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Abstract—It is critical to secure the Industrial Internet of
Things (IIoT) devices because of potentially devastating con-
sequences in case of an attack. Machine learning (ML) and
big data analytics are the two powerful leverages for analyz-
ing and securing the Internet of Things (IoT) technology. By
extension, these techniques can help improve the security of
the IIoT systems as well. In this paper, we first present com-
mon IIoT protocols and their associated vulnerabilities. Then,
we run a cyber-vulnerability assessment and discuss the utiliza-
tion of ML in countering these susceptibilities. Following that,
a literature review of the available intrusion detection solutions
using ML models is presented. Finally, we discuss our case
study, which includes details of a real-world testbed that we
have built to conduct cyber-attacks and to design an intrusion
detection system (IDS). We deploy backdoor, command injec-
tion, and Structured Query Language (SQL) injection attacks
against the system and demonstrate how a ML-based anomaly
detection system can perform well in detecting these attacks. We
have evaluated the performance through representative metrics
to have a fair point of view on the effectiveness of the methods.

Index Terms—Cyber attack, Industrial Internet of Things
(IIoT), intrusion detection, machine learning (ML), network
security, supervisory control and data acquisition (SCADA),
vulnerability assessment.

I. INTRODUCTION

T
HE PRIMARY concept of the Industrial Internet

of Things (IIoT) is to take advantage of Internet

of Things (IoT) technology in the industrial control

systems (ICSs). ICSs are an integral part of critical infras-

tructures and have been utilized for a long time to supervise

industrial machines and processes. They perform real-time

monitoring and interacting with the devices, real-time col-

lection and analysis of the data, and also logging of all the

events that happen in the industrial systems. Utilizing IoT
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Fig. 1. SCADA architecture.

technology in these systems enhances the network intelligence

and security in the optimization and automation of industrial

processes.

The supervisory control and data acquisition (SCADA)

system is the largest subset of an ICS. It provides

a graphical user interface (GUI) through its human–machine

interface (HMI). The HMI makes it easy for the operators to

observe the status of the system, interact with the IIoT devices,

and receive alarms indicating abnormal behaviors. A general

scheme of SCADA systems is shown in Fig. 1.

As shown in this figure, these systems consist of four dif-

ferent subsystems; I/O network, supervisory control, control

network, and corporate network. I/O network consists of the

deployed IIoT devices (including sensors and actuators) in the

industrial process. Supervisory control is the main subsystem

responsible for securing, controlling, and monitoring the IIoT

devices. The control network includes programmable logic

controllers (PLCs) that directly sense and manage the physical

processes. Since the sensors and actuators cannot communi-

cate directly, PLCs are used to collect the sensed data and send

commands to the actuators. Finally, the corporate network con-

sists of servers, computers, and other users connected to the

network for other general services such as file transfer, Website

hosting, mail servers, resource planning, etc.

ICSs are mostly mission-critical systems with high-

availability requirements. Their continuous operations lead to
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producing a huge amount of data that can be managed through

big data analytics. In the past, these systems were standalone

and isolated from the world, making them unsusceptible to

external malicious attacks. Recently, increased connectivity of

ICS with corporate networks and utilization of Internet com-

munications to transmit the information more conveniently

have rendered these systems vulnerable to malicious attacks.

Due to the sensitive nature of many industrial applications,

security has become the primary concern in SCADA systems.

More specifically, lack of security considerations in their com-

munication protocols directly compromises the availability,

safety, and reliability of these systems. Our work in this

area shows that machine learning (ML)-based solutions can

introduce new countermeasures to secure these systems.

The main contributions of this paper are as follows.

1) Describing the four most popular IIoT protocols, along

with their main communication network vulnerabilities

(Section II).

2) Conducting a vulnerability assessment of IIoT systems,

identifying common malicious threats, analyzing the

severity of the associated risks, and also studying the

applicability of ML techniques to counter these threats

(Section III). This is an essential step to prioritize

required mitigations.

3) Reviewing the research papers that have designed effi-

cient ML-based intrusion detection systems (IDSs) for

SCADA systems (Section IV).

4) Presenting our own case study, elaborating on the testbed

designed at Washington University in St. Louis, to per-

form real-world SCADA operations, carrying out attacks

(that have not been implemented either for the under-

study or any other IIoT system by other researchers)

against the system, and applying ML-based IDS to

tackle the intrusion detection problem, studying the most

important features in identifying the attack traffic from

normal (Section V).

II. IIOT COMMUNICATION PROTOCOLS

There are several IIoT data transmission protocols used in

the SCADA systems. However, most of these protocols have

been designed without accounting for cyber risks or security

mechanisms to counter them. The legacy of SCADA started

with Modbus communication protocol which is still the most

widely employed protocol in these systems. Recently, there

has been a trend in moving toward newer protocols such

as Building Automation and Control Network (BACnet),

Distributed Network Protocol version 3 (DNP3), and Message

Queuing Telemetry Transport (MQTT). All four are open pro-

tocols. Modbus was developed as a SCADA-vendor specific

protocol in 1979 [1]. BACnet and DNP3 are standard proto-

cols that were published in 1995 and 1993, respectively [2].

MQTT was developed in 1999 [3].

In this section, we study these four popular SCADA com-

munication protocols along with their main security vulnera-

bilities. Since the main focus of this paper is on the network

susceptibilities of the IIoT, this section has been included to

show where each communication protocol is most vulnerable.

A. Modbus

Modbus is one of the earliest and the most commonly

used protocol in the SCADA systems. The communication is

serial and based on master–slave configuration. Master (e.g.,

HMI) is the device requesting the information and slave (e.g.,

PLC) is the one supplying the information. The master can

also write data on the slave’s memory registers. In a stan-

dard Modbus communication network, there is one master

that can have up to 247 slaves, each with a unique identi-

fication code (ID). There are four tables stored in the slave

device, two for storing digital data and two for numerical

analog data.

Modbus does not provide confidentiality, authentication,

or integrity. Because all Modbus traffic is communicated in

clear text (no encryption is provided), it lacks confidential-

ity, and the content of the packets can be easily seen using

a sniffer tool. Modbus does not provide any public/private

key management, which leads to lack of authentication as

well. Also, there is no sufficient security check mecha-

nism on the traffic, which makes it easy for the attacker to

compromise the integrity of the data. Moreover, a flooding

attack can interrupt the operation of the system and limit its

availability.

B. BACnet

BACnet was primarily designed for building automa-

tion and control systems. This standard is currently under

ASHRAE Standing Standard Project Committee (SSPC)

135. BACnet, like most of the other industrial com-

munication protocols, was not designed with security

considerations.

This standard provides several communication options, such

as Ethernet, token-passing, master–slave, or point-to-point

connections [4]. In SCADA, it is more common to use the

master–slave mode of BACnet.

Due to lack of proper mechanisms for data confidential-

ity, reconnaissance attack is feasible. This protocol does not

provide authentication procedures either. A few cryptogra-

phy mechanisms, e.g., Data Encryption Standard (DES) and

Advanced Encryption Standard (AES), have been included in

the new versions of the BACnet standard. However, they are

almost never utilized in industrial systems to maintain com-

patibility with the existing devices. Even in new green-field

installations and in general, implementing encryption adds

communication delays and large overheads in the system.

The scan cycle times of PLC and HMI are usually on the

order of milliseconds, and it is not yet feasible to accom-

modate data encryption in the system since encryption and

decryption require a longer time process. In addition, denial

of service (DoS) attacks can be conducted to target the system

availability and halt the service [5].

C. DNP3

DNP3 is another standard network protocol used in

SCADA systems. It was originally designed to be very reli-

able, but it does not provide sufficient security mechanisms.

As a result, most of the DNP3 devices lack authentication,



6824 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 4, AUGUST 2019

encryption, and access control. DNP3 covers the four OSI

layers: 1) network layers; 2) application layer; 3) data link

layer; and 4) physical layer. The communication can happen

in point-to-point mode but mostly happens in master–slave

configurations, and it can include multiple slaves and multiple

masters.

No message authentication is deployed in this protocol, and

hence data integrity is at risk. Eavesdropping and spoofing are

easy as there is no encryption and the data is sent in clear

text. DoS attacks can also easily impact the system’s opera-

tion [6]. The latest version of this protocol that was published

by the IEEE in 2012, provides secure authentication, using

IEC 60870-5 standard [7]. Through this standard, which has

been developed for control systems, the authentication is pro-

vided using digital signatures. However, utilizing public key

infrastructure (PKI) in IIoT devices is not feasible yet. The

complexity that PKI adds cannot be handled by the simple

IoT devices. Further, exchanging the keys, updating the keys,

issuing or revoking certificates and other complexities that

come with using PKI will add a huge delay in the system’s

performance.

D. MQTT

MQTT is an open standard under OASIS and is based

on publish/subscribe configuration. This network protocol has

been very popular in the IoT domain because MQTT mes-

sages are very simple and lightweight. Recently, MQTT has

been increasingly adopted in the ICSs due to its suitability for

remote sensing and control.

MQTT’s topology consists of clients and brokers. At any

particular time, each client can be either a publisher or

a subscriber based on whether they are requesting or sup-

plying data. A broker is an intermediate device between the

publishers and the subscribers to filter out the published

data and send them to their subscribers. Each broker can

handle thousands of clients, which helps the system with

scalability.

No encryption method has been implemented in MQTT,

but transport layer security/secure sockets layer (TLS/SSL)

can be applied on the underlying transmission control proto-

col/Internet protocol (TCP/IP) to provide an encrypted pipeline

for the MQTT messages. However, since this requires a high

level of complexity on the clients, it is not practical to use

in the IIoT devices. Another main security drawback of the

MQTT that originates from its topology is that, if an intruder

steals the identity of a client, it will have access to all other

clients’ data, and not only that specific victimized client.

On the other hand, the broker can be designed to ask each

client for their username and password to allow them to

join the network. However, these credentials will be trans-

mitted in clear text, if no form of encryption is utilized.

For data integrity, MQTT can provide message authentication

code (MAC) techniques such as hash-based MAC (HMAC) to

ensure the received data has not been tampered with. HMAC is

a lightweight cryptographic hash function. However, all clients

who are aware of the secret key can sign or verify the data with

the hash [8].

III. PREVALENT NETWORK VULNERABILITIES

AND CYBER THREATS

In this section, the nine most prevalent attacks in

SCADA IIoT systems and the associated risks are studied.

It should be noted that due to their fundamentally different

nature, the prevalent vulnerabilities and security priorities in

ICSs are different from the ones in traditional IT systems.

Since there has been an extensive discussion on these differ-

ences, and this matter is beyond the scope of this paper, we

refer the readers to [9] and [10].

The confidentiality, integrity, and availability (CIA, triad)

are the security traits that must be preserved in any system to

keep the data safe. Further, the authentication, authorization,

and accountability (AAA) security controls are the security

tools to protect the CIA traits in the system. In this section,

we study the most prevalent attacks targeting each of these

security elements. Accountability has been left out since it is

generally an administrative aspect.

Our extensive study of relevant works (such as [9]

and [11]–[14]) reveals that these are the most common threats

in the SCADA systems. However, unlike the existing works,

in this paper, we:

1) provide a comprehensive set of prevalent attacks’:

2) define each attack separately regarding which security

aspect they compromise;

3) explain how they impact the IIoT performance;

4) run a risk assessment based on the damage severity and

the likelihood of happening in these specific systems;

5) study the effectiveness of ML-based security solution to

encounter each class of attack.

A. Prevalent Attacks

The attacks are divided into five classes, based on which

security aspects (integrity, availability, confidentiality, authen-

tication, and authorization) are compromised. However, it is

nearly impossible to define a solitary classification because the

classes in which these attacks fall are not mutually exclusive.

Often, compromising one aspect leads to compromising others

as well.

1) Integrity:

a) Buffer overflow: In buffer overflow attacks, the

intruder tries to write large data (more than the designated

size) in the buffer, causing the extra bits to overflow and over-

write other buffers and alter their values. This attack is usually

caused due to poor input type or size validation mechanisms

and makes the system unreliable or even crash.

Buffer overflow attacks are highly prevalent in

SCADA systems due to two main reasons. First, the

majority of the operating systems in ICSs are written in

programming languages such as C, which lacks type safety

mechanisms. Further, SCADA devices operate continuously.

The operating systems that have not been rebooted for

years are more vulnerable due to accumulated memory

fragmentation.

The buffer overflow problem in SCADA systems can affect

both supervisory control and field devices such as sensors.

PLC’s instructions to the output elements (e.g., turning on or
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off the water pumps) and sensed data (e.g., water level) could

be manipulated through this attack [10].

b) Code injection: In a code injection attack, the intruder

tries to execute malicious commands or inject malicious

data into the system. For instance, in a Structured Query

Language (SQL) injection attack, SQL queries are sent to con-

trol or compromise the database server. This attack exploits

the system vulnerability due to the lack of user-supplied input

data validation techniques.

This attack enables the intruder to access sensitive

information such as usernames and passwords, and also alter

the data (e.g., allowing access to an unauthorized user, delet-

ing the data, etc.). A command injection attack can manipulate

the control commands in the system and disrupt the normal

operation.

Since the primary function of the SCADA systems is col-

lecting and storing information, this attack may have a serious

impact on the system. More specifically, if the system is con-

trolled remotely through a Web interface, this attack is able to

compromise the data and the authentication procedures.

c) Improper input validation: This vulnerability is asso-

ciated with the lack of proper mechanisms to validate the

user’s input. This is a more general type of vulnerability,

which could lead to other types of risks. The attacker may be

able to enter wrong values that can make the system unstable.

Moreover, since these systems are not checked regularly due

to their deterministic nature, this attack might stay undetected

for a long time [12].

2) Availability:

a) Denial of service: An intruder carries out a DoS attack

to flood the targeted computer (e.g., PLC and HMI). This

attack disrupts the availability of the SCADA system by send-

ing a large number of random packets to the target node at

a high rate to make the target unresponsive and may even crash

the whole system.

A DoS attack against a SCADA system is generally carried

out by an intruder connected to the network using SYN or

HTTP flooding against a host. SYN attacks are constant fake

synchronize requests, and HTTP attacks are either GET or

POST requests to keep the Web server of the target busy and

not be able to respond to the normal traffic. If the links in the

network are congested, monitoring, and controlling the ICS

will be highly difficult, if not impossible.

Therefore, the main goal of the DoS attack is to hurt the

system’s availability, so that legitimate users are not able to

access the resources.

3) Confidentiality:

a) Reconnaissance: In a reconnaissance attack, the

intruder engages with the SCADA network to gather

information about the system, such as the connected devices,

security policies, IP addresses, host information, etc. After

identifying the elements of the network, the attacker maps

the network architecture to identify the vulnerabilities in the

system. Eventually, the attacker may use this information

to run exploits against susceptible devices to interrupt the

system’s functionality.

Intruders may start this attack using sniffers. They eavesdrop

and inspect the ongoing network traffic to gain information

about the network elements and their status. Stealth scan in

SCADA network can occur on the link between any of the two

nodes of the network; for instance, the link between the I/O

network and the PLC or the link between the HMI computer

and the PLC. This attack is considered passive since the attack-

ers are silent and do not inject any traffic that would expose

them. Although this attack may not be considered severe, the

network information is exposed to an unauthorized person, and

it is very difficult to detect.

4) Authentication:

a) Unauthenticated access: This vulnerability is due to

poor authentication mechanisms in SCADA systems. Since

these systems run continuously and autonomously, personnel

may not change their usernames and passwords regularly. They

may even use default usernames and passwords for ease of

remembering [11]. Brute force methods or logging the user’s

keystrokes can be used to obtain this information. Furthermore,

phishing attacks have been conducted widely to collect the

credentials of ICS operators [12]. If the attacker somehow

figures out these credentials, he can misuse his access and

conduct other types of attack.

Since under this category, we solely consider “accessing”

the data, in which usually root access is not granted. We

have classified this attack as low impact. Otherwise, they will

be categorized in more severe attack types such as directory

traversal.

b) Man-in-the-middle: In the man-in-the-middle attack,

the intruder eavesdrops on the communication links and tries

to compromise the messages between two nodes while the

nodes think they are still talking to each other directly. For

instance, the intruder may send malicious commands to the

actuators pretending to be the PLC or send false responses

from the sensors to the PLC. Further, the intruder may discard

or manipulate messages. This type of attack will have a valid

syntax code; hence, rule-based IDS will not be able to identify

it from the message format [15]. This type of attack can be

mostly prevented through encryption techniques.

5) Authorization:

a) Directory traversal: In this attack, the intruder tries to

access the restricted directories or files that are supposed to be

root access only. This vulnerability is due to poor filtering or

validation mechanisms for user-supplied inputs. Poor directory

listing control is another cause of these attacks. In this type

of attack, the intruder will be able to download sensitive files

and information from the system.

This attack often also results in compromising other vulner-

abilities in SCADA systems such as confidentiality, since the

attacker might access private files in the system. Proper input

validation methods can prevent this type of attack.

b) Backdoor: In a backdoor attack, the intruder tries to

find a way around the authentication process to enter the

system. Through the backdoor access, the attacker can log

into the system, reach all the data and files on the system,

and execute commands. Backdoor installation on the victim

system may be done by an insider. Once installed, it is very

difficult to detect this type of attack, and it is considered highly

dangerous since it grants the intruder full access to the system.
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Fig. 2. Risk assessment matrix of prevalent vulnerabilities in IIoT.

In the case of ICSs, some of the vendors and manufacturers

have backdoor accounts into their products for remote support

and updates [16]. This vulnerability puts the system in danger,

and in case of a successful attack, all the SCADA data will

be exposed to the intruder.

B. Risk Assessment

As discussed in the previous section, different prevalent

attacks have different severity and different rates of recurrence.

We have built a risk assessment matrix for these vulnerabili-

ties, which is shown in Fig. 2. In this assessment, the impact

and the likelihood of occurrence of the prevalent attacks are

combined for integrated analysis. The matrix in this figure

has been designed based on our study of the prevalent vul-

nerabilities and the severity of the risks associated with them.

Vulnerabilities have been arranged in the matrix in the order

of their likelihood and impact severity. It is important to men-

tion that this order in the presented risk assessment matrix is

based on our experience and judgment, and it might slightly

differ from case to case or for different applications. However,

it becomes a convenient tool for future studies.

Since we have picked the most common attacks, the like-

lihood is classified into three high levels of occurrence:

occasional, likely, and certain. Similarly, the level of impact

has been classified as mild, moderate, or critical. The overall

risk ranking has been color coded. Threats that have severe

negative impacts and are likely to occur frequently receive the

highest rank, shown in the red color. Attacks with both low

impact and low likelihood have the lowest rank, shown in the

green color. And the yellow colored attacks fall between the

two other classes. This risk assessment specific for the IIoT

helps in identifying the threats that have the greatest overall

risks and must be the top priority to address in these systems.

For instance, code injection is shown in red due to the catas-

trophic results of command manipulation in SCADA systems

and their high probability of occurrence. DoS attacks that often

occur would result in the termination of the system’s opera-

tions. The reconnaissance attacks that harm the confidentiality

may or may not lead to any negative consequences in the

system’s function.

C. ML as Versatile IIoT Security Tool

IDS has been widely used as an effective security

mechanism to counter intrusions. Misuse-based IDSs such

as rule-based, signature-based, flow-based, and traffic-based

methods are just some examples of conventional IDSs. Since

traditionally, most of the connections and traffic in the

SCADA networks were predefined; these types of IDS were

successful in detecting abnormal activities. For instance, when

the intruder builds new connections to the victim or sends

a different type of traffic, there will be unusual data flows in

the network [17].

However, considering frequent upgrades in the networks,

resulting in regular changes in the topology, the legacy IDSs do

not perform properly. Also, to counter new types of attacks that

appear every day, or in scenarios where the attack is planned

intelligently (e.g., the man-in-the-middle attack), smart IDSs

are required.

IDSs are, in general, helpful whenever the intruder affects

the network data flow. This is true even for ML-based IDSs.

If the intruder does not interact with any of the network

elements, it is very difficult even to become aware of the intru-

sion. However, to launch attacks or compromise the network

activities, the intruder has to disrupt the network somehow.

The ability of ML algorithms in detecting small anomalies

distinguishes them from any other type of IDSs.

ML algorithms can detect anomaly patterns that are difficult

for humans to discover. To provide a secure network, the ML-

based IDS can be designed with a moving target. This ability

of ML models to learn and evolve is valuable because the

attacks are constantly evolving, and new vulnerabilities are

discovered every day. This is another reason why signature-

based IDSs are becoming obsolete, and anomaly based IDSs

using ML are the new trend. We now discuss the suitability

of ML-based IDS for each of the security elements.

1) Integrity: ML can be very helpful as a detection tool

against data integrity threats. By training an ML-based IDS

with legitimate traffic data, the IDS will learn the normal

data that flow in the system. For instance, in the case of com-

mand injection, ML will detect the malicious queries that are

out of the ordinary in the system. This specialized IDS is able

to recognize the source that is compromising the integrity of

the data to block him from the system to maintain the trustwor-

thiness of the data. Hence, by learning the common behavior

of the system, the ML-based IDS can be very useful against

the attacks targeting this security element.

2) Availability: ML can be very useful in detecting the DoS

attacks. A proper ML algorithm can detect specific charac-

teristics of the attacks targeting the availability, for instance,

detecting the sources with unfamiliar or broadcast addresses,

the ones that are showing abnormal behaviors, nodes that are

sending an unreasonable amount of traffic, or when the nor-

mal operational traffic stops because the HMI or the PLC are

flooded and unavailable.

Even though a simple network analyzer can detect the

DoS attacks, it still requires a human operator to analyze the

network logs. On the other hand, the ML-based IDS will not

only provide proper automation but is also not prone to human

error. Moreover, it has been shown to be effective in detecting

this kind of out-of-ordinary behaviors.

3) Confidentiality: In this type of attack, if the intruder

merely eavesdrops on the network traffic (i.e., does not send

any traffic nor build a connection with the devices in the
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network), it is very hard to detect using ML. As mentioned

before, when the attacker’s behavior does not change the

network flow, it is very hard to detect the attack with any tech-

nique, including ML. However, as soon as the intruder engages

with the network, a ML powered anomaly based IDS will be

able to recognize the abnormal behavior of the attacker trying

to snoop or asking for unusual information from other nodes

in the network. However, after engaging with the network, the

malicious activities go beyond a simple eavesdrop attack and

are classified under other attack categories.

4) Authentication: As mentioned before, authentication is

a security control technique. Attacks targeting this security ele-

ment need to find a way around to bypass this step. To counter

these threats, it will be more efficient to use prevention tech-

niques rather than detection methods. For instance, encryption,

strong passwords or key management techniques can be uti-

lized to prevent unauthenticated access. Even though these

techniques have their weaknesses, they improve the system’s

robustness against unauthenticated access.

5) Authorization: Activities that do not match with the

normal traffic pattern even from verified users can be iden-

tified using ML techniques. Some examples include executing

abnormal commands, manipulating the sensors and actuators,

or sending random traffic on the network. If the intruder runs

zero-day attacks or occasionally accesses the system, he might

stay undetected for a while, but he will eventually be exposed

by an ML-based IDS. However, the sensitivity of the learning

technique must be high. The IDS learns the normal conditions

of the system and will reveal abusive commands, unauthorized

users, or intruders.

The IDS would raise the alarm each time it detects an abnor-

mal behavior from a user in the network that must be verified

by the operator. Raising the sensitivity of the utilized ML to

detect these attackers will increase the number of false posi-

tives (normal traffic classified as attack traffic). Nevertheless,

in security matters, it is better to be overcautious keeping the

IIoT network safe. A false negative (undetected attack) could

result in a higher cost than a false positive in the critical

infrastructures.

IV. EXISTING MACHINE LEARNING-BASED IDSS

As we discussed in the previous section, since ICSs are

different from regular IT systems, their communication type

and even prevalent cyber vulnerabilities differ from a regular

IT network. Consequently, it is important to consider these

differences and design specific IDSs for SCADA systems.

In this section, we review available ML-based IDS

approaches solving different security vulnerability issues of

SCADA IIoT systems. Some of the presented research works

focus on various security aspects. In this case, the first time

that we mention their work, a detailed description is pro-

vided; following that in the other sections, just brief mentions

are made.

A. Integrity

Beaver et al. [18] employed six different types of ML algo-

rithms, I Bayes, random forests (RFs), OneR, J48, non-nested

generalized exemplars (NNge), and support vector machines

(SVMs). Their dataset consists of labeled remote terminal

unit (RTU) telemetry data from a gas pipeline system in

Mississippi State University’s Critical Infrastructure Protection

Center. The attack traffic is generated from two types of code

injection sets, command injection attacks and data injection

attacks. Seven different variants of data injection attacks were

tried to change the pipeline pressure values, and four differ-

ent variants of command injection attacks to manipulate the

commands that control the gas pipeline.

Ullah and Mahmoud [19] suggested an IDS using a combi-

nation of J48 and I Bayes techniques. J48 is a type of decision

tree (DT) technique. They have used the same dataset as the

previously mentioned research work in [18]. The J48 classifier

was first used as a supervised attribute filter. Then, the I Bayes

classifier was used to develop the anomaly based intrusion

detection.

Alves et al. [20] employed the k-means technique, which is

an unsupervised clustering algorithm. An open-source virtual

PLC (OpenPLC platform) along with AES-256 encryption is

used to simulate a SCADA system. They have conducted three

different types of attacks against their system, code injection,

DoS, and interception (eavesdrop).

He et al. [21] used conditional deep belief network (CDBN)

to detect attacks in smart grids. They have simulated their

system using IEEE 118-bus and 300-bus test systems. They

also provided a comparison of their method with SVM

and artificial neural network (ANN). They considered false

data injection attack that is aimed at the integrity of data.

B. Availability

Potluri et al. [22] designed a hybrid IDS using SVM, and

deep belief networks (DBNs) for industrial networked control

systems. They have used the NSL-KDD dataset, which is an

old dataset and is not specific to ICSs but consists of DoS and

integrity attacks.

As mentioned in Section IV-A, Alves et al. [20] studied

conducting DoS attacks as a part of their dataset to train

their IDS.

C. Confidentiality

Keliris et al. [23] used SVM in their simulated testbed

in MATLAB controlling Tennessee Eastman (TE) chemical

process. They have conducted reconnaissance attack as vul-

nerability discovery technique, and further, tried to study

the effect of command injection attack on the controller to

manipulate the reactor pressure.

As mentioned in Section IV-A, Ullah and Mahmoud [19]

covered confidentiality problem through reconnaissance attack.

Alves et al. [20] (mentioned in Section IV-A) also worked

on eavesdropping attacks. Their unsupervised training methods

were able to detect these attacks successfully.

D. Authentication

The research work [20] was mentioned previously. The

authors also declare that due to the utilization of encryption,

their system is resistant to man-in-the-middle attacks.
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Eigner et al. [24] employed k-nearest neighbors (KNNs)

on a custom-built conveyor belt system. They used the nor-

mal behavior of the system to design an anomaly based

attack detection approach. They studied the performance of

the system with different k’s and different distance measure-

ment metrics. They have focused on man-in-the-middle attacks

as the intrusion scenario.

E. Authorization

We could not find any work covering this area of intru-

sion detection for SCADA systems using ML techniques.

Therefore, in this paper, we focus on unauthorized intrusion

detection in our case study. More specifically, we have con-

ducted backdoor attacks on our SCADA IIoT testbed. The

details are provided in Section V.

F. No Specific Attack

Yasakethu and Jiang [25] studied the advantages and disad-

vantages of four different types of IDSs, rule-based, ANN,

hidden Markov model (HMM), SVM, and one-class SVM

(OCSVM). However, they do not provide any implementation

nor any practical analysis of these techniques.

Zhang et al. [26] have used SVM to detect anomalies in

network traffic. They have generated their dataset using sim-

ulations of the IEEE 118 bus network. Six features of traffic

(magnitude and phase of the current, magnitude, and phase of

voltage, real power, and reactive power) were extracted from

the data. In that paper, the normal condition was defined as

when no equipment is disconnected from the system, and there

is no fault in operation. The fault condition is defined as a short

circuit occurrence somewhere in the system. No cyber-attack

was conducted against the system.

Skripcak and Tanuska [27] have designed a multiagent

architecture for SCADA systems to monitor the plant

processes using passive-aggressive online ML algorithms. The

focus of the paper is to provide the theory behind forecasting

based on the current situation.

Siddavatam et al. [17] employed DT and RF techniques.

Their system prototype has been built in their lab. They have

extracted several features from the traffic for training such as

TTL (time to live), byte count for response type, word count

for query type, packet type, and the reference number for query

type. To generate abnormal behavior in the system, changes

in operation were conducted through a control node, but no

attacks were developed in the system.

Maglaras and Jiang [28] used OCSVM as their proposed

anomaly based IDS. They declared that OCSVM is a good

choice because the dataset is imbalanced. The authors have

used only two features of traffic (data rate and packet size)

of an electric grid. The trained model did not include any

malicious attack data, and the trained dataset was captured

during normal operation of a SCADA system.

Mantere et al. [29] have focused just on feature selections

in designing an anomaly based detection. They have chosen

features such as flow directions, individual packet sizes, pro-

tocol, average packet rates, average data byte rates as the most

TABLE I
AVAILABLE ML-BASED IDS FOR ICS VULNERABILITIES

determining features. The traffic was captured from two dif-

ferent locations within an industrial site. However, no attack

data were considered in this paper.

G. Summary

Table I provides a summary of this section. In this table,

the available ML-based anomaly detection approaches in

SCADA are classified based on the type of their targeted

vulnerabilities. This table provides a concise overview of

where the most focus of the research works available in the

literature is.

As shown in this table, we could not find any ML-based

research work in authorization aspects of SCADA security.

Hence, we have focused on this area in the next section.

V. OUR CASE STUDY

In this section, we describe our testbed and the evalua-

tion results of our proposed ML-based IDS. The problem of

intrusion detection in the IIoT systems is explored. To detect

manipulated commands, system’s transactions were logged

and used to train the ML algorithms. We start this section by

introducing our prior work and how this paper is different, then

the details on the testbed implementation, conducted cyber-

attacks, and then the designed IDSs and their performance

evaluations.

A. Our Prior Work

In [30], we have presented the effect of imbalanced datasets.

Even though ML has proven its capability in intrusion detec-

tion, there are cases that it falls short. Severely imbalanced

training datasets where the number of attack data is sig-

nificantly lower than normal data (e.g., less than 1%) is

a real-world challenge that is quite common in IIoT security.

In [31] and [32], we have investigated IDS design using

ML and ANN models for securing the confidentiality and

availability (reconnaissance and DoS attacks) of the system.

However, in this paper, we have improved our testbed by

adding the following elements.

1) Turbidity alarm and turbidity sensor have been embed-

ded in the testbed to add analog input to the system.

This helps us investigate overwriting analog registers

(turbidity level of the water) in the PLC.
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Fig. 3. Scheme of our implemented testbed.

2) Backdoor, command injection and SQL injection attacks

are used to study the authentication and data integrity

aspects of the security for these systems.

3) New metrics have been used to evaluate the performance

of the trained model. These metrics represent the quality

of the performance with better granularity.

4) Feature importance ranking study has been conducted

to show which features are the most salient ones in

distinguishing the attack traffic from the normal.

B. Our SCADA IDS Testbed Implementation

Industrial companies almost never release their network

data, because they are obligated to follow confidentiality laws

and user privacy restrictions. Hence, real-world IIoT datasets

are not available for security research in this area. In the IIoT

security domain, the researchers usually have to use commer-

cial or public datasets that are not specific to this domain. In

this paper, we developed a real-world testbed that resembles an

actual industrial plant. We have conducted real cyber-attacks

against the system to gather realistic datasets containing both

normal and attack traffic analogous to real industrial network

traffic.

We have picked an IIoT system that supervises the water

level and turbidity quantity of the water storage tank, shown

in Fig. 3. This system is a part of the water treatment and dis-

tribution process in industrial reservoirs. This testbed includes

components like historical logs, HMI, and PLC. There are

three sensors and four actuators in this testbed. Two water level

sensors and an analog turbidity sensor compose the inputs.

A three-light turbidity alarm, a valve, and two water are the

actuators that receive the commands from the PLC. Also, there

are control buttons (on, off, and light indicator) for manual

control of the system. A detailed explanation of the testbed

and its elements can be found in our previous work [30].

In short, the task of this testbed is to keep the water level

between two predefined levels. At the same time, it measures

the turbidity level of the water and illuminates one of the

red, yellow or green lights of the turbidity alarm, based on

the cloudiness level of the water. Modbus was utilized as

TABLE II
OUR BUILT DATASET STATISTICAL INFORMATION

the communication protocol in our testbed since it is one

of the most popular IIoT protocols commonly used in the

ICSs. The logic of the PLC is programmed using the Ladder

language [33], [34].

C. Our Attack Scenarios

Since, to the best of our knowledge, no research paper has

focused on ML-based IDS in SCADA systems for backdoor

attacks, we conducted these attacks along with two other types

of cyber-attacks. We have generated SQL injection and com-

mand injection attacks to have a larger variety of attack records

in our dataset. These attacks were carried out using the Kali

Linux Penetration Testing Distribution [35]. All the data gen-

erated during the attack phase as well as the normal traffic

was gathered and recorded by Argus [36] and Wireshark [37]

network tools.

An important point that should be mentioned here is that

we have deliberately built our dataset to be imbalanced. The

percentage of attack traffic in the dataset is less than 0.2%.

This assumption makes the system as similar as possible to

the real-world ICSs. The statistics of the dataset are shown in

Table II, where the average data rate was 419 kb/s, and the

average packet size was measured as 76.75 bytes.

A brief explanation of how these three attacks disrupt the

normal operation is provided next.

1) Backdoor: In this attack, our target is the HMI system,

which gets infected with a backdoor virus. This virus works

in the background and is hidden from the SCADA system’s

operator. The backdoor virus opens a port in HMI allow-

ing a remote connection to be established with the attacker’s

PC. Thus, the attacker gains full access to the HMI computer,

where the SCADA system is installed. Using the backdoor,

the attacker can explore the HMI system and download any

file, including the dataset with all the sensor and actuator val-

ues. In this attack scenario, we (as the white hat attacker)

transferred about 1GB of files containing sensitive information

from the HMI to the attacker’s PC. We ran this attack several

times to get the status of the system in different situations.

Further, using this attack, we built new directories in the

SCADA system and removed several files to disrupt the HMI

operation.

2) Command Injection: In this attack, the target is the

PLC. First, the attacker’s PC connects to the network and is

able to read all the PLC register values and logs them into a .txt

file. After gaining access to the PLC register information, the

attacker rewrites some of the PLC registers that are vital to the

physical process. For example, while Pump 2 was supposed

to draw water from the tank, we (as the white hat attacker)
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stopped it, started Pump 1, and the water flowed out from the

tank. Another instance is when we turned on the wrong tur-

bidity alarm light, in the way that, while the turbidity level

was high, and the red light was supposed to be on, we (as the

attacker) turned off the red light and turned on the green light

instead.

3) SQL Injection: In this attack, both HMI system and

PLC device are targeted. They both have Web servers for

setting up and accessing their configuration and information.

In this attack, the attacker’s PC sends database queries to

submit untrusted data. We (as the white hat attacker) sent mali-

cious SQL commands which were executed on the database.

We ran this attack many times and logged all the network

traffic.

D. Feature Selection

An important step in training the ML models is selecting

and extracting features from the traffic. Here, in designing our

IDS, we chose the features that their values change during

the attack phases compared to the normal operation phases. If

a selected feature does not vary during the attacks, then even

the best algorithm will not be able to detect an intrusion or an

anomalous situation using that feature.

In our study, we reviewed the potential features and chose

23 features that are common in network flows and also change

during the attack phases. Table III shows the chosen features

along with their description.

How each feature varies depends on the type of attack.

For instance, during the normal condition, where there is no

attack, the SrcPkts and DstPkts features mostly show a peri-

odic behavior. On the other hand, during attacks, these features

show random behavior.

Further, we have studied the importance of the features.

They are ranked based on how salient they are in helping

the algorithm distinguish the normal traffic from the attack

traffic. In this technique, the values of each feature are per-

muted randomly one at a time, creating new datasets. The

ML model is trained on these datasets, and the increase in

classification error is measured for each. If the increase is

high, then the feature is important, and conversely, if it is

low, the feature is considered as not important. For each fea-

ture, the “model reliance” or importance coefficient is defined

as the ratio of the model’s error value after permutation

to the standard error value when none of the variables are

permuted. For more detailed information, we refer readers

to [38] and [39].

As we report later in this section, RF has shown the best

classification performance, so we have picked this algorithm

to calculate the importance. In Fig. 4, the top five important

features in our dataset along with their normalized (so the

total of 23 feature importance values sum to 1) importance

coefficient are shown. While these are the top five features, the

threshold for the importance has shown that all the 23 features

are required for training.

E. Machine Learning Techniques

In this case study, the ML-based IDS is designed just as

a binary classification to decide whether a particular traffic

TABLE III
SELECTED TRAFFIC FEATURES IN OUR PROPOSED IDS

Fig. 4. Top five important features.

sample is an attack or normal. The inputs to the IDS are the

23 chosen features, as mentioned in the previous section, and

the output of the IDS is either 0 (normal traffic) or 1 (attack

traffic). Also, for a total of 451 372 traffic samples, we use

the ratio of 80% to 20% to divide the dataset into training and

testing sets, respectively.
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TABLE IV
CONFUSION MATRIX IN IDS CONTEXT

TABLE V
CONFUSION MATRIX OF RF CLASSIFICATION RESULTS

We have used and tested seven different techniques for the

IDS; SVM, KNN, naïve Bayes (NB), RF, DT, logistic regres-

sion (LR), and ANN. We have used the Keras library [40] to

build the ANN, and for the other algorithms, the scikit-learn

library [41] was utilized to develop the learning models for

the IDS. The models are trained and tested over the data col-

lected in the testbed, and the results of their performance are

compared.

F. Performance Metrics

Traditionally, the performance of the ML algorithms is mea-

sured by metrics which are derived from the confusion matrix.

Table IV shows the confusion matrix. The description of the

matrix confusion parameters is as follows.

1) True Negatives (TN): This represents the number of

normal packets correctly classified as normal.

2) True Positives (TP): This represents the number of

abnormal packets (attacks) correctly classified as attacks.

3) False Positive (FP): This represent the number of normal

packets incorrectly classified as attacks.

4) False Negative (FN): This represents the number of

abnormal packets (attacks) incorrectly classified as nor-

mal packets. As an example, we picked the RF model to

show its classification results in the form of confusion

matrix in Table V.

Based on the confusion matrix, the metrics used in this

paper to evaluate the performance of the ML algorithms are

as follows.

1) Accuracy: This shows the percentage of the correctly

predicted samples considering the total number of

predictions

Accuracy =
TP + TN

TP + TN + FP + FN
× 100. (1)

2) False Alarm Rate (FAR): This represents the percentage

of the regular traffic misclassified as attacks

FAR =
FP

FP + TN
× 100. (2)

3) Undetected Rate (UR): The fraction of the anomaly

traffic (attack) misclassified as normal

UR =
FN

FN + TP
× 100. (3)

Fig. 5. Accuracy.

4) Matthews Correlation Coefficient (MCC): Measures the

quality of the classification. MCC shows the correla-

tion agreement between the observed values and the

predicted values

MCC =
TP × TN − FP × FN

2
√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

× 100. (4)

5) Sensitivity: Also known as the true positive rate. A sen-

sitive algorithm helps rule out an attack situation with

more confidence when the predicted data is labeled as

“normal.” While sensitivity and the UR are comple-

mentary, each shows a different aspect of performance

interpretation. If the focus is on minimizing FN, we

would want to increase the sensitivity of the model as

much as possible (close to 100%), so that a smaller

number of attacks stay undetected. Meanwhile, UR

represents the fraction of these FN samples

Sensitivity =
TP

TP + FN
× 100. (5)

Accuracy (1) is the most frequently used metric for assess-

ing the performance of binary classifiers. However, this metric

is not sufficient for evaluation in scenarios with imbalanced

classes (i.e., one class is dominant and has more training

data compared to the other). In our case, which is an IDS

scenario, the proportion of normal traffic to attack traffic is

very high resembling a realistic dataset. This case is also valid

where detecting rare anomalies is crucial like fraudulent bank

transactions and identification of rare diseases. Therefore, in

addition to the accuracy, we use other metrics evaluating the

performance in a more meaningful way.

G. Results

In this section, we present the numerical results of our

algorithms detecting the attacks described in Section V-C.

Fig. 5 shows the accuracy results (1). While RF shows the best

performance and NB the worst, accuracy is not the best met-

ric to evaluate the performance. As it was mentioned before,

in scenarios like intrusion detection, the algorithms are biased

toward estimating all the samples as normal. Even if an algo-

rithm detects all the samples (even the attack ones) as normal,

the accuracy will still be high, since the attack samples consist

of a very small part of the dataset.

The FAR, shown in Fig. 6, represents the percentage of the

normal traffic being misclassified as the attack traffic by the
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Fig. 6. False alarm rate.

Fig. 7. UR.

Fig. 8. ROC curve.

model (2). Fig. 6 shows good performance for all the models

except NB. However, even this metric alone cannot truly rep-

resent the performance. Since the number of normal traffic is

considerably higher than the attack data, and also the models

are biased to label almost all the test data as normal (due to

the imbalanced training dataset), the FAR value is expected to

be low.

UR metric can assess the performance better in spite of

the imbalanced data. As shown in Fig. 7, UR represents the

percentage of the attack traffic that is misclassified as normal

(the opposite of the FAR) (3). Since this metric considers only

the attack traffic, the fact of having an imbalanced dataset

does not impact the evaluation. LR has the worst performance,

even compared to a detector that would randomly assign true

and false to each traffic packet, which would lead to 50%

UR with an infinite number of packets. However, RF showed

the best performance. This metric is more critical than FAR

because it is related to the attacks not being detected by the

system.

Fig. 8 shows the receiver operating characteristic (ROC)

curve. This curve basically plots the TP rate versus the

Fig. 9. MCC.

Fig. 10. Sensitivity.

FP rate for each model. As depicted, while RF shows the

best performance, LR has the worst performance. The poor

performance of LR for this metric is due to the low TP rate

of the model in detecting abnormal traffic.

MCC (4), shown in Fig. 9, is considered to be one of

the best metrics for classification evaluation, and it is gener-

ally a better performance representative compared to the ROC

curve and other metrics. As shown in this figure, RF has the

best MCC value, while NB has the worst. MCC is consid-

ered as a fair metric when it comes to evaluating ML models

that were trained with an imbalanced dataset. Since this met-

ric represents the correlation agreement between the observed

values and the predicted values, it is less affected by severe

imbalanced ratios.

Finally, the sensitivity metric results (5) are shown in

Fig. 10 to evaluate how sensitive each model is in react-

ing to an abnormal situation. As seen in the figure, RF

and NB have the highest sensitivity, while LR shows the

lowest.

VI. CONCLUSION

The cyber-security of the IIoT devices is critical. There

is still a huge gap in providing adequate security for these

systems, which is why it is crucial to focus on the industrial

aspect of IoT technology. ML solutions and big data ana-

lytics have been widely used to ensure a secure platform

in the IT systems. However, due to the fundamental differ-

ences and dissimilar priorities of ICS and the traditional IT

systems, their prevalent cyber-risks are different. Thus, spe-

cial attention is required to provide security for IIoT. Through

our discussions and experimental evaluation, we have demon-

strated the effectiveness of ML for the security of these

systems.
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In this paper, we first studied the four most common proto-

cols used in SCADA IIoT along with their security susceptibil-

ities. Afterward, we carried out a risk assessment of the most

important and prevalent vulnerabilities of the SCADA IIoT

systems, and how ML-based solutions would be useful to com-

bat them. Following that, a literature review on the existing

anomaly detection approaches for SCADA systems using ML

was provided to show where there is still a need for provid-

ing security. In the last section, we presented our case study

and presented how ML is capable of filling the identified gap

by handling new types of attacks such as backdoor, command

injection, and SQL injection. Feature importance ranking was

also studied to highlight the most salient features in distin-

guishing the attack traffic from the normal traffic. The testbed

built for this research work was designed to be as similar as

possible to real-world IIoT scenarios. Special attention was

also paid to evaluate the performance of the system using

better representative metrics.

As our future direction, we plan to focus on utilizing a joint

design of multiple algorithms to achieve better performance.

The hybrid model should be able to provide more accurate

results compared to any of the constituent models. False neg-

atives, even a low number of them, mean malicious exertions

against the system that stayed undetected and could lead

to catastrophic results. Hence, reducing the number of false

negatives is what we plan to concentrate on.
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