
Machine learning based intrusion detection system for
software defined networks

ABUBAKAR, Atiku and PRANGGONO, Bernardi <http://orcid.org/0000-0002-
2992-697X>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/16558/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ABUBAKAR, Atiku and PRANGGONO, Bernardi (2017). Machine learning based
intrusion detection system for software defined networks. In: 2017 7th International
Conference on Emerging Security Technologies, EST 2017, Canterbury, 6-8
September. IEEE.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Abstract —Software-Defined Networks (SDN) is an emerging area

that promises to change the way we design, build, and operate

network architecture. It tends to shift from traditional network

architecture of proprietary based to open and programmable

network architecture. However, this new innovative and improved

technology also brings another security burden into the network

architecture, with existing and emerging security threats. The

network vulnerability has become more open to intruders: the

focus is now shifted to a single point of failure where the central

controller is a prime target. Therefore, integration of intrusion

detection system (IDS) into the SDN architecture is essential to

provide a network with attack countermeasure. The work

designed and developed a virtual testbed that simulates the

processes of the real network environment, where a star topology

is created with hosts and servers connected to the OpenFlow

OVS-switch. Signature-based Snort IDS is deployed for traffic

monitoring and attack detection, by mirroring the traffic destine

to the servers. The vulnerability assessment shows possible attacks

threat exist in the network architecture and effectively contain by

Snort IDS except for the few which the suggestion is made for

possible mitigation. In order to provide scalable threat detection in

the architecture, a flow-based IDS model is developed. A

flow-based anomaly detection is implemented with machine

learning to overcome the limitation of signature-based IDS. The

results show positive improvement for detection of almost all the

possible attacks in SDN environment with our pattern recognition

of neural network for machine learning using our trained model

with over 97% accuracy.

Keywords — Software-defined Network; Intrusion Detection

System; OpenFlow; Machine Learning; Neural Network;

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging area

that promises to change the way we design, build, and operate

the networks. Shifting from the traditional network architecture

of proprietary based to the open, simple, and programmable

network architecture. Open networking foundation defines

SDN as “an evolving architecture that is dynamic, manageable,
cost-effective, and adaptable. An ideal for the high bandwidth

requirement and dynamic nature of today's application. The

architecture decouples the network control and forwarding

functions. This is enabling the network control to become

directly programmable, and allowing the underlying

infrastructure to be abstracted for applications and network

services” [1].

Today network has become an essential part of public

infrastructures with the inception of public and private cloud

computing. The traditional networking approach has become

too complex. This complexity has resulted in a barrier for

creating new and innovative services within a single data center,

difficulties in interconnecting data centers, interconnection

within enterprises, and bigger barrier in the continued growth of

the Internet in general.

Furthermore, current network architecture has many

limitations, which were resolved with the emergence of new

SDN architecture. These include but are not limited to: inability

to optimize network for WAN and Data Centre to generate more

revenue and reduce expenses. With SDN more revenue can be

generated by monitoring network devices and optimizing

device utilization with a dynamic feature of SDN. The increase

in capital and operational cost with SDN automation reduces

human involvement in managing resources to a minimum which

significantly reduces the cost.

The SDN comprise three-tiered architecture that is designed

to simplify network management [2]:

• The Application layer: contains application that delivers

services.

• The SDN Controller: the main decision-making component

separated originally from data plane which facilitates

automated network management.

• The Infrastructure layer: a hardware layer that requires

command line interface (CLI), but it does not need a

programming language, unlike other layers.

II. BACKGROUND AND RELATED WORK

The key technology advantages of SDN are network

flexibility, efficiency, speedy service provisioning, and lower

operation cost considering the gain over the traditional network

technology. Traditional network technologies are proprietary

and restricted to specific devices. SDN has the ability of been

programmable, configurable and manageable. It is also open for

the user to use devices from different vendors. SDN architecture

is characterized by the separation of the control plane from data

plane [2]. With the logically centralized control plane, the

controller has the global view of the entire network where the

forwarding entries are programmed based on the policies

defined. This centralization can result in efficient support for

traffic engineering, and maintain reliable security and policy

implementation to the entire network [3].

Despite the security consideration in designing SDN

architecture, the SDN environment still has security issues that

need to be addressed. Some of these problems are inherited

from traditional network environment, while some are specific

to the SDN architecture [3].

Atiku Abubakar and Bernardi Pranggono
Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, S1 1WB, U.K.

Machine Learning Based Intrusion Detection

System for Software Defined Networks

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The security threat has become so frequent from within, the

effect of these attacks ranges from mild to critical. The security

breach usually alters the credibility, integrity, or availability of

hardware, software or an information resource. The attack on

these components can bring considerable damage to the

organization. The damages can be a loss in monetary or

reputation which may lead to the total or partial collapse of the

organization. Therefore, an effective measure must be put in

place to avoid the damage.

Although the architecture of SDN tried to contain the security

prone in the network management, but the separation of the

control plane from data plane bring another form of security

threat to the SDN architecture that can be found in any of it three

layers: application, control, and infrastructure layer. The

consequences this security prone can lead to data modification,

unauthorized access to the network, data leakage, denial of

service (DoS) [4]. Many of the attacks are possible due to the

centralized control introduced by the SDN architecture. In [5]

demonstrated the possibility of an attack gaining access to the

SDN controller. Once the controller is compromised the

attacker can alter the rules in the devices and deny a legitimate

user access to the available resources (DoS attack). DoS attacks

are not the only attacks for SDN but among the common attacks

there are other attacks like port proves, vulnerability scan,

man-in-the-middle (MITM), and side-channel.

Integrating an intrusion detection system (IDS) into SDN

architecture is potentially one of the best approaches to build a

secure SDN environment. IDS is a system purposely designed

to detect and alert unauthorized or unwanted access attempts,

changes, or/and restricts computer system resources [6]. The

system typically detects malicious traffic and attack against the

network or a single host computer.

Basically, there are two most common types of IDS: host IDS

(HIDS) and network IDS (NIDS). HIDS is usually installed and

run on each system or network as individual device monitoring

the incoming and outgoing packet within the system or network

and notifies the user or administrator if the system is under any

potential or actual attack or any unusual activities detected.

HIDS normally operates by taking the snapshot of the existing

files and compares it with the previous snapshot of system files,

with this the unauthorized activities can be identified.

On the other hand, NIDS is a system that identifies

unauthorized, anomalous behavior, and attack in the network by

examining network traffic and monitoring different hosts over

the network environment. NIDS generally gain access to the

network traffic by linking to a hub, network tap, and configured

switch for port mirroring. In this work, the purpose is to

implement IDS for SDN environment, therefore IDS in this

work refers to the NIDS throughout the project unless it is

specified otherwise.

In this work, we used signature-based detection technique

and Snort in specific to implement IDS for SDN. We also

develop flow-based IDS model that can provide scalable

security and threat management solution using pattern

recognition of neural network with machine learning.

Figure 1. Signature-based IDS

III. EXPERIMENT DESIGN

A virtual testbed is developed where various attacks are

performed by means of simulation. Initially, different attacks

techniques are implemented to observe the impact of DoS,

Probe, U2R, and R2L attacks on SDN environment on both the

servers and normal users accessing resources on the server.

As signature-based IDS cannot be the solution to all type of

attacks, it is necessary to provide alternative approaches that

complement its work. A flow-based anomaly-based system is

developed as an anomaly-based IDS. This is due to the nature

OpenFlow protocol as the communication protocol between

controller and infrastructure layer: it uses flow for identifying

the network traffic, and also records its information by counters.

The flow is a sequence of IP packets with common

characteristics, going through monitoring point within a period

of time.

The work follows two approaches to provide a solution to this

problem. The first is developing a virtual testbed that mimics

the real scenario and provides a solution to signature-based

attacks. The second method is designing the model that will

provide anomaly-based detection. This would be integrated into

signature-based architecture for detection of unknown attack

undetected by signature-based IDS.

A. Virtual Testbed

OpenDayLight controller (ODL) is installed and configured

on Ubuntu Desktop 16.04 OS. ODL manages the Open Virtual

Switches (OVS) based on OpenFlow protocol through a remote

connection to be established by Mininet simulator.

 The Mininet network simulator is also installed and

configured to create host system, servers, and OVS on the same

OS with ODL. The Metasploitable2 server is hosting four

services that are left vulnerable intentionally for penetration

testing purpose, while the Parrot security will be generating

attack scenario on Metasploitable2.

Router

Host-based IDS

External FirewallInternal Firewall

www Server

Network-based IDS

Host-based IDS

Host-based IDS

Host-based IDS

Furthermore, Snort IDS is installed and configured on

separate Ubuntu Desktop VM to provide network traffic

monitoring, attacks intrusion detection by means of NIDS.

The Mininet+ODL deployed on VM with three additional

interfaces eth1, eth2 and eth3, these are used by Mininet switch

s1. The three interfaces are configured with no IP addresses to

enable the system to provide bridging between systems

connecting to the s1 ovs-switch such as Parrot Security,

Metasploitable2 server and Snort IDS.

Parrot Security is deployed on the VM and installed, it has

special attacking tools, the default eth0 will connect to the s1

ovs-switch in the Mininet+ODL environment through eth1

interface. The Parrot Security IP is configured to be in the same

network with Metasploitable2 server. The Metasploitable2

server is deployed on the VM as a server connecting to s1

ovs-switch through eth2 interface of Mininet VM with it default

eth0.

Snort IDS is deployed on Ubuntu machine VM. The incoming

and outgoing network traffic flow is monitored by the Snort by

means of mirroring. The communication is made through

OpenFlow switch created on Mininet machine via mirror traffic.

Snort is connected to OpenFlow switch s1 by eth3. Figure 2

present architecture of proposed IDS for SDN virtual testbed

environment.

Figure 2. Virtual Testbed Architecture

B. Network Topology

The star topology is used for setting up laboratory network

because it is easy to setup looking at the nature of the research

and the combination of systems involved. Also, OVS-switch as

a central hub is expected to provide optimal performance of the

network traffic without overhead in providing centralize

network monitoring. Therefore, failure of a single node will not

affect the entire network.

Figure 3 presents four independent VMs as their configuration

seen in Figure 2 the Mininet VM is centralized. Inside Mininet,

a network is created with fifteen VM hosts, five generating

malicious traffic internally using manual attack procedure by

attacking the server and other internal external server hosts. The

ten hosts VMs generate normal or benign traffic between each

other and the servers. All the hosts VM are connected to

OVS-switch.

PENTMENU penetration testing tool is installed on both

Parrot Security and Mininet+ODL machine with aim of attacks

demonstration using created hosts for internal attacks.

The Wireshark services is on installed Mininet Simulator

lunch, where the Wireshark will be monitoring the network

traffic through the traffic filter any option. The purpose of using

Wireshark is to observe MITM attacks on the controller.

The connection between OpenFlow ovs-switch with ODL

controller is remote when creating the topology, a remote

connection is specified with the loopback IP address of Ubuntu

machine where ODL controller is installed. The Parrot Security,

Metasploitable2 server, and Snort IDS are connected to

OpenFlow ovs-switch through the Mininet+ODL VM interface

eth1, eth2 and eth3 respectively.

Figure 3. Signature-based Network Topology

C. Pattern Recognition of Neural Network

Figure 4. Flow-based IDS Model Network Topology

In addition to the existing signature-based IDS, a Neural

Network-based model is designed to be integrated into the

system. This second method proposed in this work is

3

21

Virtual SwitchVirtual Switch

n

Metasploitable2 Server VMParrot Security VM Ubuntu Desktop 16.04:Mininet+ODL

Snort IDS VM

Web Server

Tomcat

Ruby

PostgreSQL

Java RMI

 n = 15

Wireshark

Snort IDS

Pentmenu, Bonesi, hping3: DDoS

Metasploit, nmap: Probe & U2R

Hydra: R2L

IP: 192.168.X.136 IP: 192.168.x.x
IP: 192.168.x.135

IP: 192.168.x.137

SPAN(Traffic Mirroring)

FTP

SSH

Telnet

1

n1

Normal Traffic

Virtual SwitchVirtual Switch

m

Malicious Traffic

Metasploitable2 Server VMParrot Security VM Mininet 2.2.1 VM

Ubuntu 16.04 LTS

Web Server

FTP

SSH

Telnet

Tomcat

Ruby

PostgreSQL

Java RMI

m = 5, n = 10, x=100-254

Wireshark

Opendaylight

Controller

Snort IDS

Bonesi, hping3: DDoS

Metasploit, nmap: Probe & U2R

Hydra: R2L

IP: 192.168.56.x IP: 192.168.56.x
IP: 192.168.56.x

IP: 192.168.56.x

SPAN

Flow-Based

IDS Model

flow-based anomaly detection using machine learning approach

to compliment the signature-based, since the signature-based

cannot detect the unknown or zero-day attack. Furthermore,

attack demonstration on the virtual testbed is limited to specific

type of attacks under each category of attack. Therefore, a

model that can detect a wide number of attacks is proposed.

The flow-based IDS model illustrates in Figure 4 will be

implemented in the future, as a module using Restful API or

Java and hosted over ODL controller. As an application layer

model, the network policies of traffic flow is controlled by the

application, in such a way that some rules will be imposed that

will be responsible for attack detection.

 Typically the flow statistic request is sent to the switch by the

controller over a certain time interval. When the statistics are

available on the controller, the module will used it to detect

anomaly behavior in the flow. The detected anomaly traffic will

be mitigated appropriately through flow modification, hence

result in new network impose by the module IDS.

Pattern recognition of neural network is implemented in this

model. It usually classifies inputs into a set of target categories.

The network architecture consists of three layers: an input layer,

hidden layer, and an output layer. Backpropagation algorithm is

used to trained the network.

Backpropagation algorithm is a training method used in

classification by propagation and updating the weight of a

network. When an input is received from the input layer, it is

passed to the next layer, then to the output layer. The output is

compared with the given targets or desired output, each output

result of the neuron is calculated using a function and error

value at the output layer. If the output matches the target or

roughly closed, then it is presented as final output, otherwise an

error is fired backwards from the output layer toward previous

layers until desired output is obtained.

Figure 5. Backpropagation Algorithm

The Figure 5 illustrates the network architecture of

backpropagation algorithm uses by the model. X is the input

connected to the hidden layer W weights, also the same for

hidden connected to the output layer. The input variables are

transformed by the nonlinear activation function, the algorithm

is expressed in the following equations [7]: U = ∑ 𝑤𝑗𝑖 + 𝑤𝑗0 𝑛𝑖=1 (1) V = ∑ 𝑤𝑘𝑗 + 𝑓ℎ𝑈 + 𝑤𝑘𝑜𝑚𝑗=1 (2) �̂� = 𝑓𝑜𝑉 (3)

D. NSL-KDD Dataset for Training Model

The NSL-KDD dataset is used in this research to implement

training and evaluation of the proposed model. The NSL-KDD

dataset is the refine version of KDD-Cup 99. KDD-Cup 99

dataset is originally used in Knowledge Discovery and Data

mining competition, it is the leading data mining competition in

the world [8]. KDD-Cup 99 dataset has the problem of

redundant record which may result in degrade the quality of

inputs and cause learning algorithm to be biased to the more

frequent record [9]. The NSL-KDD is proposed to solve this

problem and made publicly available to the researchers.

Although NSL-KDD has inherent some problem of KDD-Cup

99 but the data is still used by many researchers [10, 11]. These

can be a standard benchmark for comparing our model with

another detection method.

The work obtained the dataset from [12] which are partly

pre-processed and categorize into four main categories: DOS,

U2R, R2L, and Probes both composing the training and testing

data. Table 1 illustrates categorization of the attacks based on

four categories with type of attacks in both training and testing.

The attacks in Testing set that are italic and bold are only

introduce in the testing stage and not available at the time. The

categorization of training and testing dataset is predetermined

from the original dataset source, with objective of obtaining

good results in real-time. The dataset has forty-two features

together with target feature; all the features are in numerical

values against some that are originally nominal in order to train

our model. This conversion is made from the data source.

Table 1. Attack Category

Category Training Testing

DoS back, land,

Neptune

pod, smurf,

teardrop,

apache2, back, land,

mailbomb, Neptune

pod, processtable, smurf,

teardrop,

udpstorm

U2R Bufferoverflow,

loadmodule,

perl

rootkit,

Bufferoverflow,

loadmodule, perl

ps, rootkit,

snmpguess,

sqlattack,worm

xterm

R2L Spy,

warezclient

ftp_write,

guesspasswd,

imap,

multihop, phf

warezmaster

Spy, warezclient

ftp_write,

guesspasswd, httptunnel,

imap,

multihop, named,

phf, sendmail

snmpgetattack,

warezmaster,xlock

xsnoop

Probes Ipsweep, nmap,

portsweep,

satan

Ipsweep, mscan,

nmap, portsweep,

saint, satan

To make the model more realistic and simplify real

implementation of the module on ODL controller, specific

features are selected which is commonly obtainable in the SDN

environment. Seven features were selected from the existing

forty-one features and illustrated in Table 2.

Table 2. Feature Selection

Feature Description

duration Length (number of seconds) of the

connection

protocol_type Type of protocol such as TCP, UDP, etc.

service Network service on the destination, such as

HTTP, telnet, ssh, etc.

src_bytes Number of data bytes from source to

destination

dst_bytes Number of bytes from the destination to

source

count Number of connections to the same host as

the current connection in the past two

seconds

srv_count Number of connections to the same service as

the current connection in the past two

seconds

E. Evaluation Matrix and Procedure

In evaluating the performance of our proposed model, it is

important to use a standard benchmark for evaluation criteria.

Accuracy (ACC), Precision (P), Sensitivity (SNS), and

F-Measure (F1-score) are commonly used parameters in

performance evaluation criteria for NIDS models [10]. In this

experiment, the specified parameters are used in evaluating the

performance of our model. To achieve this we used the

confusion matrix to calculate the parameters. Moreover, the

confusion matrix contains the following parameters: True

Positive (TP) number of attack record correctly identified, True

Negative (TN) number of attack record correctly rejected, False

Positive (FP) number of attack record incorrectly identified, and

False Negative (FN) number of attack record incorrectly

rejected. The following equation derived from confusion matrix

to obtain our evaluation parameters [11].

 Accuracy (ACC): measures the percentage of true detection

over the total traffic trace.

 ACC = TP+TNTP+TN+FP+FN (4)

Sensitivity (SNS): also call recall or true positive rate

measures the percentage of predicted attacks against all the

attacks presented.

 SNS = TPTP+FN (5)

Precision (P): measures the number of attacks predicted by

IDS that are actual attacks.

 P = TPTP+ FP (6)

F-Measure (F1): is a measure of test accuracy in the model by

considering Precision and Sensitivity.

 F1 = 2TP2TP+FP+FN (7)

IV. RESULTS AND DISCUSSION

Figure 6. Performance Measurement Graph

Figure 7. Accuracy measure from Confusion Matrix

The performance of the model validation is best on 0.098137

at 107 iterations as shown in Figure 6. The algorithm normally

stops training when the performance of the training data stops

improving, by doing that the best number of an epoch is

selected. The validation set is used to measure this performance

because of its ability to generalize network model and serve as

the basis for the evaluation.

The Performance Measurement Graph Figure 6 illustrates the

results obtained for the performance evaluation of the designed

IDS model using confusion matrix (Figure 7). The model shows

high detection accuracy of 97.4% in detecting attacks with

training set and 97% on testing set, while overall accuracy is

97.4%. The Figure 8 shows model performance on the dataset

on graph of True Positive rate (sensitivity) and False Positive

rate (specificity), ROC curve is a plot on Sensitivity against

Specificity, for the three portions of data on the training set the

curve. The overall ROC formed a curve on the upper-left corner

of the graph and this shows the optimal performance of the

model at that point. Forming curve at the upper-left corner

indicate the performance of model prediction is very good.

Figure 8. ROC Curve

A. Evaluation

The performance of this model IDS is evaluated based on

other neural network type such as Curve Fitting and Time

Series. The results shown in Table 3 indicate Pattern

Recognition has better performance accuracy of detecting

anomaly with 97.3% detection rate. Fitting Curve has 89.5%

accuracy, it initially has less performance but with weight

initialization and re-training the performance in detection

accuracy is improved. Moreover, Time Series Neural Network

method recorded the poorest result, it takes longer time in

training, this also makes retraining very difficult. During the

training, it takes at least have an hour to complete training,

hence retrain in several times is difficult.

Table 3. Comparison of Neural Network

Performance Accuracy

Neural Network Type Detection Accuracy (%)

Fitting Curve 89.5

Pattern Recognition 97.3

Time Series 33

V. CONCLUSION

Software Defined Networks as an emerging technology bring

innovation into the networking, with decoupling of control

plane and the data plane, removing proprietary in the network

architecture to open and programmable network. Due to the

numerous advantage of this architecture, many companies are

shifting from the traditional network architecture to new SDN

architecture. However, SDN as a new technology has arising

issues that pose a challenge to the futuret of the technology.

Security is one of the main issue that threatens the future of

SDN technology.

The paper present machine learning (Neural Network) based

intrusion detection for SDN. The model IDS are built on the

existing signature-based IDS architecture as flow-based IDS to

detect anomaly-based attacks in the SDN environment. The

Pattern Recognition is used in this paper due to its performance

accuracy rate as compared with the other type of neural network

model.

REFERENCES

[1] OpenNetworkingFroundation. (2017, 06/2017). Available:

https://www.opennetworking.org/

[2] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve

Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-Defined

Networking: A Comprehensive Survey," Proceedings of the IEEE,

vol. 103, pp. 14-76, 2015.

[3] S. Scott-Hayward, S. Natarajan, and S. Sezer, "A Survey of Security

in Software Defined Networks," Communications Surveys &

Tutorials, IEEE, vol. PP, pp. 1-1, 2015.

[4] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J.

Finnegan, et al., "Are we ready for SDN? Implementation

challenges for software-defined networks," Communications

Magazine, IEEE, vol. 51, pp. 36-43, 2013.

[5] K. Benton, L. J. Camp, and C. Small, "OpenFlow vulnerability

assessment," presented at the Proceedings of the second ACM

SIGCOMM workshop on Hot topics in software defined

networking, Hong Kong, China, 2013.

[6] B. Pranggono, K. McLaughlin, Y. Yang, and S. Sezer, "Intrusion

Detection Systems for Critical Infrastructure," in The State of the Art

in Intrusion Prevention and Detection, A.-S. K. Pathan, Ed., ed:

CRC Press, 2014, pp. 115-138.

[7] B. Fakhim, A. Hassani, A. Rashidi, and P. Ghodousi, "Predicting the

Impact of Multiwalled Carbon Nanotubes on the Cement Hydration

Products and Durability of Cementitious Matrix Using Artificial

Neural Network Modeling Technique," The Scientific World

Journal, vol. 2013, p. 103713, 2013.

[8] S. Hettich and S. D. Bay, "The UCI KDD Archive

[http://kdd.ics.uci.edu]," University of California, Irvine, C. A.

[9] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, "A detailed

analysis of the KDD CUP 99 data set," presented at the Proceedings

of the Second IEEE international conference on Computational

intelligence for security and defense applications, Ottawa, Ontario,

Canada, 2009.

[10] P. Manandhar, "A Practical Approach to Anomaly-based Intrusion

Detection System by Outlier Mining in Network Traffic," Masdar

Institute of Science and Technology, 2014.

[11] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.

Ghogho, "Deep learning approach for Network Intrusion Detection

in Software Defined Networking," in 2016 International Conference

on Wireless Networks and Mobile Communications (WINCOM),

2016, pp. 258-263.

[12] F. Hendrik. (07/2017). NSLKDD-Dataset. Available:

https://github.com/FransHBotes/NSLKDD-Dataset

https://www.opennetworking.org/
http://kdd.ics.uci.edu/
https://github.com/FransHBotes/NSLKDD-Dataset

