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Abstract
One of the crucial challenges of solving many-objective optimization problems is uniformly well covering of the Pareto-front
(PF). However, many the state-of-the-art optimization algorithms are capable of approximating the shape of many-objective
PF by generating a limited number of non-dominated solutions. The exponential increase of the population size is an inefficient
strategy that increases the computational complexity of the algorithm dramatically—especially when solving many-objective
problems. In this paper, we introduce a machine learning-based framework to cover sparse PF surface which is initially
generated by many-objective optimization algorithms; either by classical or meta-heuristic methods. The proposed method,
called many-objective reverse mapping (MORM), is based on constructing a learningmodel on the initial PF set as the training
data to reversely map the objective values to corresponding decision variables. Using the trained model, a set of candidate
solutions can be generated by a variety of inexpensive generative techniques such as Opposition-based Learning and Latin
Hypercube Sampling in both objective and decision spaces. Iteratively generated non-dominated candidate solutions cover
the initial PF efficiently with no further need to utilize any optimization algorithm.We validate the proposed framework using
a set of well-known many-objective optimization benchmarks and two well-known real-world problems. The coverage of PF
is illustrated and numerically compared with the state-of-the-art many-objective algorithms. The statistical tests conducted
on comparison measures such as HV, IGD, and the contribution ratio on the built PF reveal that the proposed collaborative
framework surpasses the competitors on most of the problems. In addition, MORM covers the PF effectively compared to
other methods even with the aid of large population size.
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Abbreviations
ML Machine learning
MORM Multi-objective reverse mapping
EA Evolutionary algorithms
MOOP Many-objective optimization problem
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NSGA-III Non-dominated sorting genetic
algorithm (version III)

IM-MOEA Inverse modeling-based multi-
objective evolutionary algorithm

MOEA/D Decomposition-based multi-
objective evolutionary algorithm

PF Pareto-front
OBL Opposition-based learning
LHS Latin hypercube sampling
ANN Artificial neural network
MSE Mean square error
NDS Non-dominated sorting

Variables
xxx A vector of decision variables
yyy A vector of objective values
X A set of decision vector
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Y A set of objective vector
xi A decision variable
yi An objective value
F Set of Objective functions
fi An objective function
D Number of variables
M Number of objectives
y̆ Opposite of y
ypo Partial opposite of y
M A trained model

Introduction

Evolutionary algorithms (EAs) have been very powerful and
well established approaches to solve many-objective opti-
mization problems (MOOPs). However, when the number of
objectives are high, they struggle to find well-covered and
well-distributed solutions. Moreover, it has been shown that
more than 90% of the randomly generated initial population
are non-dominated when the number of objectives are many
[19]. Furthermore, the small size of a population is not able
to cover the large-scale hyper PF surface and as a result,
this causes a sparse PF set. One way to reduce the impact
of sparsity in many-objective optimization is to increase the
initial population size. However, when the population size is
increased, the optimization process required to obtain con-
verged and well-distributed PF is computationally expensive
[31]. Moreover, the theoretical results presented by Chen et
al. have revealed that large population, depending on a prob-
lem characteristics, may not always be useful and even it can
degrade the performance of EAs [5]. Furthermore, it would
be challenging to tackle the sparsity issue as the dimension
of the problem gets large since large sparse regions occur in
the PF with the increasing number of dimensions. In addi-
tion, since optimization algorithm has difficulties when the
PF has sparse regions and consequently decision-maker can-
not reach all the points in the region of the interest (ROI) of
PF.

Recently, Deb and Srinivasan [13] introduced the idea of
innovization in multi-objective optimization to discover the
knowledge and patterns hidden in the PF. Although their
study focused on the discovery of important design prin-
ciples related to decision variables and objectives after the
optimization process is done. Innovization can be used as
part of the optimization process to improve the quality of the
Pareto-optimal solutions [12,30]. Subsequent to the introduc-
tion of innovization, there were several studies focusing on
the idea of incorporating of learning algorithms during the
optimization process to gain information that leads to a set
of improved solutions [4,8,27].

This study proposes a novel framework to fill sparse
regions in many-objective optimization by employing

machine learning (ML) after the optimization process is
complete. The proposed framework uses a machine learning
algorithm to approximate the mapping between the PF solu-
tions and decision variables. This information is then used
to generate new candidate solutions without the need for re-
running optimization algorithm.As a result, the sparsity issue
of PF can be addressed by the proposed collaborativeML and
MOO framework.

There is a growing interest in using the machine learning
techniques to enhance the performance of optimization algo-
rithms. Gaspar et al. presented a hybridmulti-objective EA to
accelerate the search using artificial neural networks (ANN)
[17]. The aim of their study was to reduce the number of
fitness evaluation by approximating global fitness functions;
hence machine learning is used to make a local search to find
better individuals. Adra et al. used the same framework for
optimizing the aircraft control system design [1]. Another
similar study proposed an algorithm to speed-up the multi-
objective genetic algorithmwith constraints usingANN [18].
The authors introduced an approximated function of the orig-
inal objective function using ANN, and used this function
during the optimization to reduce the computational time of
the evaluations. Kobayashi et al. presents a new mechanism
which helps tomaintain the diversity of solutions using ANN
[23]. A set of NSGA-III solutions are used to train the ANN
to find an approximation function as a surrogate model. The
study used this approximated function to relocate the popu-
lation uniformly. The use of machine learning to construct
a proxy model for many-objective optimization problems is
presented in several studies [3,26,33,47]. A proxy model can
be created on simulation results of an experimental problem
to be then solved by a multi-objective optimization algo-
rithm and consequently to reduce the number of lab-based
expensive experiments. Alternatively, for an expensive fit-
ness function, a proxy model is built to approximate the
value of objectives rather than evaluate them directly. Gen-
erally speaking, most of the studies in the literature have
used the machine learning to improve the evolution process
by surrogate model and they are not targeting adding new
non-dominated solutions to the PF. Surrogate models con-
struct a functionmapping from thedecision space to objective
space. They estimate the fitness value of candidate solutions.
Therefore, they are helpful when no explicit fitness function
exists or when the original fitness function is computation-
ally very expensive. On the contrary, the reverse mapping
algorithm constructs a mapping model from the objective
space to decision space. In [6], a reverse model algorithm,
IM-MOEA, is introduced based on the Gaussian process
to estimate the objective values of some random samples
from objective space. They create Gaussian model for each
objective and each cluster of population. Therefore, the com-
putational complexity increases exponentially. In addition,
they use descriptive models to estimate the distribution of
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the points and for accomplishment, they have been forced to
consider some assumptions such as the independency among
the objectives.

One of themajor difficulties of large-scalemany-objective
optimization is to obtain acceptable solutions with a rea-
sonable size of the population. Therefore, it is necessary to
reduce the number of evaluations to reach this goal [16].
This difficulty might be alleviated using a surrogate model
with machine learning methods. The idea of this study is
highly influenced by the innovization idea and reverse mod-
els because of seeking possible ways to gain information
from the PF solutions. In this paper, we proposed a reverse
mapping from objective space to decision space. To this end,
a learning model is trained to map the solutions on the PF,
resulted by an optimization algorithm, to decision variables.
Using this model, the decision variables can be estimated
for the desired values of objectives. Therefore, a cloud of
non-dominated solutions can be generated using a variety of
techniques while their decision values can be obtained by
the trained model. Two categories of generative techniques
applied on the decision or objective spaces can create new
points with the help of trained reverse mapping model and
problem’s objectives. As a result, decision-maker can select
an acceptable solution from a comprehensive set of PF solu-
tions by considering trade-off among own desired objective
values.

The main contributions of the proposed framework to
tackle the mentioned problems in the population-based algo-
rithms are

1. A novel reverse model is proposed to map the objective
space to decision space.

• Capability of comprehensively covering the Optimal
PF with no need to rerun the optimizer.

• with low cost, there is the capability of increasing
PF solutions to the desired number (i.e., as many as
possible).

• Enhancement of the uniform distribution of PF solu-
tions which provides the decision-makers with a
higher resolution of trade-off solutions with a low
sparsity over PF regions.

• It can be utilized with any MOO algorithm (i.e.,
classical or metaheuristic one) which can offer an
approximate PF set.

• There is a capability of getting a preferred solution(s)
(i.e., desired objective values) from the user to find
corresponding solution(s). Thus, it can help decision-
makers to selectively fill a sparse Region-of-Interest
(RoI) interactively by conducting a well-defined con-
trolled procedure with no need to rerun the optimizer.

2. Instead of random selection of points in objective space,
several sampling techniques are proposed for inverse

sampling which leads to generating more non-dominated
solutions to reduce the level of sparsity on surface of
hyper curve of PF.

3. A reference-line based scheme is designed to select a set
of well-distributed solutions after finishing of optimiza-
tion.

4. Strongly supporting scalability on the number of objec-
tives; the proposed model performs very well with many
objective cases, because objective values are the inputs
to the introduced reverse mapping model; dislike other
models which are facedwith the difficulty when the num-
ber of objectives increases.

5. Systematic experiments conducted to compare the pro-
posed algorithm with the-state-of-the-art MOEAs on ten
MOPs are described.

Finally, we want to remark that in most cases, real-life
problems have many objectives and even more decision vari-
ables. This leads to the higher dimensionality problem in
decision and objective spaces. Most of the similar studies
try to avoid complexity, however, we take advantage of two
types of complexity in our approach; (i) higher dimensions
in objective space, (ii) approximation errors in reverse map-
ping. First, we use the objective function values as inputs of
the machine-learning model, therefore having more objec-
tives leads to accurate learning (i.e., in opposite preference
of other methods). Second, approximation error acts in our
benefit since it helps as a local search in finding new feasible
candidate decision variables and solutions.

The remainder of the paper is organized as follows. The
next section provides the background reviewof the study. The
technical description of the proposed framework is presented
in the subsequent section followed bywhich the experimental
setup and experimental results of the proposed framework on
well-known multi-objective benchmark test problems with 3
and 5 objectives are presented. In addition to the benchmarks,
the performance of proposed method on two well-known
real-word problems is investigated in the penultimate sec-
tion. Finally, the concluding remarks are provided.

Literature review

Generally speaking, evolutionary-basedmulti-objective opti-
mization algorithms can be divided into three categories:
dominance-based, decomposition-based, and indicator-
based methods [41]. Dominance-based methods attempt to
find the solutions that optimize the objective functions using
the dominance concept. One of the stat-of-the-art algorithms
from this category is NSGA-IIII [10]. According to this
method, the candidate solutions in population are selected
based on the reference points distributed in the objective
space. On the contrary, the decomposition-based methods
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decompose the whole search space into smaller subproblems
and solve all of them simultaneously. Therefore, the conver-
gence rate of the algorithm is significantly improved, which
enhances the diversity of the obtained solutions. MOEA/D
[48] is one of thewell-known algorithms in this category. The
indicator-based methods evaluate the fitness of each solution
by assessing an indicator (such as hypervolume) to improve
the convergence and diversity criteria simultaneously. All
traditional multi-objective algorithms belong to aforemen-
tioned categories focus on the proposing a selection strategy
when attempting to adopt single-objective EAs to solving
MOEAs. Whereas designing effective reproduction strate-
gies that explicitly focus on covering PF by generating well-
distributed solutions has not been paid attention properly.

Apart from this categorization, the traditional multi-
objective optimization algorithmsuse the reproduction strate-
gies to generate new individuals in original decision space.
To this effect, there are a variety of methods which can sig-
nificantly improve the performance of existing algorithms by
designing new generative operators [20,40,46]. In contrary,
some MOEAs generate offsprings using probabilistic mod-
els to characterize the promising solutions and approximate
the Pareto-front instead of utilizing generative operators. In
fact, thesemethods use the knowledge from the approximated
Pareto-front to guide the MOEAs. Reverse models belong to
these category which construct a model to map the objective
space to decision space. This idea provides capability for
MOEAs to generate desired candidate solutions in objective
space explicitly.

IM-MOEA [6] constructs a model using Gaussian process
to map the objective space to the decision space. Con-
sequently, the authors generate candidate solutions in the
objective space. However, they require K × M modes where
K is the number of population partitions and M is the num-
ber of objective. This is thus an obstacle against scalability
in term of number of objectives. This algorithm suffers low
accuracy and difficulty in dealing with MOPs with irregular
PFs because it is not able to generate distribution in sparse
regions. In [44], a method is proposed based on the idea of
IM-MOEAbut the reference vectors are generated adaptively
and additionally nonrandomgrouping strategy are employed.
In [25], a model based on an incremental Gaussian mixture
model guides the search procedure. They fed the learning
model with all new solutions generated during the evolution
to adaptively discover the structure of the Pareto-optimal set.
In addition, to conduct the SensorOntologyMatching (SOM)
process to find the mappings among diverse sensor data, an
Improved IM-MOEA (I-IM-MOEA)-based matching tech-
nique is proposed [44]. An adjusted selection mechanism is
employed to tackle the problems on irregular PFs such as
reduction in PF solutions. Moreover, a dynamic Reference
Vectors is proposed to decrease the computational resources
and improve the efficiency of the algorithm. The potential

of reverse models for solving dynamic multi-objective opti-
mization problems is investigated in [49]. An inverse-based
Gaussian process maps the historical optimal solutions from
the objective space to the decision space.

A decomposition-based reverse model algorithm which
uses k-means for grouping in the objective space is intro-
duced in [15]. Furthermore, a selection criterion based on
decomposition that selects the most appropriate reference
vectors is proposed. All reviewed studies attempt to find a
distribution on PF which have to make some assumptions
such as independency among the objective functions while
our proposed method alleviates these drawbacks as it gen-
erates a model using the learning process. Moreover, these
method are dependent on the shape of PF and are not usu-
ally able to generate distribution model on sparse are of PF.
Whereas our proposed method can train a model using a lim-
ited number of points.

Background review

In this section, the concepts related to the study have been
explained. In addition to the definition of many-objective
optimization and ANN, the explanation of three techniques
which are utilized to generate new points in both decision
and objective spaces is provided.

Many-objective optimization

Many-objective optimization targets handling more than
three conflicting objectives. Multi-objective optimization
algorithms have been greatly expanded to tackle many-
objective problems. The use of EAs has been very promising
for solving such problems. The population-based nature of
these algorithms results in generating a set of candidate
solutions at each run of the algorithm. Collaboration of indi-
viduals to make an optimal Pareto-front is the core reason of
success of population-based algorithms compared to single-
solution algorithms.

Definition 1 Many-objective optimization [2]

Min/Max F(xxx) = [ f1(xxx), f2(xxx), . . . , fM (xxx)]
s.t. Li ≤ xi ≤ Ui , i = 1, 2, . . . , d.

(1)

Subject to the following equality and/or inequality con-
straints.

g j (xxx) ≤ 0 j = 1, 2, . . . , J

hk(xxx) = 0 k = 1, 2, . . . , K ,
(2)

where M is the number of objectives, d is the number of
decision variables (i.e., dimension), and the value of each
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variable, xxxi , is in interval [Li ,Ui ] (i.e., box-constraints). fi
represents the objective function,which should beminimized
or maximized.

Due to the conflicting of objective functions in a multi- or
many-objective optimization problems, the definition of the
optimality is not as simple as the single-objective case. There-
fore, it is required to make a trade-off decision among objec-
tive functions. One of the commonly used concepts for com-
paring candidate solutions in such problems is dominance.

Definition 2 Dominance Concept If xxx = (x1, x2, . . . , xd)
and x́xx = (x́1, x́2, . . . , x́d) are two vectors in a minimization
problem search space, xxx dominates x́xx (xxx � x́xx) if and only if

∀i ∈ {1, 2, . . . , M}, fi (xxx) ≤ fi (x́xx)∧
∃ j ∈ {1, 2, . . . , M} : f j (xxx) < f j (x́xx)

(3)

This concept defines the optimality of a solution in a multi-
objective space. Candidate solution xxx is better than x́xx if it is
not worse than x́xx in any of the objectives and at least it has
a better value in one of the objectives. All solutions that are
not dominated using any other solution called non-dominated
solutions; they create the PF set. Many-objective algorithms
attempt to find these solutions by utilizing generating strate-
gies/operators and selection schemes. The non-dominated
sorting (NDS) algorithm [11] is one of the popular selection
strategies which works based on the dominance concept. It
ranks the solutions of the population in different levels of
optimality, called Pareto. The algorithm starts with determin-
ing all non-dominated solutions in the first rank. To identify
the second rank of individuals, the non-dominated vectors
are removed from the set to process the remaining candidate
solutions in the same way. Non-dominated solutions of this
step make the second level of individuals (second Pareto).
Thereafter, the second ranked individuals will be removed to
identify the third Pareto. This process will continue until the
whole individuals are grouped into different levels of Pareto.

Artificial neural network

Artificial Neural Network (ANN) is one of themost powerful
tools for pattern recognition and data mining that is inspired
by human brain [45]. Nowadays, there has been growing
interest in usingANN in a variety of applications for develop-
ing a learning model [32,37,50]. The network structures are
made up of two components: neurons and weighted connec-
tions among neurons. The feed-forward network is a popular
category of ANNs with an input layer for feeding input data,
an output layer for specifying the output of classification or
regression, and one or more hidden layers between input and
output layers for the learning process. The learning process in
the network is based on finding the best connection weights
and thresholds of neurons for hidden and output layer with

the goal of achieving minimum error for predicting the out-
put of test data. To train a network, training data is fed to
the ANN. The error can be computed using a desired metric
such as Mean Square Error (MSE) defined as follows.

MSE = 1

n

n∑

i

(yi − ŷi )
2, (4)

where n is the number of samples, yi is the desired Neural
Network output, and ŷi is the neural network output. The
weight updates are performed using an optimization method
such as Gradient Descent. The best values for the weight
connections and threshold are calculated to minimize the
corresponding error, called loss value. This process contin-
ues until the algorithm meets a predefined criterion such as
reaching to a specific number of iterations or desired error
value.

Opposition-based learning (OBL)

Opposition-based learning (OBL) is a technique to solve the
optimization/learning problems effectively and efficiently
[34]. Literature shows that OBL augments the diversity of
generated solutions for an optimization problem by explor-
ing more regions of the search space in both current and
opposite directions. In this study, OBL is used as a paral-
lel approach to produce more and diverse points on the PF
cloud. In the following, three types of the opposition-based
operators are briefly explained.

Definition 3 Type I opposition Let xxx = (x1, . . . , xD) be
a point in D-dimensional space and xi ∈ [ai , bi ], i =
1, 2, . . . , D. The opposite of xxx is defined by x̆xx=(x̆1, . . . , x̆D)

as follows: [28]:

x̆i = ai + bi − xi . (5)

Definition 4 Type II opposition For the point xxx = (x1, . . . ,
xD) we have yyy = f (xxx) ∈ [Ymin,Ymax], the min-max oppo-
sition computation for Type-II opposition is defined as [36]:

y̆yy = Ymin + Ymax − yyy. (6)

Definition 5 Partial opposition In a multi-dimensional
space, the partial opposite point yyypo = (y1, y̆2, y3, . . . , y̆D)

is generated by opposing only a portion of dimensions [29]
which can be selected randomly. So, we can define the partial
opposite set of points yyypo as follows:

yyypo = yyypo1 , yyypo2 , . . . , yyypoD =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y1 y̆2 y̆3 . . . y̆D
y̆1 y̆2 y3 . . . yD
...

...
...

. . .
...

y̆1 y2 y̆3 . . . y̆D,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(7)
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Fig. 1 Two sample LHS configurations with two variables in five inter-
vals

where y̆i is the opposite value of yi . Obviously, there are 2D

partial opposite combinations for a D-dimensional vector.

Latin hypercube sampling

Latin Hypercube Sampling (LHS) is a stratified sampling
technique to generate near-random samples from a prob-
ability distribution [38]. To generate N samples from D
variables, the range of each variable is divided into N equally
probable intervals. From each interval, a random sample is
selected to cover a large space of space. Since each sample
of each variable can be paired in a randommanner with other
variables, for given values of N and D, there exist (N !)D−1

possible interval combinations. Two examples of different
combinations are illustrated in Fig. 1 representing a LHS in
two dimensions with five intervals.

Proposed algorithm: MORM

The main goal of the proposed method is to comprehen-
sively cover the PF using a trained model on a resulted
small set of solutions from an optimization process. Inmany-
objective optimization problems, obtaining well-covered PF
is a challenging task especially when the number of objec-
tives increases and PF is a hyper-surface as a result. The
main key idea is to train a model on optimal PF set obtained
from an optimization process to map the decision variables
of the resulted objective values. In this way, generating
numerous points in objective space leads to the capability of
trained model to estimate the corresponding decision vari-
ables. Therefore, a cloud of non-dominated solutions can be
obtained with no need to rerun an optimization process. For
this purpose, a sparse PF is initially achieved by an arbitrary
many-objective optimization algorithm, either by a classical
ormeta-heuristicsmethod. Considering a learning algorithm,
i.e., regression technique, the inputs of the model are the
objective values on provided PF and its outputs are corre-
sponding decision variables. The learning process aims to
find a mapping model between objectives and variables val-
ues to predict the decision vector for a given objective vector.
Accordingly, by providing more points around the resulted

PF,we are able to estimate the decision values for these objec-
tive values. In addition, the constructed model gets improved
over iterations, because the training points increase gradu-
ally. This approach is calledmany-objective reversemapping
(MORM) as constructed model conducts a mapping from
objective space to decision space in reverse direction of an
objective function which is a mapping from the decision to
objective space.

The trainedmodel is utilized to predict the decision values
for those points generated close to resulted PF fromoptimiza-
tion task. Afterward, the true objective values for predicted
decision variables can be achieved by objective function in
a direct mapping. Newly generated pairs of decisions and
their corresponding objective values are utilized to improve
the trained model. This procedure is the fundamental part
of the proposed framework. The process is repeated to gen-
erate as much as the required non-dominated solutions. To
generate the approximate points in both decision and objec-
tive spaces, several techniques including OBL and LHS are
employed. The details of main steps of the proposed frame-
work are provided as follows.

1.Optimization.At the first step of the framework, amany-
objective optimization algorithm is utilized to generate the
initial PF for the given problem. The resulted non-dominated
solutions are exploited for two purposes. Firstly, a machine
learning model is trained on objective values to predict the
decision values of the followinggenerated points. In addition,
these points can be input for other auxiliary techniques such
as OBL and LHS to generate more points in objective and
decision space. Hence, regardless of the type of the optimiza-
tion algorithm, any method which is able to obtain an initial
optimal PF of the problem can be employed. Therefore, the
output of this step is a PF (i.e., a set of decision variables
(X ) and objective values (Y ) resulted from a conventional
many-objective optimization algorithm.

PF : (X ,Y ) = {(xxx, yyy) : xxx = (x1, x2, . . . , xD),

y = (y1, y2, . . . , yM ) and yyy = F(xxx)}, (8)

where F(xxx) = [ f1(xxx), f2(xxx), . . . , fM (xxx)] is a set of objec-
tive functions.

2. Reverse mapping. In this phase, a machine learning
algorithm is used for the surrogate model to conduct the
reverse mapping from objective space to decision space.
Obviously, the fitness function maps the variables of deci-
sion space to their objective values. Conversely, in the reverse
direction, a learning model, i.e., regression model, can be
trained to map the objectives into decision variables. To this
end, the generated PF using an optimization algorithm in
the previous step is provided as training data for the utilized
learning algorithm. The objective values of non-dominated
solutions are inputs of the model and the decision variables
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form the outputs. After being given a sufficient number of
samples, the model becomes capable of predicting decision
variables from associated objective values. The estimated
decision values of the trained model are evaluated by the
fitness function to get the true value of objectives. This step
leads to generating a set of points different from the training
data because similar to every machine learning algorithm,
an approximation model yields the approximation error; this
situation results in a cloud of non-dominated solutions. After
completing the training process, the generated objective val-
ues are entered into the constructed model as input data to
get approximate decision variables. The process of mapping
between decision and objective spaces is presented in Fig. 2.
Therefore, the output of this step is a trainedmodel (M) on the
resultant PF from the previous step which maps the objective
values (yyy)into decision variables (xxx) as follows.

xxx = MMM(yyy, β) : yyy → xxx, (9)

where β is the a set of model parameters. It is obvious that
if we feed the model using the current objective values, Y , a
set of new decision variables can be obtained so that XM =
MMM(Y , β). Correspondingly, the true objective values of XM

can be obtained using fitness evaluation, YM = F(XM ).

3. Generative techniques. To produce a cloud of non-
dominated solutions for an optimization problem, other
auxiliary methods can be utilized along with the optimiza-
tion process. These techniques generate new points close to

discovered solutions on PF.Moreover, new points can also be
created in the decision space. Once the new points are gener-
ated in the objective space, the trained model is employed to
map the objective values to decision variables reversely. For
this purpose, two techniques are employed including OBL
and LHS. The details of operating these techniques are pro-
vided in the following.

OBL As mentioned in the background review, there are
two types of OBL, namely Type I and Type II which are
utilized in the following ways.

Type I OBL can be applied in decision space. In this
case, the opposite of decision variables of non-dominated
solutions, XopI, are computed to discover more candidate
solutions with higher diversity. In a direct mapping, for the
newly discovered decision vectors, the objective values are
computed using fitness functions so that YopI = F(XopI).
As a result, a set of candidate solutions are produced using
this technique. OBL leads to exploring the search space in
both current and opposite directions to enhance the diver-
sity and coverage of the PF. On the other hand, type II OBL
and its variant, partial type II OBL, produces a set of new
points in objective space, Y ′

opII and Y
′
popII, respectively. These

points are in the opposite direction of objective vectors of the
resulted PF.

Since these points are generated in objective space, the
corresponding decision variables, xopII and xopII, should be
estimated as follows:

Fig. 2 Mapping between
decision and objective spaces. In
the upper subfigure, the
optimizer estimates an initial PF,
and the fitness function maps the
decision space to objective
space. The Machine learning
model is constructed on PF
which is the output of the
optimizer. In the lower
subfigure, the approximate
decision variables are the output
of the trained model and new
candidate solutions are added
then non-dominated ones have
been remained as the improved
PF
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XopII = MMM(Y ′
opII, β) and XpopII = MMM(Y ′

popII). (10)

To compute the true objective values of approximate deci-
sion vectors, fitness evaluation is utilized and this is in fact
the only time we need to call the fitness function so that
YopII = F(XopII) and YpopII = F(XpopII). By a well-trained
mapping model, the new objective vectors are expected to
be close to the opposite of the original non-dominated solu-
tions. Consequently, a set of decision and objective vectors
are resulted using these techniques.

LHS It is another sampling technique to generate a pool
of new samples in objective space. Using the aforemen-
tioned procedure, a set of objective vectors are sampled from
sub-regions of PF intervals, Y ′

LHS. The sample spaces are
resulted from splitting the interval of each objective of non-
dominated solutions. This technique attempts to distribute
samples evenly over the sample space. The set of random
numbers generated by the LHS method are the appropriate
representatives of the real variability rather than traditional
random sampling. Hence, it leads to better exploration of PF
and generation of new non-dominated points with a higher
probability. Similar to other generative methods applied in
objective space, the reverse mapping mode takes the resulted
objective vector as input to estimate the corresponding deci-
sion vectors, XLHS, as follows:

XLHS = MMM(Y ′
LHS, β). (11)

Then, the valid fitness values of predicted decision vec-
tor are computed using the fitness function so that YLHS =
F(XLHS). As a result, a set of decision and objective vectors
pairs are generated using this technique as well.

4. Pareto-front selection. In this step, non-dominated solu-
tions are selected among a set of all generated points using
different methods in previous steps. The set is the union of
three subsets including: 1. points on PF from the previous
generation, (X ,Y ). 2. the estimated points by the trained
model, (XM ,YM ); as previously mentioned, after training
the model, the approximate decision values of training data
are evaluated by the fitness function to compute the true value
of objectives. Therefore, in addition to PF from the previous
iteration, the approximated points around the PF are appro-
priate set of candidates to cover the PF similar to a local
search which covers the region around the current candidate
solutions. 3. the resulted points from the generative tech-
niques such as OBL and LHS as follows.

(X ,Y ) = NDSorting((X ,Y ) ∪ (XM ,YM )

∪ (XopI,YopI) ∪ · · · (XopII,YopII) ∪ (XpopII,YpopII)

∪ (XLHS,YLHS)).

(12)

The non-dominated solutions extracted from this step are
considered as a new training set for themachine leaning algo-
rithm to re-train it. Accordingly, the process of training the
model and generating a well-distributed PF continues itera-
tively. At each iteration of the framework, by increasing the
non-dominated points, more training data are provided to
improve the quality of reverse mapping model. The overall
structure of the MORM is illustrated in Fig. 3. As it is pre-
sented, the resulted candidate solution from an optimization
process is fed into the ANN as training data. Simultaneously,
other generative techniques including OBL and LHS are uti-
lized to produce more objective and decision vectors. All
generated points in objective space are mapped to decision
space using the trained NN to get the approximate corre-
sponding decision vectors. The predicted decision vectors are
evaluated by the fitness function to compute the true objective
values. Non-dominated solutions of a union set of new points
are selected to re-train the NN to get a more accurate model.
In fact, re-training ANN with new solutions is for improving
the model but we can still stay with the same trained ANN
if the training cost is not affordable. In other words, the pro-
posed model follows the active learning however, it could be
a passive one. Furthermore, most of the real-world optimiza-
tion problems are many-objective with expensive objective
functions which require a huge population size to generate
as many as possible PF candidate solutions. However, the
cost of fitness call of such problems is a serious barrier for
evolving a large population. Hence, the cost of training ANN
even with all non-dominated solutions is less than running
a traditional many-objective optimization evolutionary algo-
rithm with a huge population size. In fact, re-training of an
ANN with a small set of samples is not time consuming.

By this iterative procedure, at the end of each iteration,
a set of significant number of non-dominated solutions are
added to PF. Finally, a well-distributed and dense PF can be
resulted. The pseudocode of the algorithm is presented in
Algorithm 1.

Experimental results and analysis

In this section, we explain the conducted experiments to
assess the proposed method in terms of various performance
metrics. In addition to comparison with the state-of-the-
art many-objective optimization algorithms, the PF covering
process of the proposed framework is investigated compre-
hensively.

Benchmark functions and implementation details

The practical application of the MORM is assessed in
terms of various evaluation measures on a number of well-
known many-objective optimization benchmarks [7] listed
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Fig. 3 The overall structure of the MORM. The sparse initial PF is
the training data of the ANN. Several generative techniques including
OBL and LHS are employed to add new candidate solutions to PF. The

process is a an iterative procedure to cover the PF as much as required.
ND sorting stands for Non-dominated sorting algorithm

in Table 1. The conducted experiments are for three and
five-objectives optimization test sets. The number of deci-
sion variables is set according to the setting used in [7]. We
excluded MaF10 because the optimization algorithm could
not generate an initial PF close the true PF and consequently
the reverse mapping procedure fails to construct a model on
the resulted PF.

At the first step, NSGA-III [10] algorithm is applied to
create the initial PF as the input of the proposed framework.
The size of the population to run the NSGA-III is set to
100; consequently according to reference-line strategy in the
NSGA-III, the number of solutions on the resulted PF is 91
for 3-objective problems, and 81 for 5-objective problems.
An ANN model with the hidden layer size of 10 is trained
using the fitness values of initial PF as the input and the
decision variables values as the output of the network. The
ratio of size of training, validation, and test sets for training
of the ANN is set to 70%, 15%, and 15% of the entire data,
respectively. TheMSE is used as the performance function of
the network. To handle the box-constraint for the generated
candidate solutions, the infeasible values are replaced with
average values of the corresponding dimension’s boundaries.

Two categories of results are presented in this sec-
tion. Firstly, the resulted solutions of MORM are repre-
sented by the visualization and numerical values. More-
over, the MORM is compared with three state-of-the-art
many-objective optimization algorithms, namely NSGA-III,

MOEA/D [48], and IM-MOEA [6] in terms of three well-
known many-objective evaluation metrics including ratio of
union PF, Hypervolume indicator (HV) [43], and inverted
generational distance (IGD) [35]. Ratio of union PF com-
putes the amount of contribution of each algorithm on
resulted PF by conducting the NDS algorithm on them and
then measuring the ratio of each. This measure compares
the algorithms in terms of dominance. HV is a very popu-
lar indicator which evaluates many-objective algorithms in
terms of the distribution of the PF and the closeness to true
PF. HV indicator evaluates the diversity and convergence of
a many-objective algorithm. It calculates the volume of M-
dimensional space that is surrounded by a set of solution
points (A) and a reference point r = (r1, r2, . . . , rM ) where
M is the number of objectives of the problem. Therefore, the
volume of the two-dimensional space which is surrounded
by points on the obtained PF and r , is calculated as HV indi-
cator. A reference point is a point with the worse values than
nadir point. The measure is defined in Eq. 13.

HV(A) = vol

( ⋃

a∈A

[ f1(a), r1] × [ f2(a), r2] × · · ·

×[ fM (a), rM ]
)

, (13)

where a ∈ A is a point which all candidate solutions are
weakly dominated by it. Larger values of HV indicates that
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Table 1 Characteristics of
benchmark problems

Test function Properties Dimension

MaF1 Linear M + 9

MaF2 Concave M + 9

MaF3 Convex, multimodal M + 9

MaF4 Concave, multimodal M + 9

MaF5 Convex, biased M + 9

MaF6 Concave, degenerate M + 9

MaF7 Mixed, disconnected, multimodal M + 19

MaF8 Linear, degenerated 2

MaF9 Linear, degenerated 2

MaF11 Convex, disconnected, nonseparable M + 9

MaF12 Concave, nonseperable, biased deceptive M + 9

MaF13 Concave, unimodal, nonseperable, degenerate 5

M is the number of objectives

input : Prob: Optimization problem, Max_I t : Number of
iterations

output: (X , Y ): Non-dominated solutions

// Generating initial PF using an
optimization algorithm

(X , Y ) =
Many − objective_Optimization_Algori thm(Prob);
I t = 0;
while I t < Max_I t do

// Training a Model by the resulted PF as
the inputs

Training_Model(X , Y );
XM = Trained_Model(Y );
YM = Y_Evaluation(XM );
// Generating points using Opposition

type I
XopI = T ypeI_Opposi tion(X);
YopI = Y_Evaluation(XopI );
// Generating points using Opposition

type II
Y ′
opI I = T ypeI I_Opposi tion(Y );

XopI = Trained_ANN (Y ′
opI I );

YopI I = Y_Evaluation(XopI I );
// Generating points using Partial

Opposition type II
Y ′
popI I = Partial_T ypeI I_Opposi tion(Y );

X popI I = Trained_ANN (Y ′
popI I );

YpopI I = Y_Evaluation(X popI I );
// Generating points using LHS
Y ′
LHS = LHS(Y );

XLHS = Trained_ANN (Y ′
LHS);

YLHS = Y_Evaluation(XLHS);
// Selecting non-dominated solutions
(X , Y ) = NDSorting((X , Y ) ∪ (XM , YM ) ∪ (XopI , YopI ) ∪
... (XopI I , YopI I ) ∪ (X popI I , YpopI I ) ∪ (XLHS, YLHS));
I t = I t + 1

end
Algorithm 1: Pseudo-code of MORM. Other possible ter-
mination conditions such as HV value, number of PF
solutions can be considered.

PF surrounds a wider space and it results in more diverse
solutions and also more closer to optimal PF.

IGD measures the distance between the resulted PF and
true PF∗ which is calculated as follows:

IGD(A) =

( ∑PF∗
i=1 dqi

)1/q

PF∗ , (14)

where dqi is the Euclidean distance between a solution from
PF* to its nearest individual in the resulted PF and q = 2. A
smaller IGD value indicates a lower distance to true PF and
consequently better performance. To calculate IGD, roughly
10,000 reference points on the PF of each benchmark func-
tion are sampled by Das and Dennis’s approach [9]. Finally,
because of the stochasticity of the algorithm, the experiments
are conducted as 31 independent runs. The Wilcoxon statis-
tical test [14] is applied to investigate the significance of the
acquired results. By this way, the winner method is high-
lighted in each table of numerical results. All simulations are
implemented usingMatlab R2019a withMicrosoftWindows
10 Enterprise 64-bit as the operating system on a PC with a
AMD Ryzen Threadripper 1950X 16-Core Processor, 3750
Mhz.

Results and discussion

Figure 4 illustrates the resulted non-dominated solutions on
PF for 3-objectiveMaF2 at each iteration of the process. The
generated points using each component are presented using
different colors. As it can be seen, the exploitation of each
technique intensively increases the number of solutions on
PF. Each technique discovers a portion of the PF and together
they progressively cover the entire PF. Although, the number
of solutions that each component can find is different, the
effect of generated points in terms of filling the sparse region
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Fig. 4 Generated PF on MaF2 function for three objectives using each
component during four consecutive iterations of theMORM.The gener-
ated points by each generative technique is presented in a different color.

The PF is gradually covered during a number of iterations. According
to results, the generated points by feeding the PF to ANN covers more
region of PF rather than other techniques

and/or diversity improvement can be independent of their
quantity. For MaF2, LHS and ANN can markedly generate
more points to fill the surface of the PF. By contrast, oppo-
sition type I and type II produce a limited portion of the PF.
Note that the presented points are non-dominated candidate
solutions which are remained in each iteration. For instance,
the initial points have been reduced from the first iteration
to the second iteration because other techniques could gen-
erate solutions that dominate the initial points. However, the
number of non-dominated solutions increases gradually. It is
worth mentioning that each generative technique finds a spe-
cific portion of the PF according to the way it operates. For
instance, ANN generates the points based on what is learned
from the initial PF resulted using a state-of-the-art many-
objective algorithm, thus the produced points are mainly
around the initial PF, especially in the first iteration. How-

ever, generating more points in sparse regions using other
techniques in the next iterations provides theANNwithmore
training data which leads to a well-trained network and well-
distributed points.

Figure 5 represents the initial and final PF for some sam-
ple functions with three objectives resulted by the MORM.
The initial PF is the non-dominated solutions obtained by the
NSGA-III algorithmwhich is the input data for ANN to train
the network for further process. After employing different
generative techniques in four consecutive iterations, the final
illustrated PF is achieved. As it is shown, the resulted non-
dominated solutions could fill the sparse regions of the PF.
However, the performance of the method is mainly affected
by the initial PF because well-trained ANN yields more
accurate candidate solutions for the optimization problem.
Therefore, as it is presented, for some cases that the initial
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Fig. 5 Generated PF on samples of 3-objective benchmark functions.
For each sample, the initial solutions generated by NSGA-III algorithm
(top plots) and the final PF produced by the proposed method (bottom

plots) are presented. The generated points by each generative technique
is presented in a different color. The PF is accumulatively covered by
different techniques during a number of iterations

optimization algorithm is not able to find solutions that cover
the overall shape of the PF, the ANN cannot be trained effi-
ciently and consequently, MORMmay not fill the surface of
the PF by the generated candidate solutions. Furthermore,
Fig. 5 shows the distribution of non-dominated solutions
resulted from different techniques. Each technique is able to
find the solutions of a specific region of the PF. However, the

ratio of the generated solutions is not identical for different
techniques.

Figure 6 also illustrates the 3D-Radvis visualization
[21] of the initial and final resulted PFs on some sample
benchmark functions with five objectives. Similar to three
objectives, the final PF is crucially dependent on the initial
PF which provides the training data for ANN. During the
process, all techniques performing in objective space require
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Fig. 6 3-D Radvis plots of Generated PF on samples of 5-objective
benchmark functions. For each sample, the initial solutions generated
by the NSGA-III algorithm (top plots) and the final PF produced by the
MORM (bottom plots) are presented. The volume of generated points

by each generative techniques is presented in a different color. The PF
is accumulatively covered by different technique during a number of
iterations
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the ANN to estimate the value of variables in decision space.
Consequently, the performance of ANN has a crucial role on
the performance of the method. For instance, onMaF3, since
the NSGA-III could not discover non-dominated points in a
specific portion of the PF, i.e., the region between f1 and
f2, the proposed method was not also able to search the cor-
responding region effectively and thus as it is shown, the
number of discovered solutions is limited on the correspond-
ing region.

In addition, Table 2 represents the numerical results of
the proposed framework after four iterations for both 3- and
5-objective problems. The first column indicates the number
of points on initial PF resulted from the NSGA-III, which
the MORM starts the reverse mapping process from. Corre-
spondingly, the number of final candidate solutions is given in
the second column. Depending on the nature of the optimiza-
tion problem and the shape of the PF, the number of generated
candidate solutions is different. The maximum number of
non-dominated solutions for 3-objective problems is 80,188
which is obtained for MaF8. This number for 5-objective
benchmarks is 100,924 onMaF2. TheMORMcould increase
the average number of candidate solutions on 3-objective
PF from 91 to 19,773 whereas on 5-objective problems, the
MORM reached 37,209 candidate solutions.

Each successive column shows the ratio of contribution
of each component on the final PF. For instance, ANN has
produced 39.48% and 31.69% of points on the resulted 3-
objective and 5-objective PFs, respectively during the four
iterations. As mentioned previously, ANN is trained at the
beginning of each iteration using all non-dominated solu-
tions which increase in every step; the ANN will be trained
by more training data points and consequently it will be able
to predict the decision variables with higher accuracy. On
the other hand, the approximated decision values are able to
reach new objective values on the PF close to previous points.
This is the main reason why the ANN is in the first rank for
all functions. In fact, the techniques such as LHS or OBL are
able to explore the area around the PFwhile theANN is a kind
of local search to exploit the region close to the current PF.
In other words, it is revealed that the ANN performs well on
generating more points whereas other techniques cover more
sparse regions. Results supports that OBL-based points lead
to diversity and survive after non-dominated sorting to cover
the sparse region of the PF. Along with the ratio of each com-
ponents’ contribution, the ratio of the remained points of the
initial PF is also reported in the last column which constructs
the lowest portion of the final PF. In overall, ANN has the
higher contribution on finding the non-dominated solutions.
Conversely, Type I Opposition could generate the lowest
number of solutions among the employed techniques. The
possible cause is that all other techniques explore the objec-
tive space to find more non-dominated solutions; therefore,
they will achieve high probability of remarkable accomplish-

ment. Conversely, type I opposition operates on decision
space and correspondingly it may decrease the chance of
selecting a non-dominated solution.

Well-distributed PF solutions using reference points

To ensure the diversity in resultant solutions, a predefined
set of reference points can be used similar to that is proposed
in NSGA-III. The reference points lead to widely distributed
solutions because the reference points are widely distributed
on the entire normalized hyperplane. NSGA-III uses Das
and Dennis’s [22] systematic approach to generate reference
points on a normalized hyper-plane. The number of refer-
ence points (H ) in an M-objective problem is defined by the
following equation.

H =
(
M + P − 1

P

)
, (15)

where P is the number of divisions along each objective.
In our experiments, we define a predefined number of ref-
erence points to select a set of well-distributed candidate
solutions among all generated non-dominated solutions. This
technique produced a diverse set of non-dominated solution
on thePFadiversePFwhichmakes the decisionmakingmore
efficient. Figure 7 illustrates two samples of well-distributed
PF with different number of reference points. Each reference
point attracts a candidate solution having the minimum per-
pendicular distance with the corresponding reference line.
As it is presented, increasing reference points cover more
sparse region of the PF with adequate diversity. Moreover,
among the selected points, there are generated points from
different components of proposed methods indicating their
contribution in producing diverse solutions. The number of
total reference points are considered 500 and 1500 approx-
imately; however, according to Eq. 15, the accurate values
are the closest numbers which are 496 and 1485 for M = 3
and 495 and 1365 for M = 5, respectively.

Comparative results

To evaluate the MORM, we also compared it with the
state-of-the-art algorithms such as NSGA-III, MOEA/D, and
IM-MOEA. It is obvious that the maximum number of non-
dominated solutions on a PF generated by a population-based
many-objective algorithm is equal to the population size.
Accordingly, to guarantee a fair comparison, for each bench-
mark function the competitors run with population size equal
to the number of candidate solutions on the resulted PF from
MORM. In addition, to run these algorithms, the total num-
ber of fitness calls set to that one required for four iterations
of MORM plus the needed budget for running the optimiza-
tion method to obtain the initial PF. Table 3 represents the
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Fig. 7 Well-distributed PFs generated using reference points on two
samples. For each sample, the initial solutions generated by the NSGA-
III algorithm (left plots), the final PF produced by the proposed method

and ≈500 reference points (middle plots), and ≈ 1500 reference points
(right plots) are presented.NPR indicates the number of reference points

population size and NFC allocated for each benchmark func-
tion according to the number of points on final PF and the
number of given NFC of MORM, respectively. As it is pre-
sented, the number of these parameters are different for 3-
and 5-objective optimization problems. Considering these
parameters for many-objective optimizations, the maximum
number of iterations for the algorithm to evolve the popu-
lation is four which is a very small value and consequently
insufficient for the algorithm to reach a comparable PF. For
instance, the population size for MaF2 is 9471 while the
algorithm can call the fitness function 67,905 times. There-
fore, at each iteration the competitor algorithms can iterate
only seven times to evolve the population which is a very low
value for the number of iterations for such a large population
to get evolved sufficiently.

According to the aforementioned parameters, NSGA-III,
MOEA/D, and IM-MOEA as competitors are applied on the
optimization benchmark functions. For all algorithms, we
use the PlatEMO framework [39]. The parameter setting in
platform is based on the reference papers which are given in
Table 4.

The results of all algorithms are presented in Tables 5 and
6. As it can be seen, the algorithms are compared with the
MORM in terms of ratio of union PF, HV, and IGD. Union
PF is a set of non-dominated solutions from the union of PFs
resulted from three methods. The remaining non-dominated
solutions from each method in the union PF is reported as
a measure. From the Table 5, MORM has a higher contri-
bution in the union PF in all optimization problems except
3-objective MaF1 in which MOEA/D performs better. Since

Table 3 Population size and allocated number of fitness call for state-
of-the-art optimization algorithms (i.e., competitors)

M = 3 M = 5

POP Size NFC POP Size NFC

MaF1 15,313 69,655 43,354 103,310

MaF2 9471 67,905 100,924 148,040

MaF3 8650 707,40 64,224 115,580

MaF4 65,354 120,350 74,692 129,635

MaF5 3192 44,680 3013 53,870

MaF6 16,259 87,840 5051 68,725

MaF7 6437 87,105 14,247 102,245

MaF8 80,188 89,815 85,962 94,545

MaF9 21,934 37,540 2940 15,935

MaF11 3461 48,230 2877 53,120

MaF12 5301 58,390 49,006 119,840

MaF13 1724 22,355 223 17,425

Avg. 19,773 670,50 37,209 85,189

The population size is equal to the resultant number of non-dominated
solutions by MORM. NFC represents the number of fitness calls

the solutions generated by the NSGA-III and IM-MOEA
algorithm were dominated by the solutions form other algo-
rithm for most of the test problems, its contribution is zero.
Similarly, the difference between the ratio of contribution of
MORM andMOEA/D is remarkably significant. From Table
6, HV and IGD also reveal the superiority of the MORM
compared to other algorithms. On average, in terms of HV,
theMORMsurpasses the NSGA-III,MOEA/D, and on 10, 6,
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Table 4 Parameter settings of the three algorithms in comparison

NSGA-III

Population size According to Table 3

Number of fitness calls According to Table 3

Number of reference points According to [10]

Generative operators Genetic operators

MOEA/D

Population size According to Table 3

Number of fitness calls According to Table 3

Decomposition method Tchebychef

Number of neighbors 10

Generative operators DE operators

Number of reference points According to [48]

IM-MOEA

Population size According to Table 3

Number of fitness calls According to Table 3

Number of reference vectors 10

Model group size 3

The population size and number of fitness calls are set based on what
are obtained from proposed method according to Table 3

and 9 out of 12 of 3-objective functions, respectively. Similar
HV results are acquired for 5 objectives onwhich the average
value of HV achieved byMORM is 0.86 whereas NSGA-III,
MOEA/D, and IM-MOEA could obtain a PF with HV value
of 0.7, 0.65, and 0.8, respectively. Considering IGD values,
MORM has obtained a PF with less distance to the true PF
which yields lower values of IGD compared to competitors.
Accordingly, except on 3-objective MaF9 and MaF13, and
5-objective MaF6, MORM outperforms other algorithms.
For some functions, the large values of IGD indicates that
resultant PF by competitors has a high distance of true PF
and consequently they fail solve the problems. From our
results, we can conclude that the MORM is able to generate
many non-dominated solutions while state-of-the-art multi-
objective algorithms fail to produce a well-distributed PF
over a limited number of generations. In addition to the quan-
tity, the generated solutions have the efficiency to increase the
HV and to get closer to true PF according to IGDmeasure. As
it is mentioned before, this is due to drawback of the multi-
objective EAs, which require a large population size with
numerous fitness calls to evolve such population. To fill the
Pareto-frontwith a huge number of points, evolutionary algo-
rithms require a large population size and correspondingly a
huge number of fitness calls. The smaller number of fitness
calls (in average) is needed compared to required budget for
filling Pareto-front (i.e., generating non-dominated solutions
with high accuracy) using an evolutionary algorithm. There-
fore, all points are certainly required to be evaluated but as
table shows this amount of fitness calls is not sufficient for a

Table 5 Comparison on MORM, NSGA-III, MOEA/D, and IM-
MOEA in terms of the ratio of union PF on 3-objective and 5-objective
optimization problems

MORM NSGA-III MOEA/D IM-MOEA

M = 3 MaF1 35.71 0 64.29 0

MaF2 49.78 0.01 38.20 12.02

MaF3 96.23 0.10 3.67 0

MaF4 74.66 0 25.33 0

MaF5 65.88 0.06 31.62 2.44

MaF6 60.41 0 39.59 0

MaF7 67.26 0 32.59 0.15

MaF8 68.78 0 31.22 0

MaF9 73.28 0 26.67 0.05

MaF11 98.21 0 1.79 0

MaF12 91.36 0 6.03 2.61

MaF13 71.13 0 13.17 15.70

Avg. 71.06 0.01 26.18 2.75

w/t/l 12/0/0 11/0/1 12/0/0

M = 5 MaF1 53 0.01 46.99 0

MaF2 74.73 8.76 8.66 7.85

MaF3 96.23 0.10 3.67 0

MaF4 99.99 0 0.01 0

MaF5 48.82 6.42 24.69 20.07

MaF6 57.13 0 42.87 0

MaF7 54.75 0 45.25 0

MaF8 59.50 0.30 39.61 0.59

MaF9 59.30 0 40.68 0.02

MaF11 55.87 0 43.29 0.84

MaF12 59.50 0.30 39.61 0.59

MaF13 48.37 0 20.30 31.33

Avg. 63.93 1.32 29.64 5.11

w/t/l 12/0/0 12/0/0 12/0/0

The two last rows indicate the average values and the number of
wins/ties/loses of MORM compared to competitors in terms of each
evaluation measure. Bold values show the winner algorithm

traditional multi-objective evolutionary algorithm lonely to
fill the Pareto-front.

Effectiveness on real-world problems

In this section, MORM has been employed on two cases of
many-objective real-world problems to investigate its effec-
tiveness.

Vehicle crashworthiness design problem

In automotive industry, there are a variety of important
requirement of crashworthiness design to develop high-
quality and low-cost products. To address these criteria, a
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Table 6 Comparison on MORM, NSGA-III, MOEA/D, and IM-MOEA in terms of HV and IGD on 3-objective and 5-objective optimization
problems

HV IGD

MORM NSGA-III MOEA/D IM-MOEA MORM NSGA-III MOEA/D IM-MOEA

M = 3 MaF1 0.65 0.49 0.65 0.68 0.01 0.21 0.01 0.11

MaF2 0.36 0.35 0.36 0.36 0.01 0.02 0.01 0.01

MaF3 1 1 1 1 0.01 2.55E+04 0.08 3.60E+04

MaF4 1 0.95 1 0.95 0.05 621.73 0.65 711.63

MaF5 0.93 0.77 0.93 0.93 0 1.91 0.23 0.53

MaF6 1 0.79 0.99 1 0 4.99 0 3.52

MaF7 0.78 0.52 0.75 0.77 0.02 3.47 0.03 0.06

MaF8 0.99 0 0.99 0.01 0.01 76.13 0.02 63.42

MaF9 1 1 1 1 0.96 31.98 1.03 0.89

MaF11 0.96 0.75 0.84 0.88 0.14 0.45 1.70 0.32

MaF12 0.65 0.49 0.61 0.61 0.07 0.41 0.13 0.15

MaF13 0.99 0.92 0.94 1 0.49 0.82 0.31 0.10

Avg. 0.86 0.67 0.84 0.77 0.15 2188.34 0.35 3061.42

w/t/l 10/2/0 6/6/0 9/3/0 12/0/0 10/2/0 9/2/1

M = 5 MaF1 0.29 0.17 0.34 0.26 0.06 0.29 0.03 0.32

MaF2 0.36 0.36 0.36 0.38 0.01 0.03 0.02 0.02

MaF3 1 1 1 1 1.41 6.69E+04 4.31E+04 3.60E+04

MaF4 1 0.85 0.84 0.86 1.48 2318.52 2296.92 2253.84

MaF5 1 0.98 0.58 0.99 0.06 4.23 11.26 2.77

MaF6 0.96 0.71 0.97 1 0.10 3.65 0.01 1.50

MaF7 0.86 0.63 0.11 0.79 0.09 3.79 0.66 1.16

MaF8 0.96 0.27 0 0.71 0.20 26.63 111.91 0.98

MaF9 1 0.99 1 1 0.68 81.78 0.93 1.19

MaF11 0.99 0.79 0.91 0.89 0.16 0.65 4.62 0.44

MaF12 0.87 0.69 0.84 0.71 0.33 1.10 0.68 0.98

MaF13 1 0.95 0.80 1 0.24 1.25 1.06 1.06

Avg. 0.86 0.70 0.65 0.80 0.40 5775.05 3794.34 3185.05

w/t/l 10/2/0 7/4/1 8/4/0 12/0/0 11/0/1 12/0/0

The two last rows indicate the average values and the number of wins/ties/loses of MORM compared to competitors in terms of each evaluation
measure. Higher values of the HV are desirable whereas for IGD, the lower value represents the outperformance. Bold values show the winner
algorithm

multi-objective optimization problem can be defined. In [24],
three objectives including the mass of the vehicle, an inte-
gration of collision acceleration, and the toe board intrusion
are considered as design objectives. These objectives are
formulated using the thickness of five reinforced members
around the frontal structure as design variables (Eq. 16).
The mass of the vehicle ( f1) is minimized for the consid-
eration of lightweight. In addition, the minimum integration
of collision acceleration ( f2) reflects the worst scenario of
acceleration-induced biomechanical damage of occupants.
Finally, to minimize the mechanical injury, the toe board
intrusion in the “offset-frontal crash” ( f3) should be mini-
mized:

min f1(xxx) = 1640.2823 + 2.3573285x1 + 2.3220035x2

+4.5688768x3 + 7.7213633x4

+4.4559504x5

min f2(xxx) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3

+0.8364x4 − 0.3695x1x4

+0.0861x1x5 + 0.3628x2x4 − 0.1106x21
−0.3437x23 + 0.1764x24

min f3(xxx) = −0.0551 + 0.0181x1 + 0.1024x2

+0.0421x3 − 073x1x2

+0.024x2x3 − 0.0118x2x4 − 0.0204x3x4

−08x3x5 − 0.0241x22
+0.0109x24 , (16)
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Fig. 8 Initial PF with 91 points
and final PF with 6,325 points
resulted from applying MORM
for vehicle crashworthiness
design problem

where xi ∈ [1, 3] for i ∈ {1, 2, 3, 4, 5} are the thickness of
five reinforced members around the frontal structure which
could significantly affect the crash safety.More details can be
find in [24]. An initial PF is obtained using NSGA-III algo-
rithm to apply the MORM. After four iterations, the initial
PF with 91 points is filled with 6,325 non-dominated solu-
tions. Figure 8 represents the initial and final PFs resulted
from applying MORM. As it can be seen, the generative
techniques collaborated to result a well-distributed PF.

Rocket injector design problem

Design of injectors is an important element to develop tech-
nologies to make the next generation launch systems safer,
more affordable, and more reliable. In [42], the design con-
siderations are guided by three design objectives, namely, the
minimum temperature on the injector face ( f1), the length of
the combustion zone ( f2), and the temperature on the oxi-
dizer post tip ( f3). Shorter combustion lengths account for
better performing designs while lower temperatures would
indicate a design that had longer life due to decreased ther-
mal strain. To satisfy theses goals, three design variables are
selected, namely the angle at which the hydrogen is directed
toward the oxidizer (x1), the change in hydrogen flow area
from the baseline (x2), the change in oxygen flow area from
the baseline (x3), and the oxidizer post tip thickness (x4).
Eq. 17 indicates the formulation of three objectives based on
the four variables.

min f1(xxx) = 0.692 + 0.477x1 − 0.687x2 − 0.080x3

−0.0650x4 − 0.167x1x1

−0.0129x2x1 + 0.0796x2x2 − 0.0634x3x1

−0.0257x3x2 + 0.0877x3x3

−0.0521x4x1 + 0156x4x2

+0198x4x3 + 0.0184x4x4

min f2(xxx) = 0.153 − 0.322x1 + 0.396x2 + 0.424x3

+0.0226x4 + 0.175x1x1

+0.0185x2x1 − 0.0701x2x2 − 0.251x3x1

+0.179x3x2 + 0.0150x3x3

+0.0134x4x1 + 0.0296x4x2

+0.0752x4x3 + 0.0192x4x4

min f3(xxx) = 0.370 − 0.205x1 + 0.0307x2

+0.108x3 + 1.019x4 − 0.135x1x1

+0.0141x2x1 + 0.998x2x2 + 0.208x3x1

−0.0301x3x2 − 0.226x3x3

+0.353x4x1 − 0.0497x4x3 − 0.423x4x4

+0.202x2x1x1 − 0.281x3x1x1

−0.342x2x2x1 − 0.245x2x2x3

+0.281x3x3x2 − 0.184x4x4x1

−0.281x2x1x3, (17)

where xi ∈ [0, 1] for each i ∈ {1, 2, 3, 4}.
An initial PF is obtained using NSGA-III algorithm to

apply theMORM.After four iterations, the initial PF with 91
points is filled with 2664 non-dominated solutions. Figure 9
represents the initial and final PFs resulted from applying
MORM. As it can be seen, the generative techniques collab-
orated to result a well-distributed PF.

Furthermore, the comparison between the MORM and
other algorithms for both problems is given in Table 7. As it
is showed, the HV value of resultant PF usingMORM is 0.85
and 0.73 for Vehicle Crashworthiness and Rocket Injector,
respectively, while other algorithms could reach to a lower
HV value. Thus, the effectiveness of proposed method on
real-world problems is significant.

Concluding remarks

Every many-objective optimization algorithm delivers a
restricted amount of solutions as the output of the opti-
mization process. However, the well-covered PF is generally
desired for a variety of applications. In this paper, we have
introduced a kind of collaboration between machine learn-
ing and many-objective optimization algorithms to increase
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Fig. 9 Initial PF with 91 points
and final PF with 2664 resulted
from applying MORM for
rocket injector design problem

Table 7 HV values of MORM
and competitor algorithms for
real-world problems

MORM NSGA-III MOEA/D IM-MOEA

Vehicle crashworthiness 0.86 0.74 0.82 0.78

Rocket injector 0.73 0.63 0.66 0.68

Bold values show the winner algorithm

the non-dominated solutions by an inexpensive approach.
A many-objective optimization algorithm generates an ini-
tial PF which is the input of a learning model. The trained
model maps the objective space points to decision space.
This framework allows us to generate the many solutions
by generative techniques in objective space and then find
their decision variables using the trained model. Each com-
ponent covers some regions of the PF and it consequently
leads to a well covered PF. To ensure the diversity of the
generated solutions, we used a set of reference points to
select a predefined number of candidate solutions among
all generated points. Compared to the initial PF solutions
obtained by an optimization algorithm, the proposedmethod,
MORM, can produce the resultant covered PF by only a few
iterations. The conducted experiments on well-knownmany-
objective benchmarks have demonstrated the effectiveness
of the MORM in terms of several many-objective optimiza-
tion assessment measures. The comparative results between
the proposed scheme and the state-of-the-art many-objective
optimization algorithms includingNSGA-III,MOEA/D, and
IM-MOEA have revealed that the surface of the generated
PF by a collaboration of machine learning is covered by a
cloud of non-dominated solutions. It has been presented that
each generative technique covers a portion of the PF resulting
in accumulatively a well-covered PF. However, generating
a similar PF using many-objective optimization algorithms
require a significantly high budget which is not applicable
especially for expensive optimization problems. Generating
a low cost PF solutions without overloading of the optimizer
seems a very promising direction. This novelty is achieved as
a fruitful result of collaboration between machine learning
and optimization algorithms, especially when the problem
is many-objective and the proposed scheme is fully indepen-

dent from the family of optimizer, classical ormeta-heuristic.
However, since the population-based optimizers obtain a PF
using the individuals’ collaboration, they probably are to
offer a much better input set (i.e., initial PF) to our proposed
method whereas this property is lacking in single-solution
based methods, where they build PF by hitting it point-by-
point. In addition to benchmarks,MORM is evaluated on two
well-known real-world problems . As future works, using the
proposed approach in an interactive the optimization frame-
work can improve the efficiency of the method. In addition,
using the reference points can be embedded in optimiza-
tion process to generate non-dominated solutions on desired
regions of the PF.
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