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'is paper presents an in-depth study and analysis of offloading strategies for lightweight user mobile edge computing tasks using
a machine learning approach. Firstly, a scheme for multiuser frequency division multiplexing approach in mobile edge computing
offloading is proposed, and a mixed-integer nonlinear optimization model for energy consumption minimization is developed.
'en, based on the analysis of the concave-convex properties of this optimization model, this paper uses variable relaxation and
nonconvex optimization theory to transform the problem into a convex optimization problem. Subsequently, two optimization
algorithms are designed: for the relaxation optimization problem, an iterative optimization algorithm based on the Lagrange dual
method is designed; based on the branch-and-bound integer programmingmethod, the iterative optimization algorithm is used as
the basic algorithm for each step of the operation, and a global optimization algorithm is designed for transmitting power
allocation, computational offloading strategy, dynamic adjustment of local computing power, and receiving energy channel
selection strategy. Finally, the simulation results verify that the scheduling strategy of the frequency division technique proposed
in this paper has good energy consumption minimization performance in mobile edge computation offloading. Our model is
highly efficient and has a high degree of accuracy. 'e anomaly detection method based on a decision tree combined with deep
learning proposed in this paper, unlike traditional IoTattack detection methods, overcomes the drawbacks of rule-based security
detection methods and enables them to adapt to both established and unknown hostile environments. Experimental results show
that the attack detection system based on the model achieves good detection results in the detection of multiple attacks.

1. Introduction

Mobile edge computing and storage (MECC) technology, as
a new computing and storage paradigm, deploys centralized
cloud data centers in a distributed form on the side of the
access network close to the data source, attempting to deeply
integrate Internet Service Providers (ISPs), mobile opera-
tors, and IoT devices to perform many operations such as
service awareness, data transmission, information process-
ing, and control optimization near the data source. MECC
technology can provide distributed computing and storage
functions in wireless access networks close to mobile devices
[1]. However, in the face of complex and diverse IoT ap-
plication scenarios, the practical application of MECC
technology still faces many challenges. On the one hand, for

lightweight IoT devices, frequent storage and computation
operations will consume a lot of energy, which is a great
challenge for battery-powered devices only, and the devel-
opment of battery technology still cannot meet the energy
demand of IoT applications [2]. 'erefore, without a new
way to supply energy or improve energy efficiency, it will
greatly limit the application of MECC in such scenarios. On
the other hand, as an important part of IoT, the integration
of telematics and MECC technology can better support the
rapid implementation and application popularity of ad-
vanced assisted driving and autonomous driving in the
future. Unlike stationary or low-speed mobile IoT devices,
the high-speed mobility of smart vehicles, the transient
interaction of information, and the dynamic topology of the
network will bring great challenges to the application of
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MECC technology in IoT [3]. Also, compared to resource-
constrained IoT devices, vehicles with enhanced function-
ality can be considered as mobile edge infrastructure, en-
abling more ground-hugging computing and storage
applications by providing their idle resources.
Mobile edge computing tasks mostly involve distributed

messing tasks, so distributed computing is needed. As
distributed computing, the cloud computing controller,
when processing computing requests, generally assigns
computing tasks to any available computing resource on the
network to complete and then sends them back to the
computing requestor after unified processing [4]. In this
process, when the number of user requests is huge, the total
amount of data is divided into a huge number of task re-
quests, if not a huge amount, so the bandwidth (or channel
capacity) occupied by data transmission on the network
(wired and wireless) will become extremely large. Even
though the bandwidth capacity of a single set of network
equipment has now developed to more than THz, it cannot
meet the huge number of concurrent tasks. For example,
part of the time, no matter what kind of Internet access is
available, it will become abnormally slow, which is deeply
felt by people [5]. (1) A huge number of concurrent com-
puting task requests, even if the individual task data volume
is not large, will also bring the server overwhelmed; (2) the
communication link of the service request is too long, often
having to go through multiple routers forwarding, to reach
the target server; (3) the operator of the router arrangement,
not following the maximum demand to build, of course,
cannot carry the burst of computing task requests [6]. 'e
computing power of cloud computing is often sufficient, but
the channel bandwidth or the number of channels is the real
bottleneck that restricts cloud computing from handling
burst computing tasks; that is, the actual situation is that the
network is busy while the computing resources (such as
CPU) are idle, which is like most of the reasons why personal
computers become slow.
Based on this, the concept of computational offloading

has arisen. Nowadays, it can be found that some terminal
devices installed on the user side by telecom operators have
taken the role of computing offloading tasks. Regarding
computation offloading under cloud computing and mobile
edge computing offloading, some results have been achieved
on computation offloading delay strategies, energy con-
sumption, and energy efficiency control strategies, and their
direct combination of both, but there are still many urgent
issues to be solved, which are the focus of this research paper.
With the extension of mobile edge computing in compo-
sition to multiaccess edge computing, the addition of various
heterogeneous networks makes the stability of the system a
great challenge, and it is impossible to establish a completely
reliable computation offloading model without transmission
errors and failures occurring, so this paper introduces the
failures during computation offloading into the research to
make the computation offloading more robust. In addition,
with the demand of energy consumption of mobile devices,
this paper discusses the control strategy of using SWIPT
technology in mobile edge computing, which provides more
options for MEC to make accurate offloading decisions and

efficient resource allocation; due to the many problems in
the implementation of wireless energy-carrying communi-
cation, with the progress and development of multiple
antenna technology of spatial diversity and multifrequency
antenna technology, this paper prompts to adopt a similar
frequency division multiplexing approach to open a new
research path for wireless energy-carrying communication.
In this paper, we study the computational offloading

problem of wireless energy-carrying communication under
mobile edge computing. First, a dynamic offloading and
resource scheduling optimization model for a multiuser
mobile edge cloud SWIPTsystem is developed, and then the
hybrid nonconvex optimization problem is transformed into
a zero-parity gap optimization problem. Based on this, by
solving the optimization problem, this paper obtains an
iterative algorithm to obtain the optimal strategies for clock
frequency control, transmission power allocation, offloading
ratio, and received power split ratio, while achieving the
minimization of the system energy consumption. Finally, the
algorithm is verified by extensive simulations to show that
the account has a good performance in terms of system
energy consumption. Also, in the context of mobile edge
computing, a SWIPT scheme with a multiuser frequency
division multiplexing approach is proposed by analogy with
different wireless communication schemes, and a system
optimization model for minimizing energy consumption
based on mobile edge computing offloading is established.
'en, a mixed-integer nonlinear programming problem is
transformed into a convex optimization problem based on a
reasonable relaxation of optimization variables and solved in
detail by a Lagrange dual method; based on this, an algo-
rithm is proposed to apply an integer programming branch
delimitation algorithm to solve the optimization problem
based on the use of the dual method. Finally, the good
performance of the frequency division SWIPT technique
proposed in this paper for energy minimization scheduling
strategy in mobile edge computing offload is demonstrated
through simulation analysis and comparison.

2. Status of Research

Li et al. introduced energy harvesting techniques to MEC
systems and proposed an energy-saving strategy considering
latency and offloading failures [7]. Besides, Yousafzai et al.
first proposed a multiuser multitasking mobile edge cloud
computing offloading problem and proposed an optimal
energy harvesting strategy based on the Lyapunov optimi-
zation method and greedy algorithm [8]. Xiao et al. derived
an optimal policy consisting of CPU frequency and mobile
device (MD) transmit power using the Lyapunov optimi-
zation method [9]. Cong et al. studied the joint load
management and resource allocation problem in mobile
edge cloud systems based on energy harvesting in small-cell
networks and designed an algorithm to maximize the
number of offloaded users [10]. However, the amount of
energy harvested from the surrounding environment is still
limited in practice because the amount of energy collected is
susceptible to environmental or natural influences, which
are uncontrollable around mobile devices [11]. Wireless
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energy harvesting can provide more reliable energy than
acquiring unstable and uncontrolled energy from the sur-
rounding environment because it allows energy transmis-
sion under human control and is less affected by the natural
environment. Hu et al. proposed a fog node delay-aware
application module management strategy that consists of
two parts: first, the placement of the application module
policy and then the inactive idle resources to which the
module is forwarded and reduces the process to a constraint-
based optimization problem to solve [12].
Shen et al. proposed deep learning as a new intrusion

detection technique in the IoT environment with good re-
sults [13]. 'ey point out that thousands of zero-day attacks
have emerged due to the inclusion of various protocols.
'ese protocols are mainly from the IoT and most of them
are small variants of previously known cyber attacks. 'is
situation suggests that even advanced mechanisms like
traditional machine learning have difficulty detecting these
small attack variants over time. Cao et al. propose to use
behavioral modeling to detect intrusions in smart homes by
detecting anomalies associated with nonplaying roles
(NPCs), i.e., playing different roles around and inside the
smart home [14]. Although the proposed work does not
disclose which IA or hardware implementation is used, it
claims to enable cost-efficient and easily verifiable autono-
mous monitoring for intrusion detection. 'e IoT is
designed as a network of small devices distributed over the
Internet, and its scheme is designed using state estimation
and sequential hypothesis testing techniques to address the
limitations of existing research [15]. 'e main idea of the
design is to exploit the high spatiotemporal correlation
between successive observations in IoT environmental
monitoring to predict future observations based on previous
reviews [16]. 'ey evaluated the security of the scheme by
game theory analysis. 'e results show that the scheme can
obtain good detection results even when aggregators launch
FDI attacks with very low frequency and intensity [17].

3. Machine Learning Analysis of Offloading
Strategies for Lightweight User Mobile Edge
Computing Tasks

3.1. Lightweight User Mobile Edge Computing Task Offload
Policy Design. Fog nodes are an important part of the cloud
computing system, and their task scheduling and computing
resource allocation are important factors that affect the
quality of service and resource usage efficiency of the cloud
computing system tasks. In practical application scenarios,
the tasks generated by end devices and users not only have
real-time requirements, but also have heterogeneity in the
demand for computing resource allocation for different
types of tasks (i.e., they can be classified into different task
types according to the heterogeneity of the demand for
computing resource allocation), and the limited computing
resource capacity of fog nodes can hardly meet the com-
puting resource allocation demand for different types of
tasks at the same time [18]. 'erefore, the balance of
computing resource allocation between different types of

tasks by fog node computing resource allocation algorithms
is a key factor affecting the quality of task services and the
efficiency of fog node computing resource usage. 'e bal-
ance of fog node computing resource allocation not only can
avoid the problem of “resource starvation” for certain types
of tasks, but also can ensure the optimization of fog node
throughput.
Moreover, the limited capacity and computing power of

the fog nodes make the tasks need to be queued and buffered
within the fog nodes, so the order of task execution within
the fog nodes also affects the quality of service of the tasks
and the usage efficiency of the fog nodes’ computing re-
sources, which means that the fog nodes need to have not
only a suitable task sequencing buffer scheduling algorithm
to optimize the order of task execution within the fog nodes,
but also means that the task scheduling and computational
resource allocation algorithms are coupled with each other,
which has an impact on the quality of service of tasks and the
efficiency of using computational resources of fog nodes.
'erefore, the task scheduling algorithm and the compu-
tational resource allocation algorithm of the fog node need
to collaborate so that as many real-time tasks as possible can
be processed before the deadline while ensuring balanced
computational resource allocation and improving the
throughput of the fog node. However, from the practical
point of view of tasks, the randomness parameters (e.g., task
type, deadline, and data size) and uncertainty (e.g., arrival
time and execution time) of real-time heterogeneous tasks
increase the difficulty of real-time heterogeneous tasks
processing by fog nodes. In this case, the waiting time of a
task in the task queue of a fog node will become uncertain
[19]. Although task execution time can be predicted, inac-
curate task execution time prediction increases the difficulty
of optimizing task scheduling and computational resource
allocation policies of fog nodes. 'e task processing process
structure of the cloud computing system is shown in Fig-
ure 1, which includes the terminal layer, the fog computing
layer, and the cloud computing layer.
As far as the purpose of computational offloading is

concerned, it can be divided into offloading for performance
enhancement and offloading for energy saving. As appli-
cations in mobile devices become more complex, it is dif-
ficult to ensure that tasks can be completed within the
specified time constraints by performing computation only
on the mobile device. To achieve this goal of real time, for
example, navigation robots need to make and successfully
evade obstacles before they encounter them. Applications
such as driverless and intelligent transportation need to be
supported by powerful computational processing power,
and computational offloading solves this problem by off-
loading the heavy computational tasks to other devices.
Similarly, as in the case of context-aware computing, the
limited computing power of mobile devices greatly limits the
spread of applications, and computation offloading will
improve the overall computing power of mobile devices. To
ensure that computation offloading is efficient and feasible,
offloading does improve performance only if the time taken
by the mobile device to complete the computation task
locally is greater than the time consumed to transfer the
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computation data to the server. 'erefore, the computa-
tional complexity of the task, the computational rate of the
mobile device, the amount of data uploaded for the com-
putational task, and the channel transmission rate all have a
significant impact on the performance of computational
offloading. Nowadays, although battery-making technology,
fast charging technology, and wireless charging technology
are developing rapidly, the limited battery capacity of mobile
devices still cannot satisfy people’s desire to explore various
mobile applications. Energy saving is still a big issue. And
computation offloading can reduce energy consumption on
the mobile site by offloading energy-intensive computation
tasks to the server side. At the same time, to ensure that
offloading is energy-efficient and reliable, it is energy-effi-
cient only when the energy consumed to complete the task
on the mobile device is greater than the energy consumed to
upload the offloaded data to the server for data transfer.
'erefore, the computational task load, the amount of
uploaded data, and the CPU frequency of the mobile device
have a great impact on the energy consumption, as well as
the transmission power of the mobile device to communi-
cate with the server.
Full offload means that all computing tasks are offloaded

and completed on the server or all are executed and com-
pleted on the local device; partial offloadmeans that a part of
computing tasks are completed on the mobile device (locally
executed) and the rest are offloaded to the server for exe-
cution. As in Figure 2, the forms of dichotomous and partial
offloading are briefly described. For some highly integrated
or relatively simple tasks that cannot be further divided, such
as applications with a directed acyclic graph DAG structure,
as in Figure 2, they must be executed locally on the mobile
device or offloaded to the server. 'e optimal allocation
strategy is derived according to different optimization goals.
Some of these subtasks can be optionally executed on the
server side or locally on the mobile device. As in Figure 2,
many applications, such as face recognition, augmented
reality, virtual reality, speech recognition, etc., can be di-
vided with finer granularity, e.g., the data are divided into

arbitrary proportions at the bit level, for task offloading
calculations to achieve certain goals.
To efficiently utilize the computational offloading

technique, research work can be carried out in three aspects:
minimizing energy consumption while satisfying compu-
tational latency constraints; minimizing computational la-
tency; and jointly optimizing both energy consumption and
computational latency. To minimize the energy consump-
tion on the mobile device side while satisfying the com-
putational latency constraint of the application, the energy
consumption generated by local computation and data
transfer will greatly affect the final resource allocation
strategy. If the offloaded tasks do not need to be computed
locally, the computation tasks that are offloaded to the server
can save the energy consumption of the mobile device [19].
At the same time, the mobile device consumes energy by
uploading the offloaded data to the server and receiving the
computation results from the server side. 'e tradeoff be-
tween the energy consumption of local computation and the
energy consumption of uploading and receiving data finally
leads to the optimal resource allocation policy. 'e problem
of minimizing local computation latency and the latency
generated by computation offloading (including the upload,
server computation, and return) is finally achieved by op-
timizing the local computation frequency, mobile device
transmission power, server computation frequency, and
mobile device reception power and then optimizing the
offloading ratio.
'is study is to achieve a compromise between energy

consumption and execution time of mobile devices by
weighting the energy consumption and computation latency
in a multiuser and multichannel environment. 'e final
optimization strategy of this study needs to consider the
amount of computational task data per user, server and
mobile device computational capacity, communication
channel, and mobile device energy consumption to achieve a
compromise between energy consumption and computa-
tional latency by jointly considering related factors. At the
same time, by adjusting the weights of the two,
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Figure 1: Schematic diagram of the task processing process structure.
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corresponding optimization strategies can be given for
different requirements of different computing task types,
such as latency-sensitive tasks and energy-consumption-
sensitive tasks.

3.2.Machine LearningAlgorithmDesign. Any packet in dark
network traffic data from an IoT device that does not meet
either of the two criteria above is a configuration error or
other traffic. A configuration error is a large duplicate traffic
flow targeting one destination port. 'is communication
traffic can occur for a variety of reasons, including mis-
configured network address translation (NAT) rules and
routing table errors. 'e cases of other traffic are rare and
largely negligible. 'e misconfigured packet traffic is de-
termined by a probabilistic model in this section. Combining
the characteristics of IoT dark network traffic with the ad-
vantages of machine learning and IoT dark network attack
node classification model based on dark network traffic and
machine learning is proposed, as shown in Figure 3.
Empirical dark web data can help characterize Internet-

scale malicious activity, but it still may not provide insight into
the behavior of unsolicited IoT devices. 'erefore, filtering of
darknet sessions originating from IoT devices is necessary. In

this chapter, this problem is addressed by correlating packet
information from the CAIDA darknet database with data
measurements of active IoTdevices obtained from the Internet.
Here the data of the active IoTdevices are obtained using data
from the Census and Shodan search engines. A key issue in
correlating the two measurements is the need to properly clean
the darknet data and filter out misconfigured traffic that is
incorrectly directed to the darknet due to software, hardware,
or routing errors.
SVM is a supervisedmachine learning algorithm for binary

classification, usually used for classification problems. 'e idea
of SVM classification is to find a hyperplane in a space where all
sample points in the sample set have the shortest distance from
the hyperplane and where the hyperplane can divide all
samples. It creates the boundary by determining a two-di-
mensional boundary line through space. 'e hyperplane
equation can be written in the following form:

WTX � b. (1)

Suppose that P(x1, x2, . . . , xm) is a sample point and xk
is the k-th feature variable P(x1, x2, . . . , xm). 'e formula
for calculating the distance v to the hyperplane can be
expressed as follows:

v �
w1 × x1 + w2 × x2 − w3 × x3 + w4 × x4 − . . . + wn × xn + b
∣∣∣∣ ∣∣∣∣����������������

w21 + w
2
2 + . . . + w2n

√ . (2)

For nonlinearly divisible support vector machines, to
find the nonlinear hyperplane, a nonlinearly divisible dataset
in low-dimensional space can be transformed into a linearly

divisible dataset in high-dimensional space using a kernel
function. As a weak differentiator SVM for attack node
classification, the radial basis kernel function (RBF) is used
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as its kernel function, also called Gaussian kernel function,
which can be expressed as follows:

K(x, y) �
e|x+y|

3

2σ2
, (3)

where σ is the arrival rate and x + y is the distance from the
sample point to the center. 'e optimization of a nonlinear
separable support vector machine can be expressed as
follows:

max
1

2
WTW + C∑ m

i � 1 (4)

s.t. yi W
T
× xi( )≥ 1 + ε, (5)

where C is a constant greater than 0, W is the degree of
penalty for incorrect samples, and ε> 1 is the slack variable.
Constructing a Lagrange function for the solution, the
optimization problem is transformed into the following
equation:

max
1

2
∑
m

i

∑
m

j�1

K xi, yj( ) � 1 (6)

s.t. ∑
m

i

aiyi � 0. (7)

Under the existing cloud computing system, the long-
distance communication between IoTdevices and cloud data
centres cannot guarantee timely data transmission to cloud
data centres due to the unstable nature of backhaul links.
Besides, the entry of large-scale IoT devices can cause huge
pressure on the access network [20]. On the other hand, the
monolithic cloud computing model, which is far away from
IoT devices, will lead to the convergence of IoT business
traffic in the centralized cloud computing platform, which
will significantly increase the computational pressure on the
cloud data center and even result in the “collapse” of
computing devices due to the data flood. 'erefore, how to

design a new computing model for ultrahigh device con-
nectivity and traffic density is a major challenge for future
IoT applications.

b � lim sup
1

M
∑
M

t�0

E‖b(t)‖. (8)

To meet the growing number of device connections and
traffic density, ISPs can meet this challenge by deploying
more data centres. However, this approach will significantly
increase the cost of processing data for ISPs. Since IoT
devices are located far from cloud computing centres, a
survey from the ICA Consortium reports that when the
distance between IoT devices and cloud data centres is re-
duced by 322 km, the spending on data processing is reduced
by 30% [21]. Figure 4 shows the data cost reduction sche-
matic provided by the ICA Consortium, where the cost of
data processing will gradually decrease as the computing
distance gradually moves from the remote data center closer
to the data source side. When AI technology is empowered
into edge computing, the processing cost of data will be
further reduced. On the other hand, maintaining many
cloud computing devices will generate a large amount of
energy overhead, and how to design a green communication
and computing network will also be an important challenge
now.
'e computational distance moves from the remote data

center to the data source, and the cost of data processing
gradually decreases, and here the results are not linear be-
cause the relationship between the processed data and the
processor is not linear. To have an intelligent view in
complex driving environments, it is necessary to complete
the processing of a large amount of data in a relatively short
period and sense the current real-time traffic conditions,
target characteristics, and pedestrian density to achieve a
smooth driving pattern and experience. However, limited by
the limited resources of the vehicle itself and the uneven
distribution of resources among vehicles, satisfactory per-
formance indicators, including data throughput, service
experience, reliability, coverage, and other performance, are
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usually not available, which poses a great challenge to the
implementation and popularization of autonomous driving.
On the other hand, our daily travel will generate a large
amount of data, how to activate existing data, integrate local
data, connect information islands into networks, establish
data and information resources sharing mechanism, and
other information service research is the urgent need to solve
the problem of future intelligent transportation. At present,
the combination of vehicle local computing and remote
cloud computing platforms is the main computing mode to
realize data processing and analysis. However, the limited
computing capacity of vehicles and the unstable backhaul
links between vehicles and cloud computing platforms will
significantly increase the service latency of services, which
will not satisfy the latency-sensitive telematics applications.
'erefore, computational network system architecture and
information service research strategies need to be designed
for complex telematics applications to enhance the service
level of smart transportation.

∇b(t) � E L(b(t + 1)) + L(b(t)){ }, (9)

L(b(t + 1)) − L(t)≥ 1
2
E L(b(t + 1)) + L(b(t)){ }, (10)

where b is the corresponding flux, E is the total energy, L is
the length, and t is the time. In complex IoT application
scenarios, a common access technology does not exist that
can meet the different distances and diverse network per-
formance requirements. 'e future of wireless access net-
works will be a scenario of ultradense network deployment
and the coexistence of multiple access technologies. Dif-
ferent types of IoT applications require matching connec-
tivity to ensure service continuity [22–28]. However, the
current network management architecture lacks the coop-
eration of convergence between different networks; for
example, it is difficult to share information and resources
between networks in real time.'is relative independence of
resources and networks does not provide a complete IoT
solution. Besides, the widely distributed IoTdevices generate
a huge amount of multidimensional fragmented data, and

the traditional cloud computing model cannot achieve real-
time response for end-to-end services, while the existing
edge access network does not play the natural advantage of
being close to the data source end, but still only serves as a
transmission pipeline for data, lacking the ability to sense
and analyse the service traffic, device characteristics, and
resource status, and thus cannot provide the upper control
plane with refined resource management information.

4. Results and Discussion

Simulation results for the different number of users show
that the proposed algorithm achieves lower system energy
consumption than the other four algorithms. A negative
energy consumption indicates that the system gains extra
energy, thanks to the additional channels that provide more
energy transmission; moreover, the superiority over the
algorithms is because there is no limitation of cochannel
interference, which provides more transmission power in
the transmit energy channel, there is no attenuation factor of
the power splitting ratio, so more energy is gained. Also, as
the number of mobile devices increases, the system energy
performance of several other algorithms starts to decrease,
while this performance of the algorithm proposed in this
chapter decreases insignificantly, also thanks to the avail-
ability of redundant channels to send energy without the
influence of the transmit power limit and the attenuation of
energy reception by the splitting ratio. Of course, the system
energy performance still decreases as the number of users
increases, which is due to more users, making the total
equivalent distance of transmitted energy increase, as shown
in Figure 5.
A scheme using additional channels to transmit energy is

proposed, so this section compares the effect of the number
of channels M � N + C, C � 2, 4, on the system perfor-
mance. Other parameters are described as before, and the
simulation results are shown in Figure 5. As a reference, the
results of the algorithm on the energy consumption part of
the system are put together with the results in Figure 5. From
Figure 5, it is known that when the number of channels used
for energy transmission is increased from 2 to 4, the system
performance is further improved because more channels are
available for energy transmission. And the trend of system
energy consumption with an increasing number of users is
the same. 'erefore, increasing the number of channels will
generally improve the system performance, but not linearly.
Figure 6 verifies the service latency of the service based

on the two computational migration strategies for a different
number of trials. Since VE-MACN is a distributed com-
putational migration architecture, so the tasks of all vehicles
adopt parallel transmission and computation modes, this
paper adopts the cumulative average service latency of the
services to reflect the service latency of all services of the VE-
MACN computational migration system. As can be seen
from the figure, the cumulative average service delay of the
services of both computational migration strategies con-
verges to a stable value as the number of trials increases,
which indicates that the computational migration strategy
based on deep augmentation learning has good convergence
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performance. On the other hand, compared with the
computational migration strategy without vehicle collabo-
ration, the multisite collaborative computational migration
strategy proposed in this paper can reduce the average
service delay of the service by 22.5%.'e main reason is that
when more vehicles with idle resources join the VE-MACN,
vehicles with computational migration needs under the
same traffic area use the multiaccess and task distribution
strategy to migrate some tasks to roadside units and vehicles
with idle resources to achieve parallel transmission and
computation of data streams, thus reducing the service la-
tency of the service.
We analyze the energy consumption comparison results

under the two computing migration strategies. As can be
seen from the figure, the cumulative average energy con-
sumption values of the system under both computational
migration strategies converge to an interval with an error of
±5 when the number of trials is greater than 200. In terms of
the total system energy consumption, when there are no
vehicles in VE-MACN to join the collaborative computa-
tional migration, the roadside unit needs to allocate more
resources to vehicles with computational migration demand
and then meet the service delay demand of users, which will
increase the system energy consumption in this case. On the
contrary, when vehicles with idle resources join the VE-
MACN scenario, the multisite collaborative migration
strategy proposed in this paper can be used to distribute
tasks to the computational servers of both the roadside unit
and the vehicles, and this distributed computing mode will
reduce the number of tasks distributed for each edge node
and also reduce the demand for computational resources of
the edge nodes accordingly, thus reducing the overall energy
consumption of the system.
When the weight parameter lies in the interval [0.1, 0.6],

a smaller weight parameter implies that the demand for
resources by task owners is higher. In Figure 7, when the
number of task owners is small, differential pricing can

satisfy the resource demand of task owners to the maximum
extent, so the total satisfaction and average revenue of task
owners are significantly improved. When the number of task
owners is greater than 6, the number of resources allocated
to each task owner gradually decreases because the current
supply of resources is smaller than the demand for resources,
so it will slow down the upward trend of total user satis-
faction. On the contrary, the downward trend of the average
revenue of task owners is obvious.'is is because the current
shortage of resource supply causes the price of resources to
increase, thus reducing the average revenue of task owners.
'e weights located in the interval [1.0, 6.0] reflect the lower
level of demand for resources by task owners compared to
the smaller μ. 'e total satisfaction of task owners still shows
an increasing trend even in the case of insufficient resource
supply. Due to the gradual increase in the price of resources,
the upward trend of their average returns will gradually
smooth out when the number of task owners is high. 'e
results in Figure 7 also demonstrate that task owners can
change the matching of demand and resources by adjusting
the weight parameter and can obtain greater overall satis-
faction and average gain when the weights are larger.
Figure 8 compares the comparison results of the average

service latency under different task offloading algorithms.
Based on the distributed data transfer and parallel com-
puting model, the average service delay under both task
offloading strategies shows a decreasing trend as the number
of computing resource providers increases. With the in-
crease of the number of computing resource providers, the
average service delay under the task offloading strategy
proposed in this section is only slightly larger than that of the
CTC-DP strategy. However, the complexity of the QPSO-
based task offloading algorithm is much lower than that of (|
W2||X2||M|) in the CTC-DP scheme. 'e complexity of the
QPSO-based task offloading algorithm is (SP) for a given
maximum number of iterations S and number of particles P.
Moreover, the impact of the CTC-DP scheme on the
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performance depends not only on the dimensionality of the
variables but also on the degree of discretization of the
decision variables. In contrast, the task offloading strategy
proposed in this section is not bounded by this rule.
'erefore, an effective balance between business service
latency and computational complexity is required to meet
the stringent latency performance requirements.
Our model is highly efficient and has a high degree of

accuracy. Unlike the traditional proof-of-work mechanism
based on the “mining” process, this section designs a rep-
utation evaluation mechanism that combines resource
transactions and task offloading to provide a trusted com-
puting environment and avoid taking up too many com-
puting resources and generating large energy consumption.
'e user with the highest reputation value is responsible for

packaging and writing the transaction records and reputa-
tion values into the blockchain. 'e system feasibility
analysis and simulation results verify that the strategy
proposed in this chapter can not only provide a trusted
computing environment but also significantly reduce the
signalling overhead and energy consumption of the block-
chain system. By analysing this mixed-integer nonlinear
programming model, the conclusion that its relaxed opti-
mization problem is convex is obtained, and the Lagrange
dual method is used to obtain the optimal unloading
strategy, transmit power allocation, local computing power
scheduling, and energy-carrying channel selection strategy,
and the algorithm to minimize energy consumption is
obtained. 'en, based on this algorithm, a branch-and-
bound approach is proposed to solve the algorithm for the
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global optimal solution of the optimization problem. 'e
final simulation comparison verifies the advantages of the
algorithm proposed in this chapter in improving the energy
consumption performance of the system.

5. Conclusion

In this thesis, a dynamic offloading and resource scheduling
optimization model for a multiuser mobile edge cloud SWIPT
system is developed through system computation and energy
model analysis, and then this nonconvex optimization problem
is transformed into a zero pairwise gap optimization problem.
With the optimization algorithm of the pairwise problem, the
results of this thesis make it possible to minimize the system
energy consumption while satisfying the optimal policy re-
quirements of clock frequency control, transmission power
allocation, unloading ratio, and received power split ratio.
Finally, the algorithm is verified by comparative simulations to
show that the account has a good performance in terms of
system energy consumption. By digitizing the distributed
computing migration algorithm, the resource transactions and
task offloads that comprise the reputation value evaluation will
be embedded in the blockchain in the form of smart contracts
to prevent malicious nodes from tampering with the trans-
action records and reputation values. Based on the Stackelberg
model, joint differential pricing and joint optimization strat-
egies for resource allocation are designed to achieve a balance of
interests between task owners and resource providers. After
completing the resource transaction, the smart contract au-
tomatically executes task offloading to achieve an effective
compromise between business processing latency and algo-
rithm complexity. After passing the validation of the com-
putation results, the reputation value of each user is updated
based on the resource allocation results and computation
performance. 'e security, feasibility analysis, and numerical
results show that the smart contract and consensus mechanism
proposed in this paper can be effectively applied in a block-
chain-enabled system.
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