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Abstract

This paper investigates the impact of code coverage on machine learning-based dynamic analysis of Android
malware. In order to maximize the code coverage, dynamic analysis on Android typically requires the generation of
events to trigger the user interface and maximize the discovery of the run-time behavioral features. The commonly
used event generation approach in most existing Android dynamic analysis systems is the random-based approach
implemented with the Monkey tool that comes with the Android SDK. Monkey is utilized in popular dynamic analysis
platforms like AASandbox, vetDroid, MobileSandbox, TraceDroid, Andrubis, ANANAS, DynaLog, and HADM. In this
paper, we propose and investigate approaches based on stateful event generation and compare their code coverage
capabilities with the state-of-the-practice random-based Monkey approach. The two proposed approaches are the
state-based method (implemented with DroidBot) and a hybrid approach that combines the state-based and
random-based methods. We compare the three different input generation methods on real devices, in terms of their
ability to log dynamic behavior features and the impact on various machine learning algorithms that utilize the
behavioral features for malware detection. Experiments performed using 17,444 applications show that overall, the
proposed methods provide much better code coverage which in turn leads to more accurate machine
learning-based malware detection compared to the state-of- the- art approach.

Keywords: Android malware detection, Code coverage, Monkey, DroidBot, Dynamic analysis, Machine learning,
Event generation, State-based input generation, Model-based input generation, Random input generation

1 Introduction
With nearly 80% market share, Google Android leads

other mobile operating systems. Over 65 billion down-

loads have been made from the official Google play store,

and there are currently more than 1 billion Android

devices worldwide [1]. According to Statista [2], there will

be around 1.5 billion Android devices shipped worldwide

by 2021. Due to the increasing popularity of Android,

malware targeting the platform has increased significantly

over the last few years. According to a recent report from

McAfee, there are around 2.5 million new Android mal-

ware samples exposed every year, thus increasing the total
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number of malware samples discovered in the wild to

more than 12 million [3]. Android malware can be found

in a variety of applications such as gaming apps, banking

apps, social media apps, educational apps, and utility apps.

Malware-infected applications can have access to privacy-

sensitive information, send text messages to premium rate

numbers without user approval, or even install a rootkit

on the device allowing it to download and execute any

code the malware developer wants to deploy etc.

In order to mitigate the spread of malware, Google

introduced Bouncer to its store in Feb 2012. Bouncer is the

system used to monitor submitted applications for poten-

tially harmful behaviors by testing the submitted apps in a

sandbox. However, Bouncer has been shown to be vulner-

able to unsophisticated detection avoidance techniques

that can evade sandbox-based dynamic analysis [4]. Fur-

thermore, most third party app stores do not have any

screening mechanism for submitted applications. There
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is therefore a need to further research more efficient

approaches for detecting Android malware in the wild.

Android applications are heavily user interface (UI)

driven. Because of the UI operation, efficient input gener-

ation is crucial for testing applications and many tools are

available to support developers. Likewise, efficient input

generation is needed to drive automated dynamic analysis

for malware detection. On the Android platform, malware

can hide their malicious activities behind events/actions

that require user interaction. Hence, in order to facil-

itate effective malware detection, researchers integrate

(into their analysis platforms) tools that can simulate the

human interaction with the UI. The main goal is to reach

a high percentage of code coverage such that most of

the suspicious activities are revealed during the analy-

sis. However, as highlighted in [5], some challenges still

remain with automated test input generation. Many of

the existing dynamic analysis systems rely on a random-

based input generation strategy based on the Android

Monkey UI exerciser tool. In fact, the random-based test

input generation tool Monkey, is currently the most pop-

ular input generation tool used in most dynamic analysis

systems. Its popularity can be attributed to being readily

available as part of the Android developer’s toolkit and its

ease of use.

An empirical study conducted in [6] compared the

Monkey tool to other input generation tools. The study

found that the highest code coverage was achieved by

the random-based Monkey tool compared to the other

tools. However, the study did not evaluate the impact on

machine learning-based detection of Android malware.

In our previous work [7], preliminary experiments con-

ducted on 2444 Android apps (containing 1222 benign

and 1222 malware samples) showed that dynamic analysis

behavioral footprint enabled by the random-based Mon-

key tool could be improved further. The results showed

that stateful approaches enabled better code coverage

than the random-based approach. Out of the stateful

approaches, the hybrid method performed better than

the stand-alone state-based approach. The code cover-

age was quantified by the number of apps where specific

dynamic behavioral features were traced or discovered

from.

This paper extends the preliminary work in [7],

and presents a more extensive comparative analysis

of the code coverage by the random-based, state-

based and hybrid input generation methods by means

of a larger dataset of 15,000 apps. The study in

this paper focuses on investigating the impact of the

input generation methods on performance of machine

learning-based Android malware detection, which has

not yet been addressed in previous works. In particu-

lar, our paper seeks to answer the following research

questions:

• Given that the random-based test input generation

approach is widely utilized, does this method enable

the best possible code coverage for effective detection

of Android malware?
• Does the state-based method produce larger

behavioral footprints for dynamic analysis compared

to the random- based method?
• When the state-based method is combined with the

random-based method to enable hybrid input test

generation, does this increase the behavioral

footprint?
• Lastly, what are the comparative performance

differences for various machine learning classifiers

that utilize the dynamic behavioral features logged

using the random-based vs. state-based vs. the hybrid

method? Most importantly, does the use of stateful

methods increase classifier performance?

The reminder of the paper is structured as follows.

Section 2 discusses the input generation methods investi-

gated in the paper. Section 3 details the methodology and

experiments undertaken. Section 4 presents and discusses

the results. Section 5 gives an overview of related work,

followed by conclusions and future work in Section 6.

2 Input/event generationmethods for Android
application dynamic analysis

In this section, we describe the input/event generation

methods investigated in this paper. The input genera-

tion schemes are incorporated into an extended version

of our dynamic analysis framework (DynaLog) for com-

parative analysis. DynaLog [8] enables dynamic analysis

of Android apps by instrumenting the apps with API-

Monitor [9] and then logging real-time behavioral fea-

tures. DynaLog is extended to enable dynamic analysis

on real devices (as described in [10]) in order to mitigate

the potential impact of anti-emulation and environmental

limitations of emulators on our dynamic analyses. Figure 1

shows an overview of the dynamic analysis process using

DynaLog. It logs features from API calls and Intents. On

the Android platform, Intents are used to signal to the

system that a certain event has occurred. Examples of

Intents include SMS_RECEIVED, PACKAGE_INSTALL,

BOOT_COMPLETED, and PACKAGE_REMOVED. In

order to receive the signal for an Intent, an app must

register for that particular Intent.

2.1 Random input generation method

The random input generation method is a stateless

approach that sends pseudo-random events of clicks,

swipes, touch screens, scrolling etc. during run-time test-

ing of an application in an emulator or real device. As

mentioned before, the state-of-the-practice events gener-

ator for run-time testing of Android apps is the Monkey
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Fig. 1 Extracting app behavioral footprint using Dynalog [10]

tool, which has been incorporated into many dynamic

analyses systems (such as AASandbox [11], ANANAS

[12], Mobile Sandbox [13], and vetDroid [14]). Monkey is

a random-based events generation tool that is part of the

Android Developers’ toolkit [15]. It is a command line tool

that can be run on any emulator instance or on a device. It

sends a pseudo-random stream of user events into the sys-

tem and includes several configuration options. The seed

value for the pseudo-random number generator can be

set, and if you re-run Monkey with the same seed value

it would generate the same sequence of events. A fixed

delay can be inserted between the events and if not spec-

ified, there is no delay and the events are generated as

rapidly as possible. Monkey can be configured to ignore

crashes, timeouts or security exceptions and continue to

send events to the system until the count is complete.

Although Monkey is quite effective as an event genera-

tion tool for dynamic analysis systems, it does not operate

with any awareness of the current state of the system. For

this reason, the code coverage might not be optimal, and

this could reduce effectiveness of detection systems that

utilize on it for event generation. This is what we will

be investigating in the experiments presented later in the

paper by comparative analysis with alternative approaches

that have not been utilized in previous works.

The main advantage of the random input generation

method is the speed, since events can be sent contin-

uously without pausing to determine the current state

of the app’s UI. The main disadvantage is that unin-

tended consequences, such as turning off Internet con-

nectivity, could occur as observed in [7]. Since the

input/event generation is not guided, the phone’s set-

tings could be inadvertently changed by indiscriminate

streams of generated input. This may impact the extent

of coverage of the behavioral footprint thus leaving

out key features that could be indicative of malicious

activities.

2.2 State-based input generation method

This approach is also known as model-based input gen-

eration or model-based exploration [16–20]. The method

utilizes a finite state machine model of the app with activ-

ities as “states” and events as “transitions.” The finite

state model can be built by statically analyzing the app’s

source code to understand which UI events are relevant

for a specific activity. Alternatively, the model can be built

dynamically and terminated when all events that can be

triggered from all the discovered state lead to already

explored states.

In order to implement state-based test input generation

for our study, we employed DroidBot [21], an open-source

automated UI event generation tool for Android. Droid-

Bot was integrated into our DynaLog framework and

configured to operate in the state-based input generation

mode. DroidBot generates UI-guided test inputs based

on a state transition model generated on-the-fly from the

information monitored at run-time. Hence, it does not

require any prior knowledge of unexplored code. A depth-

first exploration algorithm is used to generate the events.

Figure 2 shows a simplified example of a state transi-

tion model. It shows a directed graph in which each node

represents a device state, and the edge between the two

nodes represents the input event that triggered the state

transition. A state node typically contains the GUI infor-

mation and the running process information, while an

edge node contains details of the input event. The cur-

rent state information is maintained, and after sending

an input to the device, the state change is monitored.

Once the device state is changed, the input is added

as a new edge while a new node is added to represent
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Fig. 2 Simplified state transition model example [21]

the new state. Further details on DroidBot are given

in [21].

DroidBot was selected for our work because compared

to other model-based/state-based tools it is (a) open

source, (b) easier to integrate with our existing anal-

ysis environment (DynaLog) since it does not require

system/framework instrumentation, and (c) usable with

common of the shelf Android devices without modifica-

tion. The main disadvantage of the state-based approach

is that it is considerably slower than the random-based

approach. This is due to the fact that the app’s current

state needs to be constantly tracked in between sending

events. Note that the time taken to traverse the possible

states of the app depends on the size and complexity of the

apps. Running times therefore vary from app to app.

2.3 Hybrid input generation method

The hybrid input method is a stateful approach that

combines the random-based method with the state-

based method as described in [7]. This was moti-

vated by desire to exploit the strengths of each method

for possible improvement in behavioral footprint. Fur-

thermore, we want to determine whether a combined

scheme will impact the detection accuracy of machine

learning-based systems built upon the dynamic analy-

sis process that utilize the resulting run-time behavioral

features.

The hybrid input generation system runs a random-

based event generation script based on Monkey first.

Afterwards, it commences the state-based phase by

starting DroidBot (with dynamic policy mode). It also

checks the device configuration in order to restore

the device to its original starting configuration, in

case this has been altered by any generated ran-

dom events. Figure 3 shows a flow chart of the pro-

cess [7]. Note that the execution order (i.e., running

Monkey before DroidBot) is mandated by technical con-

straints that made it infeasible to start with DroidBot

first.

3 Methodology and experiments
Two sets of experiments were performed to address the

research questions outlined in Section 1: (a) Compara-

tive analysis of the random-based, state-based, and hybrid

input generation in terms of behavioral footprint. (b)

Investigating the impact of the resulting behavioral foot-

prints on the performance of various machine learning-

based classifiers. In this section, we present the setup of

our experiments.

3.1 Testbed configurations

The experiments were performed using real phones with

the following configurations. Eight smartphones of dif-

ferent brands with each processing an average of 100

apps per day were utilized. The phones are equipped

with Android 6.0 “Marshmallow” OS, 2.6 GHz CPU,

4GB RAM, 32GB ROM, and 32 GB of external SD card

storage. Moreover, each phone was installed with a credit-
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Fig. 3 Checking and restoring device configurations on the hybrid input generation system comprising both random and state-based subsystems [7]

loaded sim card to allow sending SMS, outgoing calls,

and 3G data usage. The phones were also connected to

an Internet-enabled Wi-Fi access point. The aim was to

ensure that the dynamic analysis environment mimicked

real smartphone operations as much as possible.

The running time was different depending on the input

generationmethod.With the random-basedmethod, each

of the applications was installed on a phone and run

for 300 s. Preliminary investigation confirmed that 300 s

was a sufficient time to generate at least 2000 ran-

dom events. The preliminary studies found that for most

apps, 2000 events provided optimum coverage beyond

which no improvement is observed. With the state-based

input generation method, we specified a running time

of 180 s which was enough to allow the possible states

to be traversed and all relevant events invoked. This

was also confirmed via preliminary studies. Therefore,

for the hybrid test input generation, we adopted the

sum of the times used in the two individual methods,

i.e., 480 s.

3.2 Datasets

In order to evaluate behavioral footprints and sub-

sequently measure the accuracy performance of the

machine learning-based classifiers, we utilized two

datasets. The first one (Dataset1) consisted of 2444 apps

with equal numbers of benign and malware apps. The

malware apps in Dataset1 are from 49 families of the

AndroidMalware Genome project samples [22], while the

benign samples are fromMcAfee Labs.

The second dataset (Dataset2) had 15,000 apps consist-

ing of 6500 clean apps and 8500malware apps all obtained

from McAfee labs. Some of the apps in Dataset2 could

not be processed successfully due to errors, crashes, or

absence of “activity” components in the app. Out of the

initial 6500 benign apps, 6069 were processed successfully.

Also, out of 8500 malware apps, only 7434 were processed

successfully. Thus, in the end, a total of 13,530 apps were

utilized from Dataset2.

3.3 Extracting behavioral features

The behavioral footprints were extracted during app pro-

cessing on the smartphones. Each of the smartphones was

connected via the android debug bridge (adb) to a San-

toku Virtual Machine [23]. Within the Santoku Virtual

Machine, an instance of our dynamic analysis tool Dyna-

log was used to extract the behavior features for each app

at run-time and then further process the behavior logs

from all apps into a .csv file. The entire process was per-

formed for each of the three analyses scenarios, i.e., with

random-based, state-based, and hybrid input generation

methods respectively.
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For each application, a total of 178 dynamic features

based on API calls and Intents were extracted. These

features were utilized for the comparative behavioral foot-

print analyses of the input generation methods using the

Dataset1 and Dataset2 respectively. After pre-processing,

the total number of features that remained out of the ini-

tial 178 for training and evaluating the machine learning

classifiers were 102 for random-based method, 110 for

state-based method, and 110 for hybrid method.

3.4 Investigated machine learning classifiers

In the second set of experiments, the extracted behav-

ioral features were used to investigate the performance of

seven popular machine learning classifiers. The classifiers

include the following: Sequential Minimal Optimization

(SMO), Naive Bayes (NB), Simple Logistic (SL), Multi-

layer Perceptron (MLP), Partial Decision Trees (PART),

Random Forest (RF), and J48 Decision Tree. These classi-

fiers are all implemented in the popular machine learning

software WEKA (Waikato Environment for Knowledge

Analysis), and we used the default configurations of the

classifiers within the software for our experiments. For

each input generation method, we studied the perfor-

mance of each classifier on the two datasets. The results of

our experiments are presented in Section 4 using the “pre-

cision,” “recall,” and “weighted F-measure” performance

metrics defined as follows:

Recall or sensitivity is the “true positive ratio” given by:

Rec =
TP

TP + FN
(1)

Precision (also known as “positive predictive rate”) is

given by:

Prec =
TP

TP + FP
(2)

where TP is the true positives, i.e., number of correctly

classified instances. FN stands for false negatives, i.e.,

the number of instances within a class that were incor-

rectly classified as the other class. FP is false positives,

i.e., the number of instances of the other class that were

incorrectly classified as the current class.

F-measure is ametric that combines precision and recall

as follows:

FM =
2 ∗ recall ∗ precision

recall + precision
(3)

As the F-measure is calculated for both malware and

benign classes, the combined measure known as weighted

F-measure is the sum of the F-measures weighted by the

number of instances in each class as follows:

W − FM =
(Fm.Nm) + (Fb.Nb)

Nm + Nb
(4)

where Fm and Fb are the F-measures of the malware

and benign classes respectively, while Nm and Nb are the

number of instances in the malware and benign classes

respectively.

4 Results and disscussions
4.1 Comparisons of behavioral footprint: state-based vs.

random vs. hybrid

4.1.1 Random-based approach vs. state-based approach

In this subsection, the results of the behavioral footprint

analysis of the random-based method compared to the

state-based method (from both Datasets 1 and 2) are

presented. Figures 4 and 5 show the top 10 extracted

run-time features with the largest differences between

the two methods, from the malware and benign samples

respectively in Dataset1. In this experiment, we discov-

ered that some API calls were logged at a higher number

with random-based method whereas others were logged

at a higher number with state-based method.

Fig. 4 Top 10 logged API calls from the malware subset (Dataset1) where the state-based method was better than the random-based method
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Fig. 5 Top 10 logged API calls from the benign subset (Dataset1) where the state-based method was better than the random-based method

In Fig. 4, the top10 featureswhere the state-based method

had a larger overall behavioral footprint are depicted

for the malware subset. The feature NetworkInfo;-

>getTypeName, logged 114 more with the state-based

method than the random-based method. While the

feature Landroid/telephony/TelephonyManager;-

>getDeviceId logged 100 more with the state-based

method. In Fig. 5, much larger differences can be seen

with the experiments performed on the benign subset

of Dataset1. This also corresponds with the fact that

the benign apps were generally larger in size than the

malware apps in Dataset1.

Figures 6 and 7 show results of experiments performed

on Dataset2 to compare random-based to state-based. In

Fig. 6, the top 10 features with the largest differences

where the state-based method triggered higher number

of logs than the random-based method are shown for

the malware subset. Similarly, Fig. 7 illustrates the same

for the benign subset. We can see that with Dataset2

there are much higher differences in behavioral footprint

between the two test input generation methods compared

the Dataset1 scenario.

Figure 8 shows the results of a few exceptional cases

where the random-based method outperformed the state-

based approach from themalware subset of Dataset1. This

indicates that for some applications, the random-based

approach could sometimes reach parts of the applications

that the state-based method was unable to reach. How-

ever, it is worth noting that the overall differences in Fig. 8

are smaller than those shown in Fig. 4 thus indicating

that the overall footprint is larger with the state-based

approach.

Fig. 6 Top 10 logged API calls from the malware subset (Dataset2) where the state-based method was better than the random-based method
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Fig. 7 Top 10 logged API calls from the benign subset (Dataset2) where the state-based method was better than the random-based method

4.1.2 Random-based approach vs. hybrid approach

The results of the behavioral footprint analysis of the

random-based method compared to the hybrid method

(from both Datasets 1 and 2) are presented. Tables 1

and 2 show the top-10 extracted run-time features

with the largest differences between the two methods,

from the malware and benign samples respectively in

Dataset1. Both tables show that more of the API calls

were logged from larger number of APKs when the

hybrid input test generation method was used com-

pared to the random-based method. The API method

call Ljava/io/File;->exists, for instance, was logged from

677 malware APKs using the hybrid test input method,

while it was only logged from 477 malware APKs

using the random-based approach. Similarly, the method

Landroid/telephony/TelephonyManager;>getDeviceId in

Table 1, was discovered from 429 malware APKs using the

hybrid method, whereas only 315 malware APKs logged

the same API method when random-based method was

used.

Similar results were obtained with the benign samples

with even higher differences observed as shown in Table 2.

For example, the method Landroid/net/Uri;>parse was

logged from 492 benign APKs using the hybrid method,

while the same method was extracted from only 192

benign APKs using the random-based approach.

Fig. 8 Top 10 logged API calls from the malware subset (Dataset1) where the random-based method was better than the state-based method
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Table 1 Top 10 API calls logged from malware samples where
the hybrid approach was better than the random-based
approach (Dataset1)

API signatures Random Hybrid Difference

Ljava/io/File;->exists 477 667 190

Ljava/security/MessageDigest;-
>getInstance

338 473 135

Landroid/content/pm/ApplicationInfo

;->getApplicationInfo 435 563 128

Ljava/security/MessageDigest;-
>digest

310 431 121

Ljava/util/zip/ZipInputStream;-
>read

219 336 117

Landroid/telephony/
TelephonyManager;->getDeviceId

315 429 114

Ljava/util/TimerTask;->< init> 808 921 113

Landroid/content/pm/

PackageManager 651 756 105

Lorg/apache/http/client/HttpClient;-
>execute

89 188 99

Ljava/io/File;->mkdir 274 366 92

The same experiment was repeated with the larger

Dataset2 and the results are presented in Tables 3 and

4. The tables show the top-10 features with the largest

differences. In Table 3 (malware subset), the hybrid

method shows larger collective behavioral feature foot-

prints than the random-based method. For example, the

Ljava/util/zip/ZipInputStream;>read feature was logged

from 2446moremalware APKs when the hybrid test input

methodwas used compared to the random-basedmethod.

Likewise, the Ljava/lang/reflect/Method;->getClass fea-

ture was discovered from 4346 malware samples using

the hybrid method compared to only 2468 using the

Table 2 Top 10 API calls logged from benign samples where the
hybrid approach was better than the random-based approach
(Dataset1)

API Signatures Random Hybrid Difference

Landroid/net/Uri;->parse 192 492 300

Ljava/util/zip/ZipInputStream;->read 173 408 235

Ljava/security/MessageDigest;->digest 297 519 222

Ljava/security/MessageDigest;->getInstance 327 549 222

Lorg/apache/http/client/HttpClient;->execute 56 264 208

Ljava/lang/reflect/Method;->getClass 359 565 206

Ljava/lang/Class;->getName 217 422 205

Landroid/content/Context;->getResources 437 639 202

Ljava/util/TimerTask;->< init> 575 774 199

Landroid/content/pm/

PackageManager;->checkPermission 164 359 195

Table 3 Top 10 API calls logged from malware samples where
the hybrid approach was better than the random-based
approach (Dataset2)

API signatures Random Hybrid Difference

Ljava/util/zip/ZipInputStream;-
>read

1270 3716 2446

Lorg/apache/http/client/methods/
HttpPost;->< init>

1128 3501 2373

Ljava/security/MessageDigest;-
>Instance

2406 4660 2254

Ljava/security/MessageDigest;-
>digest

2213 4442 2229

Landroid/content/Context;-
>getResources

2754 4870 2116

Landroid/net/Uri;->parse 917 2992 2075

Ljava/security/MessageDigest;-
>update

2023 4072 2049

Landroid/telephony/
TelephonyManager;-
>getDeviceId

2277 4223 1946

Ljava/lang/reflect/Method;-
>getClass

2468 4346 1878

Ljava/lang/Class;->getName 1879 3742 1863

random-based method. From Table 6, out of 122 features

with differences in Dataset2, the random-based method

had only two features where it logged higher than the

hybrid-based method. The results from the benign sam-

ples shown in Table 4 depict the same pattern of larger

Table 4 Top 10 API calls logged from benign samples where the
hybrid approach was better than the random-based approach
(Dataset2)

API signatures Random Hybrid Difference

Ljava/lang/Class;-
>getName

1622 2764 1142

Ljava/util/zip/ZipInputStream;-
>read

817 1943 1126

Ljava/security/MessageDigest;-
>update

866 1983 1117

Ljava/security/MessageDigest;-
>digest

934 2040 1106

Ljava/security/MessageDigest;-
>getInstance

1079 2177 1098

Ljava/util/Date 811 1847 1036

Ljava/lang/reflect/Method;-
>getClass

2052 3058 1006

Ljava/util/Date;->< init> 784 1785 1001

Ljava/util/List 784 1785 1001

Landroid/content/Context;-
>bindService

434 1396 962
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behavioral footprint with the hybrid input test genera-

tion method compared to the random-based input test

generation method.

4.1.3 State-based approach vs. hybrid approach

The results of the behavioral footprint analysis of the

state-basedmethod compared to the hybridmethod (from

both Datasets 1 and 2) are presented. Tables 5 and 6 show

the top-10 extracted run-time features with the largest dif-

ferences where the hybrid method logged higher than the

state-based method (in Dataset1). Both tables show that

more of the API calls were logged from larger number of

APKs when the hybrid input test generation method was

used compared to the state-based method. It can be seen

that the hybrid approach allows for the discovery of more

API calls with a difference of over 100 in some cases. For

instance, the class Ljava/util/Date was extracted from only

177 malware samples using state-based test input gener-

ation, while with the hybrid method, it was logged from

124 more malware samples. The differences decreased to

less than 20 samples when we applied the same analysis to

the benign sample set.

Tables 7, 8, and 9 present results of comparative anal-

ysis with Dataset2. In Tables 7 and 8, we show the top

10 features where the hybrid approach has larger behav-

ioral footprints than the state-based approach within the

APK subsets. With 125, the feature Landroid/net/Uri;-

>parse has the largest difference in the malware sample

set, followed by the Landroid/content/ContextWrapper;-

>sendBroadcast feature with 92. Similarly, with 117,

the feature Landroid/os/Process->;myPid has the largest

difference in the benign sample set, followed by the

Ljava/Lang/ClassLoader->;loadClass feature with 61.

In Table 9, we depict the top 10 features where the state-

based approach has larger behavioral footprints than the

hybrid approach within the APK subsets. It was stated

Table 5 Top 10 API calls logged from malware samples where
the hybrid approach was better than the state-based approach
(Dataset1)

API signatures State Hybrid Difference

Ljava/util/Date 177 301 124

Ljava/util/Date;->< init> 171 289 118

Ljava/util/List 171 289 118

Ljava/util/Timer;->schedule 222 339 117

Ljava/util/GregorianCalendar;->getTime 107 207 100

Ljava/util/zip/ZipInputStream;->read 242 336 94

Ljava/io/File;->exists 602 667 65

Ljava/security/MessageDigest;->digest 366 431 65

Lorg/apache/http/client/HttpClient;->execute 133 188 55

Ljava/security/MessageDigest;->update 288 335 47

Table 6 Top 10 API calls logged from benign samples where the
hybrid approach was better than the state-based approach
(Dataset1)

API signatures State Hybrid Difference

Landroid/os/Process;->myPid 87 106 19

Landroid/net/Uri;->parse 480 492 12

Landroid/media/AudioManager;-
>getStreamVolume

37 47 10

Landroid/content/res/AssetManager;-
>open

320 328 8

Landroid/net/NetworkInfo;-
>getExtraInfo

23 30 7

Ljava/lang/reflect/Method;-
>getClass

559 565 6

Landroid/telephony/TelephonyManager;-
>getSimOperator

72 77 5

Ljava/lang/reflect/Method;-
>getMethod

245 249 4

Ljava/util/GregorianCalendar;-
>getTime

188 191 3

Landroid/content/Context;-
>getAssets

243 246 3

in [7] that out of 76 features with differences, only 4

had the state-based method showing higher logs than the

hybrid method, using Dataset1. However, with Dataset2,

there were several more features where the state-based

method showed higher logs than the hybrid method, as evi-

dent from Table 9. The largest difference can be found

in the HttpClient;->execute feature which was found

Table 7 Top 10 API calls logged from malware samples where
the hybrid approach was better than the state-based approach
(Dataset2)

API signatures State Hybrid Difference

Landroid/net/Uri;->parse 2867 2992 125

Landroid/content/ContextWrapper;-
>sendBroadcast

693 785 92

Landroid/net/NetworkInfo;-
>getExtraInfo

115 156 41

Landroid/telephony/SmsManager;-
>sendTextMessage

26 44 18

Landroid/telephony/SmsManager;-
>divideMessage

3 16 13

Landroid/net/wifi/WifiManager;-
>setWifiEnabled

9 18 9

Ljava/lang/System;->loadLibrary 1867 1872 5

Landroid/content/ContextWrapper;-
>startActivity

19 23 4

Ljava/lang/Process;-
>getOutputStream

80 84 4

enfperm 1453 1456 3
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Table 8 Top 10 API calls logged from benign samples where the
hybrid approach was better than the state-based approach
(Dataset2)

API signatures State Hybrid Difference

Landroid/os/Process;->myPid 761 878 117

Ljava/lang/ClassLoader;->loadClass 637 698 61

Ljava/lang/Class;->getClassLoader 715 775 60

Landroid/net/Uri;->parse 2322 2378 56

Landroid/media/AudioManager;-
>getStreamVolume

76 127 51

Ljava/lang/ClassLoader 1130 1177 47

Ljava/util/GregorianCalendar;-
>getTime

1196 1236 40

Landroid/content/ContentResolver 1223 1258 35

Ljava/io/File;->delete 1221 1256 35

Ljava/io/File;->mkdir 1961 1996 35

in 726 more malware APKs, followed by the Network-

Info;>isConnected feature found in 547 more malware

APKs. The methods getSubscriberId and getSimOpera-

tor from the TelephonyManager class, were logged from

373 and 356 more malware samples respectively using the

state-based compared to the hybrid method.

In a nut shell, much larger differences can be seen in

Dataset2 with the features were the state-based approach

logged higher than the hybrid approach than vice-versa

(for instance 726 vs. 125). Hence, this suggests that the

state-based method enabled an overall larger behavioral

footprint than the hybrid method. Investigating how these

differences will impact on the machine learning-based

Table 9 Top 10 API calls logged from malware samples where
the state-based approach was better than the hybrid approach
(Dataset2)

API signatures State Hybrid Difference

Lorg/apache/http/client/HttpClient;-
>execute

2732 2006 726

Landroid/net/NetworkInfo;->isConnected 3068 2521 547

Ljava/util/zip/ZipInputStream;->read 4221 3716 505

Lorg/apache/http/client/methods/
HttpPost;->< init>

3958 3501 457

Landroid/telephony/TelephonyManager;-
>getSubscriberId

1300 927 373

Landroid/telephony/TelephonyManager;-
>getSimOperator

1893 1537 356

Ljavax/crypto/Cipher;->init 2146 1812 334

Ljavax/crypto/SecretKey; 1960 1629 331

Ljavax/crypto/Cipher;->getInstance 2037 1709 328

Ljavax/crypto/spec/SecretKeySpec;-><
init>

1891 1566 325

detection systems trained on these set of features is the

goal of the experiments presented in the next subsection.

The summary of the overall differences in number of

features where one method logged higher that the other

(far Dataset1 and Dataset 2) are shown in Tables 10

and 11.

From Table 10, out of 76 features with differences, the

random-based method had 23 features where it logged

higher than the state-basedmethod. Conversely, the state-

based method had higher logs than the random-based

method in 49 different features. In Dataset2 (Table 11)

(out of 103 features with differences), the random-based

is higher than state-based in 3 features, whereas the state-

based is higher than the random-based in 100 features.

These numbers suggest that the behavioral footprint is

larger in both Datasets for the state-based compared to

the random-based test input generation method.

Table 10 also shows that the hybrid method is higher

than the random-based method in 62 features, while

the random-based is higher than the hybrid in 10 fea-

tures. Similarly, from Table 11 (Dataset2), hybrid exceeds

random-based for 93 features and random-based exceeds

hybrid for only 1 feature. These numbers also suggest

that the behavioral footprint is larger in both datasets

for the hybrid compared to the random-based test input

generation method.

In Dataset 1 (Table 10) the state-based exceeds hybrid in

4 features while hybrid exceeds state-based in 64 features.

This suggests that the behavioral footprint of the hybrid

approach is larger than that of the state-based approach.

In Dataset 2 (Table 11), we have the opposite, i.e., state-

based exceeds hybrid in 80 features, while hybrid exceeds

state-based in 22 features. This suggests that the behav-

ioral footprint is larger for the state-based compared to the

hybrid with Dataset2. In the Appendix, we present a full

table of the features and number of apps that logged each

feature for each respective test input generation method

(Table 6).

4.1.4 Explanation of the obtained results

The random-based method generates test input events at

a much faster rate but a large percentage of these are usu-

ally redundant or irrelevant to the current state of the

Table 10 Number of features out of 76 total features with
differences, where one method had a higher log than the other
(Dataset1)

Random-based State-based Hybrid

Random-based - 23 10

State-based 49 - 4

Hybrid 62 64 -

Method on the left column is greater than the compared to the method on the top
row by the value given in the intersecting box
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Table 11 Number of features out of 103 total features with
differences, where one method had a higher log than the other
(Dataset2)

Random-based State-based Hybrid

Random-based - 3 1

State-based 100 - 80

Hybrid 93 22 -

Method on the left column is greater than the compared to the method on the top
row by the value given in the intersecting box

application. This explains why some of the behavioral fea-

tures might not be triggered and logged by the system

despite sending thousands of events to the UI. On the

other hand, the state-based approach although slower and

with much less events being sent to the UI is more accu-

rate because of the relevance of the events sent in response

to the current state.

The accuracy of the state-based method may be the

reason why it enables larger numbers of the apps to log

the behavioral features when tested in the dynamic anal-

ysis system. Another issue that was observed with the

random-based method is that app being analyzed, or the

phone was sometimes driven into a state where no fur-

ther progress could be made in traversing the app. This

also contributed to limiting the extent of the collected

behavioral footprint.

In the smaller dataset (Dataset1), the hybrid approach

logged higher for more features than the state-based

approach. Whereas, with the larger dataset (Dataset2)

the state-based approach logged higher for more fea-

tures than the hybrid approach. This was counter-

intuitive to our original expectation since the combined

approach was designed to exploit the advantages of

both state-based and random-based methods. This sug-

gests that in the hybrid system, rather than enhance the

code coverage, the accuracy of the state-based method

was affected by integrating it with the random-based

method.

Looking back at Fig. 3, during the experiments we dis-

covered that it was not always possible to restore the

device configuration (i.e., airplane mode and/orWiFi con-

nectivity) whenever it had been altered by the random-

based subsystem (Monkey) within the hybrid system. In

most cases the device was restored properly before the

state-based subsystem was invoked. Instances where the

proper restoration failed contributed to the lowering the

accuracy of the state-based subsystem within the hybrid

system. This explains the reason why the stand-alone

state-based system had better code coverage than the

hybrid system consisting of both state-based and random-

based components. In the next subsection, we shall

examine the impact of the different code coverage capac-

ities of the three methods on various machine learning

classifiers.

4.2 Comparisons of impact of the code coverage on

machine learning classifiers

In this section the performance of the three input gen-

eration approaches are compared using seven popular

machine learning classifiers. From the experiments we can

gain insight into the impact of their relative code coverage

capacities on machine learning-based Android malware

detection performance.

First, we discuss the performance evaluation results

from Dataset1 (i.e., 1146 malware and 1109 benign

samples). All results are obtained using 10 fold

Fig. 9W-FM for the three test input generation methods using Dataset1
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cross-validation approach. Figure 9 summarizes the

weighted F-measures (W-FM) of the seven classi-

fiers for the three input generation methods. The

Random Forest (RF) classifier performs best for the

three methods. The state-based method achieved the

best W-FM of 0.943, followed by the hybrid method

with 0.934 and then the random-based method

with 0.926.

In the remaining 6 classifiers, both state-based and

hybrid methods outperformed the random-based method

with higher W-FM results. These results can be seen in

Table 15 in the Appendix. The hybrid approach showed

slightly higher W-FM results for the SMO and J48 classi-

fiers. For the MLP, PART, SL and NB classifiers, the state-

based approach obtained better W-FM results. Thus, we

can conclude that for Dataset1, the overall best accuracy

performance is achieved with the state-based, followed by

the hybrid method and lastly the random-based method.

Table 16 in the Appendix contains the performance

evaluation results for the seven classifiers, from a second

experiment with Dataset2 (i.e., 7434 malware and 6069

benign samples). Figure 10 summarizes the weighted F-

measures (W-FM) of the seven classifiers for the three

input generation methods. These results for Dataset2

shows more significant performance differences between

the three methods. Again, for each of the test input gen-

eration methods, RF achieves the best accuracy perfor-

mance. For the RF classifier, the state-based method has

WFM of 0.878, followed by the hybrid with 0.868 and

then the random-based method with 0.832. Furthermore,

both hybrid and state-based methods performed signifi-

cantly better than the random-based method in the other

6 classifiers. Figure 10 shows that the W-FM results for

PART, J48, MLP, SL, SMO, and NB were higher for the

state-based method compared to the hybrid method.

Figures 11 and 12 show the results from top 20, 40,

60, 80, and 100 information-gain ranked features for the

analyzed Dataset1 and Dataset2 respectively. It illustrates

the W-FM performance obtained for the RF algorithm

trained on both datasets. In all cases, the random-based

test input generation method achieved the lowest perfor-

mance as the number of features is increased. In addition,

from the figures it is clear that the overall detection per-

formance of the state-based method surpassed the others

especially from 60 features and above.

Even though the analyses in the previous section (as

summarized in Tables 10 and 11) showed that each test

input generation approach collected higher logs for some

specific features, it is the “importance” of the features that

will ultimately impact the machine learning performance.

The relative importance of the features can be computed

by a feature ranking algorithm such as information gain.

In Tables 12 and 13, the total information gain scores for

each method are presented.

In both datasets, the combine scores for the state-based

method is highest (with 1.735 and 1.661487 respectively).

This is followed closely by that of the hybrid method, and

both of them surpass the random-based method. Even

when considering only the top 20 or top 40 ranked fea-

tures, the combined information gain scores maintained

the same ranking. These results show that the different

code coverage capacities of the three methods had an

impact on the most important/significant behavioral fea-

tures, which ultimately affected the performance of the

Fig. 10W-FM for the three test input generation methods using Dataset2
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Fig. 11W-FM for the RF classifier vs. the top 20, 40, 60, 80, and 100 features (Dataset1)

machine learning classifiers. It shows that compared to the

state-based approach, the random-basedmethod is not an

optimal choice for dynamic behavioral analysis of Android

apps for malware detection.

4.3 Evaluating accuracy performance with additional

statically obtained permission features.

In this section we explore accuracy performance improve-

ment of the RF dynamic classifiers (trained fromDataset2)

with additional static features. In order to achieve

this, we extended the dynamically obtained features

(API calls + Intents) with static permission features.

Using only Dataset2, the overall W-FM results are illus-

trated in Fig. 13. From the Figure we can see that for

state-based, hybrid and random-based methods, the W-

FM improves from 0.8774, 0.8674, and 0.8319 to 0.93,

0.926 and 0.918 respectively. This illustrates that machine

learning-based malware detection systems that utilize

both static and dynamic features still need to consider

more effective test input generation for the run-time

feature extraction aspect in order to maximize accuracy

performance.

Fig. 12W-FM for the RF classifier vs. the top 20, 40, 60, 80, and 100 features (Dataset2)
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Table 12 Combined Information gain score for the top ranked
features within the different test input generation methods

Random-based State-based Hybrid

Dataset1 1.24779 1.735 1.53881

Dataset2 0.586078 1.661487 1.325491

5 Related work
This section reviews related work on Android mal-

ware detection and automated test input generation for

Android. Previous work on Android malware detection

can be categorized under static analysis or dynamic anal-

ysis, although some systems combine both techniques. In

the static analysis approach, the code is usually reverse

engineered and examined for presence of any malicious

code. [24–34] are examples of detection solutions based

on static analysis. Dynamic analysis on the other hand,

involves executing apps in a controlled environment such

as a sandbox, virtual machine, or a physical device in order

to trace its behavior. Several automated dynamic analy-

sis systems such as [8, 19, 35–44] have been proposed

for detecting suspicious behaviors from Android applica-

tions. However, the efficiency of these systems depend on

the ability to effectively trigger the malicious behaviors

hidden within an application during the analysis.

Dynamic analysis systems seek to improve behavioral

footprint of apps under analysis by applying automated

test input generation tools. Hence, test input generation

needs to be as efficient as possible because it impacts

on the discovery of malicious behavior. Several test input

generation tools have been developed in order to trigger

Android applications under testing.

Monkey [15], is the most frequently used tool for test-

ing Android apps. Linares-Vàsquez et al. [5] stated that

Monkey is the only random testing tool available for the

researchers. It does not require any additional installa-

tion effort as it is part of the Android developers’ toolkit.

Monkey implements a random exploration strategy that

considers the application under test as a black box to

which it continuously sends UI events, until the specified

maximum upper bound is reached. Monkey can be used

on both emulators and real devices.

Table 13 Combined Information gain score for the top 20 and
top 40 ranked features within the different test input generation
methods

Dataset1 Dataset2

Top-20 Top-40 Top-20 Top-40

Random 0.9 1.13724 0.448147 0.548407

Hybrid 0.94289 1.31038 0.988139 1.202276

State 1.00912 1.45324 1.227877 1.505216

Dynodroid [45] is a random-based test input genera-

tion tool for Android. It can generate both IU events and

system events. It also has the ability to allow users to

manually provide inputs (e.g., for authentication) when

exploration is stalling. Its drawback is the need to instru-

ment the Android framework in order to generate system

events. Also, Dynodroid can only run on an emulator and

cannot be used with real devices.

ORBIT [17], is proprietary tool developed by Fujitsu

Labs. It implements a model-based exploration strategy

(i.e., a state based approach). ORBIT statically analyses the

application’s source code to understand which UI events

are relevant for a specific activity. Unlike ORBIT, Mobi-

GUITAR [46], formerly known as GUIRipper [16] dynam-

ically builds the GUI model of the application under test.

It implements a depth-first search strategy and re-starts

its exploration from its starting state when it can no longer

detect new states during exploration. It can only generate

UI events and not system events. Also, it is not an open

source tool and is only available as a Windows binary.

A3E [18] is publicly available tool that consists of

two strategies to trigger the applications: the DFS

(depth first search) and a taint-targeted approach. How-

ever, the open source A3E repository does not pro-

vide the taint-targeted strategy. ACTEve [47] is devel-

oped to support both system events and UI events

which is based on concolic-testing and symbolic exe-

cution. However, ACTEve needs to instrument both

the Android framework and the application in order

to perform the test. For this reason, ACTEve cannot

be used for analysing apps on “common off the shelf”

devices.

PUMA [20] is a tool designed to be a general pur-

pose UI automator for Android. It provides the random

exploration approach using Monkey. It is also extensible

to implement different exploration strategies because it

provides a finite state machine representation of the app.

However, PUMA is only compatible with the most recent

releases of the Android framework.

Choudhary et al. [6] performed a thorough compar-

ison of the main existing test input generation tools

for Android. They evaluated the effectiveness of these

tools using four metrics: ability to detect faults, ability to

work on multiple platforms, ease of use, and code cover-

age. They evaluated Monkey, ACTEve, Dynodroid, A3E,

GUIRipper, SwiftHand, and PUMA on 68 applications.

For the code coverage, on averageMonkey and Dynodroid

(which are both random-based) performed much better

than the other tools. Overall, Monkey achieved the best

code coverage. Their results also showed that maximum

coverage was achieved by all tools within 5 to 10 min.

The study in [6], however, quantified code coverage by the

average number of Java statements covered by each tool.

By contrast this paper uses the number of apps that logged
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Fig. 13W-FM of RF classifier for the three test input generation with static permission features included (Dataset2)

each feature as an indicator of code coverage, which has

more relevance to malware detection systems.

Unlike [6], this paper focused on code coverage analy-

sis of random-based, state-based and a hybrid approach

to test input generation using a much larger number of

applications consisting of benign and malware samples.

As mentioned earlier, the Monkey tool was used to imple-

ment the random-based approach, while DroidBot, was

used to implement the state-based approach. Both of

these tools best met our requirements as representative

candidates for the different methods due to the following

reasons: (a) open source; (b) usable with common off the

shelf Android devices without modification; (c) Android

framework and platform independence, i.e., no require-

ment for platform or app instrumentation; (d) amenable

to large scale automation for malware detection. Note that

DroidBot was not one of the test input generation tools

evaluated in [6].

Several dynamic analysis tools for characterizing

Android apps have been published in the literature. The

majority of these rely on random-based test input gen-

eration using Monkey, for example, AASandbox [11],

ANANAS [12], Mobile-Sandbox [13], vetDroid [14],

TraceDroid [48], Andrubis [49], Dynalog [8], HADM [50],

Maline [51], Glassbox [52], NetworkProfiler [53], Andlatis

[54], Hu & Neamtiu [55], and Cai & Ryder [56]. Oth-

ers such as AppsPlayground [38] used a more intelligent

event generation technique, but unlike our paper, did not

investigate code coverage capabilities in the context of on

performance analysis of machine learning-based malware

detection.

Furthermore, several works have presented machine

learning-based Android malware detection systems built

upon dynamically obtained features. Marvin [57] applies

a machine learning approach to features extracted from

a combination of static and dynamic analysis techniques.

Shabtai et al [58] presented a dynamic framework called

Andromaly which applies several different machine learn-

ing algorithms, including random forest, naive Bayes,

multilayer perceptron, Bayes net, logistic, and J48 to clas-

sify the Android applications. However, they assessed

their performances on only four self-written malware

applications. MADAM [59] is also a dynamic analysis

framework that uses machine learning to classify Android

apps. MADAM utilizes 13 features extracted from the

user and kernel levels. Other systems include Droidcat

[60], STREAM [61], Mobile-Sandbox (2014) [62], Dysign

[63], Massarelli et. al [64], Alzaylaee et. al. [10], and

Afonso et al. [65]. All of these machine learning-based

malware detection systems employ the random-based

Monkey tool for test input generation.

From the literature, it is clear that there has been exten-

sive research and publications in the area of Android

malware detection. However, unlike this paper, no study

has been undertaken to date that comparatively evaluates

the impact of automated test input generation methods
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on machine learning-based Android malware detection.

Such a study provides valuable insights that will be useful

for optimizing and improving dynamic analysis systems

designed for future Android malware detection.

6 Conclusion
In this paper, stateful input generation approaches are

proposed for machine learning-based dynamic analysis

for malware detection. These include a state-based

approach and a hybrid approach that combines the

state-based with the random-based method. The state-

ful approaches were compared to the commonly used

random-based method (utilizing the Monkey tool)

by evaluating their respective code coverage capac-

ities within a dynamic analysis system using real

devices. The code coverage capacities were deter-

mined based on their respective behavioral footprints

measured from logged API calls and Intents cap-

tured at run-time from two datasets each consist-

ing of benign and malware applications. The state-

based approach is implemented using DroidBot, while

the hybrid approach combines the Monkey tool with

DroidBot.

The paper also presents experiments conducted to study

the impact of the respective code coverage capacities of

the input generation systems on various machine learning

classifiers. It was found that both state-based and hybrid

approaches provided much better code coverage than

the random-based method. Contrary to expectation, the

hybrid method was unable to improve the code coverage

over the state-based method. This was because the ran-

dom component of the hybrid system frequently interferes

with device operation (despite our implementation of

mitigating measures) leading to sub-optimal code cover-

age. The state-based approach ultimately enabled the best

accuracy performance in majority of the machine learning

classifiers.

Based on our findings, it is clear that Android

dynamic analysis systems need to incorporate better

input generation methods than the currently popu-

lar random-based Monkey tool. Furthermore, machine

learning-based malware detection systems that employ

dynamically obtained features need better input gen-

eration tools to improve code coverage. Utilizing a

state-based/model-based tool such as DroidBot is def-

initely a step towards more robust dynamic analy-

sis systems and higher accuracy malware detection

capability.

Appendix

Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

1 Ljava/util/TimerTask;->< init> 4373 5893 5776 2785 3499 3465 808 883 921 575 779 774

2 pm/PackageManager 4282 5667 5567 2975 3485 3487 651 723 756 563 742 731

3 Context;->getResources 2754 4994 4870 2536 3410 3414 583 595 639 437 647 639

4 Ljava/security/MessageDigest;->getInstance 2406 4892 4660 1079 2169 2177 338 427 473 327 568 549

5 Ljava/security/MessageDigest;->digest 2213 4538 4442 934 2020 2040 310 366 431 297 533 519

6 Ljava/io/File;->exists 2821 4453 4361 2065 2816 2807 477 602 667 346 501 495

7 Ljava/lang/reflect/Method;->getClass 2468 4433 4346 2052 3084 3058 522 512 540 359 559 565

8 TelephonyManager;->getDeviceId 2277 4512 4223 446 872 874 315 415 429 278 387 378

9 Ljava/security/MessageDigest;->update 2023 4259 4072 866 1951 1983 259 288 335 297 512 465

10 pm/ApplicationInfo;->getApplicationInfo 2538 4019 3893 1485 2088 2078 435 530 563 210 305 300

11 Ljava/lang/Class;->getName 1879 3885 3742 1622 2801 2764 216 175 219 217 434 422

12 Ljava/util/zip/ZipInputStream;->read 1270 4221 3716 816 1927 1943 219 242 336 173 460 408

13 client/methods/HttpPost;->< init> 1128 3958 3501 354 967 927 68 116 150 179 380 369

14 Ljava/util/Date 1351 3295 3212 811 1824 1847 296 177 301 182 342 338

15 Ljava/util/Date;->< init> 1330 3232 3161 784 1752 1785 293 171 289 177 331 329

16 Ljava/util/List 1330 3232 3161 784 1752 1785 293 171 289 177 331 329

17 pm/PackageManager;->checkPermission 1284 3198 3128 301 795 812 76 77 89 164 368 359

18 Landroid/net/Uri;->parse 917 2867 2992 1448 2322 2378 279 241 287 192 480 492

19 Ljava/lang/reflect/Method;->getMethod 1237 2904 2780 711 1442 1440 259 269 285 163 245 249

20 Ljava/io/File;->mkdir 1384 2735 2704 1277 1961 1996 274 326 366 223 362 363
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Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

21 Ljava/io/FileOutputStream;->write 868 2723 2674 409 1382 1352 320 344 372 90 147 139

22 Landroid/net/NetworkInfo;->isConnected 666 3068 2521 523 1510 1448 73 84 98 70 210 197

23 Landroid/content/Context;->getFilesDir 1200 2508 2423 1008 1483 1485 49 67 68 96 156 155

24 Landroid/content/res/AssetManager;->open 1452 2300 2277 948 1355 1369 169 187 207 221 320 328

25 wifi/WifiManager;->getConnectionInfo 883 2282 2112 238 582 593 6 14 20 60 120 116

26 intent.BOOT_COMPLETED 2090 2088 2090 1100 1103 1104 621 622 622 170 171 171

27 Lorg/apache/http/client/HttpClient;->execute 333 2732 2006 122 863 785 89 133 188 56 325 264

28 TelephonyManager;->getNetworkOperator 564 2147 1994 124 558 559 86 70 102 68 226 216

29 Ljava/lang/System;->loadLibrary 1538 1867 1872 861 1035 1021 29 22 33 176 207 200

30 Landroid/content/Context;->getAssets 1170 1873 1835 735 1175 1177 125 119 134 155 243 246

31 Landroid/content/Context;->getCacheDir 644 1894 1824 594 1132 1131 15 42 48 38 181 181

32 Ljavax/crypto/Cipher;->init 501 2146 1812 357 1133 1159 41 51 51 69 151 139

33 Ljava/util/GregorianCalendar;->getTime 519 1905 1797 386 1196 1236 224 107 207 64 188 191

34 Ljava/io/File;->delete 527 1956 1776 397 1221 1256 72 88 93 55 118 120

35 Landroid/net/NetworkInfo;->getTypeName 393 1979 1736 122 330 322 103 217 192 48 130 119

36 Landroid/net/NetworkInfo;->getState 621 1922 1726 99 238 241 191 119 135 80 153 145

37 Ljavax/crypto/Cipher;->getInstance 517 2037 1709 303 980 995 47 57 56 73 146 136

38 Ljavax/crypto/SecretKey; 429 1960 1629 333 1071 1095 41 51 51 59 137 127

39 Ljavax/crypto/spec/SecretKeySpec;->< init> 382 1891 1566 326 1061 1086 15 13 15 47 118 112

40 TelephonyManager;->getSimOperator 576 1893 1537 111 245 243 61 109 131 29 72 77

41 Ljavax/crypto/Cipher;->doFinal 413 1562 1480 237 901 918 29 40 40 47 100 88

42 enfperm 1456 1453 1456 2963 2963 2963 47 47 47 147 146 146

43 Ljava/lang/ClassLoader 557 1556 1420 544 1130 1177 190 191 201 34 75 72

44 Landroid/content/Context;->bindService 430 1287 1248 434 1457 1396 1 2 2 31 59 61

45 Ljava/util/Timer;->schedule 404 1240 1213 274 1055 1015 331 222 339 52 120 122

46 Ljava/lang/ClassLoader;->getParent 438 1246 1187 422 917 923 85 76 87 78 173 158

47 Landroid/content/ContentResolver 266 1203 1178 551 1223 1258 101 96 100 52 77 80

48 Ljava/lang/Runtime;->getRuntime 643 1162 1124 465 982 1016 79 56 66 65 85 86

49 Ljava/lang/Class;->getClassLoader 400 1129 990 317 715 775 183 186 196 23 51 49

50 TelephonyManager;->getSubscriberId 478 1300 927 96 154 155 161 232 230 51 78 78

51 com.android.vending.INSTALL_REFERRER 905 907 905 2091 2089 2090 29 29 29 195 196 197

52 Landroid/os/Process;->myPid 318 852 850 326 761 878 6 5 12 32 87 106

53 Ljava/lang/Process 394 798 789 76 265 275 112 122 142 43 70 67

54 ContextWrapper;->sendBroadcast 217 693 785 110 338 332 9 10 13 36 67 65

55 Ljava/net/URLConnection;->connect 6 925 774 3 421 402 12 47 73 2 108 93

56 Ljava/lang/ProcessBuilder;->start 218 777 752 77 251 271 70 122 132 18 56 52

57 Ljava/lang/ClassLoader;->loadClass 239 768 738 283 637 698 0 1 2 16 30 32

58 TelephonyManager;->getLine1Number 322 785 720 71 115 111 114 141 159 34 92 64

59 Landroid/content/Context;->unbindService 84 719 695 70 557 579 0 0 0 4 8 11

60 Ljava/lang/ClassLoader;->getResource 295 766 652 167 275 259 175 182 193 8 23 22

61 TelephonyManager;->getSimCountryIso 178 667 641 123 290 316 2 2 3 16 50 53
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Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

62 PackageManager;->getInstalledApplications 122 776 617 98 166 191 4 4 6 14 59 41

63 USER_PRESENT 565 564 565 202 202 201 45 45 45 24 24 24

64 PACKAGE_ADDED 564 566 564 218 215 215 3 3 3 14 14 13

65 CONNECTIVITY_CHANGE 551 551 551 659 658 657 22 22 22 30 30 29

66 Ljava/lang/Runtime;->exec 330 440 442 66 179 186 70 31 40 38 48 47

67 TelephonyManager;->getSimSerialNumber 245 477 425 62 100 103 132 133 159 17 23 18

68 PACKAGE_REMOVED 406 407 406 284 282 283 10 10 10 34 33 32

69 ClassLoader;->getResourceAsStream 235 446 406 85 139 130 175 182 191 3 15 15

70 Ljava/lang/ProcessBuilder;->< init> 97 417 396 18 108 116 50 97 110 6 24 24

71 AudioManager;->getStreamVolume 117 375 378 43 76 127 17 20 25 20 37 47

72 TelephonyManager;->getCellLocation 136 362 335 3 13 14 25 24 29 15 18 21

73 SMS_RECEIVED 281 282 281 177 177 177 71 71 71 8 8 8

74 PACKAGE_REPLACED 263 263 263 665 664 664 15 15 15 17 18 17

75 ContextWrapper;->openOrCreateDatabase 125 254 253 40 82 82 19 21 22 8 31 30

76 Document;->getDocumentElement 45 214 166 11 108 91 4 4 6 11 32 29

77 Ljava/net/Socket;->getOutputStream 85 171 162 17 106 100 48 7 15 7 11 12

78 Landroid/net/NetworkInfo;->getExtraInfo 49 115 156 1 22 16 90 194 149 8 23 30

79 sqlite/SQLiteDatabase;->openDatabase 75 138 134 27 81 79 2 2 2 5 10 10

80 action.PHONE_STATE 132 133 132 101 101 101 68 68 68 11 11 11

81 TelephonyManager;->getCallState 13 120 122 15 57 53 6 18 6 2 4 4

82 NEW_OUTGOING_CALL 104 105 104 50 50 50 50 51 50 13 13 13

83 Ljava/net/URL;->openStream 16 96 98 5 66 74 0 0 0 4 16 16

84 reflect/Method;->getDeclaringClass 33 94 94 38 165 161 1 1 1 1 1 1

85 Ljava/lang/Process;->getOutputStream 68 80 84 6 10 9 48 7 15 3 3 3

86 Socket;->getInputStream 17 91 78 11 98 92 0 0 0 4 8 9

87 Landroid/net/wifi/WifiManager;->getWifiState 38 71 72 34 65 69 3 5 8 14 20 21

88 SmsManager;->sendTextMessage 22 26 44 0 0 0 1 2 2 0 0 0

89 Ljava/io/DataInputStream;->available 16 37 40 4 12 16 22 7 17 5 10 8

90 ContextWrapper;->openFileOutput 15 35 33 7 28 26 0 0 0 5 6 6

91 ACTION_POWER_CONNECTED 28 28 28 119 117 117 44 44 44 1 1 1

92 TelephonyManager;->isNetworkRoaming 17 26 27 17 36 28 0 0 0 6 9 8

93 PACKAGE_RESTARTED 26 26 26 33 33 33 0 0 0 3 3 3

94 WAP_PUSH_RECEIVED 24 24 24 25 25 26 14 14 14 3 3 3

95 PACKAGE_INSTALL 22 23 23 9 9 9 16 16 16 2 2 2

96 ContextWrapper;->startActivity 6 19 23 2 4 7 0 0 0 1 4 3

97 wifi/WifiManager;->setWifiEnabled 19 9 18 10 8 14 0 1 1 2 2 5

98 SmsManager;->divideMessage 0 3 16 0 0 0 0 0 0 0 0 0

99 Ljava/net/Socket;->isConnected 1 17 11 3 39 49 0 0 0 0 1 1

100 ContextWrapper;->openFileInput 5 7 10 5 7 12 0 0 0 2 2 3

101 ACTION_POWER_DISCONNECTED 9 9 9 152 153 153 0 0 0 1 1 1

102 BATTERY_LOW 7 7 7 20 20 19 0 0 0 1 1 1

103 Landroid/app/Service;->onDestroy 0 17 7 0 0 1 0 0 0 0 23 1

104 Ljava/lang/ProcessBuilder;->command 4 6 6 4 37 39 0 0 0 2 2 2

105 UMS_CONNECTED 5 5 5 0 0 0 0 0 0 1 1 1
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Table 14 A full table of the features and number of apps that logged each feature for each respective test input generation method
(Continued)

Dataset2 Dataset1

Malware Benign Malware Benign

API signatures RB SB H RB SB H RB SB H RB SB H

106 PACKAGE_CHANGED 3 3 3 65 65 65 0 0 0 3 3 3

107 BATTERY_OKAY 3 3 3 16 16 16 0 0 0 0 0 0

108 Landroid.content.ContentProviderClient 0 3 3 17 32 37 0 0 0 0 0 0

109 SIG_STR 2 2 2 0 0 0 31 31 31 0 0 0

110 Ljava/lang/Runtime;->exec_Chmod775 0 1 2 0 0 0 4 4 4 0 0 0

111 Landroid/app/Service;->onCreate 6 3 2 6 3 2 3 0 0 0 0 0

112 UMS_DISCONNECTED 1 1 1 2 2 2 184 183 184 0 0 0

113 SIM_FULL 1 1 1 4 4 4 0 0 0 0 0 0

114 SEND_MESSAGE 1 1 1 2 2 2 9 9 9 0 0 0

115 SmsManager;->sendMultipartTextMessage 0 0 1 0 0 0 0 0 0 0 0 0

116 Landroid/content/ServiceConnection 0 2 1 0 0 0 0 0 0 0 0 0

117 fdaccess 0 1 0 0 0 0 0 0 0 0 0 0

118 recvnet 0 1 0 0 0 0 0 0 0 0 0 0

119 init_APIMonitor 0 1 0 0 0 0 0 0 0 0 0 0

120 ContextWrapper;->sendOrderedBroadcast 0 0 0 0 2 2 0 0 0 0 0 0

121 getInstance_APIMonitor 0 1 0 0 0 0 0 0 0 0 0 0

122 SmsManager;->sendDataMessage 0 1 0 0 0 0 0 0 0 0 0 0

RB random-based, SB state-based, H hybrid
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Table 15 Performance evaluation of the machine learning classifiers trained on Dataset1 using random-based, state-based and hybrid
approaches

Classifier PrecM RecM PrecB RecB W-FM

Random-based approach

RF 0.926 0.919 0.927 0.933 0.9267

MLP 0.902 0.902 0.911 0.911 0.9067

SL 0.897 0.899 0.908 0.906 0.9027

SMO 0.88 0.912 0.917 0.887 0.8991

J48 0.89 0.894 0.903 0.9 0.8972

PART 0.884 0.903 0.91 0.893 0.8834

NB 0.81 0.63 0.72 0.866 0.7493

State-based approach

RF 0.953 0.925 0.934 0.959 0.9427

MLP 0.93 0.921 0.929 0.937 0.9292

SMO 0.918 0.923 0.93 0.925 0.9241

J48 0.918 0.905 0.915 0.927 0.9167

PART 0.91 0.916 0.923 0.917 0.9167

SL 0.905 0.918 0.925 0.913 0.9157

NB 0.741 0.843 0.836 0.732 0.7843

Hybrid approach

RF 0.948 0.911 0.922 0.954 0.9337

MLP 0.937 0.911 0.921 0.944 0.9282

SMO 0.921 0.92 0.928 0.928 0.9247

J48 0.92 0.912 0.921 0.928 0.9202

PART 0.902 0.92 0.926 0.909 0.9147

SL 0.912 0.906 0.915 0.92 0.9137

NB 0.746 0.814 0.816 0.748 0.7795
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Table 16 Performance evaluation of the machine learning classifiers trained on Dataset2 using random-based, state-based and hybrid
approaches

Classifier PrecM RecM PrecB RecB W-FM

Random-based approach

RF 0.855 0.835 0.804 0.827 0.8319

PART 0.828 0.805 0.77 0.796 0.8011

J48 0.819 0.79 0.754 0.787 0.7887

MLP 0.825 0.741 0.719 0.809 0.7720

SMO 0.733 0.795 0.721 0.647 0.7265

SL 0.731 0.794 0.719 0.643 0.7241

NB 0.741 0.536 0.577 0.772 0.6391

State-based approach

RF 0.904 0.87 0.848 0.887 0.8774

PART 0.872 0.84 0.813 0.849 0.8447

J48 0.862 0.828 0.8 0.838 0.8333

MLP 0.868 0.814 0.789 0.85 0.8301

SMO 0.866 0.759 0.745 0.856 0.8031

SL 0.847 0.772 0.749 0.83 0.7985

NB 0.744 0.665 0.639 0.721 0.6917

Hybrid approach

RF 0.891 0.864 0.84 0.871 0.8671

PART 0.862 0.835 0.806 0.838 0.8358

J48 0.848 0.825 0.793 0.82 0.8229

MLP 0.842 0.831 0.797 0.81 0.8217

SL 0.837 0.773 0.747 0.816 0.7932

SMO 0.846 0.754 0.735 0.833 0.7898

NB 0.732 0.646 0.622 0.711 0.6761
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