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Multi-principal element alloys (MPEAs) are a new class of alloys that consist of many

principal elements randomly distributed on a crystal lattice. The random presence

of many elements lends large variations in the point defect formation and migration

energies even within a given alloy composition. Compounded by the fact that there could

be exponentially large number of MPEA compositions, there is a major computational

challenge to capture complete point-defect energy phase-space in MPEAs. In this work,

we present a machine learning based framework in which the point defect energies in

MPEAs are predicted from a database of their constituent binary alloys. We demonstrate

predictions of vacancy migration and formation energies in face centered cubic ternary,

quaternary and quinary alloys in Ni-Fe-Cr-Co-Cu system. A key benefit of building this

framework based on the database of binary alloys is that it enables defect-energy

predictions in alloy compositions that may be unearthed in future. Furthermore, the

methodology enables identifying the impact of a given alloying element on the defect

energies thereby enabling design of alloys with tailored defect properties.

Keywords: multi-principal element alloys, machine learning, vacancy migration energies, vacancy formation

energies, point defects

INTRODUCTION

Multi-principal element alloys (MPEAs) are a new class of alloys that consist of many principal
elements randomly distributed on a crystal lattice. These alloys have unique properties such as high
fracture toughness, high strength, and high resistance against corrosion and irradiation (Yeh et al.,
2004; Bernd et al., 2014; Tsai and Yeh, 2014; Youssef et al., 2014; Ding et al., 2018; Fu et al., 2018;
El-Atwani et al., 2019; Zhang et al., 2019). In addition, MPEAs are one of the few alloys that have
shown to overcome the strength-ductility trade-off, i.e., simultaneous increase in both strength and
ductility (Li et al., 2016). Due to the random distribution of various elements, a complexity arises
where each lattice site has unique nearest-neighbor chemical environment and bond lengths that
lead to distinctly different point defect energies. As a result, there are large variations in defect
energies even within a given alloy composition (Del Rio et al., 2011; Piochaud et al., 2014; Zhang
et al., 2015, 2017; Zhao et al., 2016, 2018; Li et al., 2019; Guan et al., 2020; Arora et al., 2021).
This is in contrast to essentially a single defect energy value in conventional and/or dilute alloys.
For example, using density functional theory (DFT) calculations, Guan et al. (Guan et al., 2020)
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showed that the vacancy formation energy ranges between
1.62 eV and 2.03 eV in NiCrCo, 1.62 eV–2.04 eV in NiFeCrCo,
and 1.51 eV–2.72 eV in NiFeCrCoMn, respectively. Similarly,
Zhao et al. (2018) and Li et al. (2019) showed that there is large
variation in the vacancy migration energies, i.e., 0.35 eV–1.24 eV
in NiCrCo, 0.36 eV–1.34 eV in NiFeCrCo, and 0.55 eV–1.68 eV
in NiFeCrMn, respectively.

Apart from the defect-energy variations, large variations
among different studies have also been observed in MPEAs.
This variation is due to the different number of calculations
that have been performed by various authors. For example, in
Fe70Ni10Cr20, Manzoor et al. (under review) performed 650 vs
60 calculations compared to Piochaud et al. (2014) as shown
in Table 1. The ten times higher number of calculations lead
to a larger variation in vacancy formation energy, i.e., 0.65 eV
compared to 0.43 eV, as shown in Table 1. Similarly, in NiCrCo
and NiFeCrCo, Zhao et al. (2018) performed twice the number of
calculations compared to Guan et al. (2020) and observed almost
twice the variation, i.e., 0.7 eV vs 0.4 eV. This implies that large
number of calculations may be needed to fully capture the point
defect energies in MPEAs.

Atomistic calculations have been widely used to calculate
point defect energies in various alloys (Neugebauer and Hickel,
2013; Zhao et al., 2016; Bonny et al., 2018; Choudhary et al., 2018;
Nayak et al., 2018; Setyawan et al., 2018; Arora et al., 2021). Given
that the defect energies can vary significantly byminor changes in
the elemental concentration in a specific MPEA, or by changing
the type of element(s) in a given MPEA system, there lies a
major computational challenge to trace the whole point-defect
energy phase-space. The challenge is further intensified by the
exponentially large number of MPEA compositions that are yet
to be unearthed. What is therefore needed is a new strategy that
can bypass the computational expense to support the atomistic
calculations in the growing field of MPEAs.

Machine learning (ML) has now been applied to various
materials science problems (Osetsky et al., 2016; Liu et al., 2017;
Schmidt et al., 2019; Shenoy et al., 2020; Wang et al., 2020). With
regards to point defects, Medasani et al. (2016) predicted the
point defect properties in binary intermetallic compounds using
ML and high throughput DFT calculations. Similarly, Sharma
et al. (2020) used ML based framework to predict substitutional
defect formation energies in ABO3 perovskites. Other materials
properties such as vibrational entropy (Manzoor and Aidhy,
2020) and stacking fault energies (Arora and Aidhy, 2020)
have also been recently predicted using a combination of ML
and atomistic calculations. Thus, application of ML models in
materials science is rapidly becoming mainstream that is being
used not only to bypass the computational expense but also to
predict new properties.

In this work, we present a ML framework that is able
to predict the vacancy migration and formation energies in
ternary, quaternary and quinary MPEAs from the defect-energy
database of constituent binary alloys. The database of migration
and formation energies in binary compositions is built using
atomistic calculations, which is then used to train ML model
in a five-element face centered cubic (fcc) Ni-Fe-Cr-Co-Cu
system. The model is based on various descriptors including

type of elements in the 1st nearest neighbors, their directional
orientation with respect to the vacancy/migrating atom, and
the bond lengths (both between the vacancy/migrating atom
and nearest neighbors, and among the nearest neighbors).
The accuracy of the model is evaluated using standard ML
tools. The role of each alloying element in affecting the defect
energies is presented.

METHODOLOGY

Vacancy migration and formation energies are calculated
using Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) code (Plimpton, 1995). As shown later, a large
number of calculations were needed to develop the model and
to demonstrate its practical functionality. The use of interatomic
potential allowed this flexibility. A recently-developed Farkas-
Caro embedded atom method (EAM) interatomic potential for
Fe-Ni-Cr-Co-Cu is used to model the FCC binary, ternary,
quaternary and quinary alloys (Farkas and Caro, 2018). All
simulations are performed on the 6 × 6 × 6 supercell containing
864 atoms. We have observed that the supercell size containing
864 atoms is large enough to capture the distribution of point
defect energies. A comparison of defect energies calculated in
larger supercell is given in Supplementary Figure 1.

The migration energies are calculated using nudged elastic
band (NEB) method (Henkelman et al., 2000) implementing
“quick min” damped minimization algorithm in the LAMMPS
code. The calculation is said to be converged when the energy and
force on each atom are less than 1 × 10−8 eV and 1 × 10−4 eV
Å−1, respectively. For calculating vacancy formation energy,
system is relaxed using steepest-descent method. The energy
and force convergence for the formation energy calculation is
set to 1 × 10−20 eV and 1 × 10−20 eV Å−1, respectively.
Due to the random distribution of atoms, instead of a single
value, a distribution of energies is expected which is achieved by
performing a large number of simulations. Approximately 2050
and 864 calculations are performed for vacancy migration and
formation energies, respectively, in a given composition.

A vacancy is created in a supercell by removing an atom
from its lattice site. Equation 1 is used to calculate the vacancy

formation energy (E
form
vac ).

E
form
vac = ED − Eo + µX (1)

where Eo is the energy of a supercell containing 864 atoms
with no vacancy, ED is the energy of the supercell with one
vacancy of element type X, and µX is the chemical potential of
the atom type X.

It is to be noted that the approaches used to calculate the
chemical potential of an element in MPEAs carry a level of
uncertainty. A recent paper by Zhang et al. (2021) highlights
some deficiencies in these approaches. In order to overcome
them and to make the calculations more transparent, Zhang
et al. (2021) provided a simpler approach that calculates the
mean vacancy formation energy based on the total energies of
the perfect and defected supercells. The chemical potentials of
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TABLE 1 | Comparison of vacancy formation energies from different studies in terms of alloy composition, number of calculations, and defect-energy variation.

Studies Alloy composition Number of calculations Defect energy variation (eV)

Manzoor et al., under review Fe70Ni10Cr20 650 1.63–2.28 (0.65)

Piochaud et al., 2014 Fe70Ni10Cr20 60 1.76–2.19 (0.43)

Zhao et al., 2018 NiCrCo 70 1.52–2.22 (0.7)

NiFeCrCo 77 1.55–2.25 (0.7)

Guan et al., 2020 NiCrCo NiFeCrCo 31 39 1.62–2.03 (0.41) 1.62–2.04 (0.42)

NiFeCrCoMn 52 1.51–2.72 (1.21)

each component are back-derived in a self-consistent manner
to give the distribution of vacancy formation energy. This
is opposed to the other approaches in which the individual
chemical potentials are calculated separately prior to calculating
the vacancy formation energies. Equations (2) and (3) are used to
calculate the chemical potential of type X.

µX = Eo+ < E >
f
v −

1

NX

NX∑

j = 1

EXj (2)

< E >
f
v =

1

N

N∑

k = 1

EkD−
N − 1

N
Eo (3)

where < E >
f
v is the average vacancy formation energy in a given

alloy composition, Eo is the energy of the perfect supercell, EXj is
the energy of defected supercell in which element X is removed
from atomic sites with index j. NX is the total number of X
elements present in the alloy. The average vacancy formation

energy< E >
f
v is calculated using Equation (3) in which EkD is the

energy of the defected supercell irrespective of the element type
removed from atomic site with index k and N is the number of
atoms present in the alloy. As shown by Zhang et al. (2021), this
approach removes any uncertainty in calculating the chemical
potential and its accuracy is of the level of previous approaches.
In addition, since the chemical potential is calculated in a self-
consistent manner where the energy of the reference system is not
needed, this approach enables the chemical-potential calculation
in interatomic potential as well.

Machine Learning Model for Predicting
Vacancy Migration Energies
In the development of MLmodel, descriptors are identified based
on the local chemical environment around a migrating atom and
the vacancy, as shown in Figure 1. The first nearest neighbor
(1NN) atoms around migrating atom and vacancy are classified
into four different categories, i.e., (i) common nearest neighbor
(CNN), (ii) middle nearest neighbor (MNN), (iii) common back
nearest neighbor (CBNN), and (iv) back nearest neighbor (BNN)
based on their orientation with respect to migrating atom and
vacancy. There are four CNNs that are common 1NN atoms to
both vacancy and migrating atom. There are two MNN, four
CBNN and one BNN for both migrating atom and vacancy, as
shown in Figure 1.

There are four types of descriptors used to build the ML
model for migration energies. They are, (1) element type of

FIGURE 1 | Schematic representation of local chemical environment around a

migrating atom and vacancy. Black empty circle and square represent

migrating atom and vacancy, respectively. Four CNN atoms are the common

first nearest neighbors to both vacancy and migrating atom. There are two

MNN, four CBNN and one BNN (1NN) atoms for migrating atom and vacancy

separately. See text for details.

migrating atom, i.e., Ni, Fe, Cr, Co, or Cu, (2) the distance
(d), traveled by the migrating atom to the vacancy, (3)
orientation vector of all NNs, and (4) distance between 1NN
atoms and migrating atom/vacancy based on their orientation.
The schematic representation of database is provided in
Supplementary Figure 2. It is important to note that all
descriptors are retrieved from the perfect supercell. This is done
so that the migration energies are predicted simply from the
relaxed perfect supercell and no extra calculations are needed.

Once the database is finalized, the next step is to train the
ML model. The hold-out method is used for testing the ML
model. In this model, we have divided data points into 80–
20 ratio, i.e., 80% data is used for the training of the model
and the rest 20% is used for testing. We have used support
vector regression (SVR) algorithm for the training of model. To
evaluate the performance of the model, two statistical tools, i.e.,
Pearson correlation coefficient (R) and root mean square error
(RMSE) are used. The optimized hyper parameters of the model
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based on SVR are kernel = poly, degree = 3, gamma = auto,
and epsilon = 0.01.

Machine Learning Model for Predicting
Vacancy Formation Energies

TheML descriptors for predicting the vacancy formation energies
are based on 1NN and 2NN of the vacancy, as shown in Figure 2.
The 1NN and 2NN atoms are categorized into different vectors
based on their orientation with respect to vacancy, as shown in
Figure 2. There are twelve 1NN and six 2NN atoms and they are
divided into 12 (O1–O12) and six (O1–O6) vectors as listed in
Figures 2A,B.

There are four types of descriptors used to develop the ML
model. They are (1) type of vacancy i.e., the atom which is
removed to create a vacancy can be Ni, Fe, Cr, Co, or Cu, (2)
the distance between 1NN and vacancy based on their orientation
vector (for example, in Figure 2A the distance between atom O1
and vacancy), (3) type of element sitting on specific orientation,
and (4) the distance between 2NN and vacancy based on
their orientation. The schematic representation of database for
formation energy model is provided in Supplementary Figure 3.
The descriptors used for formation energy model are slightly
different from the migration energy model. As in the migration
energy model, the descriptors are based on local chemical
environment around migrating atom and a vacancy whereas in
the formation energymodel, the descriptors are based only on the
vacancy. The other main difference is that only 1NN shell around
the migrating atom and the vacancy is used in the migration
energy model, whereas, for the formation energy model, the
descriptors are based on 1NNs as well as 2NNs around a vacancy.

Same strategy is used to train the ML model as described
above. The SVR algorithm is used for training the model. The
optimized hyper parameters of the model are kernel = poly,
degree = 5, gamma = auto and epsilon = 0.01.

RESULTS

The results are divided into two sections. In the first section, the
defect energies calculated using LAMMPS code in various alloys
are presented and the effects of the alloying elements on the defect
energies are discussed. These defect energies in binary alloys serve
as the database for the ML models whose results are presented in
the second section.

Effect of Alloying Element Concentration
on Vacancy Migration Energies
Figure 3 shows the effect of alloying element concentration on
the vacancy migration energies in quinary, quaternary, ternary
and binary alloys. The migration energies are plotted on the
horizontal axis whereas the normalized count of the jumps in the
given supercell are plotted on the vertical axis. In Figure 3A, five
different compositions are analyzed in NiFeCrCoCu base alloy,
where each alloy has one element that has higher concentration;
the rest of the four elements are in equal proportions. For
example, in Cu60 alloy composition, Cu is 60 at%, whereas Ni,
Fe, Cr, and Co are in 10 at% each.

In the quinary alloys in Figure 3A, it is observed that
there are three main regions in which the migration energies
can be divided. The data corresponding to Ni60 and Fe60
compositions show highest migration energies, whereas Cu60
composition corresponds to lowest migration energies. The
Cr60 and Co60 compositions are sandwiched between the two
extremes. This data shows that as the Ni or Fe concentration
increases in NiFeCrCoCu base alloy, higher vacancy migration
energies and lower diffusivities could be expected. In contrast,
addition of Cu is expected to lower the migration energies
thereby increasing the vacancy diffusivity. Both Cr and Co
have similar impact on the migration energies, and their
addition in an alloy could increase or decrease the barriers

FIGURE 2 | (A) Schematic representation of 1NN and (B) 2NN nearest neighbor atoms of a vacancy. Empty square is the vacancy. The 1NN and 2NN atoms are

categorized into different vectors based on their orientation with respect to the vacancy.
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FIGURE 3 | Effect of alloying elemental concentration on vacancy migration energies in (A) quinary, (B,C) quaternary, (D–F) ternary, and (G–J) binary alloys. Only the

results of Ni-based alloys are shown.

depending upon whether the base composition is Ni/Fe
rich or Cu rich.

The influence of element concentration on migration energies
in quaternary concentration alloy is shown in Figures 3B,C.
Four different compositions are analyzed each in NiCrCoCu
and NiFeCrCo base alloys. In each quaternary composition, one
element has higher concentration, i.e., 70 at% and other elements
are equi-atomic, i.e., 10 at% each. Similar trends are observed
in the quaternary alloys as well, where higher Cu concentration
reduces the vacancy migration energies as shown in Figure 3B. In

NiFeCrCo alloys, where Cu is absent, a rather narrowermigration
energy distribution is observed.

Among ternary alloys, NiFe based compositions, i.e., NiFeCu,
NiFeCo, and NiFeCr, are shown in Figures 3D–F respectively.
Among each ternary composition, a dominant element with 80
at% and equi-atomic 10 at% of the other elements are added. Two
distinct peaks and large migration energy distribution is evident
in Figure 3D, where Cu is present. In contrast, almost identical
data distribution is observed in Figures 3E,F, illustrating the
similar effect of Cr and Co on the migration energies.
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Finally, the migration energies in binary alloys for Ni-based
systems are shown in Figures 3G,H. Three compositions in
each alloy system are shown, i.e., Ni10X90, Ni50X50 and Ni10X90.
The rest of the binary compositions results are provided in
Supplementary Figure 4. Similar migration energy trends are
observed in binary alloys as discussed above. It may be pointed
out that the presence of two distinct peaks in Cu-based alloys
indicates that percolation effect could be expected in these alloys,
i.e., certain atomic environment may provide faster channels of
diffusion compared to others.

Overall, from quinary to binary alloys, the migration energy
increases with the increase in Ni and Fe concentration whereas
Cu decreases the energies the most compared to other elements.
Cr and Co behave similarly and when their concentration is high,
the migration energies lie in between the two extremes, as can be
seen particularly in Figures 3A,B.

Effect of Alloying Element Concentration
on Vacancy Formation Energies
Figure 4 shows the effect of alloying element concentration on
vacancy formation energies in quinary, quaternary, ternary and
binary alloys. Same Ni based alloys are considered as analyzed
in the case of migration energies. In Figure 4A, five different
compositions are considered in NiFeCrCoCu alloy and each
composition has one element with higher concentration.

In the compositions of Ni-Fe-Cr-Co-Cu system in Figure 4A,
it is observed that the Fe60 and Ni60 compositions show highest
formation energies whereas Cu60 composition corresponds to
lowest formation energies. The Cr60 and Co60 compositions are
sandwiched between Fe60 and Cu60 curves. This shows that the
higher concentration of Fe and Ni would increase the vacancy
formation energy, whereas addition of Cu is expected to lower
the formation energies. Both Cr and Co have similar influence
on the vacancy formation energies and their addition in an alloy
could increase or decrease formation energies depending on the
concentration of Fe/Ni or Cu.

In Figures 4B,C, influence of element concentration in two
quaternary alloys, i.e., NiCrCoCu and NiFeCrCo is analyzed.
Four different compositions are analyzed in each base alloy and
each composition has one element with higher concentration, i.e.,
70 at% and other elements have same concentration, i.e., 10 at%.
Similar trends are observed in quaternary alloys where higher
concentration of Fe and Ni increase whereas Cu decreases the
formation energies. In the presence of Cu, narrower distribution
is observed in NiCrCoCu base alloy (see Figure 4B), whereas in
the absence of Cu, the distribution is wider as seen in Figure 4C.

In Figures 4D–F, the influence of element concentration
in NiFe based ternary alloys is analyzed. Among each ternary
composition, a dominant element with 80 at% and equi-atomic
10 at% of the other elements are added. The presence of
higher concentration of Fe leading to higher formation energies
compared to Ni is noticeable in these ternary alloys as shown
in Figures 4D–F. Higher concentration of Ni leads to formation
energies in the middle of Fe and third element curve, i.e., Cu, Co,
or Cr curve. The higher concentration of third element in these
NiFe based ternary alloys always decreases the energies compared

to Fe and Ni. However, among Cr, Co, and Cu, Cu decreases the
energies the most.

Finally, in binary alloys, we observe that higher concentration
of Ni increases the formation energies except NiFe binary alloy as
shown in Figures 4G–J. The element concentration influence on
formation energies in all 10 binary alloys across the composition
is provided in Supplementary Figure 5.

In general, we find similar trends of the effect of alloying
element on vacancy formation energies, as we have observed
for migration energies. Higher concentration of Fe and Ni
corresponds to higher whereas Cu to lower formation energies.
Both Cr and Co show similar influence and the distribution
of energies is sandwiched between the two extremes. The
main difference between migration and formation energy
results is the dominance of Ni and Fe, respectively. Ni leads
to highest migration energies whereas Fe leads to highest
formation energies.

Predictions Based on Machine Learning
Model
In this section, we discuss the ML model and predict defect
energies in various alloys. Note that we only use the data of
the binary alloys for ML model development. There are ten
possible binary alloys among five elements, as shown in Figure 5.
In what follows, the migration and formation energies of eight
ternary, five quaternary and one quinary alloy systems of varying
elemental compositions are predicted from ML framework, as
shown in Figure 5.

Prediction of Vacancy Migration Energies

Using the binary database, we first test the ML model on binary
alloys. In Figure 6, the true vs predicted migration energies in
four binary compositions, i.e., Ni50Fe50, Ni50Cr50, Fe50Co50, and
Fe50Cu50 are shown. The model is able to predict the migration
energies for both training and testing data points with high R,
i.e., > 0.9 and small RMSE < 0.1 eV, for all considered binary
compositions. This level of high accuracy partly indicates that
relevant descriptors are included in theMLmodel. It is reassuring
to note that although the migration energies in Fe50Cu50 have
extremely wide distribution yet the model is able to capture
this distribution and predict the energies with good accuracy, as
shown in Figure 6D.

However, since the training and testing data points are both
based on binary alloys, this accuracy can be largely expected.
The real test of the ML model is in the predictions of ternary,
quaternary and quinary alloys. We begin with NiFeCr ternary
alloy system. In Figure 7, the R and RMSE values ofML predicted
migration energies of NiFeCr alloy system are shown in ternary
phase diagram. Fifteen different compositions within NiFeCr are
analyzed, as shown in Figure 7. Here, three different sizes of
training data points are used. For example, in Figures 7A,D,
11,400 migration energy data points are used. These are obtained
by considering binary compositions at 5 at% interval in each
of the three binary alloys, i.e., NiFe, FeCr and NiCr. For
each interval, 500 migration energies are randomly used in
the database. Using this data, the quality of the predictions of
the trained ML model are shown in Figures 7A,D. We find
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FIGURE 4 | Effect of alloying elemental concentration on vacancy formation energies in (A) quinary, (B,C) quaternary, (D–F) ternary, and (G–J) binary alloys. Only the

results of Ni-based alloys are shown.

that for all fifteen ternary compositions, the R value is greater
than 0.95, and RMSE is less than 0.05 eV, indicating very good
predictions from the model.

The size of the training data points is reduced to 1,200
and 120 in Figures 7B,C,E,F, respectively. Here, the migration
energy binary data at every 20 at% is included from the three
alloys. For 1,200 and 120 data points, 100 and 10 migration
energy data points, respectively, are included. R > 0.93 and
RMSE < 0.07 eV is obtained from 1,200 data points whereas
R > 0.89 and RMSE < 0.1 eV is obtained for 120 data points.

All these predictions indicate a very good level of accuracy.
Furthermore, the results from the 120 data points indicate that
a relatively small number of migration energies are needed to
train a good ML model; such number of calculations can be
practically performed in DFT. Furthermore, since the same 120
data points has been used to predict migration energies in fifteen
different NiFeCr alloy compositions, the efficacy of theMLmodel
is terms of computational expense is also equally highlighted.
In other words, the framework potentially nullifies the need
to perform defect energies calculations even if changes in the
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FIGURE 5 | Schematic representation of ten binary alloys used to predict the vacancy migration and formation energies of eight ternary, five quaternary and one

quinary alloy systems using ML framework.

FIGURE 6 | True vs machine learning predicted vacancy migration energies in, (A) Ni50Fe50, (B) Ni50Cr50, (C) Fe50Co50, and (D) Fe50Cu50. The blue triangles and

orange circles are training and testing data points respectively.

elemental composition NiFeCr are made. Consequently, these
results indicate that once the binary database is built, it can be
used to predict migration energies in any varying composition of
the ternary alloy system.

The rest of the following migration energy predictions
are made using 120 data points. The Pearson correlation
coefficient (R) values of all eight ternary alloys (see Figure 5)
are provided in Supplementary Figure 6. The R values of
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FIGURE 7 | (A–C) Pearson correlation coefficient (R) and (D–F) root mean square error (RMSE) values of migration energies in ternary NiFeCr alloy using different

sizes of training data points.

FIGURE 8 | Root mean square error (RMSE) values of ML predicted migration energies of ternary alloys from their constituent binary alloys in (A) NiFeCr, (B) NiFeCo,

(C) NiFeCu, (D) NiCrCo, (E) FeCrCo, (F) FeCrCu, (G) FeCoCu, and (H) CrCoCu.

NiFeCu, FeCoCu, FeCoCu and CrCoCu are greater than
0.92, those of NiFeCr and FeCrCo are between 0.89 and
0.93, whereas those of NiFeCo and NiCrCo are between
0.83–0.9. Overall, we find that the migration energies of all
eight ternary alloys are predicted with high R values, i.e.,
greater than 0.8. The corresponding RMSE values of all eight
ternary alloys are shown in Figure 8. We find that the
RMSE values for all compositions are smaller than 0.1 eV;
there are even smaller than 0.05 eV for NiCrCo as shown
in Figure 8.

Supplementary Figure 7 shows the true vs ML predicted
migration energies in eight equi-atomic ternary alloys. The
energies are predicted with high accuracy, i.e., R values equal or
greater than 0.84 and RMSE values are smaller than 0.1 eV for all
equi-atomic ternary alloys. It is interesting to note that the model
captures both the large and small distribution of energies in
NiFeCu and NiCrCo, as shown in Supplementary Figures 7C,D.

The migration energies in five quaternary alloys (see Figure 5)
are predicted using the same strategy as described in ternary
alloys. For example, to predict the migration energies in
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NiFeCrCo, the training data points consist of energies from six
constituting binary alloys, i.e., NiFe, NiCr, NiCo, FeCr, FeCo, and
CrCo. Alloy compositions at 20 at% interval with 10 data points
from each composition are used to train the model.

Supplementary Figure 8 shows the true vs ML predicted
migration energies of five equi-atomic quaternary alloys. All
five alloy systems have R > 0.9, and RMSE < 0.1 eV. The
predictions for the non equi-atomic quaternary alloys and their
corresponding R and RMSE values are given in Supplementary

Figures 9, 10. Overall, the predictions among quaternary alloy
systems also show a good level of accuracy.

Lastly, the ultimate challenge is to predict the migration
energies in quinary alloy, i.e., NiFeCrCoCu from its constituent
binary alloys. All ten constituting binary alloys mentioned
in Figure 5 are used for training of model. Again, only
10 data points are considered from each composition which
makes it total of 400 data points in the training data points.
Figure 9 shows the true vs ML predicted migration energies
of NiFeCrCoCu equi-atomic alloy. The predictions are quite
accurate with R> 0.95 and RMSE< 0.07. The migration energies
of non equi-atomic compositions of NiFeCrCoCu base alloy
and their R and RMSE values are provided in Supplementary

Figures 11, 12.
In summary, the migration energies of ternary, quaternary

and quinary alloys are predicted with a very good level
accuracy from their constituent binary compositions. The
predictions are accurate even with such a reduced size of
training data points, i.e., only ten data points from each
binary composition. These results demonstrate that only
a small number of calculations are required to make a

FIGURE 9 | True vs ML predicted migration energies of equi-atomic

NiFeCrCoCu alloy.

database of migration energies in binary alloys for training a
robust ML model.

Predictions of Vacancy Formation Energies From ML

The ML model is developed to predict the vacancy formation
energies in ternary, quaternary and quinary alloys from their
constituent binary alloys. Using the binary alloys database, we
first test the MLmodel on binary alloys. Figure 10 shows the true
vs ML predicted formation energies in four binary compositions,
i.e., Ni50Fe50, Ni50Cr50, Fe50Co50, and Fe50Cu50. The model is
able to predict the formation energies for both training and
testing data points with high R > 0.9 and small RMSE < 0.1 eV,
for all considered binary compositions. The accurate predictions
of training and testing data points show that relevant descriptors
are included into the model. The model is also able to capture the
wide variation in formation energies particularly in Fe50Cu50 as
seen in Figure 10D.

We first test our model on ternary NiFeCr alloy system. In
Figure 11, the R and RMSE values of ML predicted formation
energies in NiFeCr alloys are shown in ternary phase diagrams.
Fifteen different compositions within NiFeCr are analyzed, as
shown in Figure 11. The predictions are performed from
three different data points containing 10,368, 4,800, and 2,400
training data points. The data is collected at an interval of
20 at% in each binary alloy. Note that 864, 400 and 200
data points are used from each composition to train the
model for each set of data points. For example, to predict the
formation energies in NiFeCr, the ML model is trained on
data points from NiFe, NiCr and FeCr binary alloys and the
compositions considered from each base alloy are at 20 at%
interval, i.e., Ni20X, Ni40X, Ni60X, and Ni80X. In total, twelve
binary compositions are considered.

The R and RMSE values do not change significantly
as we reduce the number of training data points, shown
in Figure 11. The R values for 10,368, 4,800, and 2,400
training data points are in the range 0.95–0.97, 0.94–0.97,
and 0.93–0.96, respectively. Similarly, the RMSE values for all
sets are between 0.06 and 0.09. The results from the 2,400
data points indicate that a reasonable number of formation
energies could be used to train a good ML model, although
the number of the data points is still a bit high; such
number of calculations can be performed in DFT to build a
database that can be used repeatedly for various compositions.
Furthermore, the same data points are used across fifteen
different compositions in NiFeCr.

Using the same number of training data points, i.e.,
2,400 data points, we predict the formation energies
in seven other ternary alloys (see Figure 5) from
their constituent binary alloys. The R values in all
eight ternary alloys are provided in Supplementary

Figure 13. The R values of NiFeCr, NiCrCo and FeCrCo
compositions are better compared to other ternary alloy
compositions. The R values of these three ternary alloy
compositions are equal or greater than 0.88, can be seen in
Supplementary Figures 13A,D,E. The R values of NiFeCo,
NiFeCu, FeCrCu and FeCoCu are in between 0.78 and
0.91 (see Supplementary Figures 13B,C,F,G). Lastly, we
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FIGURE 10 | True vs machine learning predicted vacancy formation energies in, (A) Ni50Fe50, (B) Ni50Cr50, and (C) Fe50Co50, and (D) Fe50Cu50. The blue triangles

and orange circles are training and testing data points respectively.

find that one of the compositions, i.e., CrCoCu predictions
are relatively worse compared to other alloys as shown in
Supplementary Figure 13H; we don’t understand the underlying
reason yet.

The RMSE values of all ternary alloy compositions are given
in Figure 12. The RMSE value of NiCrCo composition is < 0.05
as shown in Figure 12D. The RMSE values of NiFeCr, NiFeCo,
FeCrCo and CrCoCu are in the range 0.07–0.1. The R value
of CrCoCu is not as good as expected but the RMSE value
is still less than 0.1 eV. Lastly, the RMSE values of NiFeCu,
FeCrCu and FeCoCu are lie between 0.1–0.15 eV as shown in
Figure 12.

From Figure 12, the data for equi-atomic compositions
are extracted and shown in Supplementary Figure 14. The
true vs ML predicted formation energies are shown. For
both NiFeCr and NiCrCo, R > 0.9 and RMSE < 0.1 eV.
However, the data is more scattered in the case of Cu
based alloys particularly in NiFeCu, FeCrCu and FeCoCu.
The data for CrCoCu is significantly worse, and the effect
of Cu persists as discussed in context to Supplementary

Figure 13H above.

The formation energies in five quaternary alloys are predicted
using the same strategy as described in ternary alloys. For
example, to predict the formation energies in NiFeCrCo, the
training data points consist of energies from six constituting
binary alloys, i.e., NiFe, NiCr, NiCo, FeCr, FeCo, and CrCo. Alloy
compositions at 20 at% interval with 100 data points from each
composition are used to train the model.

Supplementary Figure 15 shows the true vs ML predicted
formation energies of five equi-atomic quaternary alloys. Except
NiCrCoCu, all other quaternary systems have R > 0.8. All five
alloy systems have RMSE ≦ 0.15 eV. The predictions for the
non equi-atomic quaternary alloys and their corresponding R and
RMSE values are given in Supplementary Figures 16, 17.

Finally, the predictions for quinary equi-atomic composition
are shown in Figure 13. Again, only 100 data points are
considered from each composition which makes it total of 4,000
data points in the training data points. The predictions are
acceptable with R = 0.81 and RMSE = 0.13 eV. The formation
energies of non equi-atomic compositions of NiFeCrCoCu
base alloy and their R and RMSE values are provided in
Supplementary Figures 18, 19.
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FIGURE 11 | (A–C) Pearson correlation coefficient (R) and (D–F) root mean square error (RMSE) values of vacancy formation energies in ternary NiFeCr alloy using

different sizes of training data points.

FIGURE 12 | Root mean square error (RMSE) values of ML predicted vacancy formation energies of ternay alloys from their constituent binary alloys in (A) NiFeCr,

(B) NiFeCo, (C) NiFeCu, (D) NiCrCo, (E) FeCrCo, (F) FeCrCu, (G) FeCoCu, and (H) CrCoCu.

In summary, ML model is able to predict the formation
energies in ternary, quaternary and quinary alloys from their
constituent binary compositions. Except few specific Cu based
composition, the predictions have good accuracy. Based on our

predictions from different amount of data points, overall, these
results demonstrate that a practically decent size of data points
can be used to train a ML model to predict formation energies in
multi-elemental alloys.
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FIGURE 13 | True vs ML predicted formation energies in equi-atomic

NiFeCrCoCu alloy.

DISCUSSION

Large number of calculations are required to fully capture
the point defect energies in MPEAs as shown in Table 1.
Performing these many calculations in hundreds of compositions
is an enormous challenge due to their high computational
cost. In this work, we have presented a ML methodology
that has a potential to bypass large number of calculations.
The ML based models are developed to predict the vacancy
migration and formation energies in ternary, quaternary and
quinary alloys from their constituent binary alloys. The ML
models are able to predict the energies even with reduced

size of training data points. The current version of the defect-
energy database is built using an interatomic potential. This
strategy has allowed us to optimize the size of the training
data points and estimate the minimum number of data needed
to achieve an acceptable level of accuracy. Now that the
critical descriptors are identified, this model can be translated
to DFT, where the DFT database can be used to predict
properties in MPEAs.

While developing DFT database is our next future task,
here we provide a brief comparison of the defect energies
between the available DFT results and interatomic potential
or ML prediction results in Figure 14. There is very good
agreement between interatomic potential (LAMMPS) and ML
predictions as our model is able to predict the energies
very accurately. The migration energies in Ni50Co50 and
Ni50Fe50 are in good agreement with DFT calculations as
shown in Figure 14A. The large variation in Ni50Fe50
from potential is due to significantly larger number of
calculations compared to fewer DFT calculations. In the
case of Ni80Cr20, there is slight disagreement, i.e., the
DFT calculated energies are lower compared to interatomic
potential, although the variation in energies is almost same,
i.e., 0.48 and 0.4 eV respectively. Similarly, for formation
energies, there is an agreement between DFT and interatomic
calculations for Fe70Ni10Co20 and NiFeCrCo. In both cases,
the upper limit is identical between DFT and interatomic
potential. However, there is a fair agreement for NiCrCo.
The variation in Fe70Ni10Cr20 and NiFeCrCo interatomic-
calculated formation energies are higher compared to DFT
which is again possibly due to limited DFT statistics. Despite
the fact that there are slight disagreements between DFT and
interatomic calculated energies, developing an exact agreement
is not the purpose of this paper. Rather, we show that the
proposed methodology can be used to predict defect energies
in complex alloys based on the data, howsoever it may
be obtained from.

In addition, because the database is based on classical
interatomic calculations, there are certain limitations associated
with these calculations. For example, the magnetic state of atoms
is not captured in these calculations which has been found to

FIGURE 14 | Comparison between DFT, classical interatomic (LAMMPS) and machine learning predicted (ML) point defect energies in various alloy systems

(A) vacancy migration energies and (B) vacancy formation energies.
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influence point defect energies (Guan et al., 2020). Similarly,
lattice distortion around point defects can influence the energies
(Manzoor et al., under review) which can be better captured in
DFT. In near future, we will extend our database to DFT and train
the model to further improve predictions.

CONCLUSION

We have developed a machine learning based framework to
predict vacancy migration and formation energies in ternary,
quaternary and quinary concentrated alloys from the database
built from their constituent binary alloys. We demonstrate the
predictions of defect energies in face centered cubic ternary,
quaternary and quinary alloys in Ni-Fe-Cr-Co-Cu system. A key
benefit of this methodology is that the database could be used
to predict defect energies in a variety of compositions thereby
circumventing the need to perform calculations from scratch
every time a new composition is unearthed in the community.
The current framework is built of the database derived from
interatomic potential; in near future, we will develop a DFT based
database to further improve the predictions.
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