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We report on the application of machine learning (ML) methods for predicting the longitudinal phase

space (LPS) distribution of particle accelerators. Our approach consists of training a ML-based virtual

diagnostic to predict the LPS using only nondestructive linac and e-beam measurements as inputs. We

validate this approach with a simulation study for the FACET-II linac and with an experimental

demonstration conducted at LCLS. At LCLS, the e-beam LPS images are obtained with a transverse

deflecting cavity and used as training data for our MLmodel. In both the FACET-II and LCLS cases we find

good agreement between the predicted and simulated/measured LPS profiles, an important step towards

showing the feasibility of implementing such a virtual diagnostic on particle accelerators in the future.
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I. INTRODUCTION

Accurate nondestructive diagnostics of the electron beam

longitudinal phase space (LPS) distribution can be chal-

lenging for high-intensity particle accelerators. As an

example, the FACET-II accelerator is designed to deliver

beams of unprecedented intensity to a suite of advanced

accelerator experiments. The design parameters for the

beam are 2 nC charge, 10 GeVenergy,<10 μm normalized

transverse emittance and up to 200 kA peak current [1].

These unique characteristics present many opportunities for

scientific experiments [2], and a threefold hurdle from the

diagnostic point of view. First, the high intensity of the

beams limits the possibility of utilizing intercepting diag-

nostics due to heat-induced surface damage of the meas-

urement devices. Second, the very short pulse duration for

high-current shots (σz ∼ 1 μm for I > 100 kA) is close to

the resolution limit of state-of-the-art longitudinal diag-

nostics such as transverse deflecting cavities (TCAVs) [3].

Finally, a drawback of the aforementioned diagnostics is

that they provide a destructive measurement of the electron

beam properties and cannot be made in conjunction with

experiments unless they are located downstream of the

interaction region.

In an effort to meet these challenges, we investigate the

possibility of incorporating a machine learning (ML) based

virtual diagnostic to provide shot-to-shot nondestructive

measurements of the LPS distribution in particle acceler-

ators. The virtual diagnostic is a computational tool which

creates a mapping between nondestructive measurements

of the linac and e-beam properties and the 2D LPS

distribution of the beam. The rationale behind choosing

an ML-based approach for the virtual diagnostic is moti-

vated by a number of factors. First, ML methods have made

tremendous progress in the fields of image recognition

and prediction in the past few years [4]. This gives us

confidence that a virtual diagnostic trained on image data,

e.g., from TCAV or profile monitors, can be used to

reconstruct desired properties of the e-beam such as the

LPS and/or the current profile. Furthermore, ML tech-

niques are also well suited for solving problems involving

large amounts of data. Large data sets can be acquired in

real time on accelerators such as FACET-II or LCLS

operating at nominal repetition rates of 10 and

120 Hz. ML models can also be trained off-line using

simulation data from computationally expensive particle

tracking codes and updated with measurements on the

accelerator, as has been recently demonstrated in Ref. [5].

Finally, there is growing interest due to recent studies

which highlight the versatility of ML methods used in

particle accelerators as tools for prediction, control and

optimization of accelerator performance [6–10]. As an

example, recent work performed at Fermilab’s FAST

facility has been aimed at training a virtual diagnostic to

predict the e-beam emittance through a combination of

simulation and experimental studies [5,11].

With these potential benefits in mind, the first goal of this

work is to show the feasibility of applying ML techniques

to predict the LPS of the FACET-II accelerator. Our

approach is to acquire training data for the ML model
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from a large number of simulations. These simulations

represent the performance of the machine which changes as

a result of several key accelerator parameters jittering

around their design values. The accuracy of this ML model

based on simulation data, as well as its dependence on

diagnostic inputs, will inform the measurement resolution

necessary for this to be successful on the actual machine.

Our second goal is to test out a similar predictive MLmodel

on the Linac Coherent Light Source (LCLS). For that part

of the study we train a ML model using existing nonde-

structive diagnostics and images of the e-beam LPS

obtained with the X-band TCAV [3]. In the following

sections we present results from the simulation study of

FACET-II and measurements from the LCLS, with a

discussion of the steps necessary to implement this diag-

nostic tool on future particle accelerators.

II. FACET-II SIMULATION STUDY

A key performance feature for the success of advanced

acceleration experiments is knowledge and control of the

e-beam LPS and current profile [12]. We therefore train two

separate ML models to predict the current profile and LPS

of the bunch using some key nondestructive diagnostics as

input to the models (see Table I). We consider the nominal

operation of the FACET-II accelerator in single-bunch

mode, with the machine set up to deliver a beam of

10 GeV energy, 25 kA peak current, and <10 μm trans-

verse emittance (see Fig. 1 for a schematic). In order to

capture the performance of the machine we perform 55

LUCRETIA [13] simulations starting from the exit of the

injector, with key linac parameters and the bunch charge

jittering around their nominal values. The simulations

include longitudinal space charge and incoherent and

coherent synchrotron radiation. The mean value and the

range for each simulation parameter scanned was set

using the values from the FACET-II technical design

report (TDR) [1]. The output of these simulations is a

6 × 6 × Np distribution of Np ¼ 2 × 105 macroparticles

TABLE I. Linac and e-beam parameters scanned in the 55

simulations of the FACET-II accelerator. The ranges are chosen

closely based on the jitter parameters from the FACET-II

technical design report (TDR) [1]. The diagnostics fed to the

ML model include random errors introduced artificially to

approximate the measurement accuracy present in the accelerator.

Simulation parameter scanned Range

L1 & L2 phase [deg] �0.25

L1 & L2 voltage [%] �0.1

Bunch charge [%] �1

Input to ML model Accuracy

L1 & L2 phase [deg] �0.1

L1 & L2 voltage [%] �0.05

Ipk at BC (11,14,20) [kA] �ð0.25; 1; 5Þ
ϵn at BC (11,14) [μm] �1

Beam centroid BC (11,14) [m]

FIG. 1. Schematic of the FACET-II and LCLS electron accelerators and example LPS profiles from particle tracking simulations

(FACET-II), experimental measurements (LCLS) and from the ML-based virtual diagnostic predictions. The figure highlights the

similarities between the two accelerator layouts up to the BC20 chicane in FACET-II which is used to increase the current from 3–4 kA

to 10–200 kA.
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which approximates the six-dimensional phase space of

the e-beam. We artificially simulate measurement error by

inserting random deviations in the diagnostic readings to

approximate the measurement accuracy on the real accel-

erator. The value for each shot was set by adding Gaussian

random errors to the mean with the �σ ranges shown in

Table I. These values are determined from operational

experience on the FACET linac and estimated performance

of diagnostics for FACET-II [1]. Note that we assume the

nondestructive emittance measurements will be made using

a coherent edge radiation diagnostic currently under design.

The prediction accuracy of the ML model is not critically

sensitive to these inputs. We also assume the peak current

after BC-20 can be measured nondestructively either using

coherent edge radiation or coherent undulator radiation

[14,15]. For all the examples presented we use the open

source ML library scikit-learn, specifically the multilayer

perceptron (MLP) regressor from the library’s neural net-

work (NN) module. Note that in the plots of the current

profile or 2D LPS we use the convention that the head of

the beam is on the left.

The results for the current profile prediction are shown in

Fig. 2, where the shots displayed are not used in the training

of the NN and are 625 randomly selected cases (20% of the

total data set). The specific NN architecture for the current

profile prediction is a three hidden layer (200,100,50)-

neuron fully connected feed-forward NN with a relu as the

activation function for each neuron in the hidden layers.

There is very good agreement between the NN prediction

and the current profile from simulation as shown by the

example profiles in Fig. 2(a). A comparison of the peak

current and FWHM of the actual distribution vs the

prediction also shows good overlap between the two

[Figs. 2(b) and 2(c)]. The difference in charge between

the predicted and actual profiles, integrated from the

current profile, is below 3% in all cases. As shown in

Figs. 2(d) and 2(e), the distributions of predicted and

simulated peak current and FWHM values are also very

well matched.

We use the same MLP regressor and the same diagnostic

inputs as for the current profile to predict the 2D LPS

distribution. The ability to combine the prediction from

both models—one for the current profile and one for the 2D

LPS—will provide valuable information for commission-

ing the accelerator as well as tailoring specific beam

properties for different experiments. It is important to note

that the LPS reconstruction accuracy depends critically on

defining a suitable region of interest for each image which

has to be done in a preprocessing step. For the cases shown

we crop each 2D LPS picture to a 52 × 42 pixel image with

a 2 μm and 10 MeV=pixel resolution in (z,E) respectively.

The resolution values are obtained from estimates of the

FACET-II TCAV performance [1]. A quantitative measure

of the accuracy of the prediction for each shot is given by

the score, defined as

score≡ R2 ¼ 1 −
Σi;jðx

true
ij − x

predicted
ij Þ2

Σi;jðx
true
ij − x̄trueÞ2

; ð1Þ

where xij are the pixel values of the ith row and jth column

in the image and x̄ denotes the mean over those values for

each image. In most cases, as shown in Fig. 3, the 2D LPS

reconstruction is quite accurate and provides a good

indication of the LPS shape and chirp. In the worst-

performing examples, the reconstruction is subject to some

numerical artifacts and blurring, which smear out the phase

space density. The mean (�rms) score for the whole test set

is 0.68� 0.16. The majority of the shots (85%) have a good

reconstruction with a score above 0.5. It is interesting to

note that shots with worse reconstruction [see Fig. 3(a)] are

FIG. 2. (a) Examples of reconstructed current profiles from a ML model compared to the true data from simulation at the exit of the

FACET-II accelerator. The profiles are taken from a set of 625 test cases which the NN is not trained on. (b)–(e) Sorted plots of the peak

current and full width half maximum and histograms of the distributions for the ML prediction and the simulation, showing good

agreement between the ML model and simulation data.
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mostly fully compressed or overcompressed (low energy

electrons arrive at the same time as high energy electrons on

the head of the beam). This is due to the fact that there are

fewer shots with these characteristics in the data set since

this configuration is the furthest from the nominal output

LPS distribution [shown in Figs. 3(b) and 3(c)]. These

shots occur due to larger excursions in L1 and L2 phase

(jΔΦL1;2
j ¼ 0.2–0.25 deg).

We have considered a limited set of diagnostic inputs in

our simulation study of FACET-II as a conservative

approach for determining the feasibility of applying the

ML-based virtual diagnostic on the real machine whilst

retaining satisfactory prediction accuracy. For the diagnos-

tics considered, the ML model is least sensitive to the

emittance and centroid measurements in BC 11–14,

achieving a mean score of 0.53 for the LPS reconstruction

with those diagnostics removed. A more critical input is the

nondestructive peak current measurement after BC20,

without which the model’s mean prediction score drops

to 0.33. We note that a reduction in the measurement error

associated with the BC20 current reading (from �5 to

�1 kA) increases the mean score to 0.73. Additional more

advanced diagnostics such as current profile monitors after

each bunch compressor may also increase the prediction

accuracy of the model and are improvements which will be

considered in future optimization studies.

III. LCLS EXPERIMENTAL DEMONSTRATION

In order to validate our simulation study of FACET-II,

we apply the same NN approach to predict the LPS at

the exit of the LCLS linac. The linac was set at a nominal

operating energy of 13.4 GeV and 180 pC charge.

To collect a data set with a large variety of LPS profiles

we scan the values of the L1S phase between−27.8 and−21

degrees and the BC2 peak current between 1–7 kA gen-

erating LPS profiles with multiple different features (see

Figs. 1 and 4). The diagnostics we use as inputs to the ML

model are amplitude and phase readings from L1s and

amplitude readings from the L1x accelerator sections aswell

as nondestructive current measurements (coherent radiation

monitors [14]) after BC1 andBC2. TheXTCAVwas used to

measure the LPS at the exit of the accelerator with a

resolution of ∼1.2 μm and 0.92 MeV=pixel [3]. As for

the FACET-II case, the prediction accuracy is critically

sensitive to preprocessing the LPS image, specifically

normalization, centering and cropping of the distribution,

with the cases presented cropped to 100 × 100 pixels. This

kind of preprocessing has to be done on-the-fly if such a

virtual diagnostic is to be applied to an accelerator during

run-times and should be adapted depending on the expected

output LPS distribution.

As shown in Figs. 4(a)–4(c), the reconstruction has high

fidelity with respect to the current profile and LPS shape.

These examples are not used in the training of the ML

model and are taken from a test set of 808 shots (20% of the

size of total data set). As in the case for the FACET-II

simulations, the LPS reconstruction suffers from some

numerical artifacts which for some shots smears out the

phase space [see Fig. 4(c)]. Nonetheless, for a limited set of

input diagnostics (five scalar inputs) and a data set with

large variations in the LPS and current profile, the NN is

fairly successful in predicting the bunch profile. Note that

the current profiles shown are normalized using an inde-

pendent measurement of the beam charge. As shown in the

distribution of peak current vs FWHM [Fig. 4(d)] the

measured values and those predicted by the ML model

mostly overlap. The model fails to predict some current

profiles, mostly with high peak current (I > 4 kA), which

are furthest away from the nominal LCLS settings at this

energy (I ∼ 1–4 kA). The low prediction accuracy for these

shots [labeled “bad shots” in Fig. 4(e)] is correlated to the

large discrepancy between the BC2 peak current reading

and the peak current measured on the XTCAV. The result is

the ML model predicts a profile with lower peak current in-

line with the BC2 measurement. This is an important point

as it underscores the fact that a diagnostic input error may

result in a prediction error for a ML-based virtual diag-

nostic. One potential way to address this issue would be to

have built-in redundancy in the diagnostic inputs fed to the

ML model. This would facilitate flagging suspect shots for

which there is significant discrepancy between two separate

measurements of the same quantity.

To ensure the reliability of the ML prediction a long-term

study of the prediction accuracy under the influence of

linac drifts and long-term parameter variations is under

FIG. 3. (a)–(c) Simulated and predicted 2D LPS distributions

for FACET-II. The predictions are outputs of a NN with 11 scalar

valued nondestructive diagnostic inputs (see Table I). Case

(a) represents an imperfect prediction with noticeable blurring

and some visual artifacts. Cases (b) and (c) represent average to

good predictions and show good agreement with the LPS

distribution. (d) Histogram of the prediction accuracy in the test

set quantified by the score (R2 coefficient of the LPS prediction).

The mean score is 0.68, and 85% of the shots are above

a score of 0.5.
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consideration. Preliminary considerations can be made by

examining changes in the prediction accuracy by training

the ML models using data from the start of our data set

and making predictions on shots taken at the end of the data

set (two hours later). For this case, there is no reduction

in performance for the prediction of the current profile.

The 2D LPS reconstruction however does suffer from a

small but noticeable decrease in prediction accuracy as

shown in Fig. 4(f). The mean (�rms) score for the 2D LPS

reconstruction drops from 0.85� 0.14 to 0.68� 0.14

which may in part be due to the smaller size of the training

set (410 shots compared to 3236). A detailed study of the

robustness and reliability of the ML model for longer drift

times (one day, one week etc.) and with larger data sets will

be conducted and the results reported in future work.

Following such long-term prediction accuracy studies,

the ML model could be deployed as a virtual diagnostic

for predicting the LPS at LCLS when the XTCAV is off.

IV. CONCLUSION

Accurate measurement and control of the LPS distribu-

tion is often critically important for applications of high

brightness electron beams, ranging from free electron lasers

to beam-driven plasma wakefield accelerators. We have

explored the feasibility of training a ML-based virtual

diagnostic for predicting the LPS distribution of particle

accelerators. The study was divided into two parts: a

first section using particle tracking simulations of the

FACET-II linac as training data for the ML model, and a

second using experimental data from the LCLS accelerator.

The simulation study explored the single bunch operation

mode of FACET-II for which we trained two separate

neural networks to predict the current profile and the 2D

LPS image based on the input from a number of non-

intercepting diagnostics (e.g., beam position monitors,

bunch length monitors, emittance measurements). The

experimental study performed on the LCLS linac used

five measurements from nondestructive diagnostics as

well as the XTCAV to measure the electron beam LPS

and train the ML models. The results showed close agree-

ment between the predicted current and 2D LPS profiles and

those obtained from both simulation and experiment.

It is important to note that the accuracy of a predictive

virtual diagnostic based on this kind of supervised learning,

in which the neural network generates a mapping between

input-output pairs of data, depends critically on the accuracy

and resolution of diagnostic inputs. In the experimental

study for LCLS, the temporal resolution of the TCAV was

∼1.2 μm,much smaller than the typical bunch length which

ranged from 6–60 μm. In our FACET-II simulation exam-

ple, the training data fed to the ML model assumes a 2 μm

resolution for the LPS images which may present a chal-

lenge for the current FACET-II TCAV design. The ability

to resolve fine features in the LPS will be challenging,

especially in the longitudinal direction due to the very short

bunches (σz ∼ 1 μm) which are at or beyond the resolution

limit of the existing TCAV diagnostic. While the temporal

reconstruction may be subject to experimental challenges,

the simulation study gives us confidence in the ability

of the virtual diagnostic to accurately resolve and predict

the energy distribution with ∼10 MeV=pix resolution.

FIG. 4. (a)–(c) Examples of reconstructed LPS and current profiles from the LCLS accelerator. The measured data is collected using

the XTCAVand the prediction is made using two separate NNs for the LPS and the current profile. The plots show good agreement in

predicting both the LPS and the current profile. For some shots the LPS reconstruction suffers from numerical artifacts [see (c)] which

lead to an imperfect reconstruction. (d) Measured and predicted values for the peak and FWHM of the current profile. (e) Correlation

between peak current from the XTCAV and the BC2 current monitor highlighting a number of bad shots (2% of the total) where the

difference between the two values is large and the prediction accuracy is low. (f) Score for the 2D LPS prediction model trained on 3236

shots and tested on 808 shots randomly selected from the entire data set (grey). Score for the 2D LPS prediction with model trained on

410 shots from the start of the data set and tested on 200 shots recorded at the end of the data set two hours later (yellow).
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We expect that we will be able to obtain this resolution or

better experimentally using the energy spectrometer down-

stream of the FACET-II experimental area [1]. We also note

that these methods can be used to predict transverse phase

space properties of e-beams, such as the emittance, using

single shot emittance reconstruction techniques [16,17].

As a next step we plan to include the realistic effect of

TCAV measurements in the LUCRETIA tracking code for

both single and two-bunch operation, and use the simulated

LPS profile on the TCAV rather than the actual LPS

distribution to train the ML model. This, together with a

more accurate simulation of the diagnostic inputs, will

more closely approximate the actual implementation of the

virtual diagnostic in the real accelerator. Sensitivity studies

related to the accuracy of the neural network prediction

based on varying degrees of error for the nondestructive

inputs and LPS outputs are currently under consideration.

Finally, we plan to use this virtual diagnostic in tandem

with optimization methods such at extremum seeking (ES)

[18,19], to not only predict the phase space distribution, but

to tailor it specifically for different experimental setups.

Recent results from LCLS [9] have shown that applying a

neural network inverse model to predict machine settings

based on LPS images as inputs can improve the conver-

gence and accuracy of an ES-based feedback for custom-

ization of the 2D LPS distribution.
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