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Abstract

The identification of disease-related genes and disease mechanisms is an important

research goal; many studies have approached this problem by analysing genetic networks

based on gene expression profiles and interaction datasets. To construct a gene network,

correlations or associations among pairs of genes must be obtained. However, when gene

expression data are heterogeneous with high levels of noise for samples assigned to the

same condition, it is difficult to accurately determine whether a gene pair represents a signifi-

cant gene–gene interaction (GGI). In order to solve this problem, we proposed a random for-

est-based method to classify significant GGIs from gene expression data. To train the model,

we defined novel feature sets and utilised various high-confidence interactome datasets to

deduce the correct answer set from known disease-specific genes. Using Alzheimer’s dis-

ease data, the proposed method showed remarkable accuracy, and the GGIs established in

the analysis can be used to build a meaningful genetic network that can explain the mecha-

nisms underlying Alzheimer’s disease.

Introduction

For a comprehensive understanding of complex disease mechanisms, network approaches are

widely [1–3]. These biological networks can contain physical or genetic interactions. A repre-

sentative physical network is protein–protein interactions. Although there are various types of

genetic interaction networks with different properties, their basic role is to model relationships

among molecules in order to identify and explain underlying biological processes or functional

dynamics related to a disease or phenotype [4].

The most important step in the construction of a genetic interaction network is the extrac-

tion of gene–gene interactions (GGIs) from omics data profiles. Many approaches have been

proposed to identify GGIs [5–7]. In particular, incorporating interactome and transcriptome

data has proven to be useful for the extraction of co-expressed GGIs [8]. A novel approach for

calculating the strength of interactions with significantly different correlations has been pro-

posed [9]. Using this approach, cancer-specific gene network has been derived and it applied

to classify cancer.
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The final goal of many approaches for GGI identification is to construct disease-specific

gene networks and apply them to reveal disease-related targets and mechanisms. In cancer

research, this kind of network biology approach is widely used [3, 10–11]. In Alzheimer’s dis-

ease (AD) research, several integrative approaches using gene expression and interactome

datasets have been proposed to infer genetic networks [12–15].

Based on previous research, the most popular method to identify significant GGIs is to mea-

sure the correlation coefficient from two gene expression vectors. Because there are many simi-

larity measures, it is important to determine the most appropriate measure for a particular

dataset. In a recent study, 12 frequently used correlation measures were compared to identify

the optimal approach for extracting functional information from gene expression profiles [16].

The authors concluded that linear similarity measures, such as the dot product or Pearson’s cor-

relation coefficient (PCC), or cosine similarity performed better than other similarity measures,

including set overlap measures, such as the Jaccard coefficient. The authors also demonstrated

that the dot product showed the most consistent performance for the gene expression dataset,

which had noise and batch-effects [16]. However, it is difficult to accurately measure correla-

tions by linear similarity approaches when data include high levels of noise and heterogeneity.

A recent study attempted to use non-linear correlation measures, such as mutual informa-

tion (MI), to extract differential co-expressed GGIs from heterogeneous gene expression data

[17]. This study aimed to construct AD-specific genetic networks, despite heterogeneity in

expression levels across large samples. AD is known as a clinically heterogeneous neurodegen-

erative disease; furthermore, the underlying genetic factors and their functional roles have not

been revealed [18]. As a result of the heterogeneity, the sample quality among patients with

AD and the affected degree of gene expression may be inconsistent. Recently, a study has

attempted to identify heterogeneous genes from AD gene expression data [19].

In a study using a non-linear similarity measure [17], it was challenging to extract informa-

tive GGIs. For a specific explanation, we randomly selected expression data for ACTR1B,

TMEM45B,APOE, and APP from real datasets (GSE33000, GSE44770) and applied the z-scor-

ing method for normalisation. Then, we visualised these expression values and calculated mean,

standard deviation, and PCC values, as shown in (Fig 1) and Table 1. These four genes can be

divided into two groups based on previous studies, i.e. AD-related and AD-unrelated. As shown

in (Fig 1) and Table 1, because the expression values were heterogeneous across samples, it was

not adequate to determine whether known AD-related genes had a stronger association with

AD than normal samples and whether AD-unrelated genes have a stronger association in nor-

mal than AD samples based on the PCC value. In this case, it is consequentially difficult to

determine the appropriate threshold for extracting meaningful GGIs to build a genetic network.

As in the example above, using correlations or similarity measures exclusively may not be

appropriate to extract GGIs, depending on the properties of the dataset, such as heterogeneity

across samples. In this case, machine learning-based approaches can be an alternative [7].

According to a recent review study [7], typical machine learning approaches, such as artificial

neural network (ANN), support vector machine (SVM), and random forest, have been widely

applied to detect GGIs. This paper established that a random forest-based approach is suitable

for datasets with genetic heterogeneity.

In this study, we propose a novel approach to build a machine learning-based model that

can determine significant GGIs from heterogeneous gene expression profiles. We designed a

novel feature set from expression profiles and utilised various interactome datasets and gene

sets known to be associated with a disease in order to assign a label for gene pairs. We demon-

strated that our approach shows remarkable performance in the case of AD with large-scale

expression data.

Machine learning-based identification of genetic interactions from heterogeneous gene expression profiles
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Materials andmethods

In this section, we introduce the entire approach with an explanation of how we formulated

GGI identification as a machine learning problem, and then present the detailed procedures.

As shown in (Fig 2), normalization and data transformation by feature extraction were per-

formed and a machine learning algorithm was applied.

Fig 1. Visualisation of expression levels for four genes according to their class label (Normal and AD). Four genes were divided into two groups, i.e. AD-
unrelated and -related groups.

https://doi.org/10.1371/journal.pone.0201056.g001

Table 1. Basic statistics and PCC values for four cases shown in Fig 1. The correlation values for AD-related genes were relatively larger than those for AD-unrelated
genes. However, the correlation values for AD-related genes were not sufficient to accurately determine correlations in AD.

AD-unrelated genes Case (see Fig 1) Class label Gene Mean of expression values Standard deviation of expression values PCC of two expression lists

(A) Normal ACTR1B 0.099 0.284 0.021

TMEM45B -0.882 1.207

(B) AD ACTR1B -0.070 0.304 -0.080

TMEM45B -0.832 1.094

AD-related genes (C) Normal APOE 0.359 1.475 -0.590

APP -0.135 0.952

(D) AD APOE 0.997 1.369 -0.280

APP -0.817 0.906

https://doi.org/10.1371/journal.pone.0201056.t001
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Datasets

We used two recently published large-scale gene expression profiles [20–21]. The datasets

were obtained by human brain tissue sampling to investigate the mechanism underlying late-

onset AD. Focusing exclusively on the prefrontal cortex, we integrated these two expression

profiles (GSE33000 and GSE44770) to increase the sample size; this was possible because the

same platform was used to generate both datasets. The integrated dataset was composed of 257

non-demented, i.e. normal, and 439 AD samples.

An interactome dataset and disease-related gene set were used to label the gene pairs. We

utilized two AD-related data sources. The first was the AD-associated gene network curated by

the IntAct database [22] and the second was AD-related genes identified in a genome-wide

association study (GWAS) [23].

Along with these two datasets, we used two interactome datasets, a human protein interac-

tion dataset [24] and HumanNet [25]. The first dataset was composed of 23,233 high-confi-

dence interactions identified by systematic screening based on high-throughput yeast two-

hybrid experiments and validated using biological assays. These data are referred to as

Fig 2. Overview of the proposed approach.Gene expression data with two class labels are normalized by the z-scoring approach. For class label 1, which
indicates disease, possible gene pairs are selected by incorporating disease-related genes and interactome data. For class label 0, which indicates normal, the same
number of gene pairs as that for class label 1 is randomly selected. From all gene pairs, 22 features are extracted and used to inform the machine learning-based
model. In order to evaluate performance, 10-fold cross validation is performed.

https://doi.org/10.1371/journal.pone.0201056.g002
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biophysical protein–protein interactions (bPPI). The second dataset was constructed by the

large-scale integration of co-expressed and/or co-occurring gene pairs using many sources. To

obtain more accurate and biologically meaningful interactions, we used bPPI alone or inte-

grated bPPI with the top 5 or 10 percent of interactions in accordance with confidence scores

of interactions in humanNet.

GGI identification with machine learning

Instead of measuring the correlation values for all possible gene pairs from the gene expression

profile, we assume that it may be more effective to obtain GGIs by learning the expression pat-

terns of gene pairs known to be specific to AD. In other words, the learning model can classify

whether a gene pair is informative or not based on its expression pattern by referring to the

expression pattern of gene pairs already known to be AD-specific. As mentioned above, if the

expression profile is highly heterogeneous, there is a high probability of that the correlation

values for gene pairs is not sufficient. Other gene pairs tend to follow the expression pattern

for potent GGIs already known to be associated with AD. Therefore, if we have enough expres-

sion datasets to make a model, and if there is a gene or gene network already known for a cer-

tain disease, we can formulate it to a machine learning problem.

Definition of features. To define features from an expression profile, we use various sta-

tistical measurements. Because we assume that gene expression data have disease and normal

statuses, each gene pair can be represented as shown in Table 2.

EA_L0 denotes the expression value list for gene A of samples labelled 0. Similarly, EB_L1
indicates the expression value list for gene B of samples labelled 1. We extract 22 features from

these four expression value lists. Table 3 shows the list of features. Basic statistics, such as the

mean or standard deviation, are included first. Then, the differences between maximum ele-

ments and minimum elements are calculated for each expression value list, E. Despite the use

of means and standard deviation, the difference value is added to better reflect the heterogene-

ity. In addition, the statistics for Welch’s t-test are included in the feature list to reflect the dif-

ference between two groups. According to Ruxton [26], Welch’s t-test is more reliable when

two samples have unequal variances and unequal sample sizes. This property is particularly

suitable for the comparison between EA_L0 and EA_L1 or EB_L0 and EB_L1.

We also apply two correlation-based similarity measures, PCC and MI. The correlation

between two element lists corresponding to two genes and labelled as belonging to the same

class is computed. Moreover, the correlation between two element lists labelled as belonging to

different classes, but corresponding to the same gene is computed. In this case, owing to an

imbalance in the elements size of two lists, an under-sampling approach is used. We denote

the under-sampling element list as E0. For example, let EA_L0 and EA_L1 be [1,2,3,4,5] and

[6,7,8], respectively. To calculate MI for these two element lists, undersampling is performed

by randomly pulling elements so that the size of EA_L0 is equal to that of EA_L1. For example,

after sampling, EA_L0 can be [1,4,5]. The detail of calculating Welch’s t-test statistics and MI

are described in the supplementary material.

Assigning labels to gene pairs. In order to build a supervised learning model, labels

should be assigned to the training dataset. Labels are assigned using the interactome and

Table 2. Notation of gene expression values for each class and gene in one gene pair.

Gene pair Class label 0 (Normal) Class label 1 (AD)

Gene A EA_L0 EA_L1

Gene B EB_L0 EB_L1

https://doi.org/10.1371/journal.pone.0201056.t002
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known disease genes. The most important data for the correct answer set is the AD-related

gene network identified by the IntAct database. However, these data are only composed of

approximately 360 GGIs, which it is not enough to train the model. Therefore, we suggest a

method to boost the correct answer set. In particular, we applied a method that can extract the

k-nearest neighbour gene from the interactome using a gene known to be associated with AD

as a seed. Because indirect effects likely applies to neighbouring genes from the seed in the

interactome network, this training data set can be further extended to include these GGIs.

Random forest. The optimal machine learning algorithm is not clear because the type of

dataset and issues associated with GGI detection vary [7]. In this study, since the genetic and

sample heterogeneity are the main problems, we selected a random forest algorithm. Random

forest is particularly useful for addressing genetic heterogeneity because subsets of the model

are separated in the early stage [7]. For example, if an input data consist of N instances withM

features, then random forest algorithm randomly selects some of N andM and builds decision

tree. The random forest algorithm iteratively performs this task to build many decision trees.

In this process, each independent model, i.e. decision tree, is learned to fit for subset of input

data. As a result, arbitrarily selected features may not affect predictive performance if they are

heterogeneous or may significantly affect predictive performance if they are not. Through ran-

domization in learning stage, the features with strongly predictive performance are continu-

ously selected to improve overall performance. In addition, random forest avoids overfitting

the data. The random forest algorithm used in the study is built by the pseudocode summa-

rised in Algorithm 1. After building the classifier, the unlabelled instance is introduced to the

randomly created trees from the random forest. Then, the classified results are aggregated and

the highest index value is used to determine the final result.

Table 3. List of the features.

Feature name Definition

MeanA_L0 mean of EA_L0

MeanA_L1 mean of EA_L1

MeanB_L0 mean of EB_L0

MeanB_L1 mean of EB_L1

SDA_L0 standard deviation of EA_L0

SDA_L1 standard deviation of EA_L1

SDB_L0 standard deviation of EB_L0

SDB_L1 standard deviation of EB_L1

dMmA_L0 maximum element of EA_L0 –minimum element of EA_L0

dMmA_L1 maximum element of EA_L1 –minimum element of EA_L1

dMmB_L0 maximum element of EB_L0 –minimum element of EB_L0

dMmB_L1 maximum element of EB_L1 –minimum element of EB_L1

WTA_L0_B_L0 Welch’s t-test statistics (EA_L0, EB_L0)

WTA_L1_B_L1 Welch’s t-test statistics (EA_L1, EB_L1)

WTA_L0_A_L1 Welch’s t-test statistics (EA_L0, EA_L1)

WTB_L0_B_L1 Welch’s t-test statistics (EB_L0, EB_L1)

PCCA_L0_B_L0 Pearson’s correlation coefficient (EA_L0, EB_L0)

PCCA_L1_B_L1 Pearson’s correlation coefficient (EA_L1, EB_L1)

MIA_L0_B_L0 Mutual Information (EA_L0, EB_L0)

MIA_L1_B_L1 Mutual Information (EA_L1, EB_L1)

MIA_L0_A_L1 Mutual Information of Make equal-sized element list (E’A_L0, E’A_L1)

MIB_L0_B_L1 Mutual Information of Make equal-sized element list (E’B_L0, E’B_L1)

https://doi.org/10.1371/journal.pone.0201056.t003
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Algorithm 1. Build Random Forest (Input, Parameters)

Description

Build random forest algorithms with input data

Input

Training data D consists of sample S, features F, and label y

Parameters

Preferred number of instances n = 100

Number of trees t = 100

Output

Trained classification model

1. Randomly select n instances with k (= log2t) features from F. Set this to P.

(P�D)

2. With P, among the k features, calculate node d using the best split point

3. Split the node into daughter nodes using the best split

4. Repeat 1 to 3 steps until the three is formed with a root and a target as the leaf

node

5. Build forest by repeating steps 1 to 4 for t times to create t trees.

Results and discussion

Evaluation and performance comparison

We performed various tests to compare the proposed algorithm with typical machine learning

algorithms, while changing the dataset. As mentioned above, in case of AD, it is difficult to

accurately determine whether there is an interaction between two genes because expression

values for one gene can be heterogeneous even in samples with the same label. This was the

reason why we determined to focus on AD as a targeted disease. Throughout the evaluation,

we tried to determine which interactome data should be used to build an effective classification

model and whether AD-related genes could be used as a seed to improve the performance of

the learning model. To achieve these aims, we prepared various datasets for comparative analy-

ses. A detailed description of the datasets and the comparative algorithms are provided in

Tables 4 and 5, respectively.

Table 4. Detailed description of the dataset used for performance evaluation. For all datasets, we used the AD-gene network published by the IntAct Molecular Inter-
action Database, which is curated by broad literature searches. However, since the size of the IntAct(AD) was small, interactome data were integrated to increase the size of
the training dataset.

Dataset ID Description of dataset Sample Size
(number of interactions)

Interactome dataset Use of AD-related genes
(seed gene)

Normal
(class label 0)

AD
(class label 1)

1 IntAct(AD) + bPPI Y 3,241 3,241

2 IntAct(AD) + bPPI + HumanNet (5%) Y 4,916 4,916

3 IntAct(AD) + bPPI + HumanNet (10%) Y 7,013 7,013

4 IntAct(AD) + bPPI N 23,546 23,546

5 IntAct(AD) + bPPI + HumanNet (5%) N 46,206 46,206

6 IntAct(AD) + bPPI + HumanNet (10%) N 69,296 69,296

https://doi.org/10.1371/journal.pone.0201056.t004
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Let us assume that if there are 20,000 genes, the entire number of possible gene pairs is

greater than about 199 million. If we use all possible gene pairs for learning, a severely imbal-

anced distribution of labels may occur because the gene pairs related to AD and available as

label 1 are exceedingly partial. To solve this label imbalance problem, we applied a method to

randomly select a gene pair corresponding to class label 0 by the size of class label 1.

The number of AD-associated gene pairs established in previous studies was too low to

enable effective learning. We used AD-associated gene pairs published by the IntAct database

as basic data for class label 1. Additionally, we used an AD-associated gene set curated by

many GWAS and included additional gene pairs that can extend the interactome network.

The number of AD-associated gene sets was 642. Using those genes as a seed, the correspond-

ing interactions of the first-neighbouring genes from the seed were included in the dataset. In

order to determine whether the use of extended interactions from AD-related genes as a set of

correct answers is useful, data without the seed were also used to study the model.

We compared the proposed approach to four common algorithms using the Weka 3.8

library [31]. The algorithms used for the comparison are listed above with the applied

options. 10-fold cross validation was performed to test the performance of algorithms and

weighted averages of accuracy, precision, recall, F-measure, and ROC area were obtained.

Table 6 summarises the experimental results. For dataset 1, 2, and 3, the proposed method

entirely outperformed other algorithms. PART showed the next best performance for these

datasets. PART is a rule-based classifier; it combines the divide and conquer strategy with

the separate and conquer strategy for rule learning. PART creates a partial decision tree

from the training data set to generate the rule. In terms of creating and using a decision

tree, PART and the proposed method were similar, but the proposed method uses a boot-

strap aggregating approach. We speculated that this approach would improve performance.

About three datasets, the accuracy and ROC area values of the proposed method were not

significantly different. Nonetheless, when we used dataset 3, the proposed method generally

showed the best performance. (Fig 3) shows the ROC curve for the performance compari-

son using dataset 3. The same comparative analyses were performed for dataset 4, 5, and 6.

In these experiments, the proposed method also outperformed the other four algorithms.

However, the accuracy and ROC area for the proposed method were relatively lower than

those observed for dataset 1, 2, and 3. In order to improve the classification performance of

the model, we concluded that it is necessary to use the training data set using the genes

known to be related to the disease.

Table 5. List of the comparative algorithms and their primary parameters.

Algorithms Mainly used options

Naïve Bayes [27] No parameters

SVM [28] polynomial kernel
complexity = 1.0
epsilon = 1.0E-12
tolerance = 0.001

ANN [29]
(Multi-Layer Perceptron)

hidden layer = 3
learning rate = 0.3
momentum = 0.2

number of epochs = 200

PART [30] minimum number of instances per rule = 2
confidence factor used for pruning = 0.25, seed = 1

https://doi.org/10.1371/journal.pone.0201056.t005
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Analysis of features

As shown in (Fig 3), the SVM algorithm, known to have good performance, showed worse perfor-

mance compared to that of the random forest algorithm. The main difference between these two

algorithms is that random forest uses an ensemble learning approach by making multiple decision

trees with partial features. SVM uses all 22 features for training. Therefore, we investigated which

features were more important in the random forest algorithm, and compared them to the feature

lists extracted by typical three-feature selection algorithms. S1 Table shows the comparative

results. Interestingly, feature lists obtained from the three algorithms were similar. In particular, as

shown in S1 Table, although the order of features was different, the top seven features were the

same across the three methods. We also obtained the ranking of features that are important in the

random forest algorithm based on average impurity values. We then compared all feature lists

among the four cases, as shown in S1 Table. Interestingly, we could find differences in the patterns

of the feature rankings. For the random forest, the correlation-based features using PCC andMI

were relatively less important than statistic-based features, such as means and standard deviation.

Table 6. Comparison of the performance of various algorithms for dataset 1, 2, and 3. The proposed method showed the best performance for all three datasets.

Dataset Algorithm Weighted average

Accuracy Precision Recall F-Measure ROC area

1 Naïve Bayes 0.537 0.551 0.537 0.504 0.581

SVM 0.580 0.580 0.580 0.579 0.580

ANN 0.570 0.570 0.570 0.570 0.603

PART 0.742 0.742 0.742 0.742 0.842

Proposed method 0.902 0.905 0.902 0.902 0.954

2 Naïve Bayes 0.547 0.567 0.547 0.512 0.585

SVM 0.562 0.564 0.562 0.559 0.562

ANN 0.567 0.567 0.567 0.567 0.597

PART 0.713 0.723 0.713 0.710 0.812

Proposed method 0.898 0.899 0.898 0.898 0.953

3 Naïve Bayes 0.549 0.567 0.549 0.518 0.597

SVM 0.563 0.571 0.563 0.549 0.563

ANN 0.570 0.570 0.570 0.570 0.601

PART 0.744 0.746 0.744 0.743 0.850

Proposed method 0.916 0.916 0.916 0.916 0.965

4 Naïve Bayes 0.529 0.533 0.529 0.515 0.555

SVM 0.552 0.552 0.552 0.551 0.552

ANN 0.535 0.537 0.535 0.528 0.565

PART 0.628 0.628 0.628 0.628 0.704

Proposed method 0.783 0.783 0.783 0.782 0.861

5 Naïve Bayes 0.540 0.560 0.540 0.499 0.577

SVM 0.556 0.580 0.556 0.522 0.556

ANN 0.559 0.559 0.559 0.559 0.587

PART 0.642 0.644 0.642 0.640 0.718

Proposed method 0.772 0.773 0.772 0.772 0.851

6 Naïve Bayes 0.535 0.552 0.535 0.494 0.571

SVM 0.555 0.583 0.555 0.515 0.555

ANN 0.565 0.566 0.565 0.565 0.591

PART 0.662 0.662 0.662 0.662 0.752

Proposed method 0.786 0.786 0.786 0.786 0.865

https://doi.org/10.1371/journal.pone.0201056.t006
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Application of the proposed approach

To test the applicability of the proposed algorithm, we used another publicly available AD

gene expression dataset to classify GGIs. We downloaded a human brain transcript expression

dataset from GEO (accession number GSE15222) [32]. This dataset was made to analyse late-

onset AD and included 176 normal and 186 AD samples. Of the 176 normal samples, two sam-

ples with inaccurate ages were excluded.

Among all possible gene pairs using 360 samples, we focused on the partial gene pairs that

exist in the interactome dataset. This ensured that the proposed algorithm extracts biologically

meaningful GGIs from gene expression data from completely different platforms. In this

experiment, we used bPPI and HumanNet because this was a highly confident dataset for

which the physical interactions between the two proteins and the correlations between genes

were empirically proven using several techniques. Using this interactome dataset, 22 features

were extracted from the expression profile.

As a result, 3,366 GGIs were identified to be AD-related, i.e. a correlation between two

genes was classified by the proposed algorithm after training using dataset 3. We constructed a

gene network with the classified GGIs, as shown in S1 Fig. To demonstrate whether the con-

structed network reflects the AD-related biological context or not, we applied a simple topo-

logical analysis. We selected the top 20 genes with high degrees and extracted the subnetwork

Fig 3. ROC curve for various algorithms using dataset 3.

https://doi.org/10.1371/journal.pone.0201056.g003
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that can be made from them. To do this, we used Cytoscape with the cytoHubba [33] package.

(Fig 4) shows the extracted subnetwork, where reddish nodes represent those with the highest

degree. Interestingly, the subnetwork included APP, known to be highly related to AD.

We also performed a functional enrichment test for the subnetwork using Gene Set

Enrichment Analysis (GSEA) and FuncAssociate 3.0 [34]. The results are shown in (Fig 5).

Because the subnetwork contained 130 genes, many pathways and Gene Ontology (GO)

terms were enriched, despite applying a strict p-value cutoff of 0.001. Among them, we

selected several (15~20) representative results that might be relevant to AD. To investigate

whether the enrichment results are relevant to AD, we analysed previous literature.

As shown in (Fig 5(A)), eight pathways marked with an asterisk, such as theMAPK signalling

pathway, neurotrophin signalling pathway, cell cycle, Natural killer cell-mediated cytotoxicity,

Apoptosis, Cytokine-cytokine receptor interaction, Antigen processing and presentation, and

mTOR signalling pathway, have been reported to be related to AD in a previous study [35]. As

shown in (Fig 5(B)), 130 genes were significantly related to neuronal cell processes and several

basic cellular processes, such as adhesion, developmental processes, and cell death. Twelve GO

Fig 4. Visualisation of the subnetwork for features extracted by a degree-based topological analysis. The number of nodes and edges were 130 and 247,
respectively. The nodes coloured sequentially from red to yellow are the top 20 genes with a high degree. Blue nodes indicate seed genes.

https://doi.org/10.1371/journal.pone.0201056.g004
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terms are also related to AD according to a previous study [36]. We identified that many GO terms

related to neurons and synapses, including neuron part, synapse, myelin sheath, and dendrite,

were significantly enriched, as shown in (Fig 5(C)). These results also confirmed that many GO

terms in the cellular component category overlapped with those identified in a previous study [36].

Finally, we investigated correlation values for the GGIs predicted to be AD-related, but lack-

ing from the answer set. Here, the answer set indicates GGIs associated with AD, as shown in

Table 4. Let us assume that those GGIs have low correlation coefficients. We tried to demon-

strate that such GGIs could not be identified as AD-related by applying typical methods based

on correlation measures. Since the proposed method used 22 features derived from the expres-

sion profile, it was possible to classify significant GGIs, despite the weak correlations. To verify

that sure this assumption was true, we selected GGIs that were classified as AD-related, but did

not exist in the answer set. We calculated means and standard deviation of the correlation coef-

ficients, such as the PCC andMI, for these selected GGIs. As expected, as shown in S2 Table,

the average PCC andMI values for these GGIs were too low to identify significant associations.

We confirmed that the proposed was able to account for heterogeneous gene expression data.

Discussion

The present study focused on the issue of not extracting correlated GGIs from gene expression

profiles owing to heterogeneity in expression levels across samples assigned to the same

Fig 5. Functional enrichment results for the GSE15222 dataset.An asterisk of a pathway and GO term indicates that it has been reported in previous studies. (A) We
used GSEA with a FDR q-value threshold of 0.001 and selected 15 pathways that satisfy the threshold. Interestingly, several AD-related pathways, such as Regulation of
actin cytoskeleton and Neurotrophin signalling pathway, were enriched as well as the Alzheimer’s disease pathway. (B) We used FuncAssociates 3.0 with the default
evidence code. The p-value threshold was 0.001 and we selected 20 GO terms that are potentially related to AD. We found that many GO terms related to AD were
significantly enriched. (C) We used GSEA with a FDR q-value threshold of 0.001 and selected 15 GO terms in the cellular component category that satisfy the threshold
and are potentially related to neuronal functions.

https://doi.org/10.1371/journal.pone.0201056.g005
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conditions. This heterogeneity problem has been reported in AD; accordingly, we used an AD-

related gene expression dataset. However, since the proposed method is not disease-specific and

follows a general data analysis method, it can be applied to cancer and other diseases, in addition

to AD.

In addition, the proposed method can be used alone to identify GGIs, but it can also be

used with correlation measures, such as PCC or mutual information. For example, if the corre-

lation measure is as high as 0.9, GGIs can be determined without applying the proposed

method, and if the GGI cannot be determined based on the correlation measure alone, it can

be determined using the classification model. Accordingly, we can collect a large number of

expression datasets for each disease, develop a classification model for GGI in advance, and

utilise the model.

Conclusions

We proposed a novel method to identify GGIs from gene expression profiles. We demon-

strated that a machine learning approach, especially the random forest algorithm, could be

used to discover significant GGIs from heterogeneous gene expression datasets. In this process,

we proposed a method to create 22 features from a gene expression profile and to obtain a clas-

sification model using an interactome dataset. We evaluated performance with various AD-

related datasets and found that the proposed method showed the best performance. In the

future, we plan to study whether the proposed method can be applied to additional disease

groups to generate truly meaningful gene networks.

Supporting information

S1 Fig. Visualisation of the classified gene network generated using the proposed method

for the GSE15222 dataset. The number of nodes and edges were 2,575 and 3,366, respectively.

Blue nodes indicate the seed genes, which are known to be related to AD.

(PDF)

S1 Table. Comparison of important features among approaches. In the priority list of fea-

tures selected through the three algorithms, the seven highest ranked features were the same,

but differed with respect to order. These top seven features are indicated with 4 different col-

ours. For the top seven features, we confirmed that the results of the three feature selection

algorithms are the same except for the priority. However, the priority of features changed over-

all in Random Forest.

(DOCX)

S2 Table. Basic statistical summary of correlations for gene pairs that are predicted, but

absent from the answer set.

(DOCX)

S1 File. Supporting method is included in this file.

(DOCX)
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