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Neural Network based Linear and Nonlinear
Noise Estimation

F.J. Vaquero Caballero(1), D. J. Ives (1), C. Laperle(2), D. Charlton(2), Q. Zhuge(2), M. O’Sullivan(2),

Seb J. Savory(1)

Abstract—Operators are pressured to maximize the
achieved capacity over deployed links. This can be
obtained by operating in the weakly nonlinear regime,
requiring a precise understanding of the transmission
conditions.

Ideally, optical transponders should be capable of
estimating the regime of operation from the received
signal and feeding that information to the upper
management layers to optimizate the transmission
characteristics, however this estimation is challeng-
ing.

This paper addresses this problem by estimating the
linear and nonlinear SNR from the received signal.
This estimation is performed by obtaining features
of two distinctive effects: nonlinear phase noise and
second-order statistical moments. A small neural net-
work is trained to estimate the SNRs from the ex-
tracted features.

Over extensive simulations covering 19,800 sets of
realistic fibre transmissions, we verified the accu-
racy of the proposed techniques. Employing both
approaches simultaneously gave a measured perfor-
mances of 0.04 and 0.20 dB of std error for the linear
and nonlinear SNR, respectively.

Index Terms—Coherent communications, Metrol-
ogy, Optical performance monitoring, Machine Learn-
ing

I. INTRODUCTION

Growing traffic demands increase the pressure on

operators to maximise the capacity over their deployed

networks. Flexible Optical Networking and Impair-

ment Aware Networking will heavily rely on signal

quality information for routing decisions, requiring

information extracted from the received signal.

Optical Performance Monitoring (OPM) is the field

of optical communications that aims to characterise

the impairments suffered through transmission from

features extracted from the received optical signal

[1]. The extracted information is especially relevant

for the upper management layers since it provides
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accurate information of the current state of transmis-

sion, enabling the identification of sources of under-

performance and possible countermeasures to improve

performance.

Most of the linear impairments suffered dur-

ing transmission, such as inter-symbol interference

(ISI) from chromatic dispersion (CD), and state-of-

polarization rotation (SOPR), can be compensated by

DSP with insignificant penalties [2].

Therefore, the source of impairments that penal-

ize signal performance in an optical link is noise.

Two sources of transmission noise can be considered:

amplified spontaneous emission (ASE) and nonlinear

interference noise (NLI). ASE noise is a result of the

amplification from the Erbium doped fibre amplifiers

(EDFA), which compensates for the signal attenuation.

Nonlinearities are caused by the power dependence of

the fibre refractive index, where the resultant non-

linear interference is proportional to the cube of the

signal power, p.

The transmitter and receiver of the optical sig-

nal are also subjected to penalties due to non-ideal

components, internal amplifications, shot noise, and

quantisation, undermining the maximum achievable

performance in the optical link [3]. These effects are

commonly modelled as transceiver noise. Although sig-

nificant, it is known as its characterisation is usually

provided by the equipment manufacturer.

The total signal-to-noise ratio (SNR) in an optical

link can be defined as:

SNR−1 =
σ2

ASE

p
+ σ2

TRx

︸ ︷︷ ︸

SNR−1
LIN

+ ηNL p2

︸ ︷︷ ︸

SNR−1
NLI

, (1)

where σ2
ASE, σ2

TRx p, and ηNL p3, model the ASE,

transceiver, and nonlinear noise, respectively. Instead

of defining 3 SNRs accounting for the individual contri-

bution, we define two SNRs accounting for the linear

(ASE and transceiver), and nonlinear contributions:

SNRLIN and SNRNLI .

Analytical models such as the GN [4] and the EGN

[5] models provide acurate predictions of nonlinear

noise, they require an accurate characterisation of

the fibre light-path, such as its fibre parameters, and

information of the neighbouring channels such as

their modulation format, symbol-rate, and transmitted
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power. The preceding requirements are impractical

as they are not readily available in heterogeneous

dynamic networks.

Already several approaches have been considered for

the estimation of nonlinearities, both [6], [7] based

their study on the correlations in the received sig-

nal due to nonlinearities. Characterization of a auto-

covariance function over nonlinear noise by principal

component analysis and its prediction through neural

networks was proposed in [8]. But very little progress

has been made on the estimation of the linear noise

from the received signal. It is possible to perform a

3-parameter fit of Equation 1, [9], but it requires to

modify the transmitted power which would compro-

mise performance and be impossible on real networks.

We recently proposed a new method capable of jointly

estimating the linear and nonlinear SNR, based on the

measurement of the nonlinear phase noise [10].

This paper expands our last contribution over an

extensive set of realistic simulation data, discussing

the limitations of the proposed technique in terms of

modulation format and reach. Additionally, we pro-

pose a new approach based on the estimation of the

temporal properties of nonlinearities through time-

varying ISI matrices, whose estimation is not limited

to those scenarios where nonlinear phase noise is a

major nonlinear contribution.

II. THEORETICAL BACKGROUND

In this section we introduce the time-domain first

order regular perturbation solution of the nonlinear

Schroedinger equation, suitable for modelling self-

phase modulation (SPM) and cross-phase modulation

(XPM) under the framework of pulse collisions [11].

The additional assumptions are that four-wave mixing

(FWM) contributions are insignificant and there is

polarisation aligment between channels. More complex

models considering additional nonlinearities and dif-

ferent polarisation states can be found in [12] and

[13]. This model is not only capable of accurately

modelling the pulse propagation in the fibre and the

characterisation of nonlinearities, but also provides an

intuitive approach to understand the nature of the

nonlinearities.

During this paper we employ the Bra–ket notation

[14]: |b〉 denotes 2-D complex Jones column vectors

[bx, by]T, 〈b| denotes its Hermitian transpose [b∗x , b∗y ],
〈b|c〉 denotes the scalar product b∗xcx + b∗ycy, and |b〉〈c|
is their dyadic operator:

[
bxc∗x bxc∗y
byc∗x byc∗y

]

, (2)

We also denote: 〈b〉 as the average of b(k). In a WDM

set-up, the nonlinear interference noise caused by an

interfering channel B into channel A in the symbol

TABLE I: Characteristics of the different pulse

collisions as noted by [13].

2PC 3PC(I) 3PC(II) 4PC

Nature: PN & PS PN & PS CN CN
Mod. dependence.: Yes No Yes No

l condition: l = 0 l = 0 l 6= 0 l 6= 0
k and m condition: k = m k 6= m k = m k 6= m

n = 0, commonly known as XPM, is given by:

|∆a(0)〉 = jγ ∑
l,k,m

Xl,k,m

(

〈b(k)|b(m)〉I + |b(m)〉〈b(k)|
)

|a(l)〉,

(3)

where I is the 2x2 identity matrix. The transmitted

symbols of the channel of interest and interfering

channel are |an〉 and |bn〉, respectively. The coefficients

Xl,k,m define the nature and efficiency of the NLI, and

are dependent on the normalized waveform g(z, t),
symbol duration T, chromatic dispersion β2, and chan-

nel spacing Ω [rad/s]. The analytical expression of

Xl,k,m is given by:

Xl,k,m =
∫ L

0

∫ −∞

−∞
f (z)g∗(z, t)g(z, t − lT)

g∗(z, t − kT − β2Ωz)g(z, t − mT − β2Ωz) dt dz,

(4)

Equations 3 and 4 are directly obtained from the

first-order regular perturbation approximation of the

nonlinear Schroedinger equation [15], which is a

widely used approximation of the Kerr effect. The

previous equations are implicitly defined for inter-

channel nonlinearities where the channel of interest is

different from the interfering channels, although this

model is also suitable for SPM.

Xl,k,m analytical expression is very illustrative of the

nature of the nonlinearities: nonlinearities are created

by four pulse collisions, consisting of the match filter

at the receiver, g∗(z, t), including chromatic dispersion

compensation (CDC) and three waveforms correspond-

ing to the symbols: |al〉, |bk〉, and |bm〉.
Depending on the indexes, the contributions can be

classified into two-pulse collisions (2PC, l = 0, k = m),

three-pulse collisions (3PC, type I: l = 0, k 6= m,

or type II: l 6= 0, k = m), and four-pulse collisions

(4PC, l 6= 0, k 6= m). The different types of pulse

collisions result in different noise contributions in the

form of phase noise (PN), polarization-scattering (PS),

and circular noise (CN). Table I summarizes the nature

of the different pulse collisions.

An alternative form of Equation 3, consist of merg-

ing the contributions: Xl,k,m

(

〈b(k)|b(m)〉I+ |b(m)〉〈b(k)|
)

,

into a set of 2x2 matrices H
(n)
l . Since H

(n)
l includes the

transmitted symbols, the matrices are time-varying.

Due to its similarity to a linear filtering process where

the filtering effect results in ISI, the set of H
(n)
l are

commonly denoted as the 2x2 time-varying ISI matri-
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Fig. 1: ACF(H
(n)
l ) for 1,3,7, and 9 WDM channels. l = 0 (blue), l = 1 (red) and l = 2 (green).For different

types of fibres simulated noise-less over 10 spans as defined in Table II.

ces, given by:

|∆a(n)〉 = jγ ∑
l

H
(n)
l |a(n−l)〉, H

(n)
l =




H

(n)
l,xx H

(n)
l,xy

H
(n)
l,yx H

(n)
l,yy





(5)

where l indexes the different orders of the ISI matrices.

The zero order of the ISI matrices, H
(n)
0 , gathers all

the 2PC and 3PC(I) contributions, grouping all the

elements that induce PS and nonlinear PN together.

Although the ISI matrices are time-varying, their sta-

tistical properties can be studied through the auto-

covariance function (ACF). In [16], a metric capable

of extracting their temporal properties from the post-

DSP received symbols, â
(n)
r , was derived:

Ĥ
(n)
l,rs = (â

(n)
r − a

(n)
r )/a

(n−l)
s , r, s ∈ {x, y},

ACF
(∆n)
l,rs = lim

K→∞

1

K

K

∑
n=1

Ĥ
(n)
l,rs Ĥ

∗(n+∆n)
l,rs

(6)

Figure 1 shows the evolution of the real part of

the most relevant orders of ACF for SSMF, ELEAF

and TWC fibres over 10 spans, accounting for a total

transmission of 1000km. The real part is the most

significant contribution for the considered cases. More-

over, it is observed that the ACF of l = 0 is the

strongest contribution for the three cases: l = 0, 1, 2.

III. METRICS AND TOOLS

In this section we introduce different strategies and

metrics to estimate linear and nonlinear noise from the

received signal. We review the most relevant metrics

from the literature and propose a novel metric based

on the ACF, covered in the aforementioned section. We

also briefly introduce the foundations of dimensional

reduction and neural networks relevant for our specific

applications.

A. Amplitude Noise Covariance

Equation 3 illustrates the nature of nonlinear noise,

consisting of the mixing of triplets of symbols from

the channel of interest and the interfering channel,

weighted by Xl,k,m. Consequently, the resultant non-

linear noise exhibit correlation over the transmitted

symbols.

In [6] by the definition of the amplitude noise covari-

ance (ANC), the correlation characteristics of the non-

linear noise were exploited to estimate the strength

of the nonlinearities. For received symbols post-DSP,

the noise is calculated in the normal direction of the

constellation, as illustrated in Figure 2:

∆a
(n)
r = |â

(n)
r | − |a

(n)
r |, r ∈ {x, y} (7)

Finally, ANC can be defined as:

ANC
(m)
rs = cov(∆a

(k)
r , ∆a

(k+m)
s ), r, s ∈ {x, y}, (8)

resulting in 3 ANCs: {xx, xy, yy}. The existence of 3

ANC components comes from the nature of nonlin-

earities and the polarization effects: due the nature

of nonlinearities, birefringence, and the random state-

of polarization of the fibre, the nonlinear correlation

is not limited to either polarization and is therefore

present in both. The limitation of the study of the

covariance to the normal direction is motivated by the

effect of phase noise from the transmitted and received

laser over the tangential components, which can alter

the measured covariance.

A transformation to the ANC was proposed by [17]:

ALANCrs = 10 log10(1/
6

∑
k=1

|ANC
(k)
rs |), (9)

this metric adds the most significant elements of the

covariance metric into a single term through a set of

nonlinear transformations. In the following sections,

we will refer to ALANCxx as simply ALANC, since

very little improvement is obtained by considering the

remaining ALANCyy and ALANCxy metrics in our

estimations. The resultant metric has an almost linear

mapping with SNRNLI for high values of SNRLIN.

Figure 3 shows the evolution of ALANC for noise-

less SSMF transmission (red) and noise-loaded case

(blue). We observe that the metric has very similar
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Fig. 3: ALANC for 1,3,5,7,9 WDM channels of

SSMF, for 5 to 15 spans. NF=4.5dB and

SNRTRx =16dB.

behaviour for both noise-loaded and noise-less cases

with SNRNLI < 25dB.

B. Normal and Tangential Components

An alternative set of metrics can be obtained by

decomposing the constellation into its normal, n, and

tangential, t, components of the noise variance for each

individual symbol. This approach enables us to quan-

tify the different contributions of nonlinearities: the

tangential components are affected by nonlinear PN,

PS, and CN, whilst the normal components are only

affected by nonlinear PS and CN. Alternatively, linear

noise contributions from amplification and transceiver

noise affects equally both n and t components. Figure

2 illustrates this decomposition for 3 constellation

symbols in each of the power-constant rings of a 16-

QAM signal.

Since phase noise induces broadening as a function

of the magnitude of each ring, it is possible to average

the n and t components for each constellation ring

resulting in Nv and Tv, where v indexes the constel-

lation ring (v = {1, 2, 3}). These metrics correspond to

a classification of the noise components of the error

vector magnitude (EVM) metric, which can be directly

related to SNR as:

SNR =
1

EVM2
=

4

N1 + 2N2 + N3 + T1 + 2T2 + T3
(10)

The most significant contributions of the phase noise

were studied for a single polarization in [11], where

the phase noise is proportional to the variance of the

symbols’ power. For the two polarizations case, the

induced nonlinear phase noise increases monotonically

with the fourth order modulation factor (FOMF) [13]:

FOMF =
〈|b|4〉

〈|b|2〉2
(11)

Therefore, this method may not be suitable for mod-

ulation formats such as QPSK due to its constant

power and consequently low nonlinear phase noise.

This metric is still relevant due to the growing in-

terests in higher-order modulation formats such as

16-QAM, 32-QAM, and probabilistic shaping aiming

for Gaussian-like power distributions. Those advanced

modulation formats present a higher FOMF, producing

more nonlinear phase noise.

Although advanced modulation formats have lim-

ited reach, depending on the transmission distance

different types of pulse collisions may dominate the

nonlinear contributions. For long links, where 3PC and

4PC dominate, the amount of nonlinear phase noise

relative to the total nonlinearities will decrease [13],

[18], which can penalize the estimation of linear and

nonlinear noise based on Nv and Tv metrics. These

conditions of non-linear phase noise were not met for

the simulation data considered in this paper.

C. PCA of ACFl,rs(∆n), and second-order statistics

We have shown in the previous subsections that by

studying the covariance of the received signals it is

possible to obtain estimates of the SNRNLI , and by

measuring the nonlinear phase noise, we can also ob-

tain insightful metrics about the relationship between

linear and nonlinear noise. In this subsection, we in-

troduce a novel technique for the separation of SNRLIN

and SNRNLI , based on second-order statistics of the

auto-covariance function and a dimensional reduction

technique. The proposed technique does not rely on the

estimation of nonlinear phase noise.

Figure 1 shows the evolution of the ACF
(∆n)
l,rs which

provides a description of the time correlation prop-

erties of the nonlinearities in the fibre. We cannot

directly rely on the ACF due to its high dimensionality,

since ACF
(∆n)
l,rs range of interest spread over a wide

range of values for ∆n and l. But several dimension-

ality reduction techniques can be applied to obtain a

simpler representation of the ACF. Principal compo-

nent analysis (PCA) presents a simple and intuitive
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Fig. 4: The three more relevant PC0,d coefficients

for all noise-free scenarios from Table II.

Fig. 5: Percentage error of c0,1 coefficients for data

from Table II, NF=4.5dB and SNRTRx=16 dB.

approach [19]. It was already used for nonlinearities

identification in [8] and will be used in this paper. The

process of the low dimensional reduction of ACF
(∆n)
l,xx

can be expressed as:

ˆACF
(∆n)
l,xx =

D

∑
d=1

cl,dPC
(∆n)
l,d , (12)

where D is the number of dimensions considered. For

simplicity, same number of dimensions are considered

in all l, and the study is focused on ACFl,xx only.

PC
(∆n)
l,d are the principal components of the element

d-dimension, cl,d are the coefficients of the PCA, and

ˆACF
(∆n)
l,rs is the resultant approximation of the auto-

covariance function.

For simplicity, we will focus on ACF for l = 0 since

it is the major contribution. Figure 4 illustrates the

three most significant PC0,d of ACF
(∆n)
0,xx , ∆n 6= 0, with

their percentage of explained variance. By making use

the first two c0,d, d = {1, 2}, it is possible to explain

99.2% of the variance. Consequently, we can obtain a

low-dimensional description of the ACF by just a few

c0,d coefficients.

It is worth noting that the calculation of the ACF is

based on second-order moment estimations where the

linear noise also contributes. The linear components

are mainly from ASE noise and quantization at the

transceiver [3], both contributions can be modelled

as additive white Gaussian noise (AWGN). The lin-

Algorithm 1 separation SNRNLI and SNRLIN

1: pre-compute the PCA basis, PC
(∆n)
0,d , ∀∆n 6= 0, based

on simulation noise-less data,

2: process ACF
noise,(∆n)
0,rs of the received sequence

3: calculate c0,d of ACF, ∀∆n 6= 0

4: Use c0,d and ACF
noise,(0)
0,rs as features to estimate

both SNRNLI and SNRLIN

ear noise can be assumed to be uncorrelated. Con-

sequently, in a noisy scenario the measured auto-

covariance function, ACF
noise,(∆n)
l,rs , can be expressed as:

ACF
noise,(∆n)
l,rs = ACF

(∆n)
l,rs , ∆n 6= 0,

ACF
noise,(0)
l,rs = ACF

(0)
l,rs + K · σLIN ,

(13)

where K is a constant accounting for the signal nor-

malization of the DSP and the effect of the weighted

average by the transmitted symbols involved in the

ACF calculation. Equation 13 illustrates the delta-

behaviour of the ACF for AWGN, implying that all the

difference between noise-less and noise-loaded scenar-

ios is captured in ∆n = 0.

A simple approach to exploit that effect can be to

apply PCA analysis to ACF
noise,(∆n)
0,rs , ∀∆n 6= 0. By doing

so, we obtain a description of the nonlinearities based

on the tail of the ACF, where linear noise does not have

an effect in ACF. From the estimate of c0,d the nonlin-

ear contribution to ACF(0) can be found; this allows

the estimation of the linear noise contribution KσLIN.

Algorithm 1 provides an step-by-step explanation of

this process.

The PC
(∆n)
0,d basis should be calculated under noise-

less scenarios, to avoid PCA fitting the noise. Figure

5 shows the percentage error of the component c0,1

obtained from a noise-less transmission compared to

its value in a noisy transmission, cnoise
0,1 . 75% of the

components have an absolute percentage error smaller

than 5%, and 92% smaller than 10%.

The approach described in this section may be suit-

able for different covariance metrics, and is not limited

to the ACF described in this paper. It could be also

applied to ANC, due to its similarity to ACF. We focus

on ACF since its spread in ∆n for nonlinearities is

considerably longer than in the case of ANC. Since

for ANC
(m)
rs the elements of interest over m is limited

to a few symbols. Other metrics for noise, with the

previously mentioned properties, may be also possible.

Although it was not observed in our simulations,

in some systems the linear noise component maybe

correlated over a few symbols over the ACF metric due

to suboptimal equalization, match-filtering or big roll-

off factors. Rather than discarding only ∆n = 0 for the

calculation of c0,d, the set of indexes over which the

correlation takes place must be discarded. By doing
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Fig. 6: Illustration of the structure of the single

hidden layer neural network used in this paper.

so, we do not foresee significant penalties due to the

length and smooth behaviour of ACF.

D. Neural networks based decomposition

In the previous subsections we have described sev-

eral features that can be extracted from the trans-

mitted data to estimate linear and nonlinear noise. A

part from ALANC, which has an almost linear evolu-

tion with SNRNLI , the rest of the introduced metrics

present a nonlinear relationship between their value

and the parameters to estimate. Neural networks are

a powerful tool for learning those relationships and ac-

curately provide estimates based on the input features.

Figure 6 illustrates a simple neural network consist-

ing of N inputs [x0
1,..., x0

N], 1-hidden layer with K nodes,

and two outputs [SNRLIN,SNRNLI]. The equations that

relates the inputs to the p-layer: x
(p)
n , to the outputs

to the next layer: x
(p+1)
n are given by [19]:

y
(p)
k = bias

(p)
k +

N

∑
n=1

W
(p)
k,n x

(p−1)
n ,

x
(p)
n = g(y

(p)
n ),

(14)

where g(·) is a nonlinear activation function such

as the hyperbolic tangent function (tanh), sigmoid, or

rectified linear unit (ReLU). In our case, we make use

of tanh function.

The aim of the described neural network is to find

the nonlinear mapping between the input features and

the expected outputs, in our case SNRNLI and SNRLIN.

We employ a 1-hidden layer neural network, since it

proved to be sufficient for the transduction of the input

features into accurate predictions for our application

of interest. The network is trained by the standard

70/15/15 rule for the 3 sets: train/dev/test, with early

stopping over the dev, converged by back-propagation.

Intense monitoring was performed over the errors of

the train/dev/test sets to avoid over-fitting.

The evolution of the convergence was studied over

different scenarios to evaluate the likelihood of reach-

ing a local minimum. The neural network weights

Fig. 7: Performance of 200 train runs of the

neural network for the train/dev/test.

Fig. 8: Distribution of the errors for the case of

0.04 and 0.2 dB of std. of std. error for SNRLIN

and SNRNLI

were randomly initialized and several trainings were

performed to verify the achieved performance is con-

sistent in all the runs. Figure 7 illustrates the spread

of the performance of the neural network for the

train/dev/test over 200 runs. It corresponds to the best

estimation scenario considered in the results section

of this paper, where 0.04 and 0.2 dB of std. error

was reported for the SNRLIN and SNRNLI , respectively.

Figure 8 shows the histogram of the performance for

the same case, 0.04 and 0.2 dB of std. for the SNRLIN

and SNRNLI . As expected, the error has a Gaussian

shape.
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IV. RESULTS

In this section, we evaluate the different methodolo-

gies introduced in this paper by computer simulations.

For the validation of the algorithm, we consider 3 types

of fibres: SSMF, TWC, and ELEAF. The span count is

varied between 5 and 15 spans in steps of 1, the length

of each span is set to 100 km for all the cases. The

channel launch power is varied across 6 dB centred

in the approximate optimum launched power (Figure

10). The gain of the amplifiers is set to compensate the

loss of the span and their noise figure (NF) is varied

uniformly between 4 and 6 dB, in steps of 0.5 dB. The

SNRTRx is similarly varied between 15 and 18 dB in

steps of 1 dB. The number of WDM channels, CW , is

varied between 1, 3, 5, 7, and 9. All the split-step

Fourier simulations are performed linear noise-free,

where noise loading is performed at the receiver. By

loading noise directly in the receiver, we are neglecting

the nonlinear interactions of the noise and between the

noise and the signal. This approach is commonly done

is simulations [17] and should provide very similar

results [20].
The channel spacing is set to 50 GHz, and the modu-

lation format of choice is 16-QAM match-filtered with

a 0.14 root-raised cosine (RRC) filter. A summary of

the simulations is given in Table II. The total amount

of transmission realisations simulated are 19800.
For all the results, the neural network responsible

for the mapping between the input features, and the

estimation is a 1-hidden-layer network with 7 nodes

(K = 7). We chose a relatively small neural network

due to the simplicity of the required nonlinear re-

gression. By keeping the number of nodes small, we

minimize the possibility of over-fitting. The perfor-

mance was worse for a smaller number of nodes and

it stabilized around 7 nodes where additional nodes

resulted in similar performance.
Figure 9 shows the performance evolution for all the

simulation data, showing the maximum spread of the

error of the estimations.

TABLE II: Simulation parameters used.

Fibre types SSMF TWC ELEAF
D [ps/nm/km] 16.7 2.8 4.3
α [dB] 0.2 0.21 0.21
γ [1/W/km] 1.3 2 1.47
Channel launch power [dBm] [-2,3] [-3,2] [-4,1]
# spans 5:1:15
WDM channels (CW ) 1, 3, 5, 7, 9
NF [dB] 4,4.5,5,5.5,6
SNRTRx [dB] 15, 16, 17, 18
Channel Spacing [GHz] 50
Modulation format 16-QAM (0.14 RRC)

Number of symbols 218

A. Nv, Tv components, and ALANC

We first consider a neural network with input fea-

tures: Nv and Tv, j = {1, 2, 3}, CW , and the accumulated

chromatic dispersion (ACD).

Figure 9a, and 9b illustrate the performance for

SNRLIN, and SNRNLI . The top plot shows the evolution

of the estimate as a function of the true SNR, while

the bottom plot shows the evolution of the error. It

is noticeable that the error for the SNRNLI presents

heteroscedastic behaviour: for high SNRNLI the vari-

ance of the estimation is higher than for lower SNRNLI .

The std. error is 0.27, and 0.08 dB of for SNRNLI and

SNRLIN, respectively.

By including ALANC of the x-polarization as an

additional input, we observed a very similar perfor-

mance.

B. PCA over ACF

Secondly, we consider the case of the PCA compo-

nents where the inputs to the neural network are:

ACF
(0)
0,xx, c0,1, c0,2, CW , and ACD.

For simplicity, we focus on the xx component of the

ACF for the case l = 0, which is the strongest contri-

bution, and we only consider the first two components:

c0,1, and c0,2, since they already account for 99.2% of

the variance.

For SNRLIN, the performance was very similar to the

previous case: 0.08dB of std error: Figure 9c. For the

case of SNRNLI , the performance was slightly worse

than in the case of Nv, and Tv components, resulting

in 0.3dB of std error, Figure 9d.

C. Estimation based on joint approaches

Finally, we include all the explained metrics as

input to the neural network to obtain a more accurate

estimate. The inputs to the neural network are Nv, Tv,

ACF
(0)
0,xx, c0,1, c0,2, CW , and ACD.

The improvement is significant compared to previ-

ous cases: the SNRLIN estimation std error is 0.04 dB,

Figure 9e; while, the SNRNLI is improved to 0.20 dB,

Figure 9f.

D. Comparison of results

Table III summarizes the results of this paper. Both

approaches based on the estimation of phase noise

(Nv and Tv), and the second moment statistics (ACF,

c0,1, and c0,2) perform similarly. Both have a std error

of 0.08 dB for the linear SNR. The performance of

nonlinear SNR was 0.27 dB for the case of the method

based on the estimation of the phase noise, while is

was approximately 0.03 dB worse for the case of second

moment statistics.

In the case where both approaches are jointly con-

sidered to estimate the linear and nonlinear SNR,

the performance improves by 0.2 and 0.04 dB for the

nonlinear and the linear SNR, respectively.
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(a) True vs Estimated SNRLIN , NN inputs:
[Nv, Tv, CW , ACD]. Std error: 0.08 dB.

(b) True vs Estimated SNRNLI , NN inputs:
[Nv, Tv, CW , ACD]. Std error: 0.27 dB.

(c) True vs Estimated SNRLIN , NN inputs: [ACF
(0)
0,xx,

c0,1, c0,2, CW , ACD]. Std error: 0.08 dB.

(d) True vs Estimated SNRNLI , NN inputs: [ACF
(0)
0,xx,

c0,1, c0,2, CW , ACD]. Std error: 0.30 dB.

(e) True vs Estimated SNRLIN , NN inputs:

[Nv, Tv,ACF
(0)
0,xx, c0,1, c0,2, CW , ACD]. Std error: 0.04 dB.

(f) True vs Estimated SNRNLI , NN inputs:

[Nv, Tv,ACF
(0)
0,xx, c0,1, c0,2, CW , ACD]. Std error: 0.20 dB.

Fig. 9: Evolution of performance for the different cases
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Fig. 10: Evolution of SNR for 10 spans of the

considered set-ups, where NF = 4.5dB and

SNRTRx = 16dB.

TABLE III: Sumary of the results of this paper

Input Parameters SNRNLI std,% SNRLIN std,%
Nv, Tv, CW , ACD 0.27 (6.4%) 0.08 (1.8%)

c0,(1,2), ACF
(0)
0,xx, CW , ACD 0.30 (7.1%) 0.08 (1.8%)

All metrics 0.20 (4.7%) 0.04 (0.9%)

V. CONCLUSION

In this paper, we tackle the problem of estimating

the linear and nonlinear SNR based on extracted fea-

tures of the received signal. We explained a theoretical

framework suitable for understanding nonlinearities

and especially nonlinear phase noise. We also covered

the extraction of the temporal description of the time-

varying ISI matrices. Using this framework, we dis-

cuss the limitations of our previous metric introduced

in [10], we note that the proposed technique is suitable

for high order modulation formats where the induced

nonlinear phase noise is significant. But it may not be

suitable for dealing with power-constant modulation

formats such as QPSK, or very long transmission dis-

tances because of the relative nonlinear contributions

of the different types of pulse collisions, leading to

more equal n and t components.

We proposed a novel nonlinear estimation technique

which does not rely on nonlinear phase noise. The

novel technique exploit the temporal properties of the

time-varying ISI matrices and the lack of correlation

of the Gaussian noise. The studied temporal proper-

ties are inherent to the nonlinearities of any modula-

tion format and transmission distance, although the

derivation of ACF comes from a XPM study, we also

validate its applicability for single channel transmis-

sions. By applying principal component analysis, we

extracted 2 features capable of explaining over 99% of

the variance.

The performance of the evaluated metric was in-

vestigated over 19800 realizations of optical fibre

transmission, covering different fibre types, number

of spans, numbers of WDM channels, launch powers,

amplifier noise figures, and transceiver SNR.

The considered features have a nonlinear relation-

ship with the target estimations, a small neural net-

work of 1-hidden layer and 7 nodes was trained. We

fed different subsets of the presented metrics into the

neural network to evaluate its performance.

The performance of the metric based on nonlinear

phase noise was 0.27 and 0.08 dB of std for the non-

linear and linear SNR, respectively. For the case of the

second-order moment statistics, the performance was

very similar: 0.30 and 0.08 dB, respectively. Finally,

when applying both techniques jointly, std error of

0.20 and 0.04 dB was obtained for the nonlinear and

the linear SNR, respectively. The performance and the

input features to the neural networks are summarized

in Table III.

We believe that the performance improvement ob-

served compared to our previous results [10], spe-

cially for the SNRLIN, is a result of the inclusion of

SNRTRx which reduces the range of SNRLIN observed

to approximately 9 dB to 17dB. Consequently, the

linear noise is a mayor contribution of noise in all the

simulated cases and its range of variation is smaller

than SNRNLI , which results in a smaller error on its

estimation.

We would like to emphasize that in this paper we are

measuring the inherent error of the estimator, for the

study of the accuracy of different techniques to sepa-

rate linear and nonlinear noise. We expect that the ex-

perimental verification of the proposed algorithms will

have a higher uncertainty, mainly dominated for the

uncertainty and noise from the experimental set-up,

resulting in higher estimation errors for both SNRLIN

and SNRNLI .

The considered future work includes the experimen-

tal verification of the proposed techniques, the explo-

ration of alternative machine learning techniques, the

study of the limitations of the proposed techniques,

and inclusion of different auto-covariance components

for the estimation of the linear and nonlinear SNR.
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