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In this research, multiexpression programming (MEP) has been employed to model the compressive strength, splitting tensile
strength, and flexural strength of waste sugarcane bagasse ash (SCBA) concrete. Particle swarm optimization (PSO) algorithm was
used to fine-tune the hyperparameter of the proposed MEP. ,e formulation of SCBA concrete was correlated with five input
parameters. To train and test the proposed model, a large number of data were collected from the published literature. Afterward,
waste SCBA was collected, processed, and characterized for partial replacement of cement in concrete. Concrete specimens with
varying proportion of SCBA were prepared in the laboratory, and results were used for model validation. ,e performance of the
developed models was then evaluated by statistical criteria and error assessment tests. ,e result shows that the performance of
MEP with PSO algorithm significantly enhanced its accuracy.,e essential input variables affecting the output were revealed, and
the parametric analysis confirms that the models are accurate and have captured the essential properties of SCBA. Finally, the
cross validation ensured the generalized capacity and robustness of the models. Hence, the adopted approach, i.e., MEP-based
modeling with PSO, could be an effective tool for accurate modeling of the concrete properties, thus directly contributing to the
construction sector by consuming waste and protecting the environment.

1. Introduction

,e construction industry consumes one-third of the
world’s energy and is a significant contributor of greenhouse
gas emission to the environment [1]. Concrete is the most
commonly used construction material. A single ton of
concrete releases about 0.13 ton of carbon dioxide [2, 3]. In
order to move towards sustainability, the concept of green
concrete is getting popular to reduce the adverse effects of
concrete. Green concrete is produced by replacing the

conventional cementitious material with some waste as
replacement of cement. Commonly used materials are fly
ash, waste foundry sand, blast furnace slag, glass, meta-
kaolin, rice husk ash, recycled aggregate, and bagasse ash [4].
Utilization of such materials is considered as low-carbon
substitute to conventional construction materials. Sugarcane
bagasse, which is an agricultural waste obtained after
crushing and extraction, is used as fuel in the sugarcane
industry [5]. Each ton of sugarcane generates approximately
26 percent of bagasse and 0.62 percent of residual ash [6].
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,e obtained ash is disposed by dumping in landfills and
poses serious environmental issues [7]. ,erefore, alterna-
tive and eco-friendly utilization methods of sugarcane ba-
gasse ash (SCBA) are being discovered in the construction
sector. Various research studies have concluded the viable
use of SCBA in concrete as a cement replacement with a
significant increase in mechanical properties of concrete.
Chusilp et al. [8] reported higher compressive strength and
lower permeability when concrete contained 20% SCBA by
weight of cement. Sobuz [9] reported that maximum
strength of SCBA concrete was obtained when cement was
replaced with 10% of SCBA. Jagadesh et al. [10] reported that
the strength of concrete made with 30% raw SCBA as a
cement replacement reduced by almost 50%. ,e same
authors reported about 28% increase in the strength of
concrete when cement was replaced with 10% processed
SCBA. ,e increase in strength was attributed to finer silica
which reacted with calcium hydroxide to form additional
CSH. Also, the finer SCBA particles filled voids and in-
creased the packing density, which in turn increased the
compressive strength of concrete. Bahurudeen et al. [11]
reported higher strength of SCBA concrete as compared to
normal concrete. Maximum compressive strength was
achieved when cement was replaced with 10% SCBA.
Strength reduction was linked with the dilution effect of the
matrix caused by higher percentage replacement. Several
researchers have also concluded that the utilization of SCBA
also results in improved durability properties such as
chloride penetration, chloride conductivity, water sorptivity,
and water permeability [8, 12–14]. ,e above discussion
highlights the point that SCBA concrete behaves differently
at low and high replacement levels. ,is behavior could be
attributed to several aspects, i.e., composition and dosage of
SCBA, mix proportions, and the properties and type of the
concrete constituents. ,erefore, it is essential to correlate
and figure out the factors influencing the mechanical
properties of SCBA concrete, which, in turn, will have
profound effect on the construction industry.

In order to address this issue, the unique features of
artificial intelligence (AI) techniques such as random forest
(RF), support vector machine (SVM), artificial neural net-
work (ANN), gene expression programming (GEP), M5P,
support vector regression (SVR), and convolution neural
network (CNN) have been used to develop, correlate, and
find the factors influencing the mechanical properties
[15–19]. Zhang et al. [20] developed the RF model for the
investigation of the hardened properties of synthetic-sand
concrete. From results, it was found that RF showed reduced
performance in comparison to other models. In a study
conducted by Sun et al. [21], the authors utilized RF
combined with an optimization algorithm for predicting the
uniaxial compressive strength of rubberized concrete. ,e
output of the study reported good accuracy of the model
with a high correlation. Huang et al. [22] used the RF model
along with beetle antenna search algorithm to predict the
permeability of pervious concrete. ,e result of the study
suggested improved performance of RF optimized model.
ANN algorithm was used to model the compressive strength
of lightweight concrete, foamed concrete, silica fume

concrete, and high-performance concrete and elastic
modulus of recycled aggregate concrete [17, 23–28]. A good
correlation was observed in these studies for estimating the
underlying concrete properties. However, the ANN is
considered as black box algorithm, since it does not consider
information or physical phenomena of the related problem
[29]. Moreover, due to lack of parametric studies, the ANN
models may not perform well on unseen datasets [30].
Recently, the advanced GEP technique was applied to
predict the mechanical properties of SCBA and waste
foundry sand concrete. Sensitivity and parametric analyses
were performed to assess the performance of the models
developed for mechanical properties [4, 31]. In these studies,
the results of the comparative study revealed superior
performance of GEP over regression methods. However, the
GEP was identified with certain limitations since it fails to
consider a few deviating datasets for model development,
thus reducing its range of applicability [4]. Such deviating
datasets should be removed from both training and testing
phases to improve the model performance. Furthermore, the
GEP encodes only a single chromosome and is suitable for
simple relationship of input and output variables [32].

Considering the above limitations of certain AI tech-
niques, an advanced algorithm, i.e., multiexpression pro-
gramming with particle swarm optimization (PSO-MEP),
has been adopted to model the mechanical properties of
SCBA concrete. MEP with optimization technique (PSO)
has been rarely used in civil engineering field despite its
distinguished features. ,e mechanical properties of SCBA
concrete in terms of compressive strength (CS), splitting
tensile strength (ST), and flexural strength (FS) were
modeled using PSO-MEP to solve complex relationship. A
large dataset was collected from the literature for model
training and testing. ,e validity of the developed models
was verified utilizing the results obtained from laboratory
testing. Furthermore, the variable importance, parametric
study, and cross validation were used to assess the ro-
bustness and accuracy of the developed models.

2. Methods and Datasets

2.1. Multiexpression Programming. A linear variant of
machine learning, i.e., multiexpression programming
(MEP), has been proposed recently.,e individual entities
can be represented as a variable length in MEP [32, 33].
,e linear variants permit MEP to extricate the genotype
and phenotype [34]. MEP is considered expedient over
other techniques due to linear chromosomes and
encoding multiple solutions in an individual chromo-
some.,is unique feature allows to search in a wider space
to gather the best possible solution. In comparison to
genetic programming, the MEP applies simple decoding
procedures and is given particular importance in case of
unknown complexity of targeted expression [29]. MEP
can handle exceptions such as invalid expressions, divide
by zero, etc. MEP can handle exceptions such as invalid
expressions and divide by zero and it transforms into
arbitrary terminal symbol so that the process continues.
,is produces a margin in structure of chromosome
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during evaluation process [32]. ,e various steps involved
in MEP process are shown in Figure 1. ,eMEP algorithm
is similar to C language and pascal compiler. ,e outcome
of the MEP process is a combination of mathematical
operators or variables in a linear string of instruction form
[35].

2.2. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a computational technique mainly used for
problem optimization to enhance a solution by iterative
process given a set of quality measures. ,is technique was
developed by Kennedy and Eberhart based on motion of
bird flocking and schooling fish [36]. In PSO, a process is
initiated with a population of arbitrary solutions and the
generations are updated to search for optimal solution. ,is
technique is widely used for problem optimization such as
forecasting the compressive strength, image contrast en-
hancement, and evaluating energy performance of building
[37, 38]. In the present study, PSO was applied to fine-tune
the hyperparameter of MEP and improve the modeling
accuracy.

2.3. Modeling Database. A detailed dataset of different
properties of SCBA concrete was collected from the pub-
lished literature [8–11, 13, 14, 39–60]. ,e collected datasets
contained information about SCBA concrete at 28 days.
Some of the aforementioned research studies used concrete
cubes to determine the compressive strength of SCBA
concrete. In order to get homogenous data, the cube strength
was converted to cylinder strength according to the method
suggested by Elwell and Fu [61]. ,e collected literature data
were statistically analyzed to get the most influential pa-
rameters affecting properties of SCBA concrete. ,e sta-
tistical parameters of different variables used inmodeling are
given in Table 1 [62]. An extensive study of design codes
revealed that different models are available correlating the
mechanical properties of normal concrete with compressive
strength [63–67]. ,erefore, the water to cementitious ratio
(W/C), proportions of bagasse ash (SCBA%), fine aggregate
content (FA), cement content (CC), and quantity of coarse
aggregate (CA) are chosen as input for prediction of SCBA
concrete mechanical properties. ,e formulation of com-
pressive strength (CS), splitting tensile strength (ST), and
flexural strength (FS) of SCBA concrete is considered to be a
function of the following variables:

CS, ST, FS � f
W

C
, SCBA%,CA,CC, FA( ). (1)

2.4. Modeling Parameters for MEP. For developing a gen-
eralized relationship, several fitting parameters are required
for MEP. ,e chosen parameters for MEP modeling are
presented in Table 2. Basic mathematical operators were
considered to get simple expressions. ,e trial and error
method was adopted to get the fitting parameters [68]. ,e
population size was used to specify the number of programs
required in the population. High population can lead to

complex and long convergence time and often causes
overfitting problem beyond specified limit. Moreover, an
algorithm run with a large number of generations could lead
to a model with minimum error. Several combinations of

Start

Random creation of chromosome
population 

Selection of two parents
(binary procedures)

Generation of offsprings

Estimate fitness

End

Terminate 
No?

Yes?

Recombination

Mutation

Figure 1: Schematic diagram of MEP technique.

Table 1: Statistics of the input parameters.

Parameter W/C CC SCBA% FA CA

Unit — kg/m3 % kg/m3 kg/m3

Range 0.3 444 50 614 772
Min 0.3 112 0 239 477
Max 0.6 555 50 853 1249
Mean 0.47 336.5 13.98 603.5 884.6
SD 0.074 98.5 10.46 232.1 392.3

Table 2: Optimum parameter setting for MEP.

Parameters Setting

Number of subpopulation 50
Size of subpopulation 250
Code length 40
Crossover probability 0.9
Mathematical operators +, −, ×, ÷
Mutation probability 0.01
Tournament size 4
Operators 0.5
Variables 0.5
Number of generations 1000
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parameters were initiated and the best possible grouping was
selected based on the model performance.

2.5. Performance Evaluation. ,e performance of the de-
veloped PSO-MEPmodel was assessed by measuring various
statistical indicators including correlation coefficient (R),
root mean squared error (RMSE), Nash–Sutcliffe efficiency
(NSE), mean absolute error (MAE), relative root mean
squared error (RRMSE), relative squared error (RSE), and
performance index (ρ). Moreover, another measure to re-
duce the model overfitting is to select the best model by
minimizing the objective function (OF) as suggested by
Gandomi et al. and Azim [34, 69]. ,e same approach has
been applied in this study, and OF is termed as fitness
function. ,e mathematical expressions for the statistical
indicators are shown below from equations (2) to (9). ,e
high values of R and NSE and low values of RMSE and MAE
indicate better performance. ,e indicator R quantifies the
linear relationship between input and output [27], and R
value more than 0.8 signifies excellent correlation among
predicted and actual data [70]. However, it alone cannot be
considered to judge the efficiency of a model. Despotovic
et al. [71] highlighted that a model can be considered ex-
cellent if the value of RRMSE is between 0 and 0.10 and good
if the values are between 0.11 and 0.20. ,e minimum and
maximum value of NSE is negative infinity and 1, respec-
tively, with 1 showing the best output. ,e values of ρ and
OF range from 0 to positive infinity with a value near to zero
representing a goodmodel. It can be noted that the OF taken
into account the effect of RRMSE, R, and relative percentage
of data in different sets. Hence, low OF value shows superior
performance of a model.

RMSE �

�������������∑ni�1 Pi −Mi( )2
N

√
, (2)

NSE � 1 −
∑ni�1 Mi − Pi( )2
∑ni�1 Mi − Mi( )2, (3)

R �
∑ni�1 Mi −Mi( ) Pi − Pi( )���������������������������∑ni�1 Mi − Mi( )2∑ni�1 Pi − Pi( )2√ , (4)

MAE �
1

n
∑n
i�1

Pi −Mi

∣∣∣∣ ∣∣∣∣, (5)

RSE �
∑ni�1 Pi −Mi( )2
∑ni�1 Mi − Mi( )2, (6)

RRMSE �
1

|M|

�������������∑ni�1 Pi −Mi( )2
N

√
, (7)

ρ �
RRMSE

1 + R
, (8)

OF �
nT − nTE

n
( )ρT + 2

nTE
n

( )ρTE, (9)

where n, Pi,Mi, Pi, andMi show the number of data points,
predicted data, measured data, mean of predicted data, and
mean of measured data, respectively. T and TE represent the
training and testing datasets, respectively.

2.6. Hyperparameter Tuning and K-Fold Cross Validation.
Fine-tuning of hyperparameters is a major concern in
machine learning-based modeling. Various researchers used
different optimization techniques for hyperparameter tun-
ing such as beetle antennae search [22, 72, 73] and grid
search method [74]. In our study, particle swarm optimi-
zation (PSO) was employed for hyperparameter tuning to
improve the accuracy of the model. Firstly, the dataset was
divided into 70% and 30% for model training and testing,
respectively. ,en k-fold cross validation was applied to
assess the hyperparameter tuning process by PSO.,e k-fold
method divides the actual data to k subclasses. Moreover, the
efficiency of the 10-fold cross validation method is reported
in the literature [75, 76]. Among all the ten subsets, each
subset was used for validation and the same method was
repeated for all the remaining subsets. Consequently, the
optimized MEP model and the associated optimized
hyperparameters were obtained after 10 rounds. After get-
ting the optimum structure of MEP by PSO, the result of
training and testing dataset was evaluated employing sta-
tistical indicators. Finally, 10-fold cross validation was used
again to ensure the generalized capability of PSO-MEP and
output was expressed in terms of mean accuracy. Figure 2
shows the hyperparameter tuning process for MEP with the
help of PSO for both training and testing.

3. Experimental Investigation

3.1. SCBA Processing. ,e sugarcane bagasse ash (SCBA),
resulting from burning of bagasse (as a fuel), was collected
from a sugar industry located in Malakand, Pakistan. It has
been reported in the literature that the presence of fibrous
and unburnt content in raw bagasse ash decreases the
pozzolanic activity and also elevates the loss on ignition.
Removal of such particles, proper characterization, and
grinding up to cement fineness significantly increase its
pozzolanic activity [11, 77]. In our study, the collected SCBA
was sieved from #200 sieve to remove undesirable particles
and subsequently grinded to reduce the particle size.
Grinding was carried out in ball mill machine with ceramic
balls as grindingmedia.,e grinding media to SCBA ratio of
5 by weight was kept constant, and the machine was op-
erated at 100 rpm [78]. Different SCBA samples were ob-
tained at a grinding duration of 15, 30, 45, and 60 minutes.
Blaine fineness values were determined according to ASTM
C204 in order to obtain the effect of grinding on particle size.

,e chemical composition of grounded SCBA was
evaluated through X-ray fluorescence (XRF). ,e compo-
sition is given in Table 3. It can be inferred from XRF results
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that the quantity of silica, alumina, and iron oxide is above
70%, meeting the chemical requirement of a pozzolan
according to ASTM C618-05 standard.

Scanning electron micrographs of SCBA are shown in
Figure 3. Images were taken at different magnification
ranging from X500 to X5000. In the micrographs, the
heterogeneous nature of SCBA is prominent. ,e SCBA
exhibited various shapes such as elongated, needle, flat, oval,
and irregular. According to available literature [79], the
irregular shape particles are mainly rich in silica. ,e size of
needle and oval shape particles is about 50 μm. Furthermore,
voids over the surface ranging from 5 μm to 10 μm are visible
in the form of black spots. Overall, the observed size of
different particles ranges from 5 μm to 50 μm.

3.2. Mix Proportions and Properties of SCBA Concrete.
Experimental testing of SCBA concrete was conducted to
check the performance of the model required for validation
purpose. Concrete specimens were casted at room tem-
perature of 25°C, and comparison of fresh and hardened
properties was made between concrete made with bagasse
ash (BC) and control specimens (CM). Different dosages of
SCBA, i.e., 0–40%, were incorporated in concrete as cement
replacement. ,e desired target strength was formulated
based on published data as adamant variation was observed.
,e detailed mix design with the formulation is depicted in
Table 4.

For the validation of the PSO-MEP model, concrete
specimens, i.e., cylinders and 4”× 4”× 20″ beams, were
prepared with different proportions of SCBA and tested for
compressive strength (CS), splitting tensile strength (ST),
and flexural strength (FS), respectively, at the curing age of
28 days. ASTM standards C39, C496, and C293 were,

respectively, followed for compressive, splitting tensile, and
flexural strength of the CM and BC.

4. Results and Discussion

4.1. Mechanical Properties of SCBA Concrete. ,e results of
mechanical properties, i.e., compressive strength (CS),
splitting tensile strength (ST), and flexural strength (FS), of
SCBA concrete were determined in laboratory by casting
concrete cylinders and beams with varying proportions of
SCBA (0% to 40%), as presented in Table 5. It can be ob-
served that strength increased up to 10% SCBA and then
consistently decreased at higher SCBA level. ,e maximum
strength gained is at 10% replacement. ,e strength gain at
10% SCBA may be related to the pozzolanic reaction
resulting in additional calcium silicate hydrate (CSH). For
higher replacement level, the decrease in strength was found
to be 6.5%, 17.3%, and 30.3% for 20BC, 30BC, and 40BC,
respectively. ,is decrease in strength may be attributed to
unavailability of the adequate amount of calcium hydroxide.

Similar results were observed for splitting tensile
strength and flexural strength as illustrated in Table 5. For
10% and 20% replacement of SCBA, the increase in tensile
strength as compared to control concrete was 25.3% and
15.8%, respectively. ,is shows that the maximum tensile
strength was attained at 10% addition of SCBA as cement
replacement. For 30% and 40% SCBA replacement level, the
tensile strength decreased by 7.9% and 23.8%, respectively,
as compared to CM. For the case of flexural strength, the
maximum strength was also achieved at 10% SCBA. ,e
flexural strength at higher replacement level (20%, 30%, and
40% SCBA) reduced by 15.5%, 28.8%, and 42.5%, respec-
tively. According to available literature, the increased tensile
and flexural strength at 10% SCBA may be due to the
microfibrous nature of SCBA, which is related with CSH
formation, and also due to the formation of aluminates,
resulting in needle-like structure [80, 81].,e interlocking of
these needles takes place between hydrated paste and may
directly enhance the tensile and flexural strength. In short,
the enhanced properties may be due to formation of more
hydrated products, less porous structure of concrete made
with SCBA, and the enhanced interfacial transition zone
(ITZ) [80, 82, 83].

4.2. Formulation of Mechanical Properties with PSO-MEP.
,e results obtained from PSO-MEP for compressive
strength (CS), splitting tensile strength (ST), and flexural
strength (FS) are interpreted to get the empirical mathe-
matical expressions for the prediction of aforementioned

Dataset

PSOCross validationTraining set (70%)

Testing set (30%)

MEP

R and RMSE 

R and RMSE 

Training results

Testing results

Cross validation

Figure 2: Hyperparameter tuning by PSO.

Table 3: XRF results of SCBA.

Composition Percentage

SiO2 66.28
Al2O3 8.36
Fe2O3 1.39
CaO 9.06
MgO 5.56
P2O5 2.46
K2O 3.52
Na2O 1.30
TiO2 0.19
MnO 0.02
LOI 1.67
Moisture content 1.15
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properties based on five input variables. ,e derived
equations are shown as equations (10), (11), and (12) for CS,
ST, and FS, respectively. A comparative graph of experi-
mental and predicted CS is presented in Figure 4 for
training, testing, and validation. ,e expressions for re-
gression lines are also shown. For an ideal situation, it is

known that the slope of the line should be nearly equal to 1.
It can be deduced from Figure 4 that the developed PSO-
MEP model considered the effect of input variables and
retains a strong correlation between experimental and
predicted data as evident from the slope, i.e., 0.8951, 0.9315,
and 0.9014 for training, testing, and validation, respectively.

CS (MPa) � 1.1x1 + 1.1x2( ) + 8x20 × x4
x3 − x4

( ) 16x30 1.1x1 + 1.1x2( ) + 4 5x1 − x3( )
1.1x1 + 1.1x2

( )2

, (10)

ST(MPa) � x0 +
x20

x0 − 0.375
( ) − x0 − 0.375

x0 − x1( ) + x0/x0 − 0.375( )( ) + x0 − 0.375( )2
x20 − 0.375( )2 −

x0 × x
2
1

x2
( ) + x20 × x3

x4 − 0.375
, (11)

FS(MPa) �
2x3x0

x4 + 3x2 + 0.97( )2 2x1 − 89x0( )  +
2x0

x1 − 89x0( )/ 100x0 − 48.5( )( )( ), (12)

Figure 3: SEM images of SCBA at different magnifications.

Table 4: Mix Proportions of the concrete mix.

Mix design Cement (kg/m3) Coarse aggregate (kg/m3) SCBA (kg/m3) W/C Fine aggregate (kg/m3) Water (kg/m3)

0BC (CM) 366 1013.5 0 0.5 742.3 183
10BC 329.4 1013.5 36.6 0.5 742.3 183
20BC 292.8 1013.5 73.2 0.5 742.3 183
30BC 256.2 1013.5 109.8 0.5 742.3 183
40BC 219.6 1013.5 146.4 0.5 742.3 183
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where

x0 �
w

c
,

x1 � SCBA%

x2 � CC,

x3 � FA,

x4 � CA.

(13)

A similar comparison has been drawn for the tensile
strength (ST) output as shown in Figure 5. It can be seen that
the model exhibited an excellent correlation among ex-
perimental and predicted data to estimate ST.,e respective
slopes of the regression line are close to ideal fit, i.e., 0.9351,

0.8903, and 0.9273 for training, testing, and validation.
Similar to CS, the model for ST performs exceptionally well
on training dataset revealing that the issue of overfitting by
the model has been reduced to a larger extent. Moreover, the
performance and accuracy of a model depend on the
number of data points incorporated in the model [84]. In
this study, 110 data points have been selected to model ST;
therefore, an accurate model with minimum error has been
achieved.

,e PSO-MEP model results for flexural strength (FS)
are graphically presented in Figure 6. Duringmodel training,
testing, and validation, the slope of the regression line was
observed to be 0.9494, 0.9026, and 0.9332. Compared with
the models for CS and ST, an excellent estimate is observed
for experimental and predicted data point as illustrated in
Figure 6. ,e model performs exceptionally well for training
and testing data.

4.3. Model Evaluation by Statistical Measures. ,e reliability
of a model depends on the amount of data used for model
development. ,e literature survey recommended that the
ratio of number of data points to the number of input
variables for both training and testing should be greater than
5 [85]. For model training, the aforementioned ratio is 11.8,
13.8, and 8.2 for CS, ST, and FS, respectively. For model
testing, the values are 6.2, 6.6, and 5.7 for CS, ST, and FS,
respectively. ,e performance of the developed models was
evaluated by various statistical criteria such as RMSE, NSE,
RSE, RRMSE, OF, ρ, MAE, and R. ,e values of these in-
dicators for CS, ST, and FS are given in Table 6 for training,
testing, and validation. It can be observed from Table 6 that
models exhibit a strong correlation as evident by the R value
which is 0.91, 0.90, and 0.91 for training and 0.94, 0.92, and
0.91 for testing of CS, ST, and FS, respectively. ,e maxi-
mum and minimum values of NSE are 0.89 and 0.87 for CS,
0.91 and 0.85 for ST, and 0.86 and 0.87 for FS models,
respectively. ,e values of RMSE and MAE are considerably

Table 5: Results of laboratory-derived mechanical properties of SCBA concrete.

Mix
Compressive strength (MPa)

0BC 10BC 20BC 30BC 40BC

Sample 1 23.5 23.9 21.5 18.5 16.7
Sample 2 22.7 23.6 21.6 19.6 15.6
Sample 3 22.9 23.7 21.2 19.1 16.4
Sample 4 23.4 24.2 22.3 19.5 15.7
Average 23.1 23.8 21.6 19.1 16.1

Splitting tensile strength (MPa)
Sample 1 6.3 7.9 7.2 6.7 5.3
Sample 2 6.2 7.8 7.3 5.6 4.7
Sample 3 6.2 8.1 7.5 5.3 4.4
Sample 4 6.7 8.1 7.5 5.8 4.9
Average 6.3 7.9 7.3 5.8 4.8

Flexural strength (MPa)
Sample 1 4.7 5.1 3.9 3.1 2.8
Sample 2 4.3 5.1 3.8 3.3 2.6
Sample 3 4.6 5.2 3.8 3.3 2.6
Sample 4 4.6 5.3 3.7 3.2 2.5
Average 4.5 5.1 3.8 3.2 2.6
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Figure 4: Comparison of actual and predicted CS.
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low for the three datasets which highlighted the generalized
capability and high accuracy of the models. Based on RMSE,
themodel for STcan be categorized as excellent, as the values
for all the three datasets are 2.43, 2.65, and 3.25, respectively.
It can be deduced from results that for all models, MAE lies
in the good range from 1.45 to 3.98. Furthermore, the OF
values for CS, ST and FS are 0.036, 0.031, and 0.052, re-
spectively. All these values are close to zero, indicating the
accurate performance and further validating that the
overfitting problem has been suitably addressed by the
models. For all the developed models, the RRMSE ranged
from 0.04 to 0.16, thus highlighting the accuracy of the
model in predicting the mechanical properties of SCBA
concrete. In order to infer the absolute error, the data points
are plotted in Figure 7 showing the error among actual and
model simulated data. ,e mean absolute error for CS, ST,
and FS is 2.87, 0.405, and 0.675, respectively. ,e minimum
and maximum absolute errors are 0.1 and 7.76 for CS, 0.08

and 2.15 for ST, and 0.075 and 1.95 for FS, respectively. It is
worth mentioning that almost 80% of results for CS, ST, and
FS have error less than 3, 0.5, and 0.6, respectively.

,e criteria for external validation of the models are
given in Table 7. It has been suggested that regression line
slope, i.e., k and k′, passing through the origin should be
nearly equal to 1 [86]. Roy and Roy [87] reported that criteria
for external predictability of a model are satisfied when the
indicator Rm is greater than 0.5. It can be observed from
Table 7 that all the three models (CS, ST, and FS) satisfy the
conditions for external predictability.

4.4. Model Cross Validation Results. ,e 10-fold cross vali-
dation was applied to evaluate the CS, ST, and FS models, and
the results are graphically shown in Figures 8 and 9 for R and
RMSE, respectively. A variation in the results can be observed at
individual level as depicted in the figure. However, it dem-
onstrated a good mean accuracy. ,e average R value obtained
for CS, ST, and FS is 0.85, 0.89, and 0.85, respectively. In all the
10-fold cross validations, the maximum andminimum R values
of 0.72 and 0.91, respectively, were achieved by ST. Similarly, the
meanRMSE values of 4.54, 3.89, and 4.78were accomplished by
CS, ST, and FS, respectively. For individual subset, the lowest
RMSE, i.e., 1.86, was also attained by ST. Overall, the results
from 10-fold cross validation shows the accurate performance,
generalized capability, and robustness of the PSO-MEPmodels.

4.5. Variable Importance and Parametric Analysis.
Variable importance is a process to find out the most influ-
encing input variables affecting the targeted output. ,e most
sensitive input parameters and their relative contribution to
output were determined, and the results are illustrated in
Figure 10. ,e result shows that cement content is the most
important variable contributing 55% to mechanical properties
of SCBA concrete. Similarly, water-cement ratio and amount of
coarse aggregate turned out to be important variables with
17.15% and 16.97% contribution to the output. ,e result
further reveals that quantity of fine aggregate is the least im-
portant parameter affecting the mechanical properties of SCBA
concrete.

Parametric analysis was performed to assess the varia-
tion of the model output with every single input variable.
,is process is recommended in research studies to deter-
mine the effect of all the physical phenomena and inputs. In
this method, all the variables were kept constant at their
mean values and the variation of the model output is plotted
with a single input variable. ,e same procedure was applied
for the individual input parameter. Figure 11 shows the
parametric analysis results for the developed CS model only
as similar patterns were obtained for other mechanical
properties (ST and FS). ,erefore, parametric study results
are discussed in detail for CS in the following.

It is a known fact that an increase in water-cement ratio
decreases the strength of concrete [84, 88]. It can be seen
form Figure 11(a) that an increase in W/C resulted in a
consistent decrease in compressive strength. ,e effect of
SCBA% on the mechanical properties of SCBA concrete
depends on physical and chemical composition and
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Table 6: Statistics for the training, testing, and validation dataset of the models.

Models Dataset NSE R RMSE MAE RSE RRMSE ρ OF

CS
Training 0.87 0.91 3.47 2.96 0.16 0.04 0.020

0.036Testing 0.89 0.94 2.98 2.98 0.12 0.09 0.046
Validation 0.89 0.93 2.87 1.67 0.15 0.04 0.020

ST
Training 0.85 0.90 2.43 3.67 0.23 0.09 0.047

0.031Testing 0.91 0.92 2.65 3.69 0.26 0.12 0.062
Validation 0.90 0.92 3.25 3.98 0.31 0.10 0.052

FS
Training 0.86 0.91 3.92 1.87 0.29 0.13 0.068

0.052Testing 0.87 0.91 3.34 1.45 0.28 0.15 0.078
Validation 0.86 0.93 3.67 2.87 0.19 0.16 0.079
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replacement percentage of SCBA [11]. It can observed in
Figure 11(b) that the compressive strength of SCBA concrete
increased up to a certain level and then decreased with

increase in the level SCBA%. It can be deduced from the
figure that maximum strength has been attained at 10%
SCBA replacement. A similar trend was also observed for
experimental testing of SCBA concrete as described in
Section 4.1. Hence, the results of parametric analysis are in
close agreement with laboratory testing where maximum
strength was achieved at 10% SCBA. Similar findings were
reported in [9–11] which showed that 10% SCBA replace-
ment attained higher strength.

Cement is the principal cementitious material in
concrete, and the increase in the cement content en-
hances the mechanical properties of concrete. A similar
trend can also be seen in Figure 11(c) where the com-
pressive strength linearly increased with increase in
cement content. ,e higher cement content produces
more calcium silicate hydrate (CSH) which forms a dense
structure, thereby increasing the compressive strength.
Figures 11(d) and 11(e) illustrate the variation of com-
pressive strength with fine and coarse aggregate content,
respectively. Both figures demonstrated that CS de-
creased with the increase in FA and CA content. ,e
aggregates are inert materials and are used to provide
volume stability to concrete. ,e quantity of aggregates
affects the mechanical properties of concrete. However,
keeping all the quantities constant in a mix, the strength
of concrete decreases with increase in the quantity of
aggregate. Similar results were also observed in the
current study.

Table 7: Statistical indicators of verified models for external predictability.

S.No. Equation Condition CS ST FS Suggested by

1. R �
∑n

i�1
(Mi−Mi)(Pi−Pi)�������������������∑n

i�1
(Mi−Mi)

2∑n

i�1
(Pi−Pi)

2
√ R> 0.8 0.92 0.92 0.91 Frank and Todeschini [85]

2. k �
∑n

i�1
(Mi−Pi)

M2
i

0.85< k< 1.15 1.00 0.99 1.01 Golbraikh and Tropsha [86]

3. k′ � ∑n

i�1
(Mi−Pi)

P2
i

0.85< k″ < 1.15 0.98 0.98 1.05 Golbraikh and Tropsha [86]

4.

Rm � R
2 × (1 −

��������
|R2 − R2

0|

√
Rm> 0.5 0.67 0.71 0.64

Roy and Roy [87]
R2
0 �
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0 � 1 0.98 0.98 0.97

R2
0

′
�
∑n

i�1
(Mi−P

0
i )

2

∑n

i�1
(Mi−M

0
i )

2
, P0

i � k′ × Pi R2
0

�

� 1 0.98 0.99 0.98

R

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 101

10-fold cross validation

CS

ST

FS

Figure 8: Cross validation results of CS, ST, and FS models based
on R.

0

1

2

3

4

5

6

7

R
M

S
E

2 3 4 5 6 7 8 9 101

10-fold cross validation

CS

ST

FS

Figure 9: Cross validation results of CS, ST, and FS models based
on RMSE.

17.15

6.38

55.73

3.76

16.97

W/C

SCBA%

CC

FA

CA

In
p

u
t 

p
ar

am
et

er
s

10 20 30 40 50 600

Percent contribution to targeted output

Figure 10: Importance of input variables on the targeted output.

10 Advances in Civil Engineering



C
S

 (
M

P
a
)

10

15

20

25

30

35

40

45

50

0
.5

2

0
.3

4

0
.4

4

0
.4

2

0
.5

6

0
.3

2

0
.5

8

0
.4

6

0
.3

6

0
.4

8

0
.5

4

0
.3

8

0
.5

0
.3

0
.4

W/C

(a)

C
S

 (
M

P
a
)

10

15

20

25

30

35

40

45

50

1
6

1
4

1
2

1
0

2
2

2
0

2
8

1
8

2
6

2
440 62 8

SCBA%

(b)

C
S

 (
M

P
a)

10

20

30

40

50

60

70

80

90

3
5

0

3
3

0

4
9

0

2
5

0

2
7

0

3
7

0

3
9

0

4
1

0

4
3

0

4
7

0

5
1

0

3
1

0

2
9

0

4
5

0

5
3

0

CC

(c)

C
S

 (
M

P
a)

10

15

20

25

30

35

40

45

50

5
7

8

6
3

4

7
7

4

6
9

0

7
1

8

6
0

6

7
4

6

6
6

2

8
0

2

8
3

0

8
5

8

5
5

0

FA

(d)

C
S

 (
M

P
a)

10

15

20

25

30

35

40

45

50

55

60

1
1

2
0

1
0

8
0

1
0

0
0

1
1

6
0

1
0

4
0

8
4

0

8
8

0

6
8

0

9
2

0

8
0

0

6
0

0

7
6

0

7
2

0

6
4

0

9
6

0

CA

(e)

Figure 11: Parametric analysis results for (a) W/C, (b) SCBA%, (c) CC, (d) FA, and (e) CA.
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From the aforementioned discussion, it can be con-
cluded that the developed PSO-MEP model has successfully
incorporated the effect of all input variables, specifically the
complex physical behavior of SCBA, thus making it more
suitable for estimation of complex problems.

5. Conclusion

,is study adopted the two-fold objective. Firstly, the
compressive strength, splitting tensile strength, and flexural
strength of SCBA concrete were modeled by utilizing
multiexpression programming (MEP). ,e particle swarm
optimization (PSO) was employed to tune the hyper-
parameter of the model. ,e proposed model was developed
and formulated based on extensive literature data. Secondly,
sugarcane bagasse ash (SCBA) was characterized, optimized,
and used in different proportions (10%, 20%, 30%, and 40%)
as a partial replacement with cement. SCBA concrete
specimens were prepared and tested for mechanical prop-
erties, and the results were used for model validation. ,e
performance and accuracy of the final models were evaluated
with the help of statistical indicators, i.e., RMSE, NSE, RSE,
RRMSE, OF, ρ, MAE, and R. ,e results obtained from the
developed models exhibited an excellent correlation with the
experimental data with R value above 0.9, MAE and RMSE
below 5, and OF values close to zero for CS, ST, and FS
models. ,e developed PSO-MEP models also satisfied the
criteria for external validation available in the literature. ,e
variable importance and parametric analysis revealed that
the developed model has taken into account the effect of all
the inputs. ,e final outcome of the model was also cross
verified with the 10-fold validation; the results ensured that
the models produced generalized outcome, and the over-
fitting issue has also been addressed. It is obvious from the
current study that utilization of different wastes is indis-
pensable for sustainability viewpoint and machine learning
models play a crucial role in its success.

Data Availability

,edata used in this study were collected from the published
literature and are available from the corresponding author
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