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ABSTRACT This paper presents a comprehensive review of current literature on drone detection and

classification usingmachine learning with different modalities. This research area has emerged in the last few

years due to the rapid development of commercial and recreational drones and the associated risk to airspace

safety. Addressed technologies encompass radar, visual, acoustic, and radio-frequency sensing systems. The

general finding of this study demonstrates that machine learning-based classification of drones seems to

be promising with many successful individual contributions. However, most of the performed research is

experimental and the outcomes from different papers can hardly be compared. A general requirement-driven

specification for the problem of drone detection and classification is still missing as well as reference datasets

which would help in evaluating different solutions.

INDEX TERMS Drone detection, drone classification, machine learning, radar, vision, acoustics,

radio-frequency.

I. INTRODUCTION

Despite attracting a wide attention in diverse civil and com-

mercial applications, Unmanned Air Vehicles (UAVs - also

known as drones) undoubtedly pose a number of threats

to airspace safety that may endanger people and property.

While such threats can be highly diverse in terms of the

attackers’ intentions and sophistication, ranging from pilot

unskillfulness to deliberate attacks, they all can produce

severe disruption. Their frequency is also on the increase:

in the first few months of the year 2019, for example,

various airports in the USA, UK, Ireland, and UAE have

experienced major disturbance of operation following drone

sightings [1]. Classic risk theory tells us that hazards whose

probability is high and whose consequences are severe gen-

erate huge risks (risk assessment = probability × impact).

Flight authorities worldwide are working hard on reducing

the probability aspect of the risk equation by regulating drone

operation. Regulations may discourage careless or unskilled

drone operation, but cannot prevent criminal or terroristic

attacks. To be effective, they must be supported by technolo-

gies enabling i- drone detection, classification, and tracking,

ii- drone interdiction, and iii- evidence collection in the case
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of violation. In addition to these technologies which essen-

tially address uncooperative drones, friendly UAVs should

have onboard preventive technologies to support safe oper-

ation such as sense&avoid, geofencing, parachuting systems,

as well as mechanisms against different attacks such as jam-

ming or hijacking of the control signal. Figure 1 classifies

the technologies which were deployed to support safe drone

operations into four main categories with examples.

This paper addresses the detection and classification tech-

nologies specifically those which are based onmachine learn-

ing (ML). Due to its ability to recognize patterns without a

man-in-the-loop, ML has shown major advantages in object

detection and classification in diverse areas. Limiting the

reliance on man-in-the-loop is desired not only because of

human inability to recognize far or small objects and the

risk of reduced attention due to fatigue or boredom. Rather,

ML can perform pattern recognition using modalities, which

cannot be perceived by humans altogether. These include

radio frequencies as well as optic and acoustic signals beyond

the abilities of human sense organs.

Recently, many technical papers have provided short

reviews of related work on drone detection [2], [3]. Also,

some review articles have appeared which consider sin-

gle or multiple modalities [4], [5]. Most, if not all of these

reviews, however, are focused on the functional level of the
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FIGURE 1. Different technologies applied to support safe drone operations.

TABLE 1. Comparison of advantages and disadvantages of different drone detection technologies [4].

different technologies and limit the evaluation to comparing

their general advantages and disadvantages as summarized

in Table 1.

To support researchers in this area as well as interested

parties including drone manufacturers, drone operators, anti-

drone system operators, regulators, and law enforcement, this

paper provides a wide and deep look into state-of-the-art

contributions in the field of drone detection and classifica-

tion using machine learning. For this purpose, we followed

a systematic approach by addressing each of the following

questions for each reviewed paper.

What is the classification objective?

Classification is an application of supervised ML where all

data samples used in the training and testing are labeled. The

number of different labels used in annotating the dataset is

equal to the number of classes. Using machine learning to

detect a drone is a binary classification problem where two

labels are used, e.g., ‘‘Drone’’ and ‘‘No Drone’’. Recognizing

drones from birds or drones from other aircrafts is also a

binary classification problem with corresponding labels for

the data. Several researchers tried to identify the drone type

by ML-classification. In this case we refer to multi-class

classification with as many classes and labels as the number

of identifiable drone types.Multi-class classification was also

used to specify the drone itself, e.g., by determining the

number of its rotors, or estimating its payload.

What dataset is used?

Machine learning is about learning from data. Both the qual-

ity and quantity of data used in training and testing are vital

for learning powerful classificationmodels, with low bias and

variance. To reduce the bias in the learned model (under-

fitting effect), the data should cover a wide range of cases

which stem from or resemble real situations. To reduce the

variance (prevent over-fitting), the model should learn from
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a large amount of data to gain enough experience and increase

its generalization capability. In the field of drone classifica-

tion, there are still nowidely recognized reference datasets for

the different modalities. In most, if not all cases, researchers

generated their own data using different ways including simu-

lations, experiments in lab, as well as outdoor measurements.

In some cases, data generated in the lab, e.g., acoustic data

are mixed with noise to emulate a real environment.

Which features are extracted?

In general, raw sensor data requires some pre-processing

before they are fed to the ML process. This include filtering

to suppress noise and clutter or implementing principle com-

ponent analysis (PCA) or independent component analysis

(ICA) to reduce the data dimensionality. Feature engineering

and selection is an essential but difficult task in most ML

algorithms to ensure learning efficient and generate useful

models. In the literature on drone classification, researchers

made use of different features in the time and frequency

domains depending on the usedmodalities. Feature extraction

and selection is omittedwhen deep learning is employed since

this ML scheme learns features inherently, however, at the

cost of complexity and higher demand of data.

What classifiers are employed?

Machine learning packages are widely available nowadays

and it is a common practice to try different classifiers and

compare their performance. This is a typical scenario in ML

because it is still hard to tell from the beginning which

classifier would work better on which features especially

in new areas such as drone detection. Researchers in the

related work tried multiple classifiers including support vec-

tor machines (SVM), artificial neural networks (ANN), ran-

dom forests, etc.

Which results are reported?

The quality of classification models is generally measured by

the classification accuracy which boils down to the number of

correct predictions from all predictions made. Cross valida-

tion is a widely used technique to improve the quality of the

classification model especially if limited data are available.

Trained models can also be tested and verified using real

unseen data. For drone classification, researchers essentially

utilized classification accuracy to estimate the classification

performance. Depending on the risk level associated with

drone flights, classification accuracymay not be sufficient for

evaluating the performance of a classification model. In such

cases, model precision should be considered to reduce the

percentage of false negatives.

The rest of the paper is divided into five sections. The

next four ones review the ML-based drone classification

technologies for each modality from the most to the least

popular ones. Each of these sections has three main parts:

a detailed review of the papers, an overview table, and a

discussion. The last section gives a general summary for

all technologies, provides some research directions for the

future, and concludes the paper.

II. ML-BASED DRONE CLASSIFICATION BY RADAR

Researchers who applied ML to radar signals followed one of

the following objectives (see Table 2):
A. Drone detection: This applies when two labels are used

to annotate data: drone vs. no-drone.

B. Classification of drones vs. birds: In this case, two

labels are used: drone vs. bird.

C. Classification of drones vs. drones: This applies when

as many labels are used as the number of investigated

drone types.

D. Drone characterization classification: This is the case

when the data is labeled according to a value of a

specific drone characteristic such as the payload or the

number of rotors.

E. Multi-drone detection: In this case, researchers

labeled the data with the number of drones flying

simultaneously.
The following subsections are structured according to these

classification objectives.

A. DRONE DETECTION

Jahangir and Baker showed how the need for ML arises in

the context of radar detection in practice [6]. The authors

used a high-end 3-D holographic radar with a transmission

power of 10kW and 32 × 8 receiver array to detect a drone

at a reasonable range of around 1km. Employing the radar

standard configuration, the detection probability was almost

0 due to the low radar cross-section (RCS). The authors then

reduced the amplitude threshold and permitted detections

with lower Dopplers. By this means, they improved the drone

detection (true positives) significantly. However, much more

false positives were recorded in this case because the radar

sensitivity for other targets such as birds, surface targets and

clutter was increased. As a solution, the authors used ML by

selecting simple time-domain features including the height,

the maximum height, the Doppler (radial velocity), the accel-

eration, and the jerk (change in acceleration). A binary deci-

sion tree model was trained which could improve the drone

prediction probability to 88% and reduce the false alarm rate

to 0. In later papers, the authors utilized newer versions of

radar to classify drones vs. birds tracks, however, without the

aid of ML [7], [8].

B. CLASSIFICATION OF DRONES vs. BIRDS

Torvik et al. highlighted the importance of classifying drones

vs. birds because both targets show low RCS and causes

a confusion in the surveillance against non-cooperative

drones [9]. They argued that gliding birds and plastic-rotor

UAVs are characterized by insignificant micro Doppler sig-

nature (MDS) and poor RCS modulation. Therefore, they

proposed using polarimetric features for drone detection as

reported in radar ornithology and meteorology [10]. The

authors used nine polarimetric parameters (linear depolar-

ization ratio, differential depolarization ration, co-polarized
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TABLE 2. Summary of related works on radar methods based on machine learning for drone detection and tracking.
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correlation coefficient, cross-polarized correlation coeffi-

cient, entropy, anisotropy, polarimetric eigenvector, and ori-

entation angle) to train a nearest-neighbor classifier. 8000 real

data points from two drones and two birds, which exhibit

similar RCS characteristics, were collected using a dedicated

S-band radar system called BirdRAD at 3.25GHz. The classi-

fier showed very high classification accuracy close to 100%.

Fuhrmann et al. extracted three features from the MDS to

classify drones against birds [11]. These features include the

mean spectrogram, the first left singular vector of singular

value decomposition (SVD), and the mean cadence velocity

diagram (CVD). The authors obtained data for six drones by

operating these drones in a stationary lab setup (drones are

fixed at a distance of 2 m from the radar) as well as by flying

them different trajectories outdoors, however, without details

about the flight range. In contrast, birds’ flight data were gen-

erated by simulation using the same Continuous-Wave (CW)

radar configuration which was deployed to collect drone

data. A SVM classifier was trained and the generated model

showed a classification accuracy of 100%.

Mohajerin et al. used statistical features of radar tracks to

classify UAVs vs. birds and manned aircraft [12]. The non-

UAV tracks were generated from real data collected using an

air traffic control radar. UAV tracks, however, were generated

by simulation. 16 time-domain features were derived from

target movement data such as the mean and variance of speed,

acceleration, and jerk in addition to features related to the

form of the trajectory. Four more features associated to the

radar cross section of the target derived from the amplitude

of the plot were also employed. An artificial neural network

with 30 hidden layers was used where 70%, 15%, and 15%

of the data were divided for training, validation, and testing,

respectively. UAV tracks could be classified with an accuracy

of 100% even with single features. However, it should be

noted that the simulation-based generation of data in this

paper raises some questions. For example, the drone tracks

were generated for long ranges (up to 20 km) and the drone

RCS was assumed to be between 1 and 2 m2. The second

assumption is very far from reported results by researchers

who investigated the RCS characteristics of different drones.

In their review, Patel et al. found out that typical RCS values

varies between −30 and −14.1 dBsm [13]. Also the first

assumption of a 20-km range is impractical since all other

related work could hardly detect a drone beyond a 1-km

range.

C. CLASSIFICATION OF DRONES vs. DRONES

Molchanov et al. extracted features based on the Eigenvectors

and Eigenvalues of the MDS [14]. They trained a linear and

a non-linear SVM as well as a Naive Bayes classifier. Data

were collected using a CW radar by flying eleven objects (two

fixed-wing, three helicopters, one quad-rotor, an artificial

bird, and four stationary rotors) for 30 seconds each. Based

on 10-fold cross validation, drones could be classified with

an average accuracy of 95%. In a second test, the authors

excluded some models from the training and found out that

the classifier could still classify them into fixed-wing, sta-

tionary rotor, or helicopter with an accuracy ranging from

87% to 100%.

Mendis et al. trained a deep belief network (DBN) to clas-

sify drones after extracting the spectral correlation function

(SCF) from theMDS [15], [16]. The SCF is the Fourier trans-

form of the autocorrelation function and helps in comparing

observations of the distribution of velocities. Three micro-

drones (an artificial bird, a helicopter, and a quad-copter)

were placed at fixed position threemeters far from aCW radar

in a lab environment. The authors also generated data without

any drone in place as a reference class. Thus, theDBNworked

on data from four classes, in total where 70 SCF images were

generated for each class. Different levels of Gaussian noise

were added to 50 of these images as a data augmentation

mechanism. The authors reported that the drones could be

classified with accuracies above 90% when the signal-to-

noise ratio is equal to or larger than zero.

Zhang et. al. proposed a dual-band CW radar operating in

the K-band and X-band to classify three drones: a helicopter,

a hexa-copter, and a quad-copter [17]. The drones were fixed

in a lab at a distance of 1.3 m from both radar sensors which

were placed at a distance of 1 m from each other. First,

time-frequency spectrograms were extracted using short-time

Fourier Transform (STFT) from the radar data (MDS). Then

features were obtained by applying PCA on the spectrograms.

Three tests were performed using a SVM classifier: The

first two tests worked on features from the individual radars

only. In the third test, the data from both radars were fused.

720 samples from each radar sensor and for each drone

were collected. 3% of the data were used for training and

the rest for validation, whereas the training/testing process

was repeated 50 times with a random selection of data. The

authors highlighted the superiority of the dual-band solution

over single radar solution, although the K-band radar alone is

not clearly worse than the dual-radar solution. On average its

classification accuracy is only by 1.2% lower than the dual-

band solution. In a subsequent work, the authors investigated

the detection of two and three drones at the same time as will

be described in Section II-E.

Kim et al. investigated the pre-trained convolutional neural

network (CNN) (GoogleNet) to classify two drones (Inspire 1

and F820) [18]. While hovering above a Ku-band FMCW

radar at two heights (50m and 100m), theMDSwas recorded

and its CVD was determined. The MDS and CVD images

were concatenated into one image, which was referred to

as merged Doppler image (MDI). 10000 images from out-

door measurements were generated and applied to the CNN

classifier using 4-fold cross validation. The results show that

the drones could be classified with an accuracy of 100%.

Surprisingly, indoor experiments in an anechoic chamber

demonstrated lower classification performance.

Brooks et al. modeled a drone by a discrete set of scattering

points distributed along its structure [19]. This model is two-

dimensional and assumes that the drone is in the same plane

with respect to the radar. When the scattering points move,
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they yield a set of series of 2-D coordinates. The latter are

fed to wave equations which return a temporal series of

complex points. Then the ground clutter is added by sim-

ulation using Billingsley’s model. These models were used

to generate data for three types of drones (Vario helicopter,

DJI’s Phantom2 and S1000+). Three classifiers were tested:

Fully-convolutional networks (FCNs), Recurrent neural net-

works (RNNs), and multilayer perceptron (MLP). While the

MLP classifier could classify the drones with an accuracy

around 70% to 85% depending on the SNR, the RNN and

FNC classifier gave higher accuracy approaching 100%when

SNR= 30dB. Note that this work does not considerMDS and

assumes a pulsed radar. The models are used to generate data

from simulation without any range information. It would be

interesting to know how this approach would work with real

radar data.

D. CLASSIFICATION OF DRONE CHARACTERISTICS

Fioranelli et al. applied ML to identify whether a drone has

zero, 200, or 500-gram payload (three classes) [20]. The

authors argued that the knowledge about the drone payload is

crucial because it can indicate suspicious or hostile activities

by malicious users. They utilized the same multi-static radar

system NetRAD described in [21] to extract two features

which are the centroid and the bandwidth of the MDS in

2-second windows. The three receivers recorded data of

a drone hovering at 60 m distance from transceiver for

30 seconds. Thus, 15 samples per receiver for each payload

class were collected. Naive Bayes as well as discriminant

analysis were applied with cross validation for training and

testing. Results were shown for three decision strategies:

(i)-Model generated from data of the mono-static receiver

(the receiver co-located with the transmitter), (ii)-Model gen-

erated by merging data from the three receivers (iii)-Three

models, one per receiver and the decision was based on a

majority voting scheme. The majority voting gave the best

accuracy with a value between 90% and 100%. In terms of

the tested classifier, discriminant analysis outperformed the

Naive Bayes in terms of accuracy. The authors observed that

with increasing payload, the MDS appears ‘‘more uniform

and straight’’ and reaches higher positive and negative val-

ues which can clarify the good classification results. This is

explained by the fact that higher payload requires more blade

speed to maintain the drone hovering at the same altitude. In a

subsequent work by the same group, the authors extracted the

SVD and centroid of theMDS and added random forest to the

set of experimented classifiers [22]. In addition, the authors

tested two flight cases: (i) hovering and (ii) moving where

the attained classification accuracy show slight differences

(96% vs. 95%). While the SVD feature was more efficient in

classifying the payload in the case of movement, the centroid

was more suitable for payload classification when the drone

was hovering.

In their paper which we described in Section II-B,

Fuhrmann et al. performed additional classification tests to

characterize the drones [11]. They divided five of the used

drones into a small-sized classes (three drones) and medium-

sized classes (two drones). They used the same data, features,

and classifier, which they deployed to classify the drones

against birds as described in Section II-B. The SVM clas-

sifier could identify small and medium-sized drone with an

accuracy of 96%. In addition to these classification tests,

the authors performed a Cepstrogram analysis in the que-

frency domain to characterize the drones according to their

number of rotors, the rotation rate, and the rotor blade length.

For example, for a specific drone, they could estimate a blade

length of 18.5 cm whereas the actual length is 19 cm.

Regev et. al. relaied on theoretical time-domain models

for MDS to generate synthetic data for 1 and 4 propeller

drones with two or three blades each. The data were used

to train a MLP ANN-based classifier followed by regression

to estimate the blade length and rotation rate [23]. The envi-

ronment noise was simulated by adding different levels of

SNR. The classification results were very accurate (99% for

SNR= 5 dB) and the parameter estimation showed low errors

(4% in estimating the rotation frequency and 6% in estimating

the blade length). It would be desirable to learn how this

method would be extended to address practical drone data.

E. MULTI-DRONE DETECTION

Zhang et al. studied the possibility of detecting multiple

drones that are present simultaneously using a K-band CW

radar [24]. They converted the time-frequency spectrogram

into a CVD and extracted from the latter the cadence fre-

quency spectrum (CFS), which was used as features for train-

ing a K-means classifier. In their lab tests, they employed a

helicopter, a hexa-copter and a quad-copter to collect data

for single UAVs, two UAVs, and all UAVs. They found out

that average accuracy results for single drone classification,

two drone classification and three drone classification were

96.64%, 90.49% and 97.8%, respectively.

F. DISCUSSION

Despite the wide variety of used radar front ends, extracted

features, and classifiers, all reviewed papers report positive

classification results which surely gives hope in this tech-

nology. On the other hand, it is unclear whether any of the

reported solutions can be generalized to cover more drone

types, wider ranges, different radar sensors, and different

signal processing schemes. Haykin commented ‘‘The radar

has to learn from experience on how to deal with different

targets, large and small, and at widely varying ranges, all in

an effective and robust manner’’ [25]. Most of the research

performed in the reviewed papers (and many other papers

without ML) can be described as experimental work without

sufficient exploration of design alternatives based on an in-

depth requirement analysis.

An interesting observation is that the papers which address

the ability of ML to classify drones vs. drones or drones vs.

birds as well as the contributions on drone characterization

(size, payload, etc.) seem to presume detection. This is evi-

dent form the experiments which are frequently conducted
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in setups, which bias the detection schemes. For example,

with just a few exceptions, most experimental flights were

performed at low ranges under 60 meters and sometimes the

drone was even fixed at a distance of 1.5, 2, or 3 meters

from the radar in a lab setup. It should be expected that

targets at larger distances are harder to detect not to mention

classify. With their high-end radar, Jahangir showed that

detecting a drone at distances between 500 and 1000 meters

is impossible [6]. Their contribution was a clear example

of how machine learning can help reduce noise on the data

level and help in the detection mechanism. It would be very

interesting to see if Jahangir’s solution can be extended to a

multi-class classification at such distances. On the other hand,

it is significant to experiment how the classification models

proposed by other groups, would behave at larger distances.

Model-based and simulation-based data generation for the

sake of classification is another form of presuming detection.

Mohajerin commented on their simulation-based approach

‘‘to further validate this claim it is required to improve the

fidelity of our simulation and finally perform experimental

evaluations’’ [12].

Focusing on the classification task and separating it from

the detection assignment may sound attractive and justified in

order to achieve progress in feature engineering and the devel-

opment of classification models. However, without reference

datasets, the validity of such models is difficult to show. The

provision of accessible datasets is a high-priority task for the

radar drone detection, as it is for cognitive communication

and radar in general [26]. Researchers interested in the prepa-

ration of such datasets should spend deep thoughts on finding

the most appropriate signal/s that should be made ready for

the ML process. As an example, the MDS has been accepted

and utilized by most authors and could be a starting point.

Furthermore, many drones are capable and usually fly at

high speeds. If they developed research and techniques is

limited to only low distances classification, then this would

onlymake sense if the classification technology is fast enough

to allow a decision on time. Not all classifiers are equally

efficient in real-time. While a linear SVM model, for exam-

ple, requires a few arithmetic operations to classify a data

point, a random forest classifier often requires the traversing

of large number of trees, which can take considerable time.

The real-time aspects of classifiers will be more important

whenmultiple drones are expected in the sky at the same time.

Moreover, many papers presented the results of one clas-

sifier and some tested two or three classifiers. With just

one or two exceptions, all classifiers worked well. This is not

the case in other fields such as natural language processing

and computer vision. In these research areas, researchers

sometimes report significant differences in the performance

of classifiers on the same dataset [27]. Knowing this, it would

be interesting to know why the research on radar drone clas-

sification worked with the ‘‘first’’ classifier at hand. This is

especially compulsive to know because none of the reviewed

papers has justified the selection of the employed classi-

fiers. Testing multiple classifiers and features can be very

beneficial for the community to pinpoint the limitations and

capabilities of each algorithm.

III. ML-BASED DRONE CLASSIFICATION

BY VISUAL DATA

Despite its traditional success in target identification and

tracking, the radar remains a highly professional technology

which requires a trained staff that is capable of interpreting

the visual outcomes of the radar system at least for decision

making. This complexity of the radar technology and the

rapid progress in the computer vision field have invited some

researchers to consider drone detection and classification

using visual data (images or videos). Contributions in this

area can be divided into two categories depending on how

authors have dealt with feature extraction. The first cate-

gory includes solutions which rely on learned features, thus,

omitting the extensive step of feature engineering. The other

category depends on traditional machine learning schemes

which are expected to feed the system with low-level hand-

crafted features such as edges, blobs, and color information.

Table 3 summarizes related work on ML-based visual drone

detection.

A. VISUAL DETECTION WITH LEARNED FEATURES

Rozantsev et al. in [28] proposed two methods for the detec-

tion of flying drones (UAVs and Aircrafts) from a single

camera. The two approaches are based on 3-dimensional

Histograms of Gradients (HoG3D) and a CNN model. The

proposed system starts by dividing the video frames into

overlapping temporal slices with 50% overlapping. Then,

amulti-scale slidingwindow is deployed to generate st-cubes.

After that, to avoid any bias to global motion, the authors pro-

posed a motion compensation algorithm based on regression

method. To this end, two propositions are made: 1) train two

different boosted tree regressors to predict the required trans-

lation for an input patch based on HoG features. 2) train two

separate CNNs for the regression task based on the learned

features. After the training, the regressors are used to compen-

sate the motion and generate the st-cubes which are then fed

as inputs for classification. To evaluate the performance of the

proposed system, the authors built their own database which

consists of two parts a UAV dataset and an aircraft dataset.

This database is publicly available. The average precision of

the proposed detectionmethod is 0.849 and 0.864 for theUAV

and aircraft datasets, respectively. As a final stage, a regressor

is trained to accommodate for the different image scales, i.e.

it is trained to fit the detected object precisely.

Yoshihashi et al. in [29] proposed a deep learning approach

namely Recurrent Correlational Networks (RCN) for detect-

ing and tracking small UAVs. The proposed system consists

of four networks each with a specific task. The first one is

a convolutional layer that represents target and non-target

appearances from a single frame. Then the ConvLSTM is

utilized to learn motion representations frommultiple frames.

After that, cross-correlation layers are employed to generate

correlation maps between the template and each subsequent
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TABLE 3. Summary of related work on visual methods for drone detection and tracking.

frame with the aim to localize the target in the frame. Finally,

fully connected layers are used to generate the confidence

scores of each object. It should be mentioned that the authors

did not train the whole system from scratch. Rather, they

followed a fine tuning approach using AlexNet and VGG16.

The evaluation of the system was done using two datasets

for UAV and birds. The results reported in terms of ROC

curves demonstrate that the system outperforms the previous

solutions.

Aker etal. proposed an extension of an existing CNNmodel

namely, YOLO, which is a single shot object detector [30].

The new version, YOLOv2, uses a fine tuning technique to

train a regerssor for the UAV detection. They have created an

artificial dataset to evaluate their system where they attained

approximately equal precision and recall values of 0.9.

Saqib et al. [31] investigated different pre-trained CNN

models including Zeiler and Fergus (ZF) andVGG16 coupled

with the Faster R-CNN model for the detection of drones

from video data. They used the VGG16 and the ZF model

as a transfer learning to compensate for the lack of suffi-

cient dataset and to ensure the convergence during training

for the model. The training was done with Nvidia Quadro

P6000 GPU where the learning rate was fixed to 0.0001 with

a batch size of 64. They used a Bird-Vs-Drone dataset which

consists of 5 MPEG4-coded videos recorded in different

sessions with a total of 2727 frames and a resolution of

1920 × 1080 pixels. The results show that VGG16 coupled

with the Faster R-CNN demonstrates the best performance

with an average precision of 0.66.

Peng et al. in [32] addressed the issue of limited visual

data for UAVs by creating their own artificial images. They

used Physically Based Rendering Toolkit (PBRT) to gener-

ate photorealistic UAV images. The rendered images con-

sist of different positions, orientations, camera specifications,

background, and post processing methods. After creating the

images, the Faster R-CNN network was fine-tuned using the

weights from ResNet-101 model for UAV detection. The size

of the dataset created is 60480UAV images where the average

precision achieved was 80.69%.

Lee et al. proposed detecting drones from a camera

mounted on a different drone [33]. The system relies on Haar

feature cascade classifier to detect the drone in the images and

a simple developed CNN network for identifying the drone

models. The CNN model consists of two convolution layers

and two fully connected layers with 30% dropout used in the

latter. Adam optimizer was employed to train the network for

the identification phase. The dataset was collected manually

from Google images, where the total number of drone image

is 7000. This includes distorted drone images and 3019 non-

drone images. The detection accuracy attained is around 89%

while the identification accuracy is 91.6%.

B. VISUAL DETECTION WITH HANDCRAFTED FEATURES

Boddhu et al. in [34] proposed employing an intelligent

smart-phone application to obtain drone attributes such as

speed and height. This is done by integrating a composable

sensor cloud and an intelligent probabilistic model. The pro-

posed model utilizes multiple geographical distributed data

138676 VOLUME 7, 2019



B. Taha, A. Shoufan: ML-Based Drone Detection and Classification: State-of-the-Art in Research

points for the prediction and estimation of flight path. The

results demonstrate the capability of such system to per-

form the specified tasks; however, more improvements are

required.

Unlu et al. developed vision-based features namely

Generic Fourier Descriptor (GFD) which are robust against

translation and rotation changes [35]. These features are used

to detect drones from birds by training a neural network

model. They perform the training and testing on their own

collected dataset using 5-folds cross validation. The dataset

consisted of 1340 images (410 for drone and 930 for bird).

The attained classification accuracy is 85.3% with the origi-

nal dataset and 93.10% with a subset of the dataset consisting

of only 162 selected images.

C. DISCUSSION

Drone detection and classification based on visual data is

still in its infancy. Most of the work was done using learned

features by utilizing different deep learning models and

approaches. However, it is known that deep learning methods

are data driven and require huge labeled datasets to generate

robust models. The lack of publicly available datasets is

a hard constraint on the research in this area. To mitigate

this situation, some authors made use of transfer learning

rather than starting from scratch. Other research work such

as [32] employed dedicated software to generate synthetic

images to increase the number of samples in the dataset.

Other techniques for enlarging the dataset that could be used

in the future include data augmentation and the utilization

of generative models such as generative adversarial network

(GAN) for creating artificial data which are similar to the

original real data. Most of the research in visual drone

detection fails to specify the type of the acquisition device,

the drone type, the detection range, and the dataset used in

their research. These details are key to validate the work and

make it comparable with related literature. Apart from these

machine learning aspects, visual detection suffers from its

reliance on the presence of a line of sight (LOS) between

the drone and the camera system which might mitigate the

effectiveness of this modality.

IV. ML-BASED DRONE CLASSIFICATION

BY ACOUSTIC DATA

A flying drone produces a humming sound that can be

captured by acoustic sensors and analyzed using different

methods to identify drone-specific audio fingerprint. An ideal

outcome would be to determine the drone type or even the

individual drone by its audio fingerprint. In general, acoustic

drone detection relies either on correlation/autocorrelation

methods or on machine learning classification, see Fig. 2.

In this paper we focus on the latter.

Nijim and Mantrawadi [36] presented a feasibility study

for drone detection from its sound. They relied on Hidden

Markov Model for the detection of DJI Phantom 3 and FPV

250 drones.

FIGURE 2. Classification of solutions on acoustic drone detection and
tracking.

Jeon et al. proposed using Gaussian Mixture Model

(GMM), CNN, and RNN classification to detect the existence

of a drone in the range of 150 meters [37]. The authors

addressed the lack of acoustic data of flying drone and pro-

posed building datasets by augmenting different environmen-

tal sounds with drone sounds. An interesting aspect of their

work is using different drones for training and testing the

classifiers. They found out that the RNN classifier performed

the best (80%), followed by GMM classifier (68%) followed

by CNN classifier (58%). The performance of all classifiers,

however, drops significantly with unseen data.

Bernardini et al. usedmulti class SVM classifier to identify

the drone sound compared to other signals such as crowd

and nature daytime [38]. The work involved collecting web

audio data using an audio file scraper with a focus on files

with sampling rates higher than 48 kHz. The dataset included

five 70-min sounds from flying drones, nature daytime, street

with traffic, train passing, and crowd. Then the collected data

were segmented into 5-second segments for midterm analysis

and 20-msec sub-frames for short-term analysis; all with

overlapping segments of 10ms. The authors extracted short-

time energy, temporal centroid, Zero Crossing Rate (ZCR),

spectral centroid, spectral roll-off, Mel Frequency Cepstral

Coefficients (MFCCs) as features from the pre-processed

signals to train a SVM classifier. The results for detecting the

drone sound against the other classes in terms of accuracy

is 96.4%.

Kim et al. [39] proposed using spectrum images from the

sound signals coupled with correlations and k-nearest neigh-

bor (KNN) classifier methods to detect DJI Phantom 1 and 2.

Different sound signals were recorded from the drones indoor

(without propellers) and outdoor as well as from an outdoor

environment without drones in addition to environmental

sound from a YouTube video. All recorded sounds were

segmented into 1 second frames. 83% accuracy was achieved

with image correlation and 61% with the KNN classifier.

Yue et al. developed a distributed system to detect the pres-

ence and approximate the location of drones utilizing acoustic

wireless sensor network (WSN)withML [40]. By performing

several experiments, the authors found that the power spec-

trum density (PSD) of the drone sound is different from other

natural sounds. The PSD is obtained using Fast Fourier Trans-

form (FFT) after prepossessing the drone sound with a low

pass filter (LPF)with a cutoff frequency at 15 kHz. The exper-

imentation showed that filtering at this cutoff frequency could
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eliminate unwanted noise associated with the acoustic signal.

After applying PCA as a dimensionality reduction technique,

a SVM classifier was trained to identify the drone sound

from other sounds (rain, natural background). The dataset

was collected from different categories with 20000 samples

each. Then 2000 tuples were selected at random and divided

into 50, 30 and 20 percent which were used for training,

testing and creating overlapping signals for additional testing.

Additional Gaussian noise was added for the testing scenario

with a signal to interference ratio (SIR) higher than of 10dB.

The result demonstrate that the drones were detected success-

fully with this level of introduced SIR or higher.

Seo et al. proposed to use the normalized STFT to create

2D images from drones’ acoustic signals [41]. The sound

signal was first divided to 20-ms segments with 50% overlap-

ping. Then the normalized STFTwas extracted and used as an

input for a designed CNN network. The dataset consisted of

experimental measurements taken outdoor with hovering DJI

Phantom 3 and Phantom 4. It contained 68931 sound frames

from the drone and 41958 non-drone frames. The testing was

done on this dataset after adding Additive white Gaussian

noise (AWGN). The best result was found while training the

CNN network with 100-epoch and low SNR in which the

detection rate (DR) is 98.97% and the false alarm rate (FAR)

is 1.28.

Matson et al. proposed to extract the MFCCs and the

STFT features from an optimized multiple acoustic nodes

system [42]. The features were then employed to train two

types of supervised classifiers namely SVM and CNN. For

the later, the audio signal was represented in 2D images to be

fed to the CNN model. This model consisted of two convolu-

tion layers and two FC layers along with pooling and dropout

layers. The dataset was collected for two different cases.

In the first case, the drone was flying from 0 to 10m above the

acoustic system (which consisted of 6 nodes) at a maximum

range of 20m. In the other case, the data was collected without

the presence of the drone where the audio recorded was

the environmental noise only. One type of drone was tested

namely the Parrot AR Drone 2.0. Several experiments were

conducted and the results demonstrate that the STFT features

coupled with SVM provided the best performance which was

reported in terms of color maps.

A. DISCUSSION

From Table 4 and the descriptions of the research works we

can see that acoustic drone detection using machine learning

is still an emerging area of research. Most related work dealt

with drone detection and only a few papers used micro-

phone arrays for localization are available. Like with radar

and visual detection, a comparative evaluation of different

contributions is very difficult, because the authors used dif-

ferent drones, different ranges, different features, different

classification/correlation methods, and different performance

metrics. This research is especially hindered by the lack

of benchmark data with different types of drones flying at

different distances and speeds under different environmental

noise conditions. Proposed acoustic detectors have at most

150m detection range. Apart from optimizing the detec-

tor with two distances proposed by Hauzenberger and

Ohlsson [43], an in-depth investigation of the impact of range

on the detection performance is missing in all reviewed

papers.

V. ML-BASED DRONE CLASSIFICATION

BY RADIO FREQUENCY

In general, UAVs contain an on board transmitter that perform

data exchange to control and operate the UAV using an RF

signal. Usually, this is in the 2.4 GHz industrial, scientific,

and medical radio band (ISM band). With this prior knowl-

edge, the drones can be detected and localized from a wide

distance. On top of this advantage of using the RF signal as a

detection mechanism for drones, it is also possible to locate

the controller used to send the signal which allows us to locate

the source of the signal.

Shi et al. proposed to use Hash Fingerprint features

based on the distance-based support vector data description

(SVDD) for the detection of slow, small unmanned aerial

vehicles (LSSUAVs) that operate at the 2.4 GHz frequency

band [44]. The system initiates by detecting the start point

of the original signal, generating envelop signals and then

extracting the envelops from the signals. Following that,

hash fingerprint is generated as feature to train a SVDD.

The authors have collected their own dataset to evaluate the

system. The results demonstrate that the system is capable of

detecting and recognizing LSSUAV signals in an indoor envi-

ronment. However, when an additive white Gaussian noise is

added the system performance deteriorates.

Nguyen et al. investigated a system that consists of

different algorithms to detect drones from its physical

attributes [45]. The system takes the drones RF signature

based on two key features which are body shifting caused

by the spinning propellers and body vibration from the nav-

igation and environmental factors. The former was detected

using wavelet analysis while the latter utilized the dominant

frequency component that has a maximum PSD through the

STFT. The evaluation was done for two different types of

drones namely Parrot Bebop and DJI Phantom. Two exper-

iments were performed to characterize the movement of the

drone using inertial measurement unit (IMU) and wireless

sensing hardware. The maximum tested range was 600 m.

The results illustrate the system accuracy of 84.9%, a preci-

sion of 81.5% and a recall of 90.3%. However, when the range

was reduced to 10 m the system performance increased to

reach 96.5% (accuracy), 95.9% (precision) and 97% (recall).

Ezuma et al. developed a system that convert the raw

RF signals into frames in the wavelet domain, as a prepro-

cessing step, to reduce the size of the data and remove any

bias in the signal [46]. A Markov model was employed to

describe the presence or absence of a UAV in the frame.

A naive Bayes classifier was then used for detecting the UAVs

from the frames. To classify the different types of UAVs,

the energy transient signal was used since it is more robust

138678 VOLUME 7, 2019



B. Taha, A. Shoufan: ML-Based Drone Detection and Classification: State-of-the-Art in Research

TABLE 4. Summary of related work on acoustic methods for drone detection and tracking.

to different noises and easier to modulate. For this phase,

the distribution of the energy time frequency was employed

to generate a normalized energy trajectory of the signal. After

that, the beginning and ending points of the energy transient

were identified by finding sudden instantaneous changes

in the trajectory. After that, some statistical features were

extracted namely skewness, variance, entropy and kurtosis

where then the Neighborhood component analysis (NCA)

was implemented on the computed features to reduce their

number and select the most robust ones. Finally, different

classifiers were investigated yet the kNN achieved the best

classification performance. The evaluation process was done

on a dataset consisting of 100 RF signals coming from 14 dif-

ferent UAV controllers. The training and testing was done on

partitioning basis where 80% of the data used for training and

20% for testing. The results demonstrate an average detection

accuracy of 96.3%. The authors also reported results for

different SNR levels whereas an SNR less than 10dB gave

bad performance while an SNR of 12dB or higher attained an

accuracy of 100%.

A. DISCUSSION

The RF signal is an important characteristic of drones which

can be employed for the purpose of detection and localiza-

tion. However, RF based solutions fail when the drone is

operated in a partially or fully autonomous mode. In such

cases, the drone usually flies using preprogrammed GPS way

points with limited RF-based communication with the ground

station. Additionally, the deployment of machine leaning

techniques for this type of data is new and the literature

lacks a comprehensive public dataset for RF signals which

could be used for validation and comparison. Furthermore,

all the existing methods have limited performance for low

signal to noise ratios. Finally, most related work relied on
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TABLE 5. Summary of related work on RF methods for drone detection and tracking.

indoor experiments which do not resemble real application

scenarios in which the RF signal might be deteriorated,

jammed, or interfered.

VI. CONCLUSION

In their ‘‘Clarity FromAbove’’ report, PwC predicted that the

global market for commercial drones will grow to more than

127 billion dollars with key applications in infrastructure,

agriculture, transport, security, media, insurance, telecommu-

nication, and mining [47]. However, drone operation is asso-

ciated with high risk for people and assets. Authorities are

working hard toward regulations for drone operation so that

less disruptions are recorded. In some cases, these regulations

are also supported by ICT solutions to improve the autho-

rization and notification process such as the Low Altitude

Authorization and Notification Capability (LAANC) by the

USA Federal Aviation Administration (FAA) [48].

Rules and supportive technologies are good for those who

follow them but not for careless or malicious users. Systems

which are able to keep overview of what is going on are

required in the low-altitude airspace, to run a continuous risk

assessment, and to interdict in the case of violation. A major

task towards this goal is being able to detect, classify, and

identify drones in the sky. The expected growth in the drone

market and the associated increase in the number of drones in

the sky will challenge this task and question the efficiency of

human-centered solutions. Machine learning can play a key

role in this respect as was shown in this review. The digital

processing of different modalities has made machine learning

applicable in every detection system as long as the system

operator is ready to pay attention to data.

Issues related to the quantity and quality of data in machine

learning are well known. But in the case of drone detection

and classification, these issues can be described as urgent

due to the high business pressure on the one hand and the

high risk of operation on the other. Collaborative efforts to

build publicly available datasets are indispensable to help

researchers and developers build robust classification models

for drones based on all modalities.

The risk associated with drone operation strongly depends

on the drone location and how far from critical areas it

flies. Therefore, ranging should actually be a very important

objective. However, as shown in the review researchers have

focused on the detection performance and–in the best case–

information was given about the drone distance at which the

drone was detected. No study was presented which investi-

gated the classification performance as a function of drone

distance not to speak of determining the range using regres-

sion models. This can be a very interesting research area in

the future.

As discussed in the introduction (see Table 1) no single

modality is perfect for drone detection and classification.

Therefore, several authors suggested bi-modal and multi-

modal systems with promising results [49], [50]. Regardless

of the used modalities, all proposed solutions go from the

perspective of a statically located detection system. Inmodern

cities, this model is very limited because the detection

capability can be deteriorated by many obstacles block-

ing the view, the RF and the radar signal as well as by

high noise levels making acoustic detection more difficult.

Distributed and collaborative detection systems using wide-

area solutions or city-wide surveillance sensors can present

a very useful way for the problem of drone detection and

classification.
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