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Abstract —Software-Defined Networks (SDN) is an emerging area 

that promises to change the way we design, build, and operate 

network architecture. It tends to shift from traditional network 

architecture of proprietary based to open and programmable 

network architecture. However, this new innovative and improved 

technology also brings another security burden into the network 

architecture, with existing and emerging security threats. The 

network vulnerability has become more open to intruders: the 

focus is now shifted to a single point of failure where the central 

controller is a prime target. Therefore, integration of intrusion 

detection system (IDS) into the SDN architecture is essential to 

provide a network with attack countermeasure. The work 

designed and developed a virtual testbed that simulates the 

processes of the real network environment, where a star topology 

is created with hosts and servers connected to the OpenFlow 

OVS-switch. Signature-based Snort IDS is deployed for traffic 

monitoring and attack detection, by mirroring the traffic destine 

to the servers. The vulnerability assessment shows possible attacks 

threat exist in the network architecture and effectively contain by 

Snort IDS except for the few which the suggestion is made for 

possible mitigation. In order to provide scalable threat detection in 

the architecture, a flow-based IDS model is developed. A 

flow-based anomaly detection is implemented with machine 

learning to overcome the limitation of signature-based IDS. The 

results show positive improvement for detection of almost all the 

possible attacks in SDN environment with our pattern recognition 

of neural network for machine learning using our trained model 

with over 97% accuracy.  

Keywords — Software-defined Network; Intrusion Detection 

System; OpenFlow; Machine Learning; Neural Network; 

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging area 

that promises to change the way we design, build, and operate 

the networks. Shifting from the traditional network architecture 

of proprietary based to the open, simple, and programmable 

network architecture. Open networking foundation defines 

SDN as “an evolving architecture that is dynamic, manageable, 
cost-effective, and adaptable. An ideal for the high bandwidth 

requirement and dynamic nature of today's application. The 

architecture decouples the network control and forwarding 

functions. This is enabling the network control to become 

directly programmable, and allowing the underlying 

infrastructure to be abstracted for applications and network 

services” [1]. 

Today network has become an essential part of public 

infrastructures with the inception of public and private cloud 

computing. The traditional networking approach has become 

too complex. This complexity has resulted in a barrier for 

creating new and innovative services within a single data center, 

difficulties in interconnecting data centers, interconnection 

within enterprises, and bigger barrier in the continued growth of 

the Internet in general. 

Furthermore, current network architecture has many 

limitations, which were resolved with the emergence of new 

SDN architecture. These include but are not limited to: inability 

to optimize network for WAN and Data Centre to generate more 

revenue and reduce expenses. With SDN more revenue can be 

generated by monitoring network devices and optimizing 

device utilization with a dynamic feature of SDN. The increase 

in capital and operational cost with SDN automation reduces 

human involvement in managing resources to a minimum which 

significantly reduces the cost. 

The SDN comprise three-tiered architecture that is designed 

to simplify network management [2]: 

• The Application layer: contains application that delivers

services.

• The SDN Controller: the main decision-making component

separated originally from data plane which facilitates

automated network management.

• The Infrastructure layer: a hardware layer that requires

command line interface (CLI), but it does not need a

programming language, unlike other layers.

II. BACKGROUND AND RELATED WORK

The key technology advantages of SDN are network 

flexibility, efficiency, speedy service provisioning, and lower 

operation cost considering the gain over the traditional network 

technology. Traditional network technologies are proprietary 

and restricted to specific devices. SDN has the ability of been 

programmable, configurable and manageable. It is also open for 

the user to use devices from different vendors. SDN architecture 

is characterized by the separation of the control plane from data 

plane [2]. With the logically centralized control plane, the 

controller has the global view of the entire network where the 

forwarding entries are programmed based on the policies 

defined. This centralization can result in efficient support for 

traffic engineering, and maintain reliable security and policy 

implementation to the entire network [3].  

Despite the security consideration in designing SDN 

architecture, the SDN environment still has security issues that 

need to be addressed. Some of these problems are inherited 

from traditional network environment, while some are specific 

to the SDN architecture [3]. 
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The security threat has become so frequent from within, the 

effect of these attacks ranges from mild to critical. The security 

breach usually alters the credibility, integrity, or availability of 

hardware, software or an information resource. The attack on 

these components can bring considerable damage to the 

organization. The damages can be a loss in monetary or 

reputation which may lead to the total or partial collapse of the 

organization. Therefore, an effective measure must be put in 

place to avoid the damage. 

Although the architecture of SDN tried to contain the security 

prone in the network management, but the separation of the 

control plane from data plane bring another form of security 

threat to the SDN architecture that can be found in any of it three 

layers: application, control, and infrastructure layer. The 

consequences this security prone can lead to data modification, 

unauthorized access to the network, data leakage, denial of 

service (DoS) [4]. Many of the attacks are possible due to the 

centralized control introduced by the SDN architecture. In [5] 

demonstrated the possibility of an attack gaining access to the 

SDN controller. Once the controller is compromised the 

attacker can alter the rules in the devices and deny a legitimate 

user access to the available resources (DoS attack). DoS attacks 

are not the only attacks for SDN but among the common attacks 

there are other attacks like port proves, vulnerability scan, 

man-in-the-middle (MITM), and side-channel.  

Integrating an intrusion detection system (IDS) into SDN 

architecture is potentially one of the best approaches to build a 

secure SDN environment. IDS is a system purposely designed 

to detect and alert unauthorized or unwanted access attempts, 

changes, or/and restricts computer system resources [6]. The 

system typically detects malicious traffic and attack against the 

network or a single host computer.  

Basically, there are two most common types of IDS: host IDS 

(HIDS) and network IDS (NIDS). HIDS is usually installed and 

run on each system or network as individual device monitoring 

the incoming and outgoing packet within the system or network 

and notifies the user or administrator if the system is under any 

potential or actual attack or any unusual activities detected. 

HIDS normally operates by taking the snapshot of the existing 

files and compares it with the previous snapshot of system files, 

with this the unauthorized activities can be identified. 

On the other hand, NIDS is a system that identifies 

unauthorized, anomalous behavior, and attack in the network by 

examining network traffic and monitoring different hosts over 

the network environment. NIDS generally gain access to the 

network traffic by linking to a hub, network tap, and configured 

switch for port mirroring. In this work, the purpose is to 

implement IDS for SDN environment, therefore IDS in this 

work refers to the NIDS throughout the project unless it is 

specified otherwise. 

In this work, we used signature-based detection technique 

and Snort in specific to implement IDS for SDN. We also 

develop flow-based IDS model that can provide scalable 

security and threat management solution using pattern 

recognition of neural network with machine learning. 

 

 
 

Figure 1. Signature-based IDS 

III. EXPERIMENT DESIGN 

A virtual testbed is developed where various attacks are 

performed by means of simulation. Initially, different attacks 

techniques are implemented to observe the impact of DoS, 

Probe, U2R, and R2L attacks on SDN environment on both the 

servers and normal users accessing resources on the server. 

As signature-based IDS cannot be the solution to all type of 

attacks, it is necessary to provide alternative approaches that 

complement its work. A flow-based anomaly-based system is 

developed as an anomaly-based IDS. This is due to the nature 

OpenFlow protocol as the communication protocol between 

controller and infrastructure layer: it uses flow for identifying 

the network traffic, and also records its information by counters. 

The flow is a sequence of IP packets with common 

characteristics, going through monitoring point within a period 

of time.  

The work follows two approaches to provide a solution to this 

problem. The first is developing a virtual testbed that mimics 

the real scenario and provides a solution to signature-based 

attacks. The second method is designing the model that will 

provide anomaly-based detection. This would be integrated into 

signature-based architecture for detection of unknown attack 

undetected by signature-based IDS. 

A. Virtual Testbed 

OpenDayLight controller (ODL) is installed and configured 

on Ubuntu Desktop 16.04 OS. ODL manages the Open Virtual 

Switches (OVS) based on OpenFlow protocol through a remote 

connection to be established by Mininet simulator.  

 The Mininet network simulator is also installed and 

configured to create host system, servers, and OVS on the same 

OS with ODL. The Metasploitable2 server is hosting four 

services that are left vulnerable intentionally for penetration 

testing purpose, while the Parrot security will be generating 

attack scenario on Metasploitable2.   
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Furthermore, Snort IDS is installed and configured on 

separate Ubuntu Desktop VM to provide network traffic 

monitoring, attacks intrusion detection by means of NIDS. 

The Mininet+ODL deployed on VM with three additional 

interfaces eth1, eth2 and eth3, these are used by Mininet switch 

s1. The three interfaces are configured with no IP addresses to 

enable the system to provide bridging between systems 

connecting to the s1 ovs-switch such as Parrot Security, 

Metasploitable2 server and Snort IDS.  

Parrot Security is deployed on the VM and installed, it has 

special attacking tools, the default eth0 will connect to the s1 

ovs-switch in the Mininet+ODL environment through eth1 

interface. The Parrot Security IP is configured to be in the same 

network with Metasploitable2 server. The Metasploitable2 

server is deployed on the VM as a server connecting to s1 

ovs-switch through eth2 interface of Mininet VM with it default 

eth0.   

Snort IDS is deployed on Ubuntu machine VM. The incoming 

and outgoing network traffic flow is monitored by the Snort by 

means of mirroring. The communication is made through 

OpenFlow switch created on Mininet machine via mirror traffic. 

Snort is connected to OpenFlow switch s1 by eth3. Figure 2 

present architecture of proposed IDS for SDN virtual testbed 

environment.  

 
Figure 2. Virtual Testbed Architecture 

 

B. Network Topology 

The star topology is used for setting up laboratory network 

because it is easy to setup looking at the nature of the research 

and the combination of systems involved. Also, OVS-switch as 

a central hub is expected to provide optimal performance of the 

network traffic without overhead in providing centralize 

network monitoring. Therefore, failure of a single node will not 

affect the entire network. 

Figure 3 presents four independent VMs as their configuration 

seen in Figure 2 the Mininet VM is centralized. Inside Mininet, 

a network is created with fifteen VM hosts, five generating 

malicious traffic internally using manual attack procedure by 

attacking the server and other internal external server hosts. The 

ten hosts VMs generate normal or benign traffic between each 

other and the servers. All the hosts VM are connected to 

OVS-switch.  

PENTMENU penetration testing tool is installed on both 

Parrot Security and Mininet+ODL machine with aim of attacks 

demonstration using created hosts for internal attacks.  

The Wireshark services is on installed Mininet Simulator 

lunch, where the Wireshark will be monitoring the network 

traffic through the traffic filter any option. The purpose of using 

Wireshark is to observe MITM attacks on the controller. 

The connection between OpenFlow ovs-switch with ODL 

controller is remote when creating the topology, a remote 

connection is specified with the loopback IP address of Ubuntu 

machine where ODL controller is installed. The Parrot Security, 

Metasploitable2 server, and Snort IDS are connected to 

OpenFlow ovs-switch through the Mininet+ODL VM interface 

eth1, eth2 and eth3 respectively. 

 

 
Figure 3. Signature-based Network Topology 

 

C. Pattern Recognition of Neural Network 

 
Figure 4. Flow-based IDS Model Network Topology 

 

In addition to the existing signature-based IDS, a Neural 

Network-based model is designed to be integrated into the 

system. This second method proposed in this work is 
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flow-based anomaly detection using machine learning approach 

to compliment the signature-based, since the signature-based 

cannot detect the unknown or zero-day attack. Furthermore, 

attack demonstration on the virtual testbed is limited to specific 

type of attacks under each category of attack. Therefore, a 

model that can detect a wide number of attacks is proposed. 

The flow-based IDS model illustrates in Figure 4 will be 

implemented in the future, as a module using Restful API or 

Java and hosted over ODL controller. As an application layer 

model, the network policies of traffic flow is controlled by the 

application, in such a way that some rules will be imposed that 

will be responsible for attack detection.  

 Typically the flow statistic request is sent to the switch by the 

controller over a certain time interval. When the statistics are 

available on the controller, the module will used it to detect 

anomaly behavior in the flow. The detected anomaly traffic will 

be mitigated appropriately through flow modification, hence 

result in new network impose by the module IDS.     

Pattern recognition of neural network is implemented in this 

model. It usually classifies inputs into a set of target categories. 

The network architecture consists of three layers: an input layer, 

hidden layer, and an output layer.  Backpropagation algorithm is 

used to trained the network. 

Backpropagation algorithm is a training method used in 

classification by propagation and updating the weight of a 

network. When an input is received from the input layer, it is 

passed to the next layer, then to the output layer. The output is 

compared with the given targets or desired output, each output 

result of the neuron is calculated using a function and error 

value at the output layer. If the output matches the target or 

roughly closed, then it is presented as final output, otherwise an 

error is fired backwards from the output layer toward previous 

layers until desired output is obtained. 

 
Figure 5. Backpropagation Algorithm 

 

The Figure 5 illustrates the network architecture of 

backpropagation algorithm uses by the model. X is the input 

connected to the hidden layer W weights, also the same for 

hidden connected to the output layer. The input variables are 

transformed by the nonlinear activation function, the algorithm 

is expressed in the following equations [7]: U = ∑ 𝑤𝑗𝑖 + 𝑤𝑗0  𝑛𝑖=1                 (1) V = ∑ 𝑤𝑘𝑗 +  𝑓ℎ𝑈 + 𝑤𝑘𝑜𝑚𝑗=1             (2) �̂� = 𝑓𝑜𝑉                     (3) 

 

D. NSL-KDD Dataset for Training Model 

The NSL-KDD dataset is used in this research to implement 

training and evaluation of the proposed model. The NSL-KDD 

dataset is the refine version of KDD-Cup 99. KDD-Cup 99 

dataset is originally used in Knowledge Discovery and Data 

mining competition, it is the leading data mining competition in 

the world [8]. KDD-Cup 99 dataset has the problem of 

redundant record which may result in degrade the quality of 

inputs and cause learning algorithm to be biased to the more 

frequent record [9]. The NSL-KDD is proposed to solve this 

problem and made publicly available to the researchers. 

Although NSL-KDD has inherent some problem of KDD-Cup 

99 but the data is still used by many researchers [10, 11]. These 

can be a standard benchmark for comparing our model with 

another detection method.   

The work obtained the dataset from [12] which are partly 

pre-processed and categorize into four main categories: DOS, 

U2R, R2L, and Probes both composing the training and testing 

data. Table 1 illustrates categorization of the attacks based on 

four categories with type of attacks in both training and testing. 

The attacks in Testing set that are italic and bold are only 

introduce in the testing stage and not available at the time. The 

categorization of training and testing dataset is predetermined 

from the original dataset source, with objective of obtaining 

good results in real-time. The dataset has forty-two features 

together with target feature; all the features are in numerical 

values against some that are originally nominal in order to train 

our model. This conversion is made from the data source. 

 

Table 1. Attack Category 

Category Training Testing  

DoS back, land, 

Neptune 

pod, smurf, 

teardrop, 

 

apache2, back, land, 

mailbomb, Neptune 

pod, processtable, smurf, 

teardrop, 

udpstorm 

U2R Bufferoverflow, 

loadmodule, 

perl 

rootkit, 

 

Bufferoverflow, 

loadmodule, perl 

ps, rootkit, 

snmpguess, 

sqlattack,worm 

xterm 

R2L Spy, 

warezclient 

ftp_write, 

guesspasswd, 

imap, 

multihop, phf 

warezmaster 

 

Spy, warezclient 

ftp_write, 

guesspasswd, httptunnel, 

imap, 

multihop, named, 

phf, sendmail 

snmpgetattack, 

warezmaster,xlock 

xsnoop 

Probes Ipsweep, nmap, 

portsweep, 

satan 

Ipsweep, mscan, 

nmap, portsweep, 

saint, satan 

 



 

To make the model more realistic and simplify real 

implementation of the module on ODL controller, specific 

features are selected which is commonly obtainable in the SDN 

environment. Seven features were selected from the existing 

forty-one features and illustrated in Table 2. 

 

Table 2. Feature Selection 

Feature Description  

duration  Length (number of seconds) of the 

connection 

protocol_type Type of protocol such as TCP, UDP, etc. 

service  Network service on the destination, such as 

HTTP, telnet, ssh, etc. 

src_bytes Number of data bytes from source to 

destination 

dst_bytes Number of bytes from the destination to 

source 

count  Number of connections to the same host as 

the current connection in the past two 

seconds 

srv_count Number of connections to the same service as 

the current connection in the past two 

seconds 

E. Evaluation Matrix and Procedure 

In evaluating the performance of our proposed model, it is 

important to use a standard benchmark for evaluation criteria. 

Accuracy (ACC), Precision (P), Sensitivity (SNS), and 

F-Measure (F1-score) are commonly used parameters in 

performance evaluation criteria for NIDS models [10]. In this 

experiment, the specified parameters are used in evaluating the 

performance of our model. To achieve this we used the 

confusion matrix to calculate the parameters. Moreover, the 

confusion matrix contains the following parameters: True 

Positive (TP) number of attack record correctly identified, True 

Negative (TN) number of attack record correctly rejected, False 

Positive (FP) number of attack record incorrectly identified, and 

False Negative (FN) number of attack record incorrectly 

rejected. The following equation derived from confusion matrix 

to obtain our evaluation parameters [11]. 

 Accuracy (ACC): measures the percentage of true detection 

over the total traffic trace.  

 ACC = TP+TNTP+TN+FP+FN                    (4)  

 

Sensitivity (SNS): also call recall or true positive rate 

measures the percentage of predicted attacks against all the 

attacks presented.  

 SNS = TPTP+FN                        (5)  

 

Precision (P): measures the number of attacks predicted by 

IDS that are actual attacks.  

 P = TPTP+ FP                     (6)  

 

F-Measure (F1): is a measure of test accuracy in the model by 

considering Precision and Sensitivity.  

 F1 = 2TP2TP+FP+FN                (7) 

IV. RESULTS AND DISCUSSION 

 
Figure 6. Performance Measurement Graph 

 

 
Figure 7. Accuracy measure from Confusion Matrix 

 

The performance of the model validation is best on 0.098137 

at 107 iterations as shown in Figure 6. The algorithm normally 

stops training when the performance of the training data stops 

improving, by doing that the best number of an epoch is 



 

selected. The validation set is used to measure this performance 

because of its ability to generalize network model and serve as 

the basis for the evaluation. 

The Performance Measurement Graph Figure 6 illustrates the 

results obtained for the performance evaluation of the designed 

IDS model using confusion matrix (Figure 7). The model shows 

high detection accuracy of 97.4% in detecting attacks with 

training set and 97% on testing set, while overall accuracy is 

97.4%. The Figure 8 shows model performance on the dataset 

on graph of True Positive rate (sensitivity) and False Positive 

rate (specificity), ROC curve is a plot on Sensitivity against 

Specificity, for the three portions of data on the training set the 

curve. The overall ROC formed a curve on the upper-left corner 

of the graph and this shows the optimal performance of the 

model at that point. Forming curve at the upper-left corner 

indicate the performance of model prediction is very good.  

Figure 8. ROC Curve 

A. Evaluation 

The performance of this model IDS is evaluated based on 

other neural network type such as Curve Fitting and Time 

Series. The results shown in Table 3 indicate Pattern 

Recognition has better performance accuracy of detecting 

anomaly with 97.3% detection rate. Fitting Curve has 89.5% 

accuracy, it initially has less performance but with weight 

initialization and re-training the performance in detection 

accuracy is improved. Moreover, Time Series Neural Network 

method recorded the poorest result, it takes longer time in 

training, this also makes retraining very difficult. During the 

training, it takes at least have an hour to complete training, 

hence retrain in several times is difficult.  

 

Table 3. Comparison of Neural Network  

Performance Accuracy 

Neural Network Type Detection Accuracy (%) 

Fitting Curve 89.5 

Pattern Recognition 97.3 

Time Series 33 

V. CONCLUSION 

Software Defined Networks as an emerging technology bring 

innovation into the networking, with decoupling of control 

plane and the data plane, removing proprietary in the network 

architecture to open and programmable network. Due to the 

numerous advantage of this architecture, many companies are 

shifting from the traditional network architecture to new SDN 

architecture. However, SDN as a new technology has arising 

issues that pose a challenge to the futuret of the technology. 

Security is one of the main issue that threatens the future of 

SDN technology.  

The paper present machine learning (Neural Network) based 

intrusion detection for SDN. The model IDS are built on the 

existing signature-based IDS architecture as flow-based IDS to 

detect anomaly-based attacks in the SDN environment. The 

Pattern Recognition is used in this paper due to its performance 

accuracy rate as compared with the other type of neural network 

model. 
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