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'e novel coronavirus (COVID-19) outbreak produced devastating effects on the global economy and the health of entire
communities. Although the COVID-19 survival rate is high, the number of severe cases that result in death is increasing daily. A
timely prediction of at-risk patients of COVID-19 with precautionary measures is expected to increase the survival rate of patients
and reduce the fatality rate.'is research provides a predictionmethod for the early identification of COVID-19 patient’s outcome
based on patients’ characteristics monitored at home, while in quarantine.'e study was performed using 287 COVID-19 samples
of patients from the King Fahad University Hospital, Saudi Arabia. 'e data were analyzed using three classification algorithms,
namely, logistic regression (LR), random forest (RF), and extreme gradient boosting (XGB). Initially, the data were preprocessed
using several preprocessing techniques. Furthermore, 10-k cross-validation was applied for data partitioning and SMOTE for
alleviating the data imbalance. Experiments were performed using twenty clinical features, identified as significant for predicting
the survival versus the deceased COVID-19 patients. 'e results showed that RF outperformed the other classifiers with an
accuracy of 0.95 and area under curve (AUC) of 0.99. 'e proposed model can assist the decision-making and health care
professional by early identification of at-risk COVID-19 patients effectively.

1. Introduction

Coronavirus (COVID-19) started in China in December 2019.
As of January 2021, over 95 million cases have been reported
around the world, with amortality rate of 2% of the total closed
cases [1]. 'is rapid pandemic expansion represents a global
concern and a serious threat to the public health and economy
worldwide. To prevent the infection from spreading, most
countries restricted social interaction through precautionary
measures such as isolation and quarantine. However, many
infected patients did not benefit from the proper treatment due
to late diagnosis and the novel and unknown nature of the
virus. Recently, many researchers focused on developing new
methodologies to screen infected patients in different stages to
find notable associations between the patient’s clinical features
and the chances to succumb to the disease [2, 3]. Current

investigation studies determined that artificial intelligence (AI)
and machine learning (ML) techniques can play a key role in
reducing the effect of the virus spread [4–6]. ML application
technologies on patients’ data fall under a range of different
research directions [7]. One of the most important research
directions is predicting the infection rate andmortality rate and
building a model to classify patients based on their clinical
findings [8, 9]. 'ese research investigations are extremely
important and would greatly assist people in the health sectors
to be well prepared and take all necessary precautions to
minimize the pandemic spread.
'e aim of this research is to develop a prediction model

to calculate the severity of the disease in COVID-19 patients,
using risk factors that can be monitored remotely, with the
patient being at home. Moreover, the study explores the
impact of vital signs, chronic diseases, preliminary clinical
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investigations, and demographic features to predict the
survival versus the mortality of COVID-19 patients. 'e
study used COVID-19 patients’ data from the King Fahad
University Hospital containing the clinical findings and
demographic information to validate the model perfor-
mance and effectiveness. All the risk factors or vital signs
that can be measured through widely used sensors were
included in the study such as oxygen level in the blood,
temperature, pulse rate, and blood pressure. 'e model will
serve as an early warning system to timely identify at-risk
patients.

1.1. Related Work. Early detection and diagnosis using AI
techniques help to prevent the spread and to combat the
COVID-19 pandemic using different data such as CT scans,
X-ray, clinical data, and blood sample data.
Yan et al. [10] predicted the criticality and survival

chances of patients with severe COVID-19 infection based
on different risk factors and demographic information. 'e
dataset used consists of 375 records from patients admitted
to Tongji Hospital from January 10th to February 18th, 2020,
including 201 survivors and 174 deceased within the same
period. 'ey used an XGBoost (XGB) model and identified
only three main clinical features as significant, i.e., lactic
dehydrogenase (LDH), lymphocyte, and high-sensitivity
C-reactive protein (Hs-CRP), selected from more than 300
features. 'e proposed model was validated using data from
29 patients.'e key findings of the research were themodel’s
ability to predict the risk of death with 0.95 precision and
0.90 prediction accuracy. Such models will equip physicians
with a tool for identifying critical conditions, thereby
helping to reduce the mortality rate. Even though these
findings are of great importance, the research has some
limitations, which affect the accuracy of the reported results.
'ese limitations were due to the small size of the dataset,
namely, 29 records of patients only.
Similarly, Wong and So [11] also used XGB with another

dataset to predict the severe and the death cases and identify
the risk factors associated with COVID-19. 'e dataset was
retrieved from United Kingdom Biobank (UKBB) and in-
cludes 93 different variables collected between 16 March
2020 and 19 July 2020. Two different studies have been
conducted based on the sample’s groups. For the first study,
the data were clinical prediagnostic data of 1747 COVID-19
infected patient records containing both severe and death
cases. For the severity class, the accuracy achieved was 0.668,
and for the fatality class, the accuracy was 0.712. For the
second study, the data were taken from the negative cases,
the general population with no COVID-19 infection, con-
sisting of 489987 records. 'e same model was applied, and
the accuracy achieved was similar to the first study, with an
accuracy of 0.669 for the severity class and 0.749 for the
fatality class, respectively. It is worth mentioning that the
researchers identified the fivemost significant risk factors for
severe cases and death cases, with age being the top factor for
both cases. Other factors include obesity, impaired renal
function, multiple comorbidities, and cardiometabolic
abnormalities.

Sun et al. [12] developed a prediction model using the
support vector machine (SVM) to predict the severe cases of
COVID-19 patients. In the study, they used the clinical and
laboratory features that are significantly associated with
these cases. Using 336 cases of COVID-19 patients, 26 se-
vere/critical cases and 310 noncritical, they found that the
main features to discriminate the mild and severe cases are
age, growth hormone secretagogues (GHSs), immune fea-
ture cluster of differentiation 3 (CD3) percentage, and total
protein. 'ey found that the proposed model was effective
and robust in predicting patients in severe conditions with
up to 0.775 accuracy.
Another research conducted by Yao et al. [13] also

applied the SVM model to classify the COVID-19 patients
according to the severity of the symptoms. 'ey applied
SVM for the binary class label on a total of 137 records
including urine and blood test results and combining both
severely ill patients and patients with mild symptoms. 'e
results showed that around 32 factors have high correlations
with severe COVID-19, with an accuracy of 0.815. It is worth
mentioning that, amongst all factors, age and gender had
mostly affected the classification of cases between severe and
mild. Patients aged around 65 had more severe cases than
others. Moreover, male patients were at a higher risk of
developing severe COVID-19 symptoms. In terms of the
urine and blood test samples, blood test result features show
more significant differences between severe and mild cases
than urine test result features.
Hu et al. [14] used the logistic regression (LR) model to

identify the COVID-19 patients’ severity. 'ey used a
dataset containing demographic and clinical data for 115
COVID-19 patients under the nonsevere condition and 68
COVID-19 patients under the severe condition. Four fea-
tures have been selected as the most significant features to
discriminate the mild and severe cases: age, high-sensitivity
C-reactive protein level, lymphocyte count, and d-dimer
level. 'is model was evaluated, and the results showed that
the prediction was effective with area under the receiver
operating characteristic (AUROC) of 0.881, sensitivity of
0.839, and specificity of 0.794, respectively. Bertsimas et al.
[15] used 3927 COVID-19 patients’ sample for predicting
the mortality risk using XGB. 'e study used demographic
and the clinical features of the patients from 33 hospital data.
'e model achieved the accuracy of 0.85 and AUC of 0.90.
Moreover, Sánchez-Montañés et al. [16] developed LR-based
mortality prediction using 1969 COVID-19-positive pa-
tients. 'e study found age and O2 as the significant features
and achieved an AUC of 0.89, sensitivity of 0.82, and
specificity of 0.81, respectively.
In [5], supervised machine learning techniques have

been investigated to predict the COVID-19 outbreak. In [5],
SVM has been used for prediction over the dataset obtained
from the WHO with 303 patients. 'e proposed scheme
exhibits an accuracy of 0.967 during the testing phase.
Similarly, An et al. [17] developed the model to predict the
mortality of COVID-19 patients using several machine
learning algorithms such as LASSO, SVM (linear and RBF),
RF, and KNN. 'e models were trained to identify three
cases, i.e., mortality and survived and mortality and survived
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within 14 and 30 days after the initial diagnosis. Linear SVM
achieved the highest performance with an AUC of 0.962,
sensitivity of 0.92, and specificity of 0.91, respectively. 'e
study found age, diabetes mellitus, and cancer as a significant
factor in the mortality prediction for COVID-19 patients.
In conclusion, the importance of machine learning

specifically, on predictive analysis, has been proven from
several studies. Some of the studies have been conducted to
perform the prediction and forecasting, yet there is still a
need for further exploration and to extend the findings
associated with COVID-19 using a real dataset of clinical
records. 'e summary of the related studies is shown in
Table 1. 'e proposed model in this study attempts to
predict and forecast the patients that are at risk along with
identifying the main risk factors associated with COVID-19.
Targeted patients are isolated at home. 'e dataset (clinical
findings) has been retrieved from King Fahad University
Hospital in the Kingdom of Saudi Arabia. 'e main aim of
the study is to develop a preemptive warning model that can
identify at-risk COVID-19 patients that are monitored in
quarantine at home.
'is paper is organized as follows: Section 2 introduces

the materials and methods, and Section 3 shows the ex-
perimental setup and results. Finally, the conclusion and
future work are identified in Section 4.

2. Methodology

'e following section covers the dataset description and the
methodology used. Due to the class imbalance in the dataset,
the synthetic minority oversampling technique (SMOTE)
was used.

2.1. Dataset Description. 'e study was conducted in the
Department of Computer Science of Imam Abdulrahman
bin Faisal University (IAU) and approved by the Deanship
of Scientific Research of IAU under the research grant IRB-
2020-09-160. 'e data were collected from King Fahad
University Hospital, Dammam, Kingdom of Saudi Arabia
(KSA). 'e dataset contains the demographic and clinical
data of COVID-19-positive patients in the period from 30
April 2020 to 24 July 2020. 'e dataset contains all the
positive patients that were admitted in King Fahad Uni-
versity Hospital during the specified data collection period.
'ere are 287 COVID-19 patient records in the dataset with
a binary class label, namely, “survived” and “deceased,”
respectively. 'e number of survived patients is 243, and 44
patients deceased. 'e distribution of instances per class
label is shown in Figure 1, while the description of the
dataset is mentioned in Table 2. 'e field BodyTemp 1 in the
table indicates the first body temperature taken at the time of
the patient’s admission to the hospital. However, BodyTemp
2 indicates the last body temperature reading taken before
the patient’s discharge. Similarly, SOB indicates shortness of
breath, chr_dm indicates chronic disease diabetes mellitus,
chr_htn indicates hypertension, chr_cardiac represents
cardiovascular diseases, chr_dlp represents dyslipidemia,
and chr_ckd indicates chronic kidney disease.

'e baseline characteristics of the numeric attributes of
the dataset are represented in terms of mean± standard
deviation (SD). By contrast, the categorical attributes are
measured by a count. 'e characteristics of the features in
the dataset are presented in Table 3.

2.2. Preprocessing. Preprocessing is one of the key steps in
data analysis and prediction. Several preprocessing tech-
niques were applied on the dataset.'e dataset contains data
of all the patients admitted in the hospital. Some symptoms
or vital signs occurred with very low frequency and were
therefore removed from the dataset. All symptoms with
occurrences at 50% or above were selected to be added to the
feature set, while the symptoms with occurrences in the
range from 2% to 49%were cumulated as one feature the was
assigned a unique code. 'e first three vital signs: fever,
cough, and shortness of breath (SOB) were defined as
symptom features, while the remaining features were in-
corporated as a new attribute “sym_others.” 5% of the pa-
tients in the study were asymptomatic at the time of initial
diagnosis and considered as a part of the sym_others at-
tribute. Similarly, the chronic top three (3) diseases (i.e.,
diabetes, high blood pressure, and cardiac) with the highest
frequency were included as features. However, all other
chronic disease types with more than 1 occurrence were
incorporated as one feature “chr_others.” After the initial
preprocessing data, an encoding scheme was applied on the
categorical features. As the dataset contains a small number
of missing values, imputation was performed using the K-
means technique.

2.3. Prediction Model. In the study, three classification al-
gorithms were used: logistic regression (LR), random forest,
and extreme gradient boosting (XGB). A brief description of
the classification algorithms is given below.

2.3.1. Logistic Regression. Logistic regression is one of the
widely used statistical classification algorithms for binary
and multiclass problems. For predicting the probability of
the class label, logistic function is used [18]. 'e functional
form of the hypothesis is

Y � CT
(X), (1)

whereC is the list of regression coefficients andX is the list of
the features.

C �

β0

β1

β2

. . .

βn




, X �

X1

X2

X3

. . .

Xn




, (2)

where βi represents the regression estimators also known as
predicted weights for the selected features in the data and β0
represents the intercept of the equation.
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H(x) � Y � β0 + β1x1 + β2x2 + · · · + βnxn. (3)

Since the dataset used in the study consists of 25 features
in total, the logistic regression algorithm for our study is

h(x) � β0 + β1x1 + β2x2 + · · · + βnxn( ). (4)

'e model will predict the record as survived or death if
the value of

β0 + β1x1 + β2x2 + · · · + βnxn ≥ 0. (5)

For optimal selection of regression estimator, maxi-
mum-likelihood ratio concept is used.
Sigmoid function (logistic function) is used to map the

attributes with the class label. 'e functional form of the
sigmoid equation is given in the following equations:

S(g) �
1

1 + e
− y( ), (6)

S(g) �
1

1 + e
−CT(X)( ), (7)

where e is a numeric constant Euler’s number. In LR, a
regularization parameter is used to reduce the chance of
model overfitting. 'e logistic regression was optimized
using grid search to get hyperoptimized parameters. 'e
parameter set for logistic regression used in our study is
shown in Table 4.

2.3.2. Random Forest. Random forest is an ensemble-based
classification and regression model initially proposed by
Zhang [19]. Random forest can be used for feature selection
as well. It uses the bootstrapping data sampling method for
partitioning of the data into training and testing sets. 'e
model iteratively generates the trees for every bootstrap. 'e
final prediction is made using the mean vote for each class. It
is the combination of all generated decision trees. A decision
tree is the hierarchical classification algorithm. 'e selection
of the decision node is made using entropy, information
gain, gain ratio, and Gini-index, respectively. In our study,
we used information gain and entropy, as shown in the
following equations:

E(Y) �∑n
i�1

− pilog2pi, (8)

E(X,Y) � ∑
n∈X

P(n)E(n), (9)

where E(Y) represents the entropy of the target, while
Entropy(X,Y) is the entropy of the attributes with the
target, in whichX � x1, x2, . . . , xn{ } is the set of attributes in
the dataset. 'e attribute with the highest information gain
will be the root attribute, as follows:

Information Gain � E(Y) − E(X, Y). (10)

It combines the predictions made by multiple trees using
randomly selected vectors represented by θT. 'e selected

Table 1: Related studies on mortality prediction for COVID-19 patients.

Reference Technique Dataset Target class Result

[10] XGB 404 patients Death, survived
0.95 precision
0.90 accuracy

[11] XGB 1747 COVID-19 patients Fatal, severe
Accuracy 0.668 (fatality)

0.712 (severe)

[12] SVM 336 COVID-19 patients Severe, critical 0.775 accuracy
[13] SVM 137 COVID-19 patients Severe, nonsevere 0.815 accuracy

[14] LR 115 COVID-19 patients Severe, nonsevere
0.881 AUROC
0.839 sensitivity
0.794 specificity

[5] SVM 303 patients Negative, positive cases 0.967 accuracy

[15] XGB 3927 COVID-19 patients —
0.85 accuracy
0.90 AUC

[16] LR 1696 COVID-19 patients Home, deceased
0.89 AUC

0.82 sensitivity
0.81 specificity

[17] SVM (linear) 8000 COVID-19 patients Mortality, recovered
0.962 AUC
0.92 sensitivity
0.91 specificity
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Figure 1: Number of records per class label.
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vectors are independent with the previously selected vectors.
'is results in the collection of trees represented by h(x).'e
generalization error of decision tree is represented as
follows:

GE � PX,Y (margin fuc(X,Y) < 0), (11)

where PX,Y is the probability of set of the attributes tomap to
class label Y.
'e parameters used in our study for random forest

classifier are shown in Table 5.

2.3.3. Extreme Gradient Boosting. Extreme gradient
boosting (XGB) algorithm is an ensemble-based classifi-
cation and regression technique. It is the regularized form
of the gradient boosting algorithm. Gradient boosting al-
gorithm due to the data imbalance sometimes suffers from
model overfitting. However, in the XGB algorithm, the
regularization parameter reduces the risk the model
overfitting. Like random forest, XGB is also a tree-based
ensemble classifier. 'e boosting data resampling method
attempts to enhance the model accuracy by minimizing the
misclassification error [19]. It is an iterative approach. 'e
records that were not successfully predicted in the previous
iteration were used in the next iteration for training the
model. 'e model will repeat the process until the model
achieved an optimal result.
'e regularization parameter reduces the variance in the

model by increasing the weights of the misclassified in-
stances. 'e increase in weight decreases the model
underfitting. However, for reducing the bias of the model,
penalty regularization was used to control the model
overfitting without leading to a high misclassification rate.
'e XGB algorithm is the combination of several parame-
ters. 'e optimal combination of parameters enhances the
performance of the model. For parameter optimization, the
gird search technique was used. 'e parameter used in the
XGB algorithm is represented in Table 6.

2.4. Performance Evaluation. 'e performance of the model
was evaluated using the standard evaluation measures such
as accuracy, precision, sensitivity, specificity, and F-score,
respectively. Area under curve and receiver operating
characteristic (ROC) were also used for comparing the
classifiers. It is one of the widely used tests for exploring the
trade-off between true-positive (sensitivity) and false-posi-
tive rate (specificity) for the diagnostic test.

accuracy �
TP + TN

TP + TN + FP + FN
, (12)

where the accuracy of the model represents the proportion
of the test records that is correctly classified.

Sensitivity �
TP

TP + FN
. (13)

Sensitivity is the proportion of the positive class labels
that is correctly predicted. It is also known as the true-
positive rate (TPR) or positive-predicted value (PPV).

Specificity �
TN

TN + FP
. (14)

Sensitivity also known as the true-negative rate (TNR) or
negative-predicted value (NPV) is the proportion of the
negative class labels that are correctly predicted as negative.

F − score �
2 × precision × recall

precision + recall
, (15)

where F-score is the harmonic mean of precision and recall.

3. Experimental Setup and Results

Data imbalance is one of the challenges in data analysis
and usually leads to model overfitting. 'e dataset in this
study also suffers from data imbalance as presented in
Figure 1. 'e number of records for the survived category
is 243 and for death category is 44. K-nearest neighbor-
(KNN-) based synthetic minority oversampling

Table 2: Description of the dataset.

No. Feature name UOM Data type Missing values

1 Age Years Numeric 0
2 Gender Male/female Nominal 0
3 BodyTemp (1&2) Celsius (°C) Numeric 1%–11%
4 Pulse rate (1&2) Beats per minute (BPM) Numeric 7%–5%
5 Resp (1&2) Breaths per minute (BPM) Numeric 3%–3%
6 BP_Sys (1&2) mm Hg Numeric 10%–7%
7 BP_Dsys (1&2) mm Hg Numeric 5%–5%
8 OX (1&2) mm Hg Numeric 4%–5%
9 Fever Yes/no Nominal 0
10 SOB Yes/no Nominal 0
11 Cough Yes/no Nominal 0
12 Symptoms_Others — Nominal 0
13 chr_dm Yes/no Nominal 0
14 chr_htn Yes/no Nominal 0
15 chr_cardiac Yes/no Nominal 0
16 chr_dlp Yes/no Nominal 0
17 Chr_ckd Yes/no Nominal 0
18 Chr disease_others — Nominal 0
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Table 3: Characteristics of the samples in the dataset.

Feature type Feature name Survived (n� 243) Death (n� 44)

Demographic

Age (years) 47.28± 15.84 59.3± 14.4
Gender

Male 159 (65) 38 (86)
Female 86 (35) 8 (18)

Preliminary investigation

BodyTemp 1 37.1± 4.25 33.9± 10.7
Pulse rate-1 94.6± 21.6 93.4± 31.1
Resp-1 94.6± 21.6 93.4± 31.08
BP_Sys-1 126.45± 21.52 128.7± 41.27
BP_Dsys1 78.4± 14.9 75.5± 26.6
OX1 93.2± 11.9 77.0± 24.8
Temp2 14.8± 230.9 0± 17.6
Pulse2 77.1± 28.9 68.5± 47.7
Resp2 17.8± 6.6 17.8± 6.6
BP_Sys2 109.7± 38.9 73.4± 55.8
BP_Dsys2 68.0± 24.3 45.2± 35.1
OX2 68.0± 24.4 45.2± 35.1

Symptoms

Fever
Yes 144 (59) 22 (50)
No 99 (40) 22 (50)

SOB
Yes 111 (45) 31 (70)
No 134 (55) 13 (30)

Cough
Yes 131 (53) 20 (45)
No 114 (46) 24 (55)

Other symptoms
Fatigue_weakness 16 (7) 4 (9)
Sore_throat 10 (4) 3 (7)
Pain 17 (7) 2 (5)
Diar 12 (5) 1 (2)

Anorexia 5 (2) 3 (7)
Dizz 9 (4) 1 (2)

Headache 11 (5) 3 (7)
Nausea 13 (5) 2 (5)
Vomit 8 (3) 1 (2)
Dyspnea 13 (5) 2 (5)
Runny_nose 6 (2) 1 (2)
Chill 5 (2) 3 (7)
No 118 (49) 32 (32)
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technique (SMOTE) was used to alleviate the data im-
balance. SMOTE is an algorithm developed by Chawla
et al. [20] to overcome the issue of imbalanced datasets in
machine learning. In the SMOTE algorithm, the k-
nearest neighbor (KNN) is used to calculate the Eu-
clidean distance between the minority class instances to
generate new minority class samples in the neighbor-
hood. For A is the minority class with x instances, A � {x1,
x2, . . . xn} and k-nearest neighbors of x1 � {x6, x7, . . . xk}
and then A1 of x1 � {x7, x4, . . . xn}, where xk€A1 (k � 1, 2,
3, . . ., N). x′ � x + rand(0, 1)∗ |x − xk|, where x′ is the
generated point and rand (0, 1) represents the random
number between 0 and 1.
'e models were implemented in Python language using

Jupyter notebook (6.1.4) and sklearn library (0.23.2). For
partitioning the data, 10-fold cross-validation technique was
used. Experiments were performed on the original dataset
and the SMOTE-transformed dataset. Several feature sets
were produced using Extratree classifiers with feature im-
portance technique. 'e set of features was used in the
experiments such as all features (25), top 20 features, top 15
features, and top 10 features, respectively. Figure 2 repre-
sents the feature ranking, using feature importance, for 20
features.

Table 3: Continued.

Feature type Feature name Survived (n� 243) Death (n� 44)

Chronic disease

chr_dm
Yes 73 (30) 23 (52)
No 170 (69.9) 21 (48)

chr_htn
Yes 67 (27) 18 (41)
No 176 (72) 26 (59)

chr_cardic
Yes 24 (9.8) 9 (20)
No 219 (90) 35 (80)

chr_dlp
Yes 25 (10.2) 3 (7)
No 218 (89.7) 41 (93)

Chr_CKD
Yes 16 (6.5) 5 (11)
No 227 (93.4) 39 (39)

Other_ChrDis
Epilepsy 4 (2) 1 (2)
Stroke 4 (2) 3 (7)

Respiratory 5 (2) 1 (2)
Bph 3 (1) 2 (5)
Sle 4 (2) 1 (2)

Obesity 2 (1) 2 (5)
Hypothyroidism 5 (2) 1 (2)

Sickle 4 (2) 1 (2)
Anemia 4 (2) 1 (2)
Asthma 2 (1) 3 (7)
Bone 4 (2) 2 (5)
Ba 4 (2) 1 (2)

Dyslipidemia 3 (1) 2 (5)
Sinusitis 3 (1) 1 (2)
Dpl 3 (1) 1 (2)
No 189 (78) 25 (57)

Table 5: Random forest parameters using grid search optimization.

Parameter name Value

Random_state 1
N_estimators 100
Max_depth 15
Min_samples_split 5
Min_samples_leaf 1

Table 6: XGB parameters using grid search optimization.

Parameter name Value

learning_rate 0.05
max_depth 3
max_features 0.5
random_state 42

Table 4: Logistic regression parameters using grid search
optimization.

Parameter name Value

Penalty L2
Random_state 777
Max_iter 10000
Tol 10
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'e following tables present the performance of the
classifiers in terms of accuracy, sensitivity, specificity, and F-
score. 'e results showed that random forest outperformed
the other models with SMOTE data. Table 7 presents the
performance of the classifiers using all features. Table 8
presents the outcome using the top 20 features, Table 9
presents the results with the top 15 features, and Table 10
presents the comparison with the top 10 features, respectively.
Experimental results revealed that random forest out-

performed the other classifiers using the top 20 features with
SMOTE data with the accuracy of 0.952, sensitivity of 0.949,
specificity of 0.956, and F-score of 0.955, respectively.
Similarly, the AUC-ROC curves for logistic regression,
random forest, and extreme gradient boosting are shown in
Figures 3, 4, and 5, respectively, using the top 20 features.
Random forest achieved the AUC of 0.99. However, the
random forest achieved the highest specificity of 1 using the
top 15 features.
Logistic regression, on the other hand, underperformed

over other classifiers in the top 20, 15, and 10 features using
SMOTE data with the accuracy of 0.86, 0.82, and 0.84, re-
spectively. 'e AUC-ROC curve shows that LR achieved
0.91. However, LR in our study performed better than an-
other study conducted by Yao et al. [13]. 'ey used the LR
model to identify the COVID-19 patients’ severity and the
results achieved an AUC-ROC of 0.881.
A number of studies focused on prediction of severity

or mortality have noted that the age is one of the top
features that helps to predict the severity of cases [10–13].
In our study, age was ranked among top 10 features across
all 25 features used in our prediction model. In addition,
our study outperformed other studies that are covered in
the literature review with an accuracy of 0.952 and AUC-
ROC curve of 0.99.

'is study covers the prediction of the survival and the
death of COVID-19-positive patients using demographic,
vital signs, and chronic diseases, respectively. 'e overall
result demonstrates the significance of the proposed study
with the accuracy of 0.95 and the AUC value of 0.99 using 20
features. 'e study was performed using a real dataset from
the King Fahad University Hospital. Moreover, the dataset
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Figure 2: Correlation of top 20 features in the dataset.

Table 7: Performance comparison of classifiers using all features
(25) using original and SMOTE data.

Classifier
Sampling
technique

Accuracy Sensitivity Specificity
F-
score

LR

Without
SMOTE

0.874 0.538 0.932 0.56

With
SMOTE

0.753 0.766 0.739 0.766

RF

Without
SMOTE

0.908 0.75 0.924 0.6

With
SMOTE

0.938 0.947 0.929 0.941

XGB

Without
SMOTE

0.885 0.6 0.922 0.545

With
SMOTE

0.925 0.923 0.926 0.929

Table 8: Performance comparison of classifiers using top 20 fea-
tures using original and SMOTE data.

Classifier
Sampling
technique

Accuracy Sensitivity Specificity
F-
score

LR

Without
SMOTE

0.874 0.538 0.932 0.56

With
SMOTE

0.863 0.82 0.93 0.88

RF

Without
SMOTE

0.908 0.7 0.935 0.636

With
SMOTE

0.952 0.949 0.956 0.955

XGB

Without
SMOTE

0.862 0.5 0.909 0.455

With
SMOTE

0.897 0.878 0.922 0.906

Table 9: Performance comparison of classifiers using top 15 fea-
tures using original and SMOTE data.

Classifier
Sampling
technique

Accuracy Sensitivity Specificity
F-
score

LR

Without
SMOTE

0.874 0.583 0.932 0.56

With
SMOTE

0.822 0.793 0.864 0.841

RF

Without
SMOTE

0.908 0.7 0.935 0.636

With
SMOTE

0.911 0.856 1 0.922

XGB

Without
SMOTE

0.851 0.455 0.908 0.435

With
SMOTE

0.932 0.894 0.984 0.938
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contains a very small number of missing data. Despite the
several advantages, the study can be further improved by
increasing the number of patients. Furthermore, the study
needs to incorporate other laboratory tests like lactate de-
hydrogenase (LDH), neutrophils, lymphocyte, and highly

sensitive C-reactive protein. Several identified significant
features from the literatures need to be included for pre-
dicting the mortality risk in COVID-19 patients.

4. Conclusion

'eCOVID-19 pandemic outbreak has devastated the whole
world and lead to a state of worldwide health emergency.
Several efforts have been performed to combat this pan-
demic. In this study, we aimed to explore the impact of vital
signs, chronic disease, preliminary clinical data, and de-
mographic features to predict the mortality and survival of
the COVID-19 patients using supervised machine learning
algorithms. Due to the reducedmortality risk of the COVID-
19 cases, the dataset suffers from data imbalance. SMOTE
technique was used to alleviate the data imbalance. 'e
results showed that random forest outperformed the other
models using 10-fold cross-validation. Grid search tech-
nique was applied for parameter optimization. 'e study
achieved the accuracy of 0.952 and AUC of 0.99. Despite the
significant outcome achieved from this proposed model,
there is still a need for improvement. 'e models need to be
validated usingmultiple datasets. Furthermore, in the future,
we will incorporate and explore the impact of other clinical
features and laboratory results that were identified as sig-
nificant in the previous studies.

Data Availability
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Figure 4: ROC curves of random forest using top 20 features.
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Figure 5: ROC curves of extreme gradient boosting using top 20
features.

Table 10: Performance comparison of classifiers using top 10
features using original and SMOTE data.

Classifier
Sampling
technique

Accuracy Sensitivity Specificity
F-
score

LR

Without
SMOTE

0.862 0.5 0.909 0.45

With
SMOTE

0.849 0.867 0.831 0.855

RF

Without
SMOTE

0.89 0.63 0.934 0.609

With
SMOTE

0.925 0.884 0.983 0.933

XGB

Without
SMOTE

0.851 0.455 0.908 0.43

With
SMOTE

0.89 0.843 0.965 0.904
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Figure 3: ROC curves of logistic regression using top 20 features.
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