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Machine learning-based integration develops an
immune-derived lncRNA signature for improving
outcomes in colorectal cancer
Zaoqu Liu 1,2,3, Long Liu4, Siyuan Weng1, Chunguang Guo5, Qin Dang6, Hui Xu1, Libo Wang4, Taoyuan Lu7,

Yuyuan Zhang1, Zhenqiang Sun6✉ & Xinwei Han 1,2,3✉

Long noncoding RNAs (lncRNAs) are recently implicated in modifying immunology in col-

orectal cancer (CRC). Nevertheless, the clinical significance of immune-related lncRNAs

remains largely unexplored. In this study, we develope a machine learning-based integrative

procedure for constructing a consensus immune-related lncRNA signature (IRLS). IRLS is an

independent risk factor for overall survival and displays stable and powerful performance, but

only demonstrates limited predictive value for relapse-free survival. Additionally, IRLS pos-

sesses distinctly superior accuracy than traditional clinical variables, molecular features, and

109 published signatures. Besides, the high-risk group is sensitive to fluorouracil-based

adjuvant chemotherapy, while the low-risk group benefits more from bevacizumab. Notably,

the low-risk group displays abundant lymphocyte infiltration, high expression of CD8A and

PD-L1, and a response to pembrolizumab. Taken together, IRLS could serve as a robust and

promising tool to improve clinical outcomes for individual CRC patients.
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Colorectal cancer (CRC) is characterised by strong hetero-
geneity and aggressiveness, with high prevalence and
mortality1. This mortality can be largely attributed to

disease progression and inadequate treatment2. Hence, early
intervention for “high-risk” CRC is crucial to improve clinical
outcomes. In the clinical setting, the American Joint Committee
on Cancer (AJCC) classification is a conventional tool to evaluate
the risk and treatment demand of a specific patient based on
clinical stage. However, the limitations of the current staging
system may hamper its ability to provide optimal clinical care to
patients, as clinical decisions to conduct adjuvant chemotherapy
(ACT) are primarily determined by clinicopathological staging,
without regard to molecular biological characteristics3. This
insufficient approach might give rise to latent overtreatment or
undertreatment. Recently, immune checkpoint inhibitors (ICIs)
have emerged as a revolutionary modality of cancer immu-
notherapy that functions by targeting immune checkpoints4.
However, to date, only a subset of patients has yielded con-
siderable benefit from ICI treatment. The candidate biomarkers
that facilitate the clinical selection of patients for ICI treatment
include programmed death-ligand 1 (PD-L1) expression, tumour
mutation burden (TMB), neoantigen load (NAL), and mismatch
repair deficiency (dMMR)/microsatellite instability-high (MSI-
H), but these approaches are limited by spatiotemporal hetero-
geneity, moderate accuracy, or small percentage populations5–7.
Thus, in the era of individualised treatment, identifying reliable
biomarkers for optimising the prognosis and benefits of drug
therapies in CRC is imperative.

CRC is a complex disease with both inter- and intratumour
heterogeneity. An ideal biomarker should have homogenous
expression within and between tumour tissues to perform
robustly across all patients. Therefore, a multigene panel might be
a promising method to address this heterogeneity2. With the
advancements in bioinformatics technology, a multitude of
prognostic gene signatures have been developed2,8–11. Signatures
integrated by multigene profiles, particularly messenger RNAs
(mRNAs) or microRNAs (miRNAs), were discovered and vali-
dated as candidate biomarkers in CRC9,10,12. Nevertheless, due to
underutilized data information, inappropriate machine learning
methods, lack of rigorous verification by different cohorts, and no
clinical testing, multigene expression signatures are usually dif-
ficult to apply in clinical settings13–15. Newly discovered non-
coding RNAs, called long noncoding RNAs (lncRNAs), are
defined as >200 nucleotides in length and have mRNA-like
transcripts with no protein-coding capacity16. Thus, it is neces-
sary to incorporate lncRNAs into preclinical models to develop
prognostic biomarkers. Indeed, accumulating studies have
revealed that lncRNAs are closely implicated in tumourigenesis,
progression, prognosis, and drug resistance and sensitivity17. Of
note, emerging evidence has also reported that lncRNAs play
fundamental roles in inflammatory responses; the development,
differentiation, and effector function of immune cells; the tumour
immune microenvironment; and cancer immunotherapy18–20.

In this work, we attempted to apply immune-related lncRNAs
to develop and validate a risk stratification signature in 2509 CRC
patients from 17 independent public datasets and a clinical in-
house cohort to assess the prognosis, recurrence, and benefits of
fluorouracil-based ACT, bevacizumab, and ICI treatment in CRC.
This work may help optimise precision treatment and further
improve the clinical outcomes of CRC patients.

Results
Development and validation of immune infiltration consensus
clusters. The overall design of this study is displayed in Supple-
mentary Fig. 1. According to 28 immune cells infiltration assessed

by single-sample gene set enrichment analysis (ssGSEA)21, we
performed a consensus cluster analysis22, in which all CRC
samples were initially divided into k (k= 2–9) clusters. The
cumulative distribution function (CDF) curves of the consensus
score matrix and proportion of ambiguous clustering (PAC)
statistic23 indicated that the optimal number was obtained when
k= 2 (Fig. 1A, B and Supplementary Fig. 2A). The same result
was achieved from Nbclust testing (Supplementary Fig. 2B). The
two consensus clusters (C1 and C2) demonstrated significant
differences in immune infiltration, with C2 having a markedly
higher overall infiltration abundance than C1 (Fig. 1C, D). Thus,
we defined C1 as “immune-cold” tumours and C2 as “immune-
hot” tumours. To ensure that the two consensus clusters were not
biased by the analytical algorithm, six other algorithms, including
TIMER, quanTIseq, MCP-counter, xCell, EPIC, and ESTIMATE,
were used to verify the stability and robustness of the ssGSEA
results (Supplementary Fig. 2C and Fig. 1E).

Identification of lncRNA modules derived from immune
infiltration patterns. In the weighted correlation network ana-
lysis (WGCNA) procedure, the soft threshold β was set to 9 (no
scale R2= 0.910), which provided a suitable power value for
coexpression network construction (Supplementary Fig. 2D).
Then, 12 modules were identified, as indicated by different col-
ours. The eigengene (first principal component of gene expression
within a module) was considered as the representative of the
module. The heatmap revealed the eigengene adjacency of
modules (Supplementary Fig. 2E). Furthermore, the correlations
between modules and clinical traits, such as immune clusters, age,
gender, T stage, N stage, M stage, AJCC stage, TMB, NAL, and
microsatellite state, were calculated. The highest correlation in the
module-trait relationship was observed between the yellow
module and immune clusters (Fig. 1F). In the yellow module, the
correlation coefficient between gene significance (GS) and module
membership (MM) reached 0.96, which suggested that the quality
of lncRNA module construction was superior (Fig. 1G). To
identify hub lncRNAs derived from immune infiltration patterns
within the yellow module, 526 lncRNAs with GS > 0.5 and
MM > 0.6 were considered hub immune-related lncRNAs
(Fig. 1G).

Immune-related lncRNAs generated from the ImmLnc pipe-
line. ImmLnc systematically deduces candidate lncRNA reg-
ulators of immune‐related pathway activity from lncRNA and
gene expression profiles9,18. One assumption is that, if a specific
lncRNA plays critical roles in immune regulation, then its related
genes should be enriched in the top or bottom of immune‐related
pathways. By virtue of the ImmLnc pipeline, we identified 791
immune-related lncRNAs (Supplementary Data 1). A high
number of lncRNAs were correlated with the “cytokine recep-
tors”, “TCR signalling pathway”, “chemokine receptors”, “natural
killer cell cytotoxicity”, and “antigen processing and presentation”
pathways (Fig. 1H). With the intersection of WGCNA results, a
total of 235 overlapping lncRNAs were extracted for subsequent
analysis (Fig. 1I).

Integrative construction of a consensus signature. Based on the
expression profiles of 235 immune-related lncRNAs, univariate
Cox analysis identified 43 prognostic lncRNAs (Supplementary
Fig. 2F). These 43 lncRNAs were subjected to our machine
learning-based integrative procedure to develop a consensus
immune-related lncRNA signature (IRLS). In the TCGA-CRC
dataset, we fitted 101 kinds of prediction models via the LOOCV
framework and further calculated the C-index of each model
across all validation datasets (Fig. 2A and Supplementary Data 2).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28421-6

2 NATURE COMMUNICATIONS |          (2022) 13:816 | https://doi.org/10.1038/s41467-022-28421-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Interestingly, the optimal model was a combination of Lasso and
stepwise Cox (direction= both) with the highest average C-index
(0.696), and this combination model had a leading C-index in all
validation datasets (Fig. 2A). In the Lasso regression, the optimal
λ was obtained when the partial likelihood deviance reached the
minimum value based on the LOOCV framework (Fig. 2B).
Thirty lncRNAs with nonzero Lasso coefficients were subjected to

stepwise Cox proportional hazards regression, which identified a
final set of 16 lncRNAs (Fig. 2C).

Next, a risk score for each patient was calculated using the
expression of 16 lncRNAs weighted by their regression coeffi-
cients in a Cox model (Fig. 2C). All patients were assigned into
high- and low-risk groups according to the optimal cut-off value
determined by the survminer package. As illustrated in Fig. 2D–J,
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patients in the high-risk group had significantly dismal overall
survival (OS) relative to the low-risk group in the TCGA-CRC
training dataset and six validation datasets (all P < 0.05). The
meta-cohort that combined all samples also showed the same
trend (P < 0.05) (Fig. 2K). Multivariate Cox regression demon-
strated that IRLS remained statistically significant (all P < 0.05)
after adjusting for available clinical traits, such as age; gender; T,
N, M, and AJCC stage; TMB; NAL; microsatellite state; ACT; and
TP53, KRAS, or BRAFmutations, which suggested that IRLS is an
independent risk factor for OS (Supplementary Fig. 3). Subse-
quently, we further assessed the predictive value of IRLS for RFS
in 11 datasets. Kaplan–Meier analysis revealed a consistent trend
across all cohorts, with patients in the high-risk group having
unfavourable relapse-free survival (RFS) (Supplementary Fig. 4).
Notably, two of these cohorts were not statistically significant,
possibly due to their small sample size (Supplementary Fig. 4).
The meta-cohort displayed a dramatic RFS difference between the
two groups (Supplementary Fig. 4). However, multivariate Cox
regression indicated that IRLS remained statistically significant
for RFS in only 3 of the 11 cohorts (Supplementary Fig. 5). Hence,
for RFS, IRLS had a certain degree of predictive value, but it was
not an independent prognostic factor.

Evaluation of the IRLS model. ROC analysis measured the
discrimination of IRLS, with 1-, 3-, and 5-year AUCs of 0.776,
0.763, and 0.790 in TCGA-CRC; 0.757, 0.717, and 0.716 in
GSE17536; 0.744, 0.766, and 0.740 in GSE17537; 0.828, 0.735, and
0.698 in GSE29621; 0.749, 0.709, and 0.683 in GSE38832; 0.721,
0.709, and 0.687 in GSE39582; 0.718, 0.696, and 0.720 in
GSE72970; and 0.748, 0.721, and 0.702 in meta-cohort, respec-
tively (Fig. 3A and Supplementary Data 3). The C-index [95%
confidence interval] was 0.749 [0.712–0.786], 0.684 [0.638–0.730],
0.723 [0.639–0.807], 0.702 [0.614–0.790], 0.726 [0.649–0.804],
0.678 [0.646–0.711], 0.664 [0.612–0.716], and 0.687 [0.668–0.706]
in the eight cohorts, respectively (Fig. 3B and Supplementary
Data 3). Furthermore, we also calculated two other time-
independent indicators, integrated AUC (iAUC) and integrated
Brier score (IBS) (Supplementary Fig. 6 and Supplementary
Data 3). All these indicators suggested that IRLS had stable and
robust performance in multiple independent cohorts. A previous
study reported that clinical characteristics (e.g. AJCC stage) and
molecular alterations (e.g. microsatellite state, KRAS mutations)
were also used to assess the prognosis of CRC in clinical
practice24. Therefore, we compared the performance of IRLS with
other clinical and molecular variables in predicting prognosis. As
displayed in Fig. 3C, IRLS had distinctly superior accuracy than
the other variables including age; gender; T, N, M, and AJCC
stage; TMB; NAL; microsatellite state; ACT; and TP53, KRAS, or
BRAF mutations (all P < 0.05, except for comparison between
IRLS and AJCC stage in GSE29621). An interesting idea is to
combine IRLS with commonly used clinical traits to further ele-
vate clinical utility. AJCC stage is a commonly used tool for the
clinical management of CRC, and multivariate Cox regression
analysis of AJCC stage was statistically significant across multiple

cohorts. Thus, we further explored the performance of IRLS+
Stage. As shown in Supplementary Fig. 7, we found that the
performance of IRLS+ Stage was significantly better than that of
IRLS or AJCC stage alone in multiple datasets. These results led
us to conclude that the combination of IRLS and AJCC stage may
further improve the predictive ability of our model.

Comparison of gene expression-based prognostic signatures in
CRC. Recently, with developments in next-generation sequencing
and big-data technologies, a considerable number of prognostic
and predictive gene expression signatures have been developed
based on machine learning25. To compare the performance of
IRLS with other signatures, we comprehensively retrieved pub-
lished signatures. The miRNA signatures were excluded owing to
the severe lack of miRNA information in validation datasets
annotated by GPL570. Ultimately, 109 signatures (including
mRNA and lncRNA signatures) were enroled (Supplementary
Data 4). These signatures were associated with various biological
processes, such as immune response, autophagy, ferroptosis,
stemness, epithelial–mesenchymal transition, Toll-like receptor
signalling, hypoxia, glycolysis, lipogenesis, vitamin D, epigenetics,
N6-methyladenosine, ageing, WNT, and drug sensitivity. We
performed univariate Cox regression across all datasets for each
signature and observed that only our model was significantly
associated with prognosis in all cohorts (Fig. 4A), which
demonstrated the stability of IRLS. Furthermore, the C-index of
IRLS was compared with other signatures; notably, IRLS dis-
played better performance in every dataset than almost all models
(Fig. 4B). We noticed that most models performed well in their
own training dataset and a few external datasets (e.g. Chen-Gene,
Dai-FIG) but performed weakly in other datasets (Fig. 4B)26,27.
This may be due to the poor generalisability of the model derived
by overfitting. Our signature was reduced dimensionally by two
machine learning algorithms and therefore had better extra-
polation potential.

Validation in a clinical in-house cohort. To further verify the
performance of our IRLS model in a clinically translatable tool,
we next evaluated the expression of these lncRNAs in a clinical
cohort of 232 CRC patients by conducting qRT-PCR assays.
Consistently, Kaplan–Meier analysis demonstrated that patients
with high IRLS exhibited dramatically worse OS and RFS
(P < 0.0001) (Fig. 5A, B). After controlling for confounding
variables (including age, gender, T stage, N stage, M stage, AJCC
stage, microsatellite state, chemotherapy, and ICI treatment), the
IRLS model remained statistically significant for OS instead of
RFS (Fig. 5C, D), which was consistent with the above results.
ROC analysis showed a superior accuracy of IRLS: the AUCs for
predicting OS at 1, 3, and 5 years were 0.840, 0.776, and 0.818,
respectively (Fig. 5E). Similarly, the C-index reached 0.765 (95%
CI= 0.691–0.839). In addition, we compared the predictive
superiority of IRLS with other clinical features and observed that
IRLS maintained optimal performance (Fig. 5F). Collectively, the

Fig. 1 Identification of immune-related lncRNAs via two algorithms. A The consensus score matrix of all samples when k= 2. A higher consensus score
between two samples indicates they are more likely to be grouped into the same cluster in different iterations. B The CDF curves of consensus matrix for
each k (indicated by colours). C The infiltration abundance of 28 immune cell subsets evaluated by ssGSEA for two clusters. D The distribution of 28
immune cell subsets infiltration between two clusters. E The distribution of immune score inferred by ESTIMATE algorithm between two clusters in the
TCGA-CRC cohort (n= 584, P= 5.22e−113). Statistic test: two-sided unpaired t test. In boxplot graphs centre line indicates median, bounds of box
indicate 25th and 75th percentiles, and whiskers indicate minimum and maximum. ****P < 0.0001. F Correlation analysis between module eigengenes and
clinical traits. G The high correlation between GS and MM in the yellow module (P= 0). Dots within the red rectangle were defined as immune-related
lncRNAs, with both high GS and MM. Statistic test: Pearson’s correlation coefficient, two-sided unpaired t test. H ImmLnc identified a total of 791 lncRNAs
significantly associated with immune‐related pathways. I The overleaping lncRNAs between WGCNA and ImmLnc.
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Fig. 2 A consensus IRLS was developed and validated via the machine learning-based integrative procedure. A A total of 101 kinds of prediction models
via LOOCV framework and further calculated the C-index of each model across all validation datasets. B In the TCGA-CRC cohort (n= 584), the
determination of the optimal λ was obtained when the partial likelihood deviance reached the minimum value, and further generated Lasso coefficients of
the most useful prognostic genes. Data are presented as mean ± 95% confidence interval [CI]. C Coefficients of 16 lncRNAs finally obtained in stepwise
Cox regression. D–K Kaplan–Meier curves of OS according to the IRLS in TCGA-CRC (log-rank test: P= 9.16e−19) (D), GSE17536 (log-rank test: P= 2.79e
−7) (E), GSE17537 (log-rank test: P= 0.011) (F), GSE29621 (log-rank test: P= 0.019) (G), GSE38832 (log-rank test: P= 1.87e−4) (H), GSE39582 (log-
rank test: P= 2.06e−10) (I), GSE72970 (log-rank test: P= 0.0013) (J), and meta-cohort (log-rank test: P= 5.18e−35) (K).
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results from a clinical in-house cohort supported our discovery
and in silico validation cohort findings, which validated and
confirmed that our IRLS model was quite robust and can serve as
an independent predictor of prognosis in CRC.

Predictive value of fluorouracil-based ACT and bevacizumab
benefits. Accumulating evidence has revealed that lncRNAs are
implicated in sensitivity and resistance to fluorouracil-based ACT
and bevacizumab18,28–30. Herein, we further assessed the pre-
dictive value of IRLS for quantifying fluorouracil-based ACT and
bevacizumab benefit. Six datasets treated with fluorouracil-based
ACT were enroled, which included 180 nonresponders and 160
responders. We found that responders presented a significantly
higher IRLS score than nonresponders in GSE19860, GSE28702,

GSE45404, GSE69657, and GSE72970 (all P < 0.05) (Fig. 6A–E).
Of note, responders had a trend toward higher IRLS in
GSE62080, but this was not significant (P= 0.091) (Fig. 6F),
which might be due to the small sample size (n= 21). ROC
analysis demonstrated that IRLS could accurately predict the
benefit of fluorouracil-based ACT, with high AUCs in GSE19860
(0.843), GSE28702 (0.778), GSE45404 (0.693), GSE69657 (0.765),
GSE72970 (0.709), and GSE62080 (0.722) (Fig. 6G–L). In our in-
house cohort, a total of 88 patients received fluorouracil-based
ACT, of which 35 patients were included in the responder group
(CR, n= 11; PR, n= 24) and 53 patients in the nonresponder
group (SD, n= 32; PD, n= 21). Likewise, a higher IRLS was
displayed in the responder group (Fig. 6M), and IRLS could also
markedly discriminate responders from nonresponders of
fluorouracil-based ACT in our cohort (AUC= 0.854) (Fig. 6N).

Fig. 3 Evaluation of the IRLS model. ATime-dependent ROC analysis for predicting OS at 1, 3, and 5 years. B C-index of IRLS across all datasets. C The
performance of IRLS was compared with other clinical and molecular variables in predicting prognosis. Statistic tests: two-sided z-score test. Data in (B, C)
are presented as mean ± 95% confidence interval [CI]. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Fig. 4 Comparison of gene expression-based prognostic signatures in CRC. A Univariate Cox regression analysis of IRLS and 109 published signatures in
TCGA-CRC, GSE17536, GSE17537, GSE29621, GSE38832, GSE39582, GSE72970, and meta-cohort. B C-index analysis IRLS and 109 published signatures
in TCGA-CRC (n= 584), GSE17536 (n= 177), GSE17537 (n= 55), GSE29621 (n= 65), GSE38832 (n= 122), GSE39582 (n= 573), GSE72970 (n= 124),
and meta-cohort (n= 1700). Statistic tests: two-sided z-score test. Data are presented as mean ± 95% confidence interval [CI]. *P < 0.05; **P < 0.01;
***P < 0.001; ****P < 0.0001.
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Subsequently, three datasets (GSE19860, GSE19862, and
GSE72970), including 30 nonresponders and 24 responders to
bevacizumab, were also collected. In contrast to fluorouracil-
based ACT alone, patients sensitive to bevacizumab exhibited a
lower IRLS level in GSE19860 (P= 0.075), GSE19862 (P= 0.112),
and GSE72970 (P= 0.011) (Fig. 6O–Q). The AUCs of IRLS for
predicting the benefit of bevacizumab were 0.771, 0.694, and
0.781 in three independent datasets (Fig. 6R–T). This suggested
that IRLS also had a robust performance for bevacizumab. Taken
together, patients with high IRLS tended to be sensitive to
fluorouracil-based ACT and resistant to bevacizumab, while

patients with low IRLS tended to be sensitive to bevacizumab and
resistant to fluorouracil-based ACT.

Implications of IRLS for ICI treatment. Since the development
of IRLS is based on immune-related lncRNAs, we assumed that
there were differences in immune characteristics and immu-
notherapy effects at different levels of IRLS. Cell infiltration
analysis showed a dramatically inverse correlation between IRLS
and immune infiltrate abundance in both the TCGA-CRC and
Meta-GEO cohorts (Fig. 7A, B and Supplementary Fig. 8A).

Fig. 5 Validation in a clinical in-house cohort. A, B Kaplan–Meier curves of OS (log-rank test: P= 1.93e−9) (A) and RFS (log-rank test: P= 5.23e−5) (B)
according to the IRLS. C, D Multivariable Cox regression analysis of OS (C) and RFS (D) in our cohort (n= 232). Statistic test: two-sided Wald test. Data
are presented as hazard ratio (HR) ± 95% confidence interval [CI]. E Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years. F The
performance of IRLS was compared with other clinical and molecular variables in predicting prognosis in our cohort (n= 232). Statistic tests: two-sided z-
score test. Data are presented as mean ± 95% CI. **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Likewise, scatter plots of IRLS and CD8A demonstrated a negative
correlation in the TCGA-CRC (r=−0.797, Fig. 7C), Meta-GEO
(r=−0.711, Supplementary Fig. 8B), and in-house cohorts
(r=−0.674, Fig. 7D). To further verify the protein expression of
CD8A at different levels of IRLS, we performed IHC on paraffin
sections, which included 56 high-risk CRC and 48 low-risk CRC
samples. IHC images and scores displayed that the expression of

CD8A was dramatically higher in the low-risk group (Fig. 7E, F).
This indicated that patients with low IRLS possessed potentially
more backup resources for ICI treatment. Additionally, IRLS was
also negatively related to PD-L1 expression in the TCGA-CRC
(r=−0.612, Fig. 7G), Meta-GEO (r=−0.389, Supplementary
Fig. 8C), and in-house cohorts (r=−0.548, Fig. 7H). This con-
sistent finding was also found at the protein level (Fig. 7I, J).
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Overall, IRLS was lower as CD8A and PD-L1 expression
increased in the three cohorts (Supplementary Fig. 8D–F). In
addition, IRLS demonstrated a predominant association with
genomic instability, such as TMB (r=−0.218) and NAL
(r=−0.222) (Supplementary Fig. 8G, H). The microsatellite state
is also considered to be a strong biomarker for immune infil-
tration and ICI treatment in CRC31. In this study, we observed
that patients with dMMR/MSI-H displayed significantly lower
IRLS than those with pMMR/MSI-L/MSS (Supplementary Fig. 9).
Of note, IRLS could accurately predict the dMMR/M
SI-H phenotype in TCGC-CRC (AUC= 0.883), Meta-GEO
(AUC= 0.778), and in-house cohorts (AUC= 0.794)
(Fig. 7K–M), which suggested that IRLS is a favourable surrogate
for microsatellite state estimation. In addition, we investigated the
associations between IRLS and consensus molecular subtypes
(CMS1-4). As illustrated in Supplementary Fig. 10A, the
CMS1 subtype displayed a lower IRLS score than the other
subtypes. As is well known, CMS1 belongs to the immune sub-
type, with a high fraction of MSI-H patients and better prognosis,
in line with the indications of IRLS. In addition, we plotted ROC
curves to further evaluate the accuracy of IRLS in the identifi-
cation of CMS1 CRC patients, and the AUCs for IRLS were
relatively high, at 0.915 (TCGA-CRC) and 0.859 (Meta-GEO)
(Supplementary Fig. 10B). Subsequently, we further investigated
the distribution of IRLS in 65 patients treated with pem-
brolizumab, of which 23 patients were included in the responder
group (CR, n= 7; PR, n= 16) and 42 patients in the non-
responder group (SD, n= 18; PD, n= 24). As illustrated in
Supplementary Fig. 11, responders displayed a lower level of IRLS
than nonresponders. ROC analysis showed that IRLS could also
markedly discriminate responders from nonresponders of pem-
brolizumab (AUC= 0.897) and was significantly superior to PD-
L1 (AUC= 0.686, P < 0.001) and CD8A (AUC= 0.725, P < 0.01)
expression (Fig. 7N).

Discussion
The AJCC staging system is a conventional approach for clinical
management such as treatment decision-making and surveillance
strategies of CRC, but it is limited by heterogeneous clinical
outcomes within the same stage. This insufficient approach might
lead to underlying overtreatment or undertreatment8. With
advancements in molecular biology and immunology, treatment
modalities for CRC have also become diversified, for instance,
antiangiogenic drugs (e.g. bevacizumab) and ICI treatment (e.g.
nivolumab, ipilimumab)32,33. Diverse treatment options mean
that patients need better personalised assessment ways to
implement clinical decisions. However, reliable prognostic bio-
markers that can identify “high-risk” CRC patients, who might
benefit from ACT, bevacizumab, and ICI therapy are currently
lacking2. To bridge this gap, we investigated the relationship
between immune-related lncRNA profiles and prognosis, recur-
rence, and drug benefits.

In this study, two algorithms, WGCNA combined with con-
sensus clustering and ImmLnc based on GSEA, were applied to
identify immune-related lncRNAs. With the expression profiles of
these lncRNAs, we developed an integrative pipeline to construct
a consensus IRLS. In total, 101 kinds of models were fitted to the
training dataset via the LOOCV framework. Further validations
in six independent datasets revealed that the optimal model was a
combination of Lasso and stepwise Cox (direction= both). The
advantage of integrative procedures is to fit a model with con-
sensus performance on the prognosis of CRC based on a variety
of machine learning algorithms and their combinations, and
algorithm combinations can further reduce the dimensionality of
variables, making the model more simplified and translational.
The prognostic meta-analysis demonstrated that IRLS was a
deleterious indicator of OS and RFS, and was proven to be an
independent factor for OS rather than RFS. Thus, IRLS is more
suitable for evaluating OS in CRC, but has limited predictive
value for RFS. In addition, ROC and C-index analysis suggested
that IRLS maintained the high accuracy and stable performance
in seven public datasets and an in-house cohort, which indicated
great potential for the clinical application of IRLS.

The T, N, M, and AJCC stages are conventional tools for
evaluating clinical outcomes and treatment decisions3. Addi-
tionally, whether to use ACT and emerging biomarkers, including
TMB; NAL; microsatellite state; and TP53, KRAS, or BRAF
mutations, are also significantly correlated with the clinical stra-
tegies and outcomes24,34. Notably, our signature worked inde-
pendently of these factors and also had significantly superior
performance in predicting prognosis according to the C-index
assessment. In addition, we retrieved 109 published signatures
containing various functional gene combinations. Among these
signatures, few have been incorporated into clinical practice, and
even fewer have been thoroughly validated2. For example, uni-
variate Cox regression displayed that, except for IRLS, no sig-
nature maintained prognostic significance across all cohorts.
With the comparison of predictive superiority among these sig-
natures, IRLS also presented better performance in every dataset
than almost all models. We noticed that most models performed
well in their own training dataset and a few external datasets (e.g.
Chen-Gene, Dai-FIG) but performed weakly in other
datasets26,27. This may be due to the poor generalisability of the
model derived by overfitting. Our signature was reduced
dimensionally by two machine learning algorithms and therefore
had a better extrapolation possibility. To further test the clinical
interpretation of IRLS, another validation was based on qRT-PCR
results from 232 frozen CRC tissues, verifying our prior findings
and assessing their feasibility in different centres. Therefore, our
signature could be a promising surrogate for evaluating the
prognosis of CRC in clinical settings.

Fluorouracil-based ACT (FOLFOX or FOLFIRI) in CRC is the
standard modality in stage III but remains controversial in stage
II3. Current prognostic markers utilised in clinical practice are
inadequate to identify patients with stage II CRC at high risk of

Fig. 6 Predictive value of fluorouracil-based ACT and bevacizumab benefits. A–F The distribution of IRLS score between responders and nonresponders
of fluorouracil-based ACT in GSE19860 (n= 40, P= 1.70e–4) (A), GSE28702 (n= 83, P= 1.42e−5) (B), GSE45404 (n= 42, P= 0.033) (C), GSE72970
(n= 124, P= 5.29e−5) (D), GSE69657 (n= 30, P= 0.015) (E), and GSE62080 (n= 21, P= 0.095) (F). Statistic tests: two-sided t test. G-L ROC curves of
IRLS to predict the benefits of fluorouracil-based ACT in GSE19860 (G), GSE28702 (H), GSE45404 (I), GSE62080 (J), GSE69657 (K), and GSE72970 (L).
M The distribution of IRLS score between responders and nonresponders of fluorouracil-based ACT in in-house cohort (n= 88, P= 7.64e−6). Statistic
test: two-sided t test. N ROC curves of IRLS to predict the benefits of fluorouracil-based ACT in in-house cohort. O–Q The distribution of IRLS score
between responders and nonresponders of bevacizumab in GSE19860 (n= 12, P= 0.106) (O), GSE19862 (n= 14, P= 0.318) (P), and GSE72970 (n= 28,
P= 0.011) (Q). Statistic tests: two-sided t test. R–T ROC curves of IRLS to predict the benefits of bevacizumab in GSE19860 (R), GSE19862 (S), and
GSE72970 (T). In boxplot graphs (A–F, M, O–Q) centre line indicates median, bounds of box indicate 25th and 75th percentiles, and whiskers indicate
minimum and maximum. nsP > 0.05; *P < 0.05; ***P < 0.001; ****P < 0.0001.
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recurrence or patients with stage III CRC at low risk, hence giving
rise to latent overtreatment or undertreatment with ACT8.
Moreover, several studies have demonstrated that fluorouracil-
based ACT in combination with bevacizumab can extend OS in
CRC patients relative to those receiving fluorouracil-based ACT
alone35,36. Nevertheless, bevacizumab benefits only a subset of
patients, and it can lead to high costs and serious side effects.
With the objective of improving this clinical conundrum, we

investigated the predictive value of IRLS for measuring the ben-
efits of ACT and bevacizumab. Indeed, accumulating evidence
has demonstrated that lncRNAs are closely associated with the
responses to ACT and bevacizumab18,28–30. In this study, we
found that patients with high IRLS were sensitive to fluorouracil-
based ACT alone, while patients with low IRLS were more prone
to respond to fluorouracil-based ACT in combination with bev-
acizumab. ROC analysis indicated that IRLS afforded greater
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accuracy in the prediction of fluorouracil-based ACT and bev-
acizumab benefits. Thus, the IRLS system might be a powerful
tool for tailoring decision-making for CRC patients.

Cancer immunotherapy represented by ICIs has revolutionised
the treatment of solid tumours, including a subset of CRC. Two
monoclonal antibodies targeting PD-1, nivolumab and pem-
brolizumab, have demonstrated considerable benefits in CRC
with MSI-H or dMMR37. In this study, patients with low IRLS
displayed higher TMB and NAL. TMB could increase the pro-
duction of mutation-derived neoantigens and enhance tumour
immunogenicity, which further induces the proliferation and
activation of cytotoxic T lymphocytes38. Actually, patients with
low IRLS presented abundant immune cell infiltration, indicating
an “immune-hot” phenotype. CD8A and PD-L1 also showed a
high distribution of both RNA and protein in patients with low
IRLS. These results suggested that the low level of IRLS indicates
more backup lymphocyte resources and potentially greater sen-
sitivity to ICI treatment. Meanwhile, patients with dMMR/MSI-H
were prone to have a higher distribution of IRLS, which was
consistent with previously reported dMMR/MSI-H tumours
having better prognosis and more tumour-infiltrating
lymphocytes37. However, the dMMR/MSI-H phenotype only
accounts for less than 5% of tumours, hindering its clinical
utilisation7. Additionally, IRLS could accurately predict the
dMMR/MSI-H phenotype in three cohorts, which suggested that
IRLS is a favourable surrogate for microsatellite state estimation.
Further in-house estimation indicated that IRLS could markedly
discriminate responders from nonresponders to pembrolizumab,
significantly better than two well-studied biomarkers, PD-L1 and
CD8A. Therefore, IRLS is also a candidate biomarker for asses-
sing the benefits of ICI treatment, and patients with high IRLS
might not be suitable for ICI treatment due to potential resistance
and immune-related adverse events (irAEs).

The IRLS model can be reproduced using a simple PCR-based
assay, making it attractive for clinical translation and imple-
mentation. Although the clinical significance of IRLS in CRC is
promising, some limitations should be acknowledged. First, all of
the samples from this study were retrospective, and future vali-
dation of IRLS should be performed in a prospective multicentre
cohort. Second, some clinical and molecular traits on public
datasets were very inadequate, which may have concealed the
potential associations between IRLS and certain variables. Third,
the roles of most lncRNAs from IRLS in CRC remain unknown,
and further in vivo and in vitro experiments are needed to reveal
their functions.

In conclusion, based on a multitude of bioinformatics and
machine learning algorithms, we developed a stable and powerful
signature for assessing the prognosis, recurrence, and benefits of
fluorouracil-based ACT, bevacizumab, and pembrolizumab. This
IRLS model is a promising tool to optimise decision-making and
surveillance protocols for individual CRC patients.

Methods
Publicly available data collection and processing. In total, 2277 CRC patients
from 17 independent public datasets were accessed from The Cancer Genome Atlas
(TCGA) and Gene Expression Omnibus (GEO) (Supplementary Data 5). Among
these, seven datasets (TCGA-CRC, GSE17536, GSE17537, GSE29621, GSE38832,
GSE39582, and GSE72970) encompassing complete OS and RFS information were
used for the construction and validation of our signature. Four datasets (GSE31595,
GSE92921, GSE143985, and GSE161158) containing only RFS information were
used to verify the predictive value of IRLS for recurrence. For drug-related datasets,
we enroled six datasets treated with fluorouracil-based ACT (FOLFOX or FOL-
FIRI) alone: GSE19860, GSE28702, GSE45404, GSE62080, GSE69657, and
GSE72970, which included 180 nonresponders and 160 responders. In addition,
three datasets (GSE19860, GSE19862, and GSE72970), including 30 nonresponders
and 24 responders of fluorouracil-based ACT in combination with bevacizumab,
were also collected. These drug-related datasets were applied to assess the per-
formance of IRLS in predicting ACT and bevacizumab benefits in CRC.

The RNA-seq raw read count from the TCGA database was converted to
transcripts per kilobase million (TPM) and further log-2 transformed. Data from
the GEO database were all retrieved from the Affymetrix® GPL570 platform
(Human Genome U133 Plus 2.0 Array). The raw data from Affymetrix® were
processed via the robust multiarray averaging (RMA) algorithm implemented in
the Affy package. According to the gene annotations in GENCODE (Homo sapiens
GRCh38), 15299 lncRNA and 19526 protein-coding genes were included in the
TCGA datasets. We reannotated probe sets of the GPL570 array for genes by
mapping all probes to the human genome (hg38) using SeqMap39 and then
obtained 3439 lncRNA and 17046 protein-coding genes. After removing batch
effects by the ComBat algorithm, the TCGA-CRC cohort was combined from the
TCGA-COAD and TCGA-READ datasets, and the Meta-GEO cohort was
combined from all GEO datasets belonging to the Affymetrix® GPL570 platform.
Each gene expression was transformed into z-score across patients in all cohorts.
The detailed baselines of the 17 enroled datasets are summarised in Supplementary
Data 5.

Cells infiltration estimation. Single-sample gene set enrichment analysis
(ssGSEA) implemented in R package GSVA was employed to quantify the relative
infiltration of 28 immune cells in the TCGA-CRC cohort21. Six other algorithms
including TIMER, quanTIseq, MCP-counter, xCell, EPIC, and ESTIMATE, were
further performed to verify the stability and robustness of the ssGSEA results.

Consensus clustering. According to the infiltration profile of various immune
cells, a resampling-based method termed consensus clustering was applied for
cluster discovery in the TCGA-CRC cohort22. This process was performed by the
ConsensusClusterPlus package. Subsequently, the consensus score matrix, CDF
curve, PAC score, and Nbclust were synthetically used to determine the optimal
number of clusters23. See Supplementary Information for details.

Weighted correlation network analysis (WGCNA). Coexpression lncRNA net-
works of TCGA-CRC were generated using the WGCNA package. An appropriate
soft threshold β was calculated to meet the criteria for the scale-free network.
Furthermore, the weighted adjacency matrix was converted into a topological
overlap matrix (TOM), and the corresponding dissimilarity was generated (1-
TOM). The dynamic tree cutting approach was employed to conduct the module
identification. To recognise lncRNA modules significantly correlated with immune
clusters, the module that displayed the highest correlation was selected for further
study. lncRNAs with both high GS and MM were defined as immune-related
lncRNAs.

ImmLnc analysis framework. ImmLnc is an integrated algorithm for identifying
lncRNA modulators of immune-related pathways. First, the ESTIMATE algorithm
was used to infer tumour purity. Second, we calculated the partial correlation
coefficient (PCC) between a specific lncRNA and all mRNAs by adjusting the

Fig. 7 Implications of IRLS for ICI treatment. A The relationship between IRLS and immune cell infiltrations in TCGA-CRC. B Chorograms were derived
based on Pearson r value between IRLS and immune cell infiltrations in TCGA-CRC and Meta-GEO. C, D Scatterplots between IRLS and CD8A expression
with microsatellite state were shown in TCGA-CRC (n= 584, P= 5.20e−15) (C) and in-house cohort (n= 232, P= 4.45e−32) (D). Statistic test:
Pearson’s correlation coefficient, two-sided unpaired t test. Data are presented as mean ± 95% confidence interval [CI]. E Representative IHC staining
images of CD8A between two risk groups (n= 104). Scale bars= 50 μm. F Analysis of IHC scores between two risk groups according to CD8A staining
results (n= 104, P= 0.009). Statistic test: two-sided unpaired t test. Data are presented as mean ± 95% CI. G, H. Scatterplots between IRLS and PD-L1
expression with microsatellite state were shown in TCGA-CRC (n= 584, P= 1.30e−30) (G) and in-house cohort (n= 232, P= 1.37e−19) (H). Statistic
test: Pearson’s correlation coefficient, two-sided unpaired t test. Data are presented as mean ± 95% CI. I Representative IHC staining images of PD-L1
between two risk groups (n= 104). Scale bars= 50 μm. J Analysis of IHC scores between two risk groups according to PD-L1 staining results (n= 104,
P= 1.34e−5). Statistic test: two-sided unpaired t test. Data are presented as mean ± 95% CI. K–M ROC curves of IRLS to predict the dMMR/MSI-H
phenotype in TCGA-CRC (K), Meta-GEO (L), and in-house cohort (M). N ROC curves of IRLS, PD-L1, and CD8A to predict the benefits of pembrolizumab.
Statistic test: two-sided unpaired DeLong test. **P < 0.01; ***P < 0.001; ****P < 0.0001.
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tumour purity as a covariable. Finally, all mRNAs were ranked by the correlation
coefficient with a specific lncRNA, and the ranked gene list was further subjected to
GSEA procedure to investigate whether the immune genes were enriched in the top
or bottom of the gene list. As recommended, lncRES scores >0.995 and FDR < 0.05
were considered statistically significant9,18.

Signature generated from machine learning-based integrative approaches. To
develop a consensus IRLS with high accuracy and stability performance, we inte-
grated 10 machine learning algorithms and 101 algorithm combinations. The
integrative algorithms included random survival forest (RSF), elastic network
(Enet), Lasso, Ridge, stepwise Cox, CoxBoost, partial least squares regression for
Cox (plsRcox), supervised principal components (SuperPC), generalised boosted
regression modelling (GBM), and survival support vector machine (survival-SVM).
The signature generation procedure was as follows: (a) Univariate Cox regression
identified prognostic lncRNAs in the TCGA-CRC cohort; (b) Then, 101 algorithm
combinations were performed on the prognostic lncRNAs to fit prediction models
based on the leave-one-out cross-validation (LOOCV) framework in the TCGA-
CRC cohort; (c) All models were detected in six validation datasets (GSE17536,
GSE17537, GSE29621, GSE38832, GSE39582, and GSE72970); (d) For each model,
the Harrell’s concordance index (C-index) was calculated across all validation
datasets, and the model with the highest average C-index was considered optimal.
See Supplementary Information for details.

Human tissue specimens and quantitative real-time PCR (qRT-PCR). The
human cancer tissues used in this study were approved by Ethnics Committee of
The First Affiliated Hospital of Zhengzhou University on December 19, 2019, and
the TRN is 2019-KW-423. Overall, 232 frozen surgically resected CRC tissues were
collected from The First Affiliated Hospital of Zhengzhou University. All patients
provided written informed consent; received available standard systemic therapies
(fluorouracil, oxaliplatin, irinotecan, and pembrolizumab); were aged 18 years or
older; had adequate haematologic, renal, and liver function; had Eastern Coop-
erative Oncology Group performance status of 0 or 1; and had measurable disease
according to Response Evaluation Criteria in Solid Tumours (RECIST, version
1.1)40. Responders and nonresponders were defined as having a complete response
(CR)/partial response (PR) and stable disease (SD)/progressive disease (PD),
respectively. Detailed baseline data of CRC patients are displayed in Supplementary
Data 5. Total RNA was isolated from CRC tissues using RNAiso Plus reagent RNA
quality was evaluated using a NanoDrop One C (Waltham, MA, USA), and RNA
integrity was assessed using agarose gel electrophoresis. The primer sequences of
the 16 lncRNAs and GAPDH are shown in Supplementary Data 6. See Supple-
mentary Information for details.

Immunohistochemistry (IHC). For the IHC assay, paraffin sections were incu-
bated with primary antibodies against CD8A (1:300; Cat# GB13068-2; Servicebio,
Wuhan, China) and PD-L1 (1:500; Cat# GB11339; Servicebio, Wuhan, China) at
37 °C for 60 min, secondary antibodies at 37 °C for 15 min and horseradish
enzyme-labelled streptavidin solution for 10 min and then stained with DAB and
haematoxylin. Staining percentage scores were classified as follows: 1 (1–25%), 2
(26–50%), 3 (51–75%) and 4 (76–100%), and staining intensity was scored 0
(signalless colour) to 3 (light yellow, brown, and dark brown). The stained tissues
were scored by three individuals blinded to the clinical parameters. A final IHC
score was calculated by multiplying the scores of “percentage of protein-positive
cells” and “intensity of nuclear staining”.

Statistical analysis. All data processing, statistical analysis, and plotting were
conducted in R 4.0.5 software. Correlations between two continuous variables
were assessed via Pearson’s correlation coefficients. The chi-squared test was
applied to compare categorical variables, and continuous variables were
compared through the Wilcoxon rank-sum test or T test. The survminer
package was used to determine the optimal cut-off value. Cox regression and
Kaplan–Meier analyses were performed via the survival package. The C-indices
of different variables were compared using the CompareC package. The
receiver operating characteristic curve (ROC) used to predict binary catego-
rical variables was implemented via the pROC package. The time-dependent
area under the ROC curve (AUC) for survival variables was conducted by the
timeROC package. The iAUC was generated by the risksetROC package and the
IBS was calculated using the survcomp package. The CMS subtypes were
inferred via the CMSclassifier package41. All statistical tests were two-sided.
P < 0.05 was regarded as statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Public data used in this work can be acquired from the TCGA Research Network portal
(https://portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/).

Code availability
Essential scripts for implementing machine learning-based integrative procedure in
multiple independent datasets are available on the Github website (https://github.com/
Zaoqu-Liu/IRLS).
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