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ABSTRACT Currently, research work is primarily dependent on the collection of large sets of data from 
systems and making predictions based on the knowledge obtained from the data, which is generally termed 
as ‘data mining’. These data mining algorithms are of great importance in improving the performance of 
different applications. In this regard, Machine Learning (ML) algorithms have been demonstrated to be 
excellent tools to cope with difficult problems. In this paper, a classification learner based supervised ML 
algorithm is proposed for intentional islanding of DERs based on the live data collected from supervisory 
control and data acquisition (SCADA) system in post disaster situations. Literature presents various 
islanding detection techniques and also intentional islanding algorithms to address different problems in AC 
networks. These algorithms majorly work based on the control of current source or voltage source inverters. 
On the other hand, a low voltage DC distribution system allowing the removal of inverter is proposed, 
which is supposed to be more advantageous by reducing losses and is also economical when working with 
DERs. In this paper, ML based intentional islanding algorithm for DERs based low voltage DC distribution 
system is proposed by considering the effects of natural disasters. The learner models trained are fine tree, 
linear SVM, quadratic SVM and Gaussian SVM. The training of fine tree model is achieved with higher 
accuracy of 99.8%. The main objective of this work is to achieve a faster and accurate decision making. 
The performance of the ML based intentional islanding algorithm is compared with the earlier proposed 
artificial intelligence (AI) based intentional islanding algorithms. The AI algorithms proposed earlier are 
fuzzy inference systems (FIS), artificial neural networks (ANN) and adaptive network based fuzzy 
inference system (ANFIS). The comparison shows that, the decision making with ML based intentional 
islanding algorithm is faster and accurate than all other algorithms. 

INDEX TERMS Machine Learning, DERs, SCADA, Intentional Islanding, Disaster Management, LVDC 
Distribution Systems. 

I. INTRODUCTION 
Machine Learning (ML), a vast interdisciplinary 

field with numerous applications is classified into two main 
categories: supervised and unsupervised. Unsupervised ML 
is used to draw conclusions from datasets consisting of input 
data without labeled responses. Supervised ML techniques 
are further classified into two categories, classification and 
regression. Classification is a data mining approach that is 
used to forecast class labels for data instances. There are 
different classification learners such as decision trees (DT), 
K-nearest neighbor (KNN) classifiers and support vector 
machines (SVMs). Every algorithm has its own advantages 
and disadvantages. When compared, DTs are easy to 
understand and the decision is obtained using the complete 
training data set, KNNs have advantages such as 
transparency and robustness towards noisy training datasets 

and SVMs are most suitable for large, high dimensional and 
nonlinear datasets [1]. 

These classifiers find different applications in 
electrical systems, significantly where predictions or 
decisions are obtained from the available large datasets. Most 
importantly in RES’s such as wind and solar, need 
predictions based on large datasets, as they are variable in 
nature. These classifiers are being used in various 
applications like wind speed prediction, pattern prediction of 
power generation from RES, fault diagnosis and power 
quality (PQ) indices such as distortions in voltage and current 
waveforms (sag, swell, notch, interruption, etc.), sudden 
variations in parameters and frequency deviations. The live 
data from the RES’s or DER’s and the distribution system 
loads are provided by the automated systems such as 
SCADA. These systems provide moment-to-moment live 
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data across the system, which is bulk in size. The 
classification learner gives an opportunity, to gain the 
required knowledge from these big data and utilize this 
knowledge for making decisions and future predictions [2-3].   

Furthermore, classification learners are also finding 
their applications in the detection of unintentional islands for 
DERs. An article showed that, SVM is the most effective 
tool of ML in identifying unintentional islands when 
compared to conventional relays such as rate of change of 
frequency (ROCOF) and frequency relays (FRs) in terms of 
reliability and detection time. Another article showed that, 
the DTs have been proven to be the fastest and most accurate 
in identifying unintentional islands of DERs [4-5]. Some 
articles (Ashish Shrestha, Kashem Muttaqi and Mollah 
Rezual Alam et. al.,) projected the potential of the 
classification learners to solve the complicated problems 
related to interconnections in DERs that comprise micro 
grids and smart grids. 

On the other hand, intentional islanding algorithms 
are found to be as best solutions for DERs to improve the 
system reliability. In these articles, the primary concern is to 
provide solutions for an AC distribution system. The controls 
mainly work based on the control of the inverter from current 
source mode to voltage source mode [6]. Advanced 
algorithms based on clustering and spectral clustering have 
also been published for AC distribution systems [7-9]. Few 
papers provide load shedding and battery energy storage 
systems solutions for intentional islanding in AC systems 
[10-11]. Additionally, few papers present optimal algorithms 
based on genetic algorithms and particle swam optimization 
(PSO) algorithms [12-13]. A recent article shows a fault 
location, isolation and service restoration (FLISR) 
application along with integration of an open-source 
standards-based platform for ADMS application 
development in AC distribution systems [14].  

Utilizing power from DERs for AC loads in 
islanded mode requires more number of conversion stages. 
Most of the DERs generate power in DC and then this DC 
power is given to batteries and inverted to AC and utilized 
for loads. In present days, most of the loads are inherently 
DC. This leads to an added conversion stage from AC to DC. 
As the conversion stages increase, losses in system increases 
and the overall cost of the system also increases. Here, to 
effectively utilize the power from DERs by reducing the 
number of conversion stages, an intentional islanding 
algorithm is proposed for a low voltage DC (LVDC) 
distribution system. The LVDC distribution system is 
designed based on the standards proposed in the literature 
[15-19]. 

While islanding the loads with DERs in post 
disaster situations, even a small disturbance in the system can 
cause substantial damage to the equipment. Hence, faster 
decision making is of major concern in post disaster 
situations. The main objective of this work is to achieve an 
accurate and faster decision making using ML algorithms. In 

this paper, a ML based intentional islanding algorithm for 
DER’s is designed by using different classification learners 
(supervised machine learning) such as DT’s and SVM’s like 
Linear SVM’s (LSVM’s), Gaussian SVM’s (GSVM’s) and 
Quadratic SVM’s (QSVM’s). The algorithms while creating 
islands, address the post disaster constraints such as effects of 
natural disasters on electrical networks, the balancing of 
power between DERs and loads and priorities of loads. 
Further, the performance of the proposed ML algorithm is 
compared with the earlier proposed conventional, AI based 
intentional islanding algorithms like FIS, ANN and ANFIS 
in terms of decision making time and linearity in decision 
making. The results show that, the proposed ML based 
algorithm gives faster and accurate decision making. 

Motivation and Contributions: 
 An intentional islanding algorithm for LVDC 

distribution system is proposed to reduce the number of 
conversion stages and to reduce the overall cost of 
system by removing inverters. 

 ML based algorithms such as DT’s, LSVM’s, QSVM’s 
and GSVM’s are proposed for intentional islanding of 
loads to achieve faster decision making. 

 The performance of the proposed ML based algorithms 
is tested for various case studies to address the differing 
impacts of natural disasters and also to avoid the 
overloading of DERs.  

 A comparison for the proposed ML based algorithms 
and earlier proposed Conventional and AI based 
algorithms is explained detail. 

 Results show that, the ML based algorithm gives faster 
and accurate decision making in comparison with AI 
based algorithms. 

Flow of paper: 
I Introduces the literature and the proposed work. 
II Designs a base LVDC distribution system. 
III Presents an analysis of the impacts of natural disasters on 
the electrical system when compared to the typical faults in 
the system. 
IV Describes the proposed intentional islanding algorithm for 
the LVDC distribution system. 
V Gives a brief explanation of the training of classification 
learners in MATLAB and the selection of a classifier with 
high accuracy. 
VI Results are elaborated for the ML based intentional 
islanding algorithm with all contingencies. A comparative 
analysis of the obtained results of ML with earlier proposed 
AI is also presented in detail. 
VII Concludes the comparisons of ML with Conventional 
and AI based algorithms. 
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II. BASE LVDC DISTRIBUTION SYSTEM 
A base distribution system to integrate RES’s is 

designed based on the IEEE standards and recommendations 
given in IEEE Std. 1547.6-2011[20]. The distribution system 
is designed for LVDC so that, the conversion stages are 
reduced when the power is utilized from DERs. The base 
LVDC distribution system is shown in Figure 1. 

Figure 1 depicts the base distribution system 
designed by considering three radial feeders of a rural area. 
On each feeder, three DC loads of 1 kW each are connected, 
considering a residential load. The three loads are titled A, B 
and C for feeders F1, F2 and F3. The ratings of the LVDC 
distribution system and its loads are: voltage - 48 V DC and 
current - 20 A DC. All the loads are considered resistive 
since, the inductive and capacitive loads are observed as 
resistive by the DC supply. The loads of F1 i.e., AF1, BF1 and 
CF1 are considered first priority loads. The loads of F2 i.e., 
AF2, BF2 and CF2 are considered second priority loads. The 
loads of F3 i.e., AF3, BF3 and CF3 are considered the least or 
third priority loads. The DER considered in this system is an 
integration of two RES’s, the standalone PV (SPV) system 
and the wind energy conversion system (WECS). Integration 
is achieved in DC as shown in literature [21]. The 
distribution system with three radial feeders is connected 
across the main grid and the DERs in parallel. Power from 
the main grid to loads is obtained through rectifiers (AC to 
DC converters), whereas, the power from DERs is obtained 
directly without any converters. This approach helps reduce 
the number of conversion stages when the power is obtained 
from DERs. The main grid is connected to feeders through 
conventional breakers. The conventional breakers operate 
based on the information provided by the relays and trip 
accordingly. The DER’s are connected to feeders through the 
controllable switches (CS’s). These CS’s are operated based 
on the binary data, i.e. a binary ‘1’ closes the CS and a binary 
‘0’ opens the CS. Automation software such as SCADA is 
installed in this distribution system to obtain the live data 
across each load and feeder. The base distribution system 

with DERs, CS’s and SCADA as per the block diagram 
shown in figure 1 is installed in real-time. This is shown in 
figure 2. The DERs installed in real time are shown in figure 
3. 

 
Figure 2. Real-time prototype distribution system 

The conventional based intentional islanding 
algorithm is implemented in real time and prototype 
distribution system is developed. The results of conventional 
algorithm in real time system validate the proposed 
intentional islanding algorithm [22-23]. 

Further, the live data such as voltage, current and 
power across each individual load and feeder is obtained 
from automation system for every moment. This large set of 
data is analyzed and classified with the help of the proposed 
‘classification learner based intentional islanding algorithm’ 
in MATLAB/Simulink. Based on the classification, a 
decision is obtained in binary to open or close the CS, 
helping to create intentional islands of loads during grid 
unavailability. 

III. NATURAL DISASTERS AND CONTINGENCY 
ANALYSIS 

Natural disasters are unannounced event’s that 
disturb many important services such as medical services, 
transportation and communication, where these services 
depend on electricity internally. Natural disasters such as 
floods, landslides and earthquakes have a huge impact on the 
electrical distribution systems. These impacts are different 
for different disasters [24] and they are summarized as:  
 Power generation units may be out of service 
 Transmission and distribution networks are damaged 

and incomplete 
 Multiple faults result from catastrophic damage 

Figure 1. LVDC distribution system with DERs and 
SCADA 

Figure 3. PV and Wind hybrid DERs installed in real-time 
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 Uncertainty and stochasticity are found with the process 
of natural disasters 

 Spatiotemporal correlation for the faults due to natural 
disasters 

 Interdependence with other infrastructures causes 
problems 

 Difficult with repair and restoration is widespread, e.g., 
debris after the disaster 

 
In post disaster situations, while creating islands for 

loads, these impacts of natural disasters must be considered. 
These impacts may lead to damage to DERs or the 
interconnecting components of the distribution network and 
may also lead to the tripping of DER. Hence, in post disaster 
situations, the DERs cannot be connected to loads without 
taking precautionary measures. An intentional islanding 
algorithm is proposed to address these impacts of natural 
disasters while creating islands of healthy loads. 

To address these impacts of natural disasters, a 
contingency analysis with the help of faults is conducted in 
this work. The contingencies that resemble the impacts of 
natural disasters are shown as follows: 

 Supply from main grid 
 Supply from DERs during: 

a. Multiple faults in system 
b. Small duration fault 
c. Multiple faults on a single line 

 
The contingencies listed above show the working of 

the distribution system in different situations such as pre- and 
post-disaster situations [25]. The supply from the main grid 
represents the operation of the distribution system under 
normal operating conditions or pre-disaster situations. In the 
post-disaster situation, as ‘the power generation units may 
not be available’, the power is obtained from alternate 
sources, i.e., DERs. This situation is addressed by the supply 
from DERs. The impact of disasters show that there will be 
multiple faults in the system due to catastrophic damage, 
represented by the contingency of multiple faults in systems. 
These multiple faults are created in the system at irregular 
intervals to resemble the actual situation of disasters. 
Furthermore, the impact of natural disasters consist of 
uncertainity and stochasticity, represented with a contingency 
of a small duration fault, where a fault of very small duration, 
i.e., of 10-4s is applied in the system and the algorithm is 
tested for its performance. This approach helps in creating 
islands while isolating every smallest possible uncertainty in 
the system. Additionally, the impact of natural disasters show 
a spatiotemporal correlation between faults, represented by 
creating multiple faults on a single line at regular intervals. 
With the help of these contingencies, an attempt can be made 
to resemble the actual situation of post-disaster conditions in 
a disaster prone distribution network. The proposed 
algorithm is tested for its performance during these 
contingencies. 

IV. PROPOSED ALGORITHM 
An algorithm is proposed to address the impact of 

natural disasters while creating intentional islands in post-
disaster situation. However, the power generated by the 
DER is not constant since it varies with sun, possibly 
leading to variation in electrical parameters across the 
system and in-turn, leading to false tripping of DERs. 
Hence, the proposed algorithm is designed to address the 
load management between DERs and loads for the 
successful creation of intentional islanding. The flowchart 
of the proposed algorithm is shown in Figure 4. 

 

 
 
 

The flowchart shows that, the algorithm collects 
the live data such as voltage, current and power across all 
loads, feeders and DERs from SCADA. These data are 

Start 

Read V, I and P 
across all loads 
and DERs from 

SCADA 

 
Classification 

Learner 

Flag Status 

Output Data 

End 

Generate 
‘1’/ Close 

Generate ‘0’ 
/Open  

Figure 4. Flowchart of proposed algorithm 
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given as input to the classification learner. This learner 
classifies the data into two categories as follows: good 
parameters and violating parameters. Good parameters are 
the values of voltage, current and power that do not exceed 
the tolerance limits and violating parameters exceed the 
tolerance limits. The trained learner classifies the observed 
value into two categories and makes a decision to generate 
either ‘1’ or ‘0’. 

In the same way, the control signals for all CSs of 
respective loads and feeders are generated by using the 
trained classifier. With this set of generated control signals, 
the healthy loads are connected to DERs and the disaster 
impacted loads (which violate the parameters due to faults) 
are isolated from the DERs, resulting in islanding of healthy 
loads. If, at any load or feeder, the algorithm makes a 
decision to open the switch with ‘0’, this information sets a 
flag on the respective feeder and forwards the same as input 
to the classifier so that, if the classifier finds the flag, then the 
respective load or feeder is left disconnected by generating 
‘0’ irrespective of the load parameters. 

As discussed earlier, the algorithm also takes care 
of the power management between loads and DERs by 
solving the equation Pg (generated power from DER) – PL 
(sum of load powers) = X. If ‘X’ is positive, then a balance 
is achieved between the generation and the power. If ‘X’ is 
found to be negative, then the loads exceed the generated 
power. The classifier generates ‘0’ when it finds ‘X’ as a 
negative value helping to achieve a power balance between 
load and DER while creating islands. 

V. SIMULATIONS 
The proposed algorithm for creating intentional 

islanding is implemented in MATLAB/Simulink. The 
simulations are carried out by designing the base distribution 
system according to the training of different classifiers. The 
best trained learner model is implemented in the base 
distribution system and the results obtained are compared 
with the results of the AI-based intentional islanding 
algorithm from the literature. 

A. SIMULATION OF BASE DISTRIBUTION SYSTEM 
The base distribution system shown in Figure 1 is 

simulated in MATLAB. As discussed earlier, three radial 
feeders with three loads on each feeder are simulated. Each 
load is designed for 1 kW resistive. An AC source is 
simulated as the main grid, which generates three phase AC 
power at 440 V (L-L) and is connected to loads through the 
breaker, transformer and rectifiers. Conventional breakers 
and relays are used for protection during this operation. The 
transformer steps down the 230 V (L-N) to 48 V (L-N). This 
48 V (L-N) is converted to 48 V DC. Each phase is converted 
to one DC line and the distribution system is fed from the 
main grid. Furthermore, the distribution system is connected 
to DERs in parallel to the grid through CS. The distribution 
system is also included in an automation system with remote 

terminal units (RTU) across each load, feeder and DER. A 
CS is associated with each RTU. The data retrieved from 
each RTU are forwarded to the classification learner. Based 
on these huge sets of data, the classification learner makes 
respective decisions and forms islands by closing or opening 
the CS. These CS’s provide both protection and control over 
distribution system loads when powered by DERs. 

B. SIMULATION OF DERS 
In this work, the DERs considered are the SPV 

system and wind energy conversion system (WECS), so that 
the SPV system generates power during sun hours and the 
WECS generates power in night hours. The SPV system is 
simulated in MATLAB/Simulink based on the equivalent 
circuit of the PV cell [14]. The WECS is designed in 
MATLAB/Simulink with a wind turbine connected to 
permanent magnet synchronous generator (PMSG) through a 
drive train, pitch angle controller and power converter such 
that it generates DC power. Its advantages are high 
efficiency, low maintenance, reduced losses, reduced cost 
and good controllability [14]. 

C. TRAINING OF CLASSIFICATION LEARNERS 
The flowchart of the proposed algorithm and the 

system description show that, the classification learner 
plays a major role in the creation of intentional islands. The 
classification learner acts as the heart of the algorithm. The 
successful and accurate training of the learner leads to the 
best results. Hence, to obtain the best results, different 
classifiers are trained and observed for the accuracy of 
training. The classifiers trained in this work are: Fine tree, 
Linear SVM, Gaussian SVM and Quadratic SVM. 

As discussed earlier, the classification learner is a 
field of supervised ML. The learner needs training with 
input variables and an output variable. In this work, the 
classification learner is trained with 4 input variables: 
voltage, current, power and flag status, where the flag status 
is either ‘0’ or ‘1’ for different values of other parameters. 
The learner is also trained with an output variable with two 
class labels of ‘0’ and ‘1’. Each input and the output 
variable are formed with 1400 samples to train the classifier 
with different situations. The training data of all inputs and 
output variables are shown in Figure 5.   

 
Figure 5. Training data set for classification learner 
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Figure 5 shows that, the classification learner is 
trained with 4 input variables as 4 columns. These inputs 
are segregated into two classes: blue and brown as output. 
The blue class represents the violated parameter class or 
class ‘0’ and the brown class represent the good parameter 
class or class ‘1’. The classifiers listed above are trained 
with these training data.  

The fine tree classifier is a field of DTs in ML and 
is trained with the above data. The confusion matrix 
obtained after training is shown in Figure 6, where, a 
confusion matrix is a summary of the prediction results on a 
classification problem. The number of correct and incorrect 
predictions is summarized with count values and broken 
down by each class, which is also known as an error matrix.   

 
Figure 6. Confusion matrix of Fine Tree classifier 

Figure 6 shows that, 1182 samples are trained for 
blue class or class ‘0’ and 119 samples are trained for 
brown class or class ‘1’. Only 2 samples have conflicts, 
leading to 99.8% training accuracy for the fine tree 
classifier. In the next step, the linear SVM is trained with 
the same training data and the confusion matrix obtained 
for this method after training is shown in Figure 7. 

 
Figure 7. Confusion matrix of Linear SVM 
Figure 7 shows that 1168 samples are trained for 

the blue class and only 109 samples are trained for the class 
brown. Twenty six samples have conflicts leading to the 
98% of training accuracy for LSVM. Furthermore, the 
Quadratic SVM is trained for the same data, and the 
confusion matrix obtained for this technique is shown is 
Figure 8. 

The confusion matrix of the QSVM in Figure 8 
shows that only 3 samples are in violation from the actual 
training data, which gives an accuracy of 99.8%. The 
training accuracies obtained for QSVM and fine tree are the 
same but there are more conflicting samples in QSVM than 
in the fine tree model.  

 
Figure 8. Confusion matrix of Quadratic SVM 

Furthermore, the Gaussian SVM is trained for 
same training data and the confusion matrix obtained is 
shown in Figure 9. 

 
Figure 9. Confusion matrix of Gaussian SVM 

Figure 9 shows that the classifier is trained so that 
the 1175 samples are observed as class blue or class ‘0’, and 
119 samples are observed as class brown or class ‘1’. Nine 
samples deviate from the actual training data, leading to 
training accuracy of only 99.3 %.  
The training accuracies of all the classifier models are as 
follows:  

 Fine tree  : 99.8% 
 LSVM   : 98% 
 QSVM   : 99.8% 
 GSVM   : 99.3% 

It is observed that, the fine tree gives the best 
accuracy for the given training data when compared to all 
other classifier models. The major comparison is only 
between fine tree and the QSVM, as they are trained with 
the same accuracy of 99.8%. The samples with conflicts are 
more abundant in QSVM than in fine tree. Hence, the fine 
tree classification learner model is considered the best 
trained classifier when compared to SVM classifiers, 
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leading to the selection of fine tree for decision making 
while creating intentional islanding. 

VI. RESULTS AND DISCUSSION 
From the above discussion, the proposed algorithm 

is implemented using the fine tree classification learner 
model on an ML tool. The performance of the proposed ML 
based intentional islanding algorithm was tested for different 
case studies as given in section 3. These case studies help in 
understanding the response of the algorithm when the 
distribution system is affected by disaster. The results 
obtained for these case studies are discussed below: 

A. SUPPLY FROM MAIN GRID 
This case study presents the working of the 

distribution system under normal operating conditions. In 
this situation, the proposed classification learner is trained 
to turn ON the CS of all loads and turn OFF the DER 
switches so that, the power is obtained from main grid and 
protection is given by conventional relays and circuit 
breakers. The results show that, the learner generates ‘1’ for 
the CSs of all loads (AF1, BF1, CF1, AF2, BF2, CF2, AF3, 
BF3 and CF3) and generates ‘0’ for the DER switches (F1, 
F2 and F3) in the distribution system. The loads receive 
power from the main grid through rectifiers and the 
waveforms of voltage, current and power across all loads 
are shown in Figure 10.   

 
Figure 10. Electrical parameters: Voltage, Current and 

Power across the loads of distribution system. 
Figure 10 shows the waveforms of voltage, current 

and delivered power to the distribution system loads. The 
voltage applied to loads is 48 V DC and the current delivered 
to loads is 20 A to satisfy the power requirement of 1 kW by 
each DC load. The results show that the distribution system 
is powered from the main grid under normal operating 
conditions, keeping DERs isolated. 

B. SUPPLY FROM DERS 
This case study presents the operation of 

distribution system loads when connected to DERs under 
abnormal conditions. It is considered that, the main grid is 

disconnected from the distribution system loads by the 
conventional breakers. In this situation, the DERs are 
connected to the distribution system loads while observing 
the load priorities and isolating the disaster affected parts of 
the distribution system. It is observed from the discussion 
in section 3 that, the impact of natural disasters are different 
in different situations. Hence, to address these impacts of 
natural disasters, the following case studies are 
implemented for the proposed algorithm when supply is 
obtained from DERs: 

 Single fault on single line 
 Multiple faults on single line 
 Multiple faults on multiple lines 
 Short duration fault 

C. SINGLE FAULT ON SINGLE LINE 
An attempt is made in this case to show the 

response of the proposed algorithm when the minimum 
effect of a natural disaster is observed in the distribution 
system. With this consideration, only one fault is applied on 
feeder F2 in the beginning of execution. The proposed 
algorithm successfully identifies the applied fault and 
isolates F2 from the DER by generating ‘0’ for its respective 
CS. Furthermore, the algorithm sets a flag on this feeder so 
that the feeder is isolated from the DER for complete 
execution. As, the feeder F2 is disconnected from DERs, 
there is no power delivered to the loads of feeder F2. The 
healthy loads of feeders F1 and F3 are powered from DERs 
in islanded mode for complete execution. The waveforms 
of voltage, current and power across the loads of F1 and F3 
are as shown in Figure 10. The voltage applied to loads is 
48 V, current consumed by loads is 22 A and power 
delivered is 1000 W. It is observed from results that, there 
is no disturbance in the parameters across the healthy loads 
of F1 and F3 for complete execution and an island of F1 and 
F3 with DERs is successfully created.  

D. MULTIPLE FAULTS ON SINGLE LINE 
This case study represents a situation when a line 

is affected by the disaster so that the poles are tumbling and 
touching the ground one after the other, showing the 
spatiotemporal correlation of faults. The contingency is 
applied so that two faults are applied on feeder F2 with time 
and space differences. One fault is applied at the beginning 
of execution near CF2 and the second fault is applied at 3 s 
near BF2. The proposed algorithm responds to the first fault 
applied in the beginning of execution near CF2 and isolates 
F2 by generating ‘0’ for its respective CS. Furthermore, as 
the algorithm sets a flag on this feeder, it is left isolated 
from DERs for complete execution. The second fault 
applied at 3 s near BF2 does not show any impact on the 
system. As the feeder F2 is disconnected from DERs, there 
is no power delivered to the loads of F2. The healthy loads 
of feeders F1 and F3 are powered by DERs in islanded 
mode. The parameters: voltage, current and power across 
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the loads of F1 and F3 are as per the ratings. Voltage applied 
is 48 V, current consumed is 22 A and power delivered is 
1000 W. These are shown in Figure 10. The results show 
that the proposed algorithm successfully addresses the 
spatiotemporal correlation of faults during natural disasters 
and creates an island of healthy feeders F1 and F3 and DERs 
for complete execution without any disturbances. 

E. MULTIPLE FAULTS ON MULTIPLE LINES 
This case study represents the catastrophic damage 

that occurred in the distribution system due to natural 
disasters. To address this catastrophic damage, the 
contingency is applied so that 3 faults on 2 feeders are 
applied in the system. Two faults on F2 and one fault on F3 
are applied in the distribution system. Two faults applied on 
F2 are similar to earlier case study, one at beginning of 
execution and another at 3s. As the feeder F2 is 
disconnected from DERs by algorithm for complete 
execution, there is no power delivered to the loads of F2. 
Further, one fault at 5 s is applied on F3. As the fault on 
feeder F3 is identified by algorithm at 5 s, it is disconnected 
from DERs by generating ‘0’ for its respective switch after 
5 s. The results show that, the feeder F3 is powered from 
DERs with rated power upto 5 s. Thereafter, as the feeder is 
disconnected from DER, the power delivered to it is 0 W. 
This is shown in figure 11. 

 
Figure 11. Electrical parameters across the loads of F3. 

The results also show that the loads of healthy 
feeder F1 are powered from DER in islanded mode for 
complete execution. The parameters across the loads of F1 
are as per the ratings. Voltage applied is 48 V, current 
consumed is 22 A and power delivered is 1000 W. These 
waveforms are shown in figure 10.  

This operation shows that, the catastrophic damage 
is successfully addressed by the algorithm and the healthy 
loads are only powered in islanded mode by DERs.   

F. SMALL DURATION FAULT 
In this case study, the performance of the 

algorithm is tested for the smallest possible uncertainity in 

the system. To represent this uncertainity, a very small fault 
of 10-4 s duration is applied on feeder F3 at 3 s. The 
algorithm connects the feeder F3 to DERs only upto 3 s. 
Thereafter, as the uncertainity is identified, the feeder F3 is 
disconnected from DERs by generating ‘0’ for its 
respective switch. The results show that, the power 
delivered to the loads of F3 upto 3 s is as per ratings. 
Thereafter, as the feeder is disconnected, the power 
delivered is 0 W. This is shown in Figure 12. 

 
Figure 12. V, I and Power across the loads of feeder F3. 

Further, the healthy loads of feeders F1 and F2 are 
powered through DER for complete execution. The 
waveforms of voltage, current and power across the loads 
of F1 and F2 are shown in Figure 10. Voltage applied is 48 
V, current consumed by these loads is 22 A and power 
delivered is 1000 W. This shows that, the proposed 
algorithm successfully addresses the smallest possible 
uncertainity in the system and provides power to the 
healthy loads in the islanded mode of operation. 

The above case studies show that the proposed 
algorithm works successfully for all contingencies as by the 
performance of the proposed algorithm in creating 
intentional islanding while addressing the impact of natural 
disasters. 

G. COMPARATIVE RESULTS 
Furthermore, the results obtained from the ML 

based algorithm were compared with the results of the 
Conventional and AI based intentional islanding 
algorithms. The comparative results are shown in Figure 
13.  

Figure 13 describes the switching pulses generated 
for the load switches of AF2, BF2 and CF2 of F2. In the case 
of single fault, a fault is applied on feeder F2 at the 
beginning of execution. The conventional MATLAB 
programming based intentional islanding algorithm 
identifies the fault and generates ‘0’ for the respective load 
switches at 0.01 ms. For the same situation, FIS makes 
decisions at different times; for AF2 it generates ‘0’ at 0.01 
ms, and for BF2 and CF2 it generates ‘0’ at 0.05 ms. 
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Figure 13. Comparative results of Machine learning with AI 

based algorithms 
Furthermore, ANN identifies faults and generates 

‘0’ at 0.05 ms for all switches, but it again generates ‘1’ 
after the fault is isolated. ANFIS gives satisfactory results 
by generating ‘0’ for all switches at 0.05 ms and continuing 
to isolate these loads by generating ‘0’ for the rest of the 
execution. The ML based algorithm proposed in this work 
is found to be the best, as it generates ‘0’ for all switches at 
5 μs. The results are tabulated in Table I. The detailed flow 
of comparisons is shown in figure 14. 

TABLE I 
COMPARISON OF PROPOSED ALGORITHM WITH 
CONVENTIONAL AND AI BASED ALGORITHMS 

S.No. Type of Algorithm Time taken to 
identify the 

contingencies 
01 Conventional MATLAB 

Programming 
0.01 ms for all loads 

02 FIS based algorithm 0.01 ms for AF2 and 
0.05 ms for BF2 and 
CF2 

03 ANN based algorithm 0.05 ms for all loads 
04 ANFIS based algorithm 0.05 ms for all loads 
05 ML based algorithm 5 μs for all loads 

 

 
Figure 14. Comparative analysis of all algorithms 

Table I and figure 14 shows that, the proposed ML 
algorithm classifies the load or feeder situation within no 
time and makes faster and accurate decisions than the AI- 
and conventional-based intentional islanding algorithms. 
 
VII. MERITS AND DEMERITS OF PROPOSED 
METHODOLOGY 

In comparison to the literature, the proposed 
methodology of LVDC distribution system over the 
traditional AC distribution system has merits. LVDC 
distribution system reduces the number of conversion 
stages and the overall cost of system by removing the 
inverter. Further, the referred articles show different 
methodologies for intentional islanding of DERs to increase 
the system reliability. In comparison, the proposed 
methodology targets the post disaster situations while 
creating intentional islanding of DERs. Also, the proposed 
methodology uses Machine Learning based algorithms to 
achieve faster and accurate decision making while creating 
islands. The demerit of the proposed methodology is, it 
requires huge changes in the present system to incorporate 
the proposed algorithm. 

IX. CONCLUSION 
In this paper, a ML-based intentional islanding 

algorithm for DERs is proposed for post-disaster situations. 
The performance of the proposed algorithm was tested for 
different contingencies (case studies), and the results 
obtained were compared with the earlier proposed AI-based 
intentional islanding algorithms. A classification learner 
model was designed for making decisions for the status of 
line or load based on binary data, i.e., class ‘0’ for disaster-
affected feeders or loads and class ‘1’ for healthy feeders or 
loads. The live parameters across all loads and feeders were 
obtained with the help of the SCADA system, and these 
data are given as input to the classification learner model. 
Different learner models such as LSVM, QSVM, GSVM 
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and fine tree are trained for these data and the fine tree 
model is trained with an accuracy of 99.8% when compared 
to the other learner models (LSVM, QSVM and GSVM). 
The fine tree based algorithm was implemented and tested 
for different contingencies. 
 The results obtained for different case studies were 
compared with the results of Conventional and AI-based 
intentional islanding algorithms such as FIS, ANN and 
ANFIS. These results show that, the proposed algorithm 
makes decisions in no time, i.e., within 5 μs, which is less 
than the time required by AI-based algorithms. Also, the 
real-time implementation of conventional islanding 
algorithm validates the working of proposed algorithm. 
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