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Abstract—Jamming is a well-known reliability threat for
mass-market wireless networks. With the rise of safety-critical
applications this is likely to become a constraining issue in
the future. Thus, the design of accurate jamming detection
algorithms becomes important to react to ongoing jamming
attacks. With respect to experimental work, jamming detection
has been mainly studied for sensor networks. However, many
safety-critical applications are also likely to run over 802.11-
based networks where the proposed approaches do not carry
over. In this paper we present a jamming detection approach
for 802.11 networks. It uses metrics that are accessible through
standard device drivers and performs detection via machine
learning. While it allows for stand-alone operation, it also enables
cooperative detection. We experimentally show that our approach
achieves remarkably high detection rates in indoor and mobile
outdoor scenarios even under challenging link conditions.

I. Introduction

Jamming attacks consist of radio signals maliciously emitted

to disrupt legitimate communications. Various studies show

this in the context of 802.11 and 802.15.4 systems [4], [17],

[24], as well as in the context of cellular networks [9], [18].

With the proliferation of (time-critical) machine-to-machine

applications in general, and safety-critical applications in

vehicular ad-hoc networks (VANETs) in particular, the im-

portance of jamming-aware communications is expected to

increase in the future. In general, the impact of jamming

can be alleviated by either increasing the robustness of the

legitimate signal [11], [15] or by migrating the communication

to a different frequency band [14]. However, many of the pro-

posed countermeasures cannot always be applied on already

existing systems and, in most cases, the only alternative is

to try to detect the jammer. In the context of safety-critical

communications over VANETs, the detection of a jamming

attack could, for instance, alert the driver about potentially

malfunctioning applications.

Jamming detection can be performed by dedicated devices

or by algorithms within the communication devices them-

selves. In general, the latter case is associated with less over-

head and costs. In either case, one has to rely on previously

acquired knowledge of the communication behavior under

normal and jammed conditions. This requires the tracking of

potential indicators (or metrics) of jamming activity, which

are obtained at different layers (e.g., packet delivery rate at

the application layer and channel busy time at the MAC

layer). The use of a cross-layer architecture can ease the

task of collecting necessary metrics and, hence, of jamming

detection [15].

In literature, only few experimentally-evaluated approaches

for jamming detection have been proposed [7], [24], [23],

which either do not explicitly address 802.11 communica-

tions [7], [24] or focus on very specific, and hence hardly gen-

eralizable, jamming attacks [23]. Common approaches manu-

ally set thresholds for the selected metrics based on empirical

observations [7], [24]. However, during normal operation other

effects such as network congestion and challenging wireless

link conditions can exhibit a similar impact as jamming, which

degrades the detection accuracy. Furthermore, adding more

metrics, which theoretically increases the accuracy, compli-

cates the problem of the manual threshold setting.

In this paper, we present a machine learning-based jamming

detection approach for 802.11 networks that weighs and com-

bines a considerable set of metrics and automatically selects

appropriate thresholds, thereby circumventing the arduous and

error-prone manual tuning. Our approach relies on metrics

available from drivers of commodity network interface cards.

For convenience, we utilize crawler [3], a cross-layer tool

that facilitates the access to the metrics. Afterwards, the

metrics are provided to a machine learning algorithm to predict

the likelihood of a jamming attack. The proposed approach

features a high detection accuracy in different scenarios (in-

door and vehicular), under different propagation conditions

(good- and bad-link conditions, with and without concurrent

traffic from neighbor networks), and for two different jammer

types (constant and reactive). In addition, our approach easily

integrates cooperative jamming detection to further improve

the accuracy without incurring significant costs.

The remainder of this paper is organized as follows. In

Section II, we introduce metrics for jamming detection and

analyze their reaction to jamming. Section III presents the

design of our machine learning-based jamming detection ap-

proach, which is evaluated in Section IV. In Section V we

discuss practical problems. An overview of related work is

provided in Section VI. Finally, in Section VII we conclude

our work and discuss on future work directions.
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Fig. 1. Indoor (reference) and outdoor scenarios considered in the evaluation.

II. Challenges of designing jamming detection strategies

To differentiate jamming from normal operation, it is nec-

essary to analyze the impact of jamming on the system perfor-

mance. Therefore, we investigate a set of metrics that react to

jamming attacks and helper metrics that do not show a reaction

to jamming, but provide context for an appropriate weighting

of other metrics. Our results demonstrate the difficulty of

jamming detection by showing the complex interdependencies

between the scenario, the system behavior, and the jammer.

A. Reference Scenario and Measurement Setup

The scenario used to evaluate the suitability of the selected

metrics was an office room located in the UMIC Research

Centre at the RWTH-Aachen University, which is sketched in

Figure 1(a). Our setup consisted of three Linux PCs equipped

with 802.11g Atheros WLAN cards running the ath9k driver

[1]. The three nodes were configured in ad-hoc mode and

communicate on channel 11 in the 2.4 GHz band, which was

not occupied by any other network during our experiments.

In order to mimic ideal and challenging link characteristics,

we considered two different configurations which we refer to

as good-link and bad-link. In the good-link configuration, the

nodes were placed close to each other and the transmission was

parameterized to achieve, on average, a high packet delivery

rate. The bad-link topology was characterized by a poor

communication performance, which was achieved by selecting

a lower transmit power and/or by adding attenuation elements

at the output of the radio front-end. For each configuration

we collected data under normal and jammed conditions. In

the latter case, we placed the jammer at different positions

(cf. Fig. 1(a)) and varied its output power to impact the

performance of the communicating nodes differently. We im-

plemented the jammer on a WARP board [13], which provides

an 802.11-like OFDM physical layer featuring a 10 MHz

bandwidth and an output power of 18 dBm in the 2.4 GHz

band. The jamming signal consisted of a preamble and BPSK

modulated random payload of variable length. The jamming

signals prevented the legitimate devices to access the medium,

which differs from what has been reported for other Atheros

cards in [21], [17].

Constant jammer: Implementing a constant jammer on

WARP is not entirely possible, since the amount of time

that the boards can be transmitting a single signal is upper-

bounded. We measured it using a spectrum analyzer to be

about 2.7 ms. Between two consecutive signals there is a 10 µs

gap required by the hardware to set up a new transmission.

Nevertheless, this marginal off-phase is expected to not affect

the performance of the legitimate communication, as this gap

is not large enough for 802.11 stations to access the medium.

Reactive jammer: The reactive jammer starts a transmis-

sion when it senses energy on the channel above a threshold

regardless of the type of signal detected. We set the threshold

to -65 dBm to achieve a sufficiently high jammer sensitivity,

while guaranteeing a low number of false detections, that is,

avoid reacting to signals from neighbor 802.11 networks or

other sources of electromagnetic activity. The jammer has a

total reaction delay of 12 µs. This is fast enough to partially

interfere the preamble of the 802.11 signal, which is known

to increase the effectiveness of the attack [8].

B. Experimenting with Indicators of Jamming Activity

We experimented with multiple metrics to detect jamming

activity. Candidate metrics were selected based on two main

criteria. First, we focused on metrics that are accessible via

a common driver of commodity 802.11 network interface

cards. Second, the metrics should work regardless of the

type of traffic exchanged by the nodes. For instance, we

discarded the number of frame retransmissions, since this

metric requires the use of ACK frames that are not available

in broadcast transmissions. Finally, we chose six metrics for

further analysis, which we divided into three categories: (i)

channel, (ii) performance, and (iii) signal metrics.

Channel metrics: These metrics sample the state of the

wireless channel. We identified noise and channel busy ratio

(CBR) as relevant. Noise is defined as the power measured on

the channel during idle times of the transceiver [2]. Jamming

signals that are transmitted while the legitimate nodes are idle

(e.g., constant jammer) are likely to be included in the noise

measurements of the cards as shown in Figure 2(a). However,

a minimum jamming power and interference duty cycle are

required for the cards to include the jamming signal into the

noise measurements [19]. This happened to only 30% of the

constant jammer samples collected in our indoor experiments

(see Figure 2(a)).

The CBR measures the time (normalized to the observation

time) that the wireless channel has been sensed busy. The

channel is considered busy if the received power is above

the clear channel assessment (CCA) threshold. As reactive

jamming attacks are launched once the legitimate nodes have

gained access to the medium, no impact is expected from

this jammer on noise and CBR metrics, which can be clearly

observed in Figures 2(a) and 2(b).

Performance metrics: This type of metrics can only be

obtained if a connection is established between two or more

stations. We identify inactive time (IT) and packet delivery

ratio (PDR) as suitable metrics. The IT corresponds to the

time that elapses between two consecutive successful packet

receptions, including probing, beacons, and payload frames.

Specifically, we account for the maximum IT at a node

measured over the links to its neighbors.
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Fig. 2. CDF to compare the impact on all selected metrics of the constant and reactive jammer with the non-jammed case. Noise is completely unaffected
by the reactive jammer, in contrast to the constant jammer. The CBR is strongly affected by the constant jammer, while the reactive jammer has only a
marginal impact on it. PDR and max. IT are significantly affected by the presence of both jammers.

As opposed to the other metrics, the PDR is not directly

provided by the card. For its computation, each node is aware

of the number of network members in its hearing range and

of a predefined rate for generating probing packets. With that

knowledge, and based on the number of correctly received

probing packets, the PDR can be computed. Figures 2(c)

and 2(d) show that these metrics are good indicators for

detecting jamming activity, since, in most cases, they clearly

separate jamming from normal operational conditions.

Signal metrics: Signal is the power measured upon arrival

of a packet, but only passed to higher layers in case of

successful reception. This metric is a helper metric, that

provides a useful context (i.e., link quality) to the PDR and

the max. IT metrics, although it is not explicitly affected by

jamming. For instance, a low received signal power is likely

to result in a low PDR even if the jammer is silent. This

knowledge is important to appropriately weigh the significance

of PDR and max. IT accordingly. In our experiments, instead

of collecting a single signal metric (i.e., the average power),

we have observed that the differentiation between minimum

and maximum signal over all links is most valuable.

C. Threshold Identification

A common strategy in related work is to manually choose

thresholds for selected metrics [24] based on their behavior in

a specific scenario. However, it is a difficult task to appropri-

ately separate the values of the metrics and weigh them based

on their significance. We illustrate this issue by jointly collect-

ing samples of measured PDR and received signal strength

(plus measured noise power). We collect these samples in

our reference scenario without jamming activity, following the

approach proposed in [24]. These samples correspond to the

blue circles depicted in Figure 3. We then manually determine

the thresholds to best capture normal operation, specifically

the thresholds are set so as to contain 99% of the unjammed

samples as in [24]. Next, we activate the jammer and eval-

uate how well this method can identify jamming activity. In

Figures 3(a) and 3(b) we observe a clear overlap of jammed

and unjammed samples, which anticipates inaccurate detection

rates. From these figures we derive two major observations: (1)

metrics for jamming detection proposed by related work in the

context of general wireless networks do not necessarily work

well in 802.11 and (2) finding appropriate thresholds, even for

only two metrics, is already a difficult task. The combination

of multiple metrics will drastically increase the complexity
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Fig. 3. Consistency check approach of PDR vs. max. signal in indoor scenario
as proposed by Xu et al. in [24]. Samples for jammed and not jammed overlap,
which makes a clear threshold identification impractical for 802.11.

and make manual threshold setting impractical. For tackling

this complex problem, we use machine learning algorithms,

as they are known to be well-suited for multi-dimensional

(binary) classification problems such as the decision about the

presence and absence of jamming based on multiple metrics.

III. Detection System Design

Our jamming detection approach consists of two phases:

(1) the collection of training data and (2) the application of

machine learning on the collected data.

A. Data Collection Phase

Our machine learning algorithm takes training data as

input. Therefore, the selected metrics need to be accessed and

forwarded to the machine learning component, as illustrated

in Figure 4. While most of the metrics are provided by the

802.11 device driver, the PDR is obtained from the application

layer. As the latter requires a supervised packet exchange

mechanism, we have incorporated an information exchange

component into our design. The other metrics reside in the

kernel space of the operating system, but they have to be

provided to the user space in order to be used by the machine

learning component. To address this task, we incorporate a

cross-layer component (see ➀ in Fig. 4) that improves the

flexibility of the framework and reduces the complexity. The
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Fig. 4. Design overview of our detection approach consisting of three
components: (1) Metrics are accessed via crawler and are provided to the
machine learning component. (2) Similarly does the information exchange
component with the PDR metric. (3) Based on the gathered data, the machine
learning component decides on the presence of the jammer.

details of the cross-layer and information exchange compo-

nents are described in the following.

Cross-layer component: A cross-layer component should

(i) offer the flexibility to include and prepare diverse met-

rics from different protocol layers and (ii) still reduce the

complexity, i.e., simplify the access to protocol and system

information without requiring excessive effort and knowl-

edge about system details. As the cross-layer architecture

crawler [3] offers these features, we incorporated it into our

framework. crawler is an open-source software for Linux that

allows cross-layer developers to express their monitoring and

optimization requirements in an abstract and declarative way.

crawler provides many accessors to read and write system

information ranging from TCP-IP to our metrics partially

gathered directly from the WLAN devices.

Information exchange component: We propose the ex-

change of probing packets between nodes to measure the

PDR (see ➁ in Fig. 4). We have implemented the packet

exchange in a client-server manner running in the user space

of the operating system. Each node runs the server and the

client. The client broadcasts UDP packets every 100 ms. These

packets have a total size of 57 Byte. In particular, 8 bit are

reserved for the message type, although one message type

is currently used, we reserved these bits for future use. A

16 bit value can be utilized to enable a cooperative mode to

convey the detection probabilities from neighbor nodes. We

later show in our evaluation that the use of the cooperative

mode increases the jamming detection accuracy significantly

(cf. Section IV-F). Finally, 54 Byte are necessary for protocol

headers and CRC checksums. Hence, the broadcast of probing

packets introduces a per-station overhead of about 570 Byte/s.

B. Machine Learning Phase

Before using machine learning for detecting the presence of

a jammer, training data needs to be collected and provided to

our machine learning component (cf. ➂ in Fig. 4) for learning.

Our training data consists of multiple instances of the decision

problem, which are themselves divided into input variables or

features (i.e., the six selected metrics) and a corresponding

output variable or class (i.e., a binary variable stating whether

the jammer is active or not).

Learning: In this work we have considered multiple learn-

ing algorithms, which are introduced and evaluated in Sec-

tion IV-G. However, most investigations exclusively employ

Random Forests [6], a sophisticated decision tree-based clas-

sifier known to be superior, in terms of accuracy, to most other

classifiers [6]. For learning, Random Forests generates a large

number of random decision trees (we empirically determined

50 trees with a depth of 10 to be a good trade-off and we later

use this dimensionality in the evaluation part), the so-called

forest. The input variable and the splitting threshold chosen

at a node are automatically selected so as to maximize the

classification accuracy. Finally, the leaf nodes represent the

distribution of values that the output variable takes for the

corresponding path through the decision tree.

Predicting: During operation, the input variables are contin-

uously monitored and new instances (i.e., new values of met-

rics) are pushed down each decision tree reaching a specific

leaf node. Depending on the distribution of the output variable

at the leaf node, the tree will either vote for the presence of a

jammer (i.e., output a one) or against it (i.e., output a zero).

Finally, the votes of all trees are aggregated into a single output

variable representing the prediction probability of jamming.

In its default configuration, jamming activity is assumed if the

predicted probability is larger than 0.5.

IV. Evaluation

In earlier sections we have pointed out the necessity of

appropriately selecting, combining, and weighting metrics to

identify jamming attacks. In this section we present a detailed

evaluation of our proposed approach in a representative set of

scenarios to underline our arguments.

A. Measurement Methodology

We have conducted static indoor and mobile outdoor ex-

periments. We first provide results for the indoor tests. The

experimental settings for the evaluation are the same as in

the reference scenario introduced in Section II-A. We have

configured the nodes to gather the value of the metrics every

second. For every chosen topology, we conduct multiple runs

with a duration of 60 s. The value of the binary output

variable (i.e., the jammer activity) is introduced off-line once

the measurement is finished. We collect the same number of

instances with and without jammer activity in order to avoid

biased learning. In the reference scenario, we collect a total

of 27000 samples, namely 9000 for each jammer and 9000

without jammer. From the final training set, we randomly

select 60% for learning and 40% for testing. To minimize

the impact of this selection, we run the learning algorithm

20 times considering a different subset of samples at each

iteration. The prediction accuracy is obtained on the samples

reserved for testing. Unless specified differently, our results

show the average detection accuracy together with the 95%

confidence intervals.

B. Detection Accuracy

In our evaluation we show the true positive (TP) rate,

i.e., the correct detection of existing jammer activity, and the

true negative (TN) rate, i.e., the correct identification that
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As expected, the combination of all metrics achieves the
highest detection accuracy.

Fig. 5. Detection accuracy obtained in the indoor reference scenario.

there is no jammer. In Section II-B we have shown that four

metrics provided by commodity cards are suitable indicators

of jamming activity. However, it is unclear if a subset of these

metrics (or even a single metric) is able to yield the desired

accuracy. Figure 5(a) shows the detection accuracy obtained

in the reference scenario if only one metric is considered for

learning. It can be observed that every metric has the potential

of detecting jamming activity, which is illustrated by TP rates

larger than 50% with the single exception of the noise metric

in case of reactive jamming. The latter is evident based on

the observations of Section II-B. Hence, relying on a single

metric is not sufficient for guaranteeing a reliable detection.

Figure 5(b) shows the accuracy achieved with all available

metrics compared to the accuracy when certain metrics are

excluded. As expected, employing all metrics results in higher

detection rates. The no channel group (i.e., excluding noise

and CBR) yields a high accuracy, although the detection of

the constant jammer is slightly worse. Excluding the signal

metrics degrades the detection of reactive jamming. Clearly,

the performance metrics (i.e., PDR and max. IT) are most

important, as excluding them from the learning phase degrades

all detection rates significantly. This was expected based on

the results presented in Section II-B. To summarize, although

single metrics can be used to some extent to detect a jammer,

a holistic consideration of multiple metrics is the right strategy

towards an efficient jamming detection.

C. Impact of Concurrent 802.11 Traffic

Besides jamming there are other sources of interference

that can impact 802.11 communication, thereby complicating

TABLE I
Detection Accuracy with & without ConcurrentWLAN Traffic

Constant Reactive

TP TN TP TN

(1) Without concurrent Traffic 97.97 98.64 94.13 98.10

(2) Concurrent Traffic 12 Mbit/s 98.44 99.70 94.31 99.00

(3) Training 1 for predicting 2 98.05 72.70 89.36 54.34

(4) Training 1&2 for predicting 2 98.23 99.72 93.18 99.19

the detection of an attack. In this context, we are interested

in evaluating the ability of our approach to detect jamming

activity in the presence of intense traffic generated by a

neighbor 802.11 network. For that, we placed two additional

nodes in the reference scenario that communicated with each

other in an ad-hoc fashion. Each node run the iperf application

to generate an average traffic load of 12 Mbit/s with a fixed

MTU size of 1500 Byte. The nodes were located close (about

2-3 m) to the original three-nodes and used the same frequency

channel for transmission.

Row 2 in Table I shows the detection accuracy achieved

by our approach when concurrent 802.11 traffic is present

during the learning phase and later also during prediction. For

better readability we omit the 95% confidence intervals, which

are always below 1%. It can be observed that the detection

rates for both jammers are not degraded compared to the

ones obtained without background traffic (as in Row 1), which

indicates that our approach efficiently differentiates between

jamming and 802.11 interference. However, the activity of

legitimate interference can have an unpredictable pattern de-

pending on the number of neighbor nodes and the amount of

traffic they generate. Performing learning without accounting

for concurrent traffic leads to a significant drop in accuracy

if this traffic activity appears only during the detection (see

Row 3 in Table I). To overcome this problem, it is important

to collect training data samples under different conditions that

are likely to emerge during operation. We show (in Row 4 of

Table I) that by combining training data samples from different

scenarios (i.e., from Rows 1 and 2), high TN and TP rates are

obtained, which are comparable with the accuracy achieved

with scenario-specific learning.

D. Impact of Outdoor Mobility

Safety-critical communications in vehicular scenarios have

tough reliability constraints and strict delivery deadlines.

Hence, a responsive and accurate jamming detection is im-

portant to initiate appropriate countermeasures. We evaluated

our approach in an outdoor scenario with mobility, which is

illustrated in Figure 1(b). We placed two cars at the ends

of a parking lot, while mobility was introduced by a third

car that was moving back and forth between the static nodes

at a maximal speed of 25 km/h. The jammer was located

close to one of the static nodes. The wireless link between

the static nodes was characterized (without jammer activity)

by a low PDR of about 40% that dropped further due to

the attenuation caused by the moving vehicle. Depending

on the position of the latter, the quality of the links varied
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Fig. 6. Outdoor scenario: Detection accuracy when using outdoor training
data (Outdoor Train) compared to training with indoor data for outdoor
prediction (Indoor Train) and combining both training data sets for outdoor
prediction (Both Train). Collecting training samples under different conditions
is a requisite to achieve high detection accuracy.

significantly and we obtained PDR values that spanned the

whole range. We conducted multiple runs of 60 s and collected

a total of 4500 data samples (1500 for each jammer and

1500 without jammer). Figure 6 (cf. Outdoor Train) shows

that the constant jammer can be detected with high reliability,

while the accuracy for the reactive jammer is slightly above

80%. In general, node mobility and the signal propagation

characteristics of the outdoor environment do not hinder an

accurate detection of the jammers.

Obtaining training data in outdoor environments can be

time-consuming. We have investigated the reusability of indoor

learning for detecting outdoors. Figure 6 (cf. Indoor Train)

shows that the TN rates for both jammers are degraded and

fall below 50%. In general, differences in the scenario char-

acteristics, and hence in the behavior of the metrics, lead to

notable training dependencies. Therefore, as already discussed

in Section IV-C, collecting training samples under different

conditions is a requisite for robust and flexible jamming

detection. This is underlined in the figure by the high accuracy

achieved when the learning is applied on training data that

contains both indoor and outdoor samples (cf. Both Train).

E. Exploiting Detection History

So far, every node decides (with one second granularity)

on the presence of a jammer using instantaneous informa-

tion. However, we have observed that the predicted jammer

probability features a certain degree of correlation in the time

domain. Figure 7(a) is a 10 s excerpt of a measurement in

the outdoor scenario when the constant jammer was active.

The figure illustrates the time correlation of the probability as

predicted by Random Forests and the final decision about the

presence of a jammer. At some points, the probability falls

below the 0.5 threshold and a wrong decision is made.

Figure 7(b) shows the burst length of erroneous decisions in

the outdoor scenario. It can be observed that the majority of the

detection errors are isolated events (i.e., they are preceded and

followed by correct detections) and that more than five consec-

utive detection errors rarely happen. We have identified small

fluctuations of the signal strength under bad-link conditions,

as the main cause for isolated errors. These observations can

be exploited for more efficient detection approaches. We have

investigated the benefits of combining successive predictions

to intercept these single detection errors. Specifically, we

apply a moving average (mAvg) of a particular window size

to account for past probabilities. For a window of size k,

the values of k−1 previous detection probabilities are stored

and combined with the current probability. Figure 7(c) shows

the benefits provided by this method as a function of the

window size. Remarkable is the 10% higher detection accuracy

achieved with a window of 3 s, as this size is able to efficiently

intercept the isolated detection errors. Further increasing the

window size provides only a moderate gain and can even

degrade the accuracy.

F. On-the-Fly Jamming Detection:

The evaluation results provided so far have been obtained

off-line by applying our detection algorithm on previously

collected data samples (not used for learning though). How-

ever, having an approach that enables immediate predictions

is mandatory for real-world applicability. We have imple-

mented our learning-based jamming detection framework on

the 802.11 devices to perform on-the-fly predictions. This is

achieved by installing the required machine learning libraries

(e.g., we used OpenCV 2.4.3 for Random Forests) on the

devices and redirecting the collected metrics to the machine

learning component (cf. ➂ in Fig. 4). For the on-the-fly

detection to work, the outcome of the learning phase (e.g., the

structure of the forest) needs to be stored and made accessible

to the machine learning component. In the following, we

evaluate our framework in on-the-fly mode.

Scenario Details and Methodology: We consider an office

room (25 m2) located in the building of the Communication

and Distributed Systems Chair. The topologies chosen in this

scenario were comparable to those of the reference scenario

(cf. Figure 1(a)). Nevertheless, small differences in the propa-

gation conditions of both scenarios were observed, especially

with respect to the background 802.11 activity.

The jammer was placed at different locations within the

room so as to affect the communication differently. We mea-

sured for a total of 60 minutes (with and without jammer) on

different days and at different working hours. It is important

to note that no specific learning was conducted, instead, the

outcome of the learning obtained in the reference scenario

was reused for detection in this new one. In the following we

show the results for our on-the-fly detection (referred to as

basic approach) and for two enhancements that increase the

detection accuracy.

Results basic approach: Figure 8 shows the evaluation

results for both jammers. In general, a high detection accuracy

is achieved, even without the availability of scenario-specific

learning. For instance, the TN rates are above 85% for both

jammers and the TP rate for the constant jammer is close

to 100%. The detection of the reactive jammer is in general

lower, but the TP rate is still above 85%.

Advanced approaches: We extend the basic approach to

incorporate the moving average mechanism (i.e., mAvg) to

exploit the correlation in the time domain. Figure 8 shows

the benefits of using moving average (window size of 3 s).

We are also interested in exploiting the correlation in the

space domain, as nodes that are close to each other can
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Fig. 7. Based on observed temporal correlations in the detection probability (cf. Fig 7(a)) and large proportion of isolated errors (cf. Fig. 7(b)), we propose
a moving average to improve the detection accuracy (cf. Fig. 7(c)).
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Fig. 8. Benefits of moving average (mAvg) and cooperation (Coop) for
an accurate jamming detection. Despite considering different scenarios for
learning and testing, the combined approach (Coop + mAvg) achieves
remarkably high detection rates.

be expected to be similarly affected by the jammer. This

information redundancy can be exploited by letting neighbor

nodes exchange their individually computed detection prob-

abilities and can be easily conveyed (after 1 s delay) within

the probing packets without significantly adding complexity or

overhead. We enabled our information exchange component to

support cooperative jamming detection (i.e., Coop). However,

we have investigated only a naive approach, where the nodes

assume that all network members within hearing range are

identically affected by the jammer and correspondingly they

average the detection probabilities of all neighbors. Smarter

approaches that, for instance, make use of GPS information

are more appropriate to weigh these probabilities. Note that

this investigation is out of the scope of this paper.

Results advanced approach: In general, the use of moving

average alone already improves the detection accuracy. Fig-

ure 8 shows that the TN rate for the constant jammer increased

by up to 7%. The figure also shows the improvements of

cooperation combined with moving average (i.e., Coop +

mAvg). This combined approach shows the most significant

gain with up to 11% higher accuracy compared to the basic

approach, which brings all detection rates above 95%.

Conclusion: We demonstrated the ability of our jamming

detection framework to achieve a high detection accuracy at

runtime. In addition, we observed that the basic approach

achieves a high detection accuracy even when using learning

based on training data obtained in a different scenario. This

fact highlights the reusability of the learning phases to be

applied on scenarios of similar characteristics. Furthermore,

the proposed advanced mechanisms that exploit correlation

in the time and space domains, in particular when applied

together, achieve a dramatic boost in accuracy.

G. Machine Learning Algorithms

So far, we have used Random Forests as learning algo-

rithm in all our experiments. Nevertheless, there exist other

algorithms that are well-suited for the considered problem.

Therefore, we investigated the following set of well known

machine learning algorithms with respect to their accuracy

and robustness. For a detailed description of these algorithms

we refer the interested reader to [5] and the references therein.

C4.5 Decision Tree: This algorithm relies on a single decision

tree for classification. The input feature at each node of the tree

is selected so as to maximize the information gain. Pruning

is applied to reduce the size of the tree without degrading

classification accuracy.

Adaptive Boosting (AdaBoost): AdaBoost iteratively com-

bines multiple weak classifiers to obtain a single strong one.

For this purpose, each individual classifier only needs to

achieve a classification accuracy higher than 50%. Further-

more, the errors produced in one iteration are appropriately

weighted in the next iteration. We select a maximum of 100

iterations and choose the C4.5 algorithm as weak classifier.

Support Vector Machine (SVM): This classifier looks for an

hyperplane in a high dimensional space that maximizes the

margin, i.e., the minimum distance between the hyperplane

and a data point of any class. A non-linear transformation, by

means of a kernel function, is applied to the data points to

perform the classification in a higher dimensional space. We

have used a gaussian kernel k(xi, x j) = e−γ(xi−x j) with γ = 100.

Expectation Maximization (EM): This learning algorithm

is of unsupervised nature, hence, the class is not explicitly

specified. The algorithm identifies patterns in the data points

and groups them into clusters. We empirically determined that

two clusters provide the best accuracy for outdoor training.

Results: Figure 9(a) shows the detection accuracy achieved

by the different algorithms in the outdoor scenario. The four

supervised learning algorithms exhibit a similar performance,

although Random Forests and SVM achieve, on average, a

marginally better detection. The EM algorithm yields a poor

performance, which indicates that unsupervised learning is not
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(b) True positive (reactive jammer) accuracy obtained for dif-
ferent amounts of training data in the outdoor scenario.

Fig. 9. Comparison of the detection accuracy and robustness obtained by the
different machine learning algorithms in the outdoor scenario.

well-suited for the considered problem. Figure 9(b) shows the

accuracy of the algorithms for a varying amount of training

data. In general, all algorithms (expect for EM) provide an

accurate detection already with 10% of the total training data.

Random Forests and AdaBoost exhibit a very stable accuracy,

which is in contrast with the large fluctuations experienced by

SVM and C4.5, particularly with only 1% of the data.

H. Comparison with Related Work

In literature there are only few works implementing a

jamming detection scheme that could be applied (partially with

significant modifications) in the context of 802.11 networks.

We select the approaches presented in [7] and [24] and

compare their accuracy against our scheme with respect to

different link qualities, where the latter are characterized by

the average PDR obtained while the jammer is silent. The

accuracy of Giustiniano’s scheme has been extracted from

Figure 8 in [7]1. In addition, we implement an approach

similar to Xu’s method [24]. For that, we generate a scatter

plot containing samples of the PDR and (maximum) signal

strength plus noise power collected without jammer activity.

This is done similarly as in Figure 3, but for the data gathered

in the indoor scenario described in Section IV-F. By inspecting

the graph, we determine the operational non-jammed area.

Later, any sample falling above that region is considered as a

jamming attack. For more details we refer the reader to [24].

Figure 10 compares our approach in on-the-fly mode (basic

design, moving average, and cooperation with moving aver-

age) against these two works for two different PDR ranges. We

conducted the experiments in the indoor scenario described in

Section IV-F. In general, we observe that all schemes (with

punctual exceptions) are able to efficiently detect jamming

1Please note that the scenario, propagation conditions, and jammer behavior
considered in the work may differ significantly from ours. Hence, this specific
comparison should be treated with caution.
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(b) Constant Jammer comparison.

Fig. 10. Comparison of our approach with Xu [24] and Giustiniano [7].

attacks when the PDR is larger than 80%. Under challenging

propagation conditions, Xu’s approach [24] yields a poor

accuracy with respect to TP rates, while (for the reactive

jammer) Giustiniano’s approach [7] provides a better detec-

tion. Nevertheless, our scheme outperforms these two works

significantly (for both jammers and link conditions). In cases

where the basic design falls short in providing a successful

detection (e.g., low TN rate for the constant jammer), the

combination of cooperation and moving average achieves a

remarkable performance.

I. Tuning Detection Sensitivity

In general, we are interested in a timely and accurate

jamming detection, particularly in the context of safety-

critical applications over VANETs. Figure 11(a) illustrates

the situation where a car moves towards a jammer. In this

scenario, the communication conditions can be divided into

three regions [17]. First, Region A is completely outside the

interference range of the jammer. In Region B, the jammer

impacts the communication but not enough to completely

block it. Hence, safety-critical applications are expected to

still work reliably. Finally, in Region C the vehicle is not

able to successfully receive any packet. The dimensions of

these regions depend on the transmit power of the devices,

the network topology, and the jammer type, among others.

However, in this kind of scenarios the presence of a jammer

is an event that can be expected to occur only sporadically.

Assuming a higher probability of unjammed situations (such

as in Region A), it is necessary to keep a very low rate of

false positive detections. However, it is also desirable to have

high true positive rates in Regions B and C. In the following,

we propose and evaluate a method to address this issue.

Figure 7(b) has shown that erroneous jamming detections

(i.e., false positives) rarely occur in a consecutive manner.

In the outdoor scenario, error bursts larger than 5 s happen

in only 0.1% and in 0.4% of the cases for the constant and

reactive jammer, respectively. Based on this observation, we

propose a strategy to lower the false positive detections in
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(a) Interference regions with different implica-
tions to the communication and to the jamming
detection requirements as a vehicle approaches
a jammed area.
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(b) We apply an absolute majority voting win-

dow to limit the sensitivity to false positive
events of our detection framework in the out-
door scenario.
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(c) The combination of moving average (window
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achieves very high TN rates, while keeping accept-
able TP rates for both jammers.

Fig. 11. Discussion on the applicability of our detection framework in vehicular scenarios.

unjammed situations (i.e., Region A). That strategy, which we

refer to as absolute majority vote work as follows: A jammer

is assumed to be present when all collected predictions within

a specific time span give a positive answer. The corresponding

results for different window sizes are shown in Figure 11(b).

This method achieves TN rates that are very close to 100%

for both jammers. For instance, in the case of 5 s window,

the values are 99.96% and 99.95% for constant and reactive

jammer, respectively. As expected, the sensitivity to jamming

attacks happening in Regions B and C is degraded, particularly

for the reactive jammer. This can be improved by combining

this strategy with the moving average method presented in

Section IV-E. As illustrated in Figure 11(c), the TP rates can

be significantly improved. For instance, employing a moving

average of 5 s yields a detection accuracy of 97% for the

constant jammer and a TN rate of 99.92%. Finally, we believe

that the appropriate cooperation between vehicles (e.g., by

using additional context information such as GPS coordinates)

will further improve the overall performance.

V. Discussion

In this work, we have considered two jamming attacks,

namely reactive and constant. The jamming signals, as dis-

cussed in Section II, do not comply with the 802.11 standard

nor do they exploit any knowledge about the protocol of the

targeted network. We believe that a jammer emitting 802.11

compliant frames would not affect the metrics in a significantly

different way than our jammer does. However, one major

difference is expected with respect to the noise metric, since

legitimate packets are not considered for that computation.

This metric, however, provides only a modest improvement of

the detection rate (cf. Figure 5).

A smarter jammer could, for instance, deliberately allow the

successful reception of probing packets so as to tamper with

the PDR computation. The jammer would need to distinguish

the small probing packets from other packet types, which could

be hindered by randomly adding padding bits to the packets.

Ideally, to provide accurate detection rates for a novel

jammer type, our approach needs to gather training data that

captures the impact of that specific jammer. In this context, we

face two issues: First, collecting training data requires effort

and the existence of the jammer is mandatory. Second, there is

an indeterminably large number of jamming attacks that can

be obtained by changing the interference signal pattern [11],
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Fig. 12. Detection accuracy achieved exclusively with training data from a
particular attack. Interestingly, using only reactive jammer training data for
detecting a constant jammer achieves a successful detection. On the contrary,
exclusively training with a constant jammer does not provide an accurate
detection of the reactive jammer. These results were obtained in the indoor
scenario introduced in Section IV-F.

[12] or adding protocol-awareness to the attacker [16], among

others. As a result, we believe that there is no jamming

detection strategy that guarantees the detection of all potential

jammer types. To some extent the same problem is faced by

computer anti-virus programs that need to regularly update

their database with the fingerprints of new unseen viruses.

Hence, our approach should not be considered as a one-

fits-all solution that detects all possible jamming attacks on

802.11 networks. It is rather a methodology that improves the

adaptability to novel jammers with low effort, while keeping

a high detection accuracy. In this context, we made the

interesting observation that training with a particular jammer

can be reused to successfully detect other jamming attacks.

This is illustrated in Figure 12, where the learning conducted

in the presence of the reactive jammer is able to accurately

detect constant jammer activity. We hence believe that training

data that accounts for a representative amount of attacks, has

the potential to accurately detect a wider range of jammers.

VI. RelatedWork

With the widespread deployment of wireless networks,

especially 802.11-based WLANs, many research efforts have

focused on jamming attacks due to their potential for com-

promising both reliability and security. Many works have

characterized the impact of jamming on the network perfor-

mance and discussed the reasons for the observed jamming

effectiveness [4], [8]. Some other works have proposed meth-

ods to (partially) overcome the effects of jamming by using

specific transmission technologies [14] or by appropriately

tuning transmission parameters [15], among others.

In the cases where the robustness of the system to jamming

cannot be increased, it is important to, at least, detect the pres-



ence of a jammer. Several jamming detection approaches for

wireless networks have been proposed in the past years [24],

[7], [20], [22], [10]. However, the majority of these works

evaluate the proposed approaches only by means of simula-

tions [20], [22] or not at all [10]. In [24] Xu et al. propose the

use of measured energy together with the packet delivery ratio

(PDR) for jamming detection in wireless sensor networks. The

authors implement the approach in sensor devices and show

that different jamming attacks can be identified. However,

the approach is not directly transferrable to 802.11 networks

as energy measurements as applied in Xu’s work are not

applicable with commodity hardware in 802.11.

Giustiniano et al. present in [7] an approach for detecting

reactive jamming in direct sequence spread spectrum (DSSS)

wireless systems (e.g., 802.11b/g). The authors characterize

the relationship between the chip error rate measured over the

preamble (where the reactive jammer is assumed to be silent)

and the actual frame error rate. During operation, transmission

events that diverge from the previously characterized behavior

are assumed to be caused by a reactive jamming signal.

The authors implement and evaluate their approach on an

USRP platform. They measure a detection rate with a false

negative rate below 5% under good channel conditions, while

the accuracy decreases under challenging conditions (e.g., the

false negative rate rises up to 30% for links with a PDR below

25%). The approach has a limited applicability, as it is only

useful to detect reactive jamming in DSSS-based systems. This

is, however, not the common case in 802.11, where OFDM is

the de-facto PHY present in current and considered for future

WLAN generations. Furthermore, the proposed metric is not

provided by commodity 802.11 hardware.

VII. Conclusions

In this paper, we have presented a machine learning-based

jamming detection approach for 802.11 networks that works

with commodity off-the-shelf hardware. We have experimen-

tally evaluated our approach and showed that it achieves

an extraordinarily high accuracy both for true positives and

negatives in indoor and mobile outdoor scenarios, under dif-

ferent propagation conditions (good- and bad-links, with and

without concurrent traffic from neighbor networks), and for

constant and reactive jammer types. Although our approach

is a standalone tool that does not rely on other applications

or information from other nodes in the network, we have

incorporated a cooperative approach that can be enabled on

demand. We have shown that exploiting the knowledge of past

predictions in combination with cooperative jamming detec-

tion significantly improves the detection accuracy introducing

only low overhead. Furthermore, we have compared different

popular machine learning algorithms with respect to their

accuracy and robustness. Finally, we have shown by means

of measurements that our approach outperforms related work

significantly, especially in scenarios with poor link conditions.
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