes in due course.
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