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Abstract

Two attributes A and B are said to interact when it helps to observe
the attribute values of both attributes together. This is an example of a 2-
way interaction. In general, a group of attributes X is involved in a k-way
interaction when we cannot reconstruct their relationship merely with ℓ-way
interactions, ℓ < k. These two definitions formalize the notion of an interaction
in a nutshell.

An additional notion is the one of context. We interpret context as just
another attribute. There are two ways in which we can consider context. Con-
text can be something that specifies our focus: we may examine interactions
only in a given context, only for the instances that are in the context. Al-
ternatively, context can be something that we are interested in: if we seek to
predict weather, only the interactions involving the weather will be interesting
to us. This is especially relevant for classification: we only want to examine the
interactions involving the labelled class attribute and other attributes (unless
there are missing or uncertain attribute values).

But the definitions are not complete. We need to specify the model that
assumes the interaction: how to we represent the pattern of co-appearance
of several attributes? We also need to specify a model that does not assume
the interaction: how do we reconstruct the pattern of co-appearance of several
attributes without actually observing them all simultaneously? We need to
specify a loss function that measures how good a particular model is, with
respect to another model or with respect to the data. We need an algorithm
that builds both models from the data. Finally, we need the data in order to
assess whether it supports the hypothesis of interaction.

The present work shows that mutual information, information gain, cor-
relation, attribute importance, association and many other concepts, are all
merely special cases of the above principle. Furthermore, the analysis of in-
teractions generalizes the notions of analysis of variance, variable clustering,
structure learning of Bayesian networks, and several other problems. There is
an intriguing history of reinvention in the area of information theory on the
topic of interactions.

In our work, we focus on models founded on probability theory, and em-
ploy entropy and Kullback-Leibler divergence as our loss functions. Generally,
whether an interaction exists or not, and to what extent, depends on what
kind of models we are working with. The concept of McGill’s interaction in-
formation in information theory, for example, is based upon Kullback-Leibler
divergence as the loss function, and non-normalized Kirkwood superposition
approximation models. Pearson’s correlation coefficient is based on the pro-
portion of explained standard deviation as the loss function, and on the mul-
tivariate Gaussian model. Most applications of mutual information are based
on Kullback-Leibler divergence and the multinomial model.

When there is a limited amount of data, it becomes unclear what model
can be used to interpret it. Even if we fix the family of models, we remain
uncertain about what would be the best choice of a model in the family. In all,
uncertainty pervades the choice of the model. The underlying idea of Bayesian
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statistics is that the uncertainty about the model is to be handled in the
same was as the uncertainty about the correct prediction in nondeterministic
domains. The uncertainty, however, implies that we know neither if is an
interaction with complete certainty, nor how important is the interaction.

We propose a Bayesian approach to performing significance tests: an in-
teraction is significant if it is very unlikely that a model assuming the inter-
action would suffer a greater loss than a model not assuming it, even if the
interaction truly exists, among all the foreseeable posterior models. We also
propose Bayesian confidence intervals to assess the probability distribution of
the expected loss of assuming that an interaction does not exist. We com-
pare significance tests based on permutations, bootstrapping, cross-validation,
Bayesian statistics and asymptotic theory, and find that they often disagree.
It is important, therefore, to understand the assumptions that underlie the
tests.

Interactions are a natural way of understanding the regularities in the data.
We propose interaction analysis, a methodology for analyzing the data. It has
a long history, but our novel contribution is a series of diagrams that illustrate
the discovered interactions in data. The diagrams include information graphs,
interaction graphs and dendrograms. We use interactions to identify concept
drift and ignorability of missing data. We use interactions to cluster attribute
values and build taxonomies automatically.

When we say that there is an interaction, we still need to explain what it
looks like. Generally, the interaction can be explained by inferring a higher-
order construction. For that purpose, we provide visualizations for several
models that allow for interactions. We also provide a probabilistic account of
rule inference: a rule can be interpreted as a constructed attribute. We also de-
scribe interactions involving individual attribute values with other attributes:
this can help us break complex attributes down into simpler components. We
also provide an approach to handling the curse of dimensionality: we dynam-
ically maintain a structure of attributes as individual attributes are entering
our model one by one.

We conclude this work by presenting two practical algorithms: an efficient
heuristic for selecting attributes within the näıve Bayesian classifier, and a
complete approach to prediction with interaction models, the Kikuchi-Bayes
model. Kikuchi-Bayes combines Bayesian model averaging, a parsimonious
prior, and search for interactions that determine the model. Kikuchi-Bayes
outperforms most popular machine learning methods, such as classification
trees, logistic regression, the näıve Bayesian classifier, and sometimes even the
support vector machines. However, Kikuchi-Bayes models are highly inter-
pretable and can be easily visualized as interaction graphs.

Keywords

• machine learning, data mining, information visualization
• interaction, dependence, dependency, correlation
• independence, independence assumption, factorization
• information theory, entropy, mutual information, maximum entropy
• Bayesian statistics, significance testing, confidence intervals
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data. M. Žnidaršič provided the ecological data that led towards the development of the
contour plot visualization of 3-way interactions. I collaborated with U. Brefeld, J. Dobša
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CHAPTER 1

Introduction

1.1 Interactions

Interaction is a fundamental concept we often use, but rarely specify with precision. There
are two senses to the word. The first, ontic sense is ‘influence or a mutual or reciprocal
action in the world’. For example, when a ball and a wall meet, they interact. When
a seller and a buyer exchange money and goods, they interact. When two people hold
a conversation, they interact. When a user types on a computer, the computer and the
user interact. By using the term ‘interaction’ rather than ‘cause’ we stress that the causal
direction is ambiguous or bidirectional. This sense of ontic interaction will not be discussed
in this work.

The second, epistemic sense of interaction implies some sort of association, correlation,
entanglement. This is an aspect of the mind. For example, the height and the weight of a
man are involved in an interaction: the greater the height, the greater the weight. There
is an interaction between smoking and lung cancer: the incidence of lung cancer is greater
among the smokers than among the non-smokers. The bridge between these two notions
is that we infer action from association, and that action may cause association. This
dissertation will concern itself with the sense of epistemic interaction.

Many similar interactions are suggested in newspapers daily: “CO2 interacts with
global warming.” “Meditation interacts with stress.” “Gender interacts with the amount
of earnings.” “Nazism interacts with evil.” “Eating vegetables interact with long lifespan.”
How do we know? A priori, we do not. All these conclusions are derived from the data
in proper empirical science. For all these conclusions, we can only claim an interaction.
People often interpret these claims as causal claims, but they are not. For example, not
being under stress might well allow one to meditate, not that meditation would relieve
stress. Or, there might be a factor that interacts both with CO2 and with global warming,
but there is no strong direct connection between CO2 and global warming. Moreover,
global warming might even encourage metabolism that in turn generates CO2. In nature
simple causes rarely exist.

Leaving aside these pitfalls, we will formalize the notion of interaction in the epistemic
sense. Namely, it is the device of analyzing interactions that underlies a large part of

1
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modern empirical science. Yet, the assumptions that go into this are rarely investigated in
detail. For example, the analysis of correlations is based on the assumption of a particular
model (Gaussian), a particular fitting method (maximum joint likelihood) and a particular
loss function (explained variance).

We can generalize interaction to multiple factors. For example, do the three concepts
health, vegetable-eating and health-conscious attitude 3-interact? Yes, they do: health-
conscious people eat vegetables, so it is hard to separate other things that health-conscious
people do from vegetable-eating in the interaction with health. We can also treat the
existence and the worth of an interaction as a random quantity, and estimate the level of
faith in the interaction we are justified to have. We can see how important the interactions
are to understand the complex phenomena in the world.

But interaction analysis can provide completely novel ways of analysis. For example,
we can segment attributes into groups based on whether the attributes interact or not.
We can build predictive models purely on the basis of interactions. We can examine how
an individual interaction can be structured. Interactions provide a unifying paradigm for
machine learning. Certain methods such as cross-tabulation, recursive partitioning, curve
fitting, subgroup discovery, and constructive induction are used inside an interaction to
capture its structure. On the other hand, the methods of voting and weighting are used
to fuse multiple interactions together.

1.2 Overview of the Text

Philosophically, interactions are a particular element of the language we use to build
models. The language of models allows interpreting the data. The data are specified in a
more primitive language of instances and attributes. A model can be seen as the ‘meaning’
of the data. We infer models by superimposing the elements of the language onto the data.
Because there are several ways of performing such connections, we need algorithms to guide
the search. Loss functions judge the quality of a model. We have adopted probability
theory to tackle the uncertainty about the predictions, and also the uncertainty about
the models in Bayesian statistics. The underlying philosophy is described in Chapter 2.
These ideas have been previously published as (Jakulin, 2004, 2005).

A reader less interested in the philosophy of machine learning might prefer to skip
directly to Chapter 3. There we choose the particular loss functions and model families
that will be used in the remainder of the text. Our models are factorizations of probability
distributions. They have convenient properties and form the basis of both information
theory (Shannon, 1948) and the recent developments in graphical models (Pearl, 1988,
Buntine, 1996). Our loss function will be logarithmic, most commonly used in information
theory. We survey the literature on interactions within information theory, and present a
thorough historical review. We provide a novel way of illustrating entropy decompositions,
and show its meaningfulness on examples. We offer an information-theoretic explanation
of the problem of polysemy (a word with multiple meanings) and synonymy (a concept
with multiple names). The chapter builds on earlier unpublished work (Jakulin, 2003,
Jakulin and Bratko, 2004a).

The probabilistic model is often postulated irrespective of the data, or unquestioningly
estimated from the data. The resulting model P is then fixed and perfect. It is a gold
standard when we perform entropy decompositions in the context of P . In Chapter 4 we
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switch the perspective by having a different gold standard, the data. The model P is not
known in advance, but must be learned. For these tasks, we need to apply the tools of
statistical modelling. Neither the model nor the information-theoretic quantities tied to
it are fixed any longer.

If we were certain that the mutual information takes a specific value in Ch. 3, mutual
information becomes a quantity with an uncertain distribution in Ch. 4. We survey vari-
ous techniques for examining these distributions of information-theoretic quantities, both
Bayesian and frequentist. While we have already noticed that information-theoretic quan-
tities are both decompositions and model comparisons, we now distinguish these two ways
of interpreting information-theoretic quantities. For entropy decompositions the same
gold standard varies together for two models. For model comparison the gold standard
varies independently for two models. Based on this dichotomy, we introduce several novel
significance tests, and compare them empirically. We also describe a Bayesian treatment
of the problem of multiple testing. Another contribution of this chapter is a rigorous def-
inition of the ‘amount’ of interaction: it is the decrease in loss achieved by modelling the
data allowing that the values of all the attributes are observed simultaneously. Interac-
tion information is a practical implementation of this quantity by using Kullback-Leibler
divergence as a loss function and the Kirkwood superposition approximation as the no-
interaction model. Some of the material of the chapter has previously appeared in (Jakulin
and Bratko, 2004b).

In Chapter 5 we show that information-theoretic analysis can also be performed for
continuous attributes. While differential entropy can be negative, mutual and interaction
information behave in sensible ways. We suggest that it is better to work with mutual
information than with Pearson’s correlation coefficient. Namely, the correlation coefficient
carries the underlying assumption of the bivariate Gaussian model and implies a particular
definition of loss. To generalize it, we discuss Gaussian mixture models that handle both
continuous and discrete attributes, and can be estimated with the EM algorithm. These
distinctly non-linear models can then be used as a ground for computing mutual and
interaction information.

Chapter 6 lists numerous novel ways of exploratory data analysis using the notions of
interaction and mutual information. Rajski’s distance allows transforming information-
theoretic quantities into distances, and this allows us to cluster both attributes and their
individual values. Interaction graphs and matrices allow us to illustrate interactions among
specific pairs of attributes. We employ these tools to address specific problems, such as
the concept drift and non-random patterns of missing values. In the process of such
analysis we identified some errors in the UCI repository of machine learning benchmarks.
Furthermore, it turned out that the statistical significance of interactions was associated
with whether an expert found them meaningful on a medical domain; it seems that our
assessment of significance is close to human intuition.

In the second half of Ch. 6 we examine (‘drill’) an individual interaction. Drilling is
composed of two kinds of analysis: first, we compare the interaction-assuming model with
the no-interaction model; second, we examine what structures are used by the interaction-
assuming model. There are many ways in which we can structure the interaction-assuming
model: a Cartesian product, recursive subdivision, rules, mixture models, and so on.
Several of these structures can be understood as new attributes that were constructed
to explain the interaction. Such attributes can be either continuous or discrete, and we
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show both approaches on an example of capturing the interactions among the votes of
senators of the US Senate. This example is interesting because the problem is very far
from being sparse: a very large number of attributes (individual senators’ votes) interacts
simultaneously. We also discuss that a rule can be understood as a binary attribute: when
the attribute takes the value of 1, the rule holds, if the attribute takes the value of 0, the
rule does not hold. We conclude the chapter with some ideas on how to perform interaction
analysis when there are several thousand attributes, and report on experiments in the
domain of text mining. Several of the visualizations in this chapter have been described
earlier (Jakulin and Leban, 2003).

The final part of this dissertation deals with the applications of interactions to classi-
fication and regression. In Ch. 7 we survey various probabilistic models. We discuss how
interactions can be represented in the notation of Bayesian networks. We then focus on
the applicability of interaction information as a heuristic for guiding attribute selection,
and for deciding what attributes to join. We show that Bayesian networks can repre-
sent non-disjunct decompositions of attributes in certain cases. We present a predictive
model of the success of hip arthroplasty that was constructed using interaction analysis.
We find that interaction information is an efficient heuristic for attribute selection in the
näıve Bayesian classifier, and that it outperforms similar approaches. Some of the heuris-
tics were originally discussed in (Jakulin and Bratko, 2003, Jakulin et al., 2003), and the
material is based on those two publications.

In Chapter 8 we synthesize the findings and concepts of the previous chapters in the
Kikuchi-Bayes model. This model specifies the joint probability model in terms of the
constraints that act upon it. Models specified in such a way have been known for some
time, but obtaining the explicit parameterization is considered to be time-consuming, and
is usually handled with optimization methods. We combine the Kirkwood superposition
approximation of Ch. 4 with the recent Kikuchi approximation (Yedidia et al., 2004).
Kikuchi approximation yields a generalization of the chain rule, expressible in closed form.
We use it for fusing multiple interactions in order to make a prediction.

The second part of Ch. 8 describes the algorithm that underlies the Kikuchi-Bayes
classifier. The Kikuchi-Bayes classifier is based on approximate fusion of marginals with
the Kikuchi method. It performs a greedy search for the best structure expressed in terms
of interactions. It employs a parsimonious Bayesian prior and model averaging (BMA).
It is a versatile algorithm that can be used also in tasks other than classification. Fur-
thermore, it competes favorably with other algorithms, even outperforming some support
vector machine implementations.

The present text is a journey through several areas of machine learning and some
areas outside machine learning. It is impossible to combine breadth with depth; we do
not hide the fact that this work is primarily of breadth. A deeper coverage of most
terms and expressions, along with their derivations, properties and proofs, appears in the
original references. We have attempted to analyze our own theoretical contributions in
depth, especially in Chs. 4, 7 and 8. However, our analysis, although careful, is primarily
experimental. We find a graph, a picture, an example or a scheme far easier to comprehend
and appreciate than an unwieldy sequence of assumptions, arguments, and derivations.
All such sequences were omitted from the text, but the claims, assumptions and the
equations were checked, double-checked, implemented and tested. We hereby apologize to
those readers who are guided more by logic than by intuition.
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A Summary of the Contributions

• A machine learning method, Kikuchi-Bayes, for efficient structure learning in in-
teraction models. The method combines approximate Bayesian model averaging
by integrating along a single trajectory. Kikuchi-Bayes outperforms a number of
popular machine learning algorithms, and is competitive with the state-of-the-art.

• A family of parsimonious priors for Bayesian modelling, motivated in terms of ap-
proximating the expected loss on an independent sample of data from the model.
Kikuchi-Bayes avoids overfitting the training data by using degrees of freedom to
discount the complexity of the model. No time-consuming internal cross-validation
is required for capacity control: Kikuchi-Bayes does not overfit.

• A heuristic for fast context-dependent attribute selection for the näıve Bayesian clas-
sifier. It is based on summing the interaction information between all the attributes
already in the model, the candidate attribute, and the label.

• A number of visualization methods based on the notion of an interaction: informa-
tion graphs, interaction graphs and interaction dendrograms. A method for clus-
tering attribute values based on an information-theoretic metric. An application of
information visualization to political science.

• A formal definition of ‘an interaction’ through the notion of a part-to-whole model
and a model comparison. This definition allows the assessment of nonlinear correla-
tion both for discrete, continuous attributes. Furthermore, the definition is modular
and can be adjusted for different loss functions and different hypothesis spaces. Inter-
action information, mutual information, and correlation coefficient are all particular
ways of quantifying interaction.

• A number of significance tests for model comparisons. A Bayesian treatment of the
multiple comparisons problem.

• An interdisciplinary historical survey of interaction information across the literature.
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A Guide to Notation

| · | absolute value / cardinality of a set / determinant
× Cartesian product
〈·〉 a tuple

[·]T a vector
ẑ an approximation to z

, ‘is defined as’
I{C} indicator function: has value 1 when C is true and 0 otherwise

X an unlabelled attribute; an independent variable
Y a labelled attribute; the class; a dependent variable
x the value of attribute X
ℜX the range of values of attribute X
X an unlabelled attribute vector
x the value of an attribute vector X

x(i), 〈x,y〉(i) an instance
D a data set

Θ a parameter determining a probabilistic model
θ a parameter value

Θ a parameter vector
P (X,Y |θ) probability function on X and Y when Θ = θ
P (X|y) conditional probability distribution of X given the value of Y = y
p(x|Θ) marginal probability density of X at X = x parameterized by Θ

H Shannon entropy
h differential entropy

L(y, P ) the loss incurred by the model P on an outcome y
D(P‖Q) Kullback-Leibler divergence between two probability distributions

D (P (Y |X)‖Q(Y |X)) KL-divergence between two conditional probability distributions
Ex∼P {L(x,Q)} the expected (average) loss of model Q when x is sampled from P

H(A|B) entropy of A controlling for B
H(A,B), H(AB) joint entropy of A and B together

I(A;B) mutual information between attributes A and B
I(A;B,C) mutual information between A and the tuple 〈B,C〉
I(A;B|C) conditional mutual information between A and B controlling for C
I(A;B|c) conditional mutual information between A and B when C = c
I(A;B;C) interaction information between A, B and C
C(A,B,C) total correlation (multiinformation) between A, B and C



CHAPTER 2

Modelling

The present chapter will present a review of the fields of machine learning, probability
and statistics. The chain of thought of the present text begins in Chapter 3, so the reader
may wish to skim the following pages. It is impossible to capture the three disciplines in
a single chapter without oversimplification, and it involves some subjective discussion of
more philosophical issues. First, we introduce the notion of a ‘model’ that forms under the
constraints of the data, assumptions, goals and means of expression. Then we examine
several issues in learning, such as validation, consistency, supervised and unsupervised
learning. Finally, we examine the foundations of probability theory as a particular means
of expression.

2.1 Models

Terms such as data, attribute, probability, algorithm and model are often taken for
granted. This section will formulate the problem of machine learning under uncertainty as
interplay between four factors: the data, the hypothesis space, the utility and the algorithm.
All these notions are illustrated in Table 2.1.

stage subject particulars formalization

1 percepts /
2 representation data instances, examples Instance Space
3 learning algorithm priors, heuristics, procedures Program Space
4 knowledge model hypotheses, concepts Hypothesis Space
5 decision-making actions utility, preferences Policy Space
6 consequences /

Table 2.1: The process of learning.

Learning is only a particular phase in the flow of information from percepts to ac-
tions and their consequences. Machine learning largely concerns itself with developing
algorithms that construct models from a data set. It starts with the product of phase 2

7
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final cause
↓

utility

︸ ︷︷ ︸

material cause → hypothesis space { MODEL { data ← formal cause

︸ ︷︷ ︸

algorithm

↑
efficient cause

Figure 2.1: The four Aristotelian causes of a model. The symbol a{b indicates that a
is more general than b. The causes are considered to be fixed and constrain the model.

and creates the product of phase 4. It can be seen that the objective truth (before phase
1) and the subjective optimality (after phase 6) are out of its reach. Furthermore, the
input to a learner may be corrupted by perception, which is not formalized in the learning
problem. The optimality of the actions made with the knowledge can only be judged by
the consequences of the actions. These consequences are rarely formalized.

One has to be humble when using terms such as ‘true’ and ‘optimal’. The instance
space, program space, hypothesis space and policy space are externally imposed as pos-
tulates prior to examining the data. But once they are formally represented, they can be
studied with mathematical rigor. The instance space defines what is the data and what
can be distinguished. An instance space for the coin toss is that the coin can fall either
heads or tails: these two values are all we distinguish. The hypothesis space defines which
models are possible. The models of the linear regression hypothesis space are of the form
y = ax+ b, so a particular model is a pair of parameters 〈a, b〉. The program and policy
spaces restrict the kinds of policies and learning procedures that can be developed. For
example, the program space is commonly the language of Turing machines, meaning that
each learning algorithm can be expressed as a particular Turing machine. The same is
valid for policy spaces, and this is a concern of reinforcement learning (Sutton and Barto,
1998).

Our focus in this text will be on the four Aristotelian causes of a model, as shown in
Fig. 2.1. Model will be the focal element of our investigation, and the model cannot be
seen as independent of these four causes. The model arises from an interaction between
the internal hypothesis space and the data, and the external utility and algorithm. The
model is expressed in terms of the hypothesis space, conforms to the data, is generated
by procedures, priors and rules of the algorithm, and is judged by the utility.
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the label
↓

attributes → X Y

an instance → rain H
an instance → sunny H
an instance → sunny T

. rain H

. sunny T

. sunny T

. rain H

. rain H

Table 2.2: A non-deterministic data set: for the same combination of attributes, there
are multiple labels. The weather is described with an unlabelled attribute X with the range
ℜX = {rain, sunny}. The coin is modelled as a labelled attribute Y with the range ℜY =
{H,T}.

2.2 Dichotomies in Learning

2.2.1 Obtaining a Model from Data

We will now discuss different theories and views of machine learning. We will present
the notion of truth versus approximation: identification is based on the idea that the
hypothesis space is assumed to be complete and universal, so the one true model is sought.
On the other hand, approximation merely seeks to minimize the loss and maximize the
utility of the final hypothesis, but also assumes that the loss function is true and universal.
The identification view of learning trusts that the choice of the hypothesis space is correct
(but is agnostic about the utility function), whereas the approximation view of learning
trusts that the utility function is correct (but is agnostic about the choice hypothesis
space).

Most data sets in practical machine learning are structured with instances and at-
tributes. The data consists of a number of instances (or experiments or examples), and
each instance is described with a number of attributes (or variables). Each attribute X
can take upon a number of values, its range ℜX . Some of the attributes are labelled. The
objective of learning is to predict labelled attributes Y, using the information provided by
the unlabelled ones X. Ideally, we would denote the hypothesis as a function Y = f(X):
the domain of the function are the unlabelled attributes’ range, and the codomain is the
labelled attributes’ range. The value of the attribute X for the instance (i) is x(i) ∈ ℜX .
If there are several attributes, we may represent them together in an attribute vector
X = [X1, X2, . . . , XM ], and we refer to ℜX as the attribute space. These concepts are
illustrated in Tab. 2.2.

The hypothesis space is the internal ‘language’ in which the models are described. Indi-
vidual hypotheses or models are points in the hypothesis space. For example, a statement
in the logical hypothesis space would be if X = a then Y = b, where a is a particular
value of the attribute X and b is a particular value of the labelled attribute Y . A spe-
cific model would be if X = rain then Y = H. Mathematical expressions are also a
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Figure 2.2: Multiple consistent hypotheses form the version space. We assume
a hypothesis space of line segment sequences: each model is a particular sequence of line
segments. Many hypotheses in this hypothesis space are consistent with the data set consisting
of 7 points in space.

hypothesis space (y = a×x+b), as are case-based inferences (if X like a then Y like b)
and non-causal inferences (X = a with Y = b).

Learning as Identification

The original learning theory (Valiant, 1984) was concerned with problems of deductive
identification. We assume that there exists some true deterministic concept. The data is
sampled from the world, and identified whether it belongs to the concept or not. Con-
sequently, we try to identify that concept from this data. The concept corresponds to a
model within a particular hypothesis space. Valiant proved that the learning problem is
tractable for several non-trivial hypothesis spaces, such as expressions in conjunctive and
disjunctive normal forms with a bounded number of literals.

More generally, the learning procedure can thus be phrased a search for a model in
an arbitrary hypothesis space that is consistent with all the data. But sometimes several
different models may be consistent with the data. Imagine a hypothesis space in which
a hypothesis consists of segmented lines: there can be many such segmented lines that
successfully pass through a sample of 5 points on a sphere, as shown in Fig. 2.2. These
hypotheses form a space of their own, the version space (Mitchell, 1997). The algorithm
usually chooses a single hypothesis in the version space that has the highest utility. The
utility in this case can simply be the simplicity of the hypothesis. In the case of line
segments, we could seek the set with the fewest line segments, or the smallest set of
line segments that are all of equal length. Occam’s razor is a common utility function
that favors simplicity as an inherent quality for choosing one among several consistent
hypotheses.

Learning as Approximation

For some hypothesis spaces, finding a consistent hypothesis may be impossible: we cannot
find any hypothesis 〈a, b〉 in the hypothesis space of linear functions y = ax+b that would
be consistent with the data that consists of points on a sphere, as in Fig. 2.2. In the PAC
(probably approximately correct) view of learning there is an inherent assumption that
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the instances are indeed consistent with some hypothesis allowed by the hypothesis space.
This problem is usually not apparent as hypothesis spaces such as CNF are usually able
to capture any consistent set of data. There are situations, however, when the data is not
consistent with any hypothesis, as in Table 2.2.

An agnostic learner (Haussler, 1992) does not attempt to find a function that would
be fully consistent with the data. Instead, a function is sought that results in minimum
loss compared to other functions of the hypothesis space, even if it is not fully consistent.
The loss or negative utility is quantified by a loss function that measures the difference
between the true outcome y and the predicted one ŷ. A popular choice of a loss function
is the classification error or 0-1 loss:

L01(y, ŷ) =

{

0 ; y = ŷ

1 ; y 6= ŷ
(2.1)

In the data set of Table 2.2, the prediction that the outcome of the coin toss will be ‘H’
results in a lower classification error than the prediction that it is ‘T’, so indeed one of
the two possible functions would be selected. However, the concept of the coin toss is not
learnable in the sense that the function’s error will not become arbitrarily small with an
increasing number of instances. However, it is agnostically learnable if it is possible to
learn a function arbitrarily close to the best of all feasible functions. Thus, even if zero
loss is unattainable, we can still achieve zero regret R (Bernardo and Smith, 2000) by
picking an appropriate prediction ŷ:

R(y, ŷ) = L(y, ŷ)− inf
y′
L(y, y′) (2.2)

2.2.2 Noise vs Conditional Probability

The second dichotomy concerns the interpretation of non-deterministic phenomena. Most
theories represent uncertainty with probability but differ with respect to what the proba-
bility refers to. One view is that probability arises because of the inherent ‘noise’ in data.
Another view is that the data is a sample from a probabilistic model; this does not mean
that the reality is non-deterministic, as probability can also arise because of an incomplete
picture of the reality.

Let us consider a hypothetical data set in Table 2.2. It is quite clear that the attribute
X is insufficient to predict the outcome Y of the coin toss. A larger number of instances
would not help, nor would the choice of a different hypothesis space. No function is
consistent with these observations because the same weather situation may imply two
different coin toss outcomes: sunny weather appeared both with heads and with tails.
It is known that a controlled coin toss is deterministic and predictable (Diaconis et al.,
2004), but because most actual coin tosses are not fully controlled, probability arises.

Noise

One interpretation of the conflict is to consider the coin toss to be corrupted by noise.
Specifically, we model the process as Y = f(X) + ǫ, where ǫ is a model of noise or error.
In classification Y is not a number, so the addition of noise is often interpreted as an
occasional random change of the label. The aim of learning is to minimize the amount of
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error. When the range of Y is a discrete set, this problem is referred to as classification,
and when ℜY = R, as regression.

The learning itself can be formulated as an agnostic learning problem of f(X), with
the objective of minimizing the error. Whatever error there may be, it is interpreted as
noise ǫ. This way, the model phrased as f(X) + ǫ is consistent with the data, but the
utility function favors a smaller ǫ. Additive noise is just one of the choices, multiplicative
noise is also used sometimes. The core idea, however, is that f is a deterministic function.

Conditional Probability

A different strategy is to reformulate the learning problem. Instead of trying to learn
explicit functions of the type Y = f(X) + ǫ, we learn conditional probability models
P̂ (Y|X,Θ), where Θ is a vector of parameters that describe the model. In this case, the
hypothesis space is the parameter space. This is no longer classification or regression,
but conditional probability modelling. Conditional probability models already subsume
the uncertainty of the model without separating the predictions from their error. The
predictions themselves capture the error. Here, the best model would be the one that
would correctly assess the probabilities of all outcomes, rather than attempt to predict
the single most likely labelled value. For example, if a patient has a 90% chance of
surviving a surgery, the model should predict that the probability is p = 0.9 rather than
attempt to guess the most likely outcome. Probability is a formalization of chance that
physicians understand well. They make use of it when making decisions in a complex set
of circumstances. Hypothesis spaces making use of probability are therefore a good choice
for medical models.

It is possible to assume that the data was indeed generated by a particular model,
and then identify its parameters. An agnostic approach is also possible. There we do not
assume that the data were indeed generated by the model, but we seek a model that will
achieve the greatest utility through probabilistic predictions of the data. Thus we can
define probabilistic loss or p-loss functions (Grünwald and Dawid, 2004) that evaluate the
loss made by a probabilistic prediction of events in the face of the event that actually took
place.

Examples of p-loss functions are the logarithmic loss LLL(y, P̂ ) = − log P̂ (y) and
the Brier loss. By minimizing probability loss functions we can formulate the agnostic
probabilistic learning. Because of randomness, even the correct models generally do not
achieve zero p-loss. We usually require the p-loss functions to be proper (Bernardo and
Smith, 2000). A proper p-loss function guarantees that for data y generated from P :

inf
P̂




∑

y∈ℜY

P (y)L(y, P̂ )



 =
∑

y∈ℜY

P (y)L(y, P ), (2.3)

where the infimum over all the possible P̂ is attained if and only if P̂ = P . In essence, we
compute the expectation of p-loss over all the data y in the data set. Both of the above
p-loss functions are proper, and can be used to assess the probabilistic calibration of a
model. Without a proper and discriminate p-loss function, the resulting minimum loss
‘probability’ may no longer be meaningful.

However, some p-loss functions are not proper, such as the information score
(Kononenko and Bratko, 1991), the 0-1 loss, and the classification error. Information
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score and 0-1 loss reach the optimum for P̂ 6= P . Classification error is improper because
it is indiscriminate: although the loss of P̂ may reach a minimum where P̂ = P , there are
P ′ 6= P that get the same loss. For example, the indiscriminate classification error will
not distinguish between a model that confidently predicted the event with the probabil-
ity of 1.0 and another one that predicted it timidly with the probability of 0.501. Also,
classification accuracy will not penalize a model that predicted an event that happened
with the probability of 0.0 any more than a model that predicted the same event with the
probability of 0.49.

To demonstrate the proper, improper and indiscriminate p-loss functions, we have
performed an experiment. We took a twisted coin that falls heads with the probability of
0.6 when thrown on a table. We tossed the coin infinitely many times to obtain a series
of outcomes. The probabilities do not exist in the data, which in this case is merely a
sequence of H and T, but must be inferred. We have tested all the predictions ranging from
0 to 1. For each prediction, we have evaluated the mean p-loss on the data set. The results
are shown in Fig. 2.3. We can see examples of proper p-loss functions (logarithmic loss
and Brier loss) that indeed achieve the minimum at 0.6. The improper p-loss functions
zero-one loss and information score have no meaningful minima or maxima at 0.6. In
this case, both 0-1 loss and information score would favor always predicting heads with
100% certainty. Furthermore, classification error would not distinguish between models
predicting the probability of heads to be larger than 0.5. Information score is actually a
utility function, as we seek to maximize it, so it was negated in the chart. Furthermore,
information score is expressed relative to the prior distribution, for which we employed
the true probability itself.

The probability estimation view is especially favorable in situations when the choice of
an explicit function f would be misleading. For example, if we have a bag with a mix of 50
apples and 50 cherries, we can expect the weight of a randomly chosen object from the bag
to be either approximately 150±30 grams (an apple) or 15±2 grams (a cherry). It is quite
unlikely that any object would have the mean weight of 82 grams. The conditional prob-
ability would be a bimodal mixture of two normal distributions 1

2(N (150, 30)+N (15, 2)).
Such a situation is not realistically captured by an explicit function that presupposes a
mean value of 82.5 with the normally distributed noise with the variance of 70.

2.2.3 Generative vs Discriminative Learning

In the previous section we discussed a discriminative learning problem where one labelled
attribute is predicted based on the knowledge of an unlabelled one. In general, when
we predict the labelled attributes, not the unlabelled ones, we speak of supervised or
discriminative learning. On the other hand, when we do not distinguish the labelled from
the unlabelled attributes, but predict them all, we speak of a generative (Jebara, 2003),
an informative (Rubinstein and Hastie, 1997), or an unsupervised learning problem.

Discriminative Learning

In discriminative or supervised learning, we have a labelled vector of attributes Y, and
an unlabelled vector of attributes X. Thereby, discriminative learning is achieved either
probabilistically with a conditional probability model P̂ (Y|X,Θ), or using a deterministic
model of a function plus noise Y = f(X)+ǫ. Examples of practical discriminative methods
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Figure 2.3: Proper and improper p-loss functions. Improper p-loss functions attain
the minimum at the incorrect probability. For example, predicting the majority class for a
sample is a win when evaluating with the 0-1 loss or the information score.
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are logistic regression, Gaussian processes and support vector machines.
The justification for discriminative learning is that it is simpler, and usually sufficient

for most needs. Many practical applications involve discriminative prediction: we predict
the outcome of a surgery, the survival of a patient, the validity of a transaction. There are,
however, disadvantages to the discriminative view that will become apparent in Sect. 2.2.4.

Generative Learning

In generative or unsupervised learning, there is no difference between the labelled and
unlabelled attributes in the representation of the model. What is built is a joint probability
model : P̂ (X,Y|Θ). This means that all attributes, both labelled or unlabelled, can be
predicted from the values of the model’s parameters Θ. A particularly simple model is
the COBWEB approach to conceptual clustering (Fisher, 1987), where the Θ consists of
a single nominal attribute (category), that captures the dependencies between attributes
well.

It is also possible to employ the joint model for classification. By conditioning the
joint probability model, we can obtain the conditional model for the labelled attributes Y
given the unlabelled ones X:

P̂ (Y|x,Θ) =
P̂ (Y|x,Θ)

∑

x′∈ℜX
P̂ (Y|x′,Θ)

(2.4)

While discriminative learning coexists with probabilistic models (Rubinstein and Hastie,
1997), it is difficult to see how the noise model would be applicable to generative models.

2.2.4 Generalization

The model that achieves the lowest loss on the training data may not achieve the lowest
loss in later applications of the model. The specific problem that usually arises is referred
to as overfitting : the model is overconfident about the validity of its predictions. On
the other hand, underfitting describes the phenomenon of a model not being confident as
much as it could be. While overfitting is easily detected, underfitting is identified through
a superior model that does not overfit.

There are numerous methodologies for dealing with overfitting, and they are sometimes
mentioned as capacity control. Some operate in the domain of utility, such as regulariza-
tion, and penalize complexity. Validation approaches separate the training and testing
data. Bayesian priors explicate the assumptions about feasible models. These approaches
are not mutually exclusive and can be combined. Prequential learning is based upon
treating the data set in a sequence, not as a batch.

Regularization or Penalty Methods

Regularization (Golub et al., 1999, Tikhonov and Arsenin, 1977) is a modification of the
loss function that takes the complexity or some other undesirable aspect of the model
into consideration. This aspect is then interpreted as additional cost of the model. For
example, if we are learning a function ŷ = w0 + w1x1 + w2x2, we might want the weights
w0, w1, w2 to be as low as possible. This is achieved by introducing a regularized loss
function

L(y, ŷ) = ‖y − ŷ‖2 + λ‖w‖2. (2.5)
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Thereby, we would add λ(w2
0+w2

1+w2
2) to the ordinary quadratic loss, and so large weights

would be penalized. There are other choices of regularization functions, for example,
lasso employs ‖w‖ (Tibshirani, 1996). A regularized loss function also prevents ambiguity
when multiple solutions satisfy an ill-defined problem. Regularization will penalize certain
solutions. Corrupting the data with noise can be seen as a particular kind of regularization
(Bishop, 1995), albeit an indirect and a less efficient one.

Certain model selection heuristics, such as AIC (Akaike information criterion) and
BIC (Bayesian information criterion) can be interpreted as penalized logarithmic p-loss
functions. With AIC, the regularization term is 2k where k is the effective number of
parameters. With BIC, the regularization term is 2k log n, where n is the number of
instances. Therefore, both AIC and BIC penalize the models by the number of their
parameters, with the assumption of parameter independence. BIC also takes the data set
size into consideration, increasing the penalty with the size of the data set. The aim of
AIC is to minimize the expected loss, whereas BIC attempts to maximize the probability
of identifying the correct model.

Partitioning and Resampling

The idea behind validation is to separate the training from the test set: the training set is
used for building the model, and the test set for evaluating the resulting model’s utility;
this way we prevent the model from simply memorizing the instances and ‘peeking at the
correct answers’. The resulting validated utility will reflect the mistakes in generalization.
The idea underlying the validation is that a reliable model will be able to show a consistent
gain in utility with incomplete data. By induction, if a model achieved reliable performance
with a part of the given data, we then expect that it will also perform well on future truly
unseen data.

It is important to note that the loss depends on both the test/training proportion and
on the particular choice of the partition. K-fold cross-validation (Stone, 1974) performs
multiple experiments using the same size test/training proportion in order to reduce the
influence of the partition choice. The data is split into K subsets of equal size, and from
these, K training/test splits are made, so that each subset is once the test set and K − 1
times the training set. The loss estimate obtained with cross-validation depends both
on the initial partitioning, and on the number of subsets used. To further eliminate the
influence of the initial partitioning, Kohavi (1995) recommends multiple replications of
cross-validation. The replications are repeated until the standard error across the folds
falls to a certain level, implying that smaller data sets will involve more replications than
large ones. This does not, however, remove the dependence on the choice of K, which will
be illustrated in the next section.

Leave-one-out is a special case of K-fold cross-validation where K = n: the subsets
are of size 1. Leave-one-out fully removes the dependence on the particular choice of the
partitioning, as all possible choices of the training/test split are used. Still, leave-one-out
does not remove the dependence on the test set being of size 1 and the training set being
of size n − 1. Furthermore, the loss is computed for each instance individually, so the
leave-one-out estimate of loss for each instance is a scalar value with zero variance.

To remedy these overconfident estimates of loss in leave-one-out, Hastie et al. (2001)
recommend performing a bootstrap and leave-one-out simultaneously. First, a number of
bootstrap resamples of the original data are created. Each resample has the same size n
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Figure 2.4: Replicated comparisons. We can compare the utility of two models over
several experiments. Sometimes it is easy (top), and sometimes hard (bottom) to decide
which model is better, A or B.

as the original data set, but because sampling with replacement was used, a particular
instance can appear more than once, and some instances may not appear. For each
resample, a model is estimated. In the leave-one-out phase, the distribution of prediction
loss is assessed using all those models that were trained without the particular instance
under consideration.

Sometimes the choice of the model is clearly ambiguous: the problem is illustrated
in Fig. 2.4: two models A and B were tested over a large number of experiments in two
contexts. For each experiment the utility of model B was subtracted from the utility of
model A. In the first case (top) the model B achieved a predominantly higher utility than
model A. Of course, there is a small number of situations when A was better. In the
second case (bottom), deciding which model is better becomes a very difficult problem: in
the most frequent case (mode), B was better; for the average utility over all experiments,
A was better; in the average case (median), B was better; in the best case, A was better;
at the worst, B was not as bad. What to do? Deciding between two models may be
ambiguous even when the consistent and quantitative utilities are given in full detail. Of
course, such a dilemma only arises when the methods are similar in performance: then we
could argue that any choice would be fine.

Estimator Bias and Variance

Assume that a generative model P (X,Y|Θ) is estimated from a data set D, using an
estimator T : θ = T (D). We randomly generate instances from P (X,Y|θ), and form data
sets D∗

1,D∗
2, . . . of the same size n as the original one |D| = |D∗

· | = n. For each D∗
i we

estimate θ̂i = T (D∗
i ). The estimator T is unbiased iff Ei{θ̂i−θ} = 0 for all θ and all n. If

not, Ei{θ̂i − θ} is the bias of T for sample size n at point θ (Dietterich and Kong, 1995).
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Figure 2.5: The learning curves. Most models become better with an increasing number
of instances. Some of them quickly reach a plateau and result in reliable utility. Others take
more chances, and reach greater levels of utility, but pay a cost in reliability.

We often pursue unbiased estimators and learning procedures. If the estimator is
biased, we may employ the parametric bootstrap in order to estimate the bias and correct
it (Davison and Hinkley, 1997). A second-order bootstrap may be needed if the bias
correction is itself biased. Once the estimator is unbiased, we may seek to minimize the
variance of the estimator. Note that the above formulation of bias involves the assumption
that θ is indeed the true model.

This definition of bias and variance referred to the model’s parameters. On the other
hand, the bias and variance in the model’s loss underlies the machine learning bias and loss
(Dietterich and Kong, 1995). It is possible to separate the bias from the variance in the
model’s loss using the bias/variance decomposition (Geman et al., 1992, Murphy, 1973).
Models that achieve consistent loss across data sets have low variance, while models that
achieve low average loss have low bias. There is often a trade-off involved between choosing
a hypothesis space with low bias but possibly high variance (such as a classification tree),
versus a hypothesis space with higher bias but low variance (such as the näıve Bayesian
classifier).

Just as cross-validation, bias and variance too depend on the amount of data used for
training, and this dependency can be analyzed using learning curves (Kadie, 1995). A
learning curve shows the relationship between the performance of a model on unseen data
depending on how much data was used for training. If the utility no longer changes, the
model has converged and additional data is less likely to affect the model. In Fig. 2.5 we
compare two commonly used algorithms in machine learning, the naive Bayesian classifier
(NBC), and the C4.5 classification tree induction algorithm (Quinlan, 1993), on the ‘tic-
tac-toe’ data set using zero-one p-utility.

The utility is not simple to characterize when there is little data (less than 50 in-
stances), but NBC is less robust than C4.5. When there is more data (50-150), it is still
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Figure 2.6: The test set needs to be large enough to reliably evaluate the expected
utility and its variance for a learning curve. If there are fewer than 400 instances in the test
set, the variance in the expected utility increases.

difficult to compare both methods. Beyond 150 instances, NBC becomes reliable: we know
that the NBC model requires approximately 150 instances to be characterized almost un-
ambiguously. On the other hand, C4.5 keeps gaining utility indefinitely. Therefore, two
conclusions can be made: the NBC model is simple enough to be identified unambiguously
with 300 instances: this is good, as there are 960 instances in that data set. And, when
there are 250 instances, the C4.5 model has not yet fully converged, but it is already clear
that it is consistently better than the NBC model. It is important to note that the test
set also has to be large enough, otherwise the estimate of the expected utility becomes
unreliable, as shown in Fig. 2.6. Although we can average multiple replications, we can
no longer evaluate the variance of the utility in such a case.

There is an important connection between simplicity and variance. It is often thought
that simple models have lower variance, but it would be mistaken to assume that this
connection is causal or rigid. Whether a complex hypothesis space will yield models
with high variance depends upon the prior assumptions and on the algorithm. Seemingly
complex models often have low variance (Breiman, 1996). This kind of low-variance models
are obtained by a frequentist equivalent of Bayesian model averaging: we average fitted
models over a number of data set perturbations.

Bayesian Priors

In Bayesian statistics the models are not estimated. The model Θ is no longer seen as
a specific parameter value, but as another attribute to be modelled probabilistically. Of
course, the model is not a random attribute in the stochastic sense. Instead, we have
different degrees of belief in a particular parameter that specifies the model. Technically,
degrees of belief and probabilities are very similar, but they have different semantics:
degrees of belief refer to models, whereas probabilities refer to the data. The earlier
notions of cross-validation and bootstrap may also be phrased in terms of belief; for
example, in bootstrap we believe in a number of possible data sets, not just the given one,
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even though we only believe in a single model for each data set.
We use P (Θ|D,H) to indicate the posterior belief of a particular model given the data

D and the choice of the hypothesis space or the hypothesis space H (MacKay, 2003). In
most practical circumstances, there are many values of Θ that all have non-zero belief
given the data. Practical Bayesian inference requires the prior P (Θ|H) to be defined.
The prior captures the expectations about the probability of each of the possible models
before seeing the data, or when the data set is of size zero. In our Aristotelian scheme of
Fig. 2.1, priors correspond to the algorithms. The posterior belief in a particular model
is then developed through the likelihood of the model P (D|Θ,H):

P (Θ|D,H) =
P (Θ|H)P (D|Θ,H)

P (D|H)
. (2.6)

The likelihood is usually expressed through a likelihood function, which is one of the
assumptions. Generally, the likelihood function weights how well the interesting aspects
of the data matches the model. If we assume that all instances in the data set D are
conditionally independent given the parameter θ, the likelihood function is:

P (D|θ,H) =
∏

x∈D
P (x|θ). (2.7)

Because the evidence P (D|H) is usually not modelled, we can get rid of it and normalize
the posterior by summing or integrating over the hypothesis space:

P (Θ|D,H) =
P (Θ|H)P (D|Θ,H)

∑

θ∈ℜΘ
P (θ|H)P (D|θ,H)

. (2.8)

In some cases, however, we can use the evidence as a measure of how well our hypothesis
space copes with the data.

Observe that every statement in Bayesian inference is conditional upon the hypothesis
space H. Because the assumption of the hypothesis space H is always implied, we will use
P̂ (·) as an abbreviation for P (·|H).

The prior sets the preferences among various models in the hypothesis space. The prior
may be subjective and thus indicate which models are likelier, from experience on other
problems or domains, for example. Objective priors do not include such preferences, but
instead consider all models to be equally likely, or that the predictions are independent
of the parametrization. There are further types of priors: hierarchical priors are priors
on priors, conjugate priors are computationally convenient, and empirical ‘priors’ are
estimated from the data. The concern about priors is important in Bayesian statistics, as
modelling is essentially about assuming the hypothesis space, the likelihood function and
the prior over the models in the hypothesis space: the golden standard algorithm simply
considers all the possible models.

The posterior belief in a model P̂ (Θ|D) can be interpreted as a kind of a proto-utility
function. In this view, the maximum a posteriori (MAP) model θ̂ is best, and can be
determined through:

θ̂ = arg max
θ

P̂ (θ|D) = arg max
θ

P̂ (θ)P̂ (D|θ) (2.9)

Picking the model with the minimum description length (MDL) (Rissanen, 1986) is iden-
tical to picking the MAP model. With uninformative priors, the MAP models may be
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equal to the maximum likelihood models. Furthermore, both the description length of
the model in MDL and the prior belief in a model for MAP can be seen as a penalty in
a regularization framework. Finally, regularization can too be seen as the imposing of a
prior with MAP, assuming that the probability is associated with utility, as in the pursuit
of highly probable models.

For conditional modelling (such as regression), one can also use a conditional likelihood
function. If y is predicted using x, the conditional likelihood function can be defined under
the assumption of instance independence as:

P (D|θ,H) =
∏

(x,y)∈D
P (y|x,θ). (2.10)

The underlying assumption of Bayesian conditional modelling is that we assume a prior
composed of two independent parameters P (θ,ψ) = P (θ)P (ψ). Furthermore, we assume
a factoring of the likelihood in P (θ,ψ) = P (ψ|X)P (θ|X,Y). We then focus just on θ:

P (θ|X,Y) ∝ P (θ)P (Y|X,θ) (2.11)

For a justification and a discussion, see (Gelman et al., 2004a). With this conditional
likelihood function we can obtain both conditional posterior distributions and maximum
a posteriori conditional probability models. The conditional approach is preferable when
we want to avoid spending parameters for modelling the distribution P (ψ|X).

Prequential Analysis

The basic idea of prequential analysis (Dawid, 1984) is that the data is not to be considered
a single piece of information, but instead a sequence of instances. We start from the
initial prior assumptions, and transmit one instance after another into the model. For
each instance, the model suffers a prediction loss, but also updates itself to better predict
the successive instances. In that sense, prequential analysis is reminiscent of sequential
data compression, or of on-line learning. However, if the data is initially not an ordered
sequence, assuming a particular ordering would be misleading.

Entropy-Based Analysis

There are many models θ that satisfy a particular set of constraints we might impose
on it: Π is the set of satisfactory models. For example, we might want to enforce the
constraint that the model should have a particular value of the mean and a particular
value of the standard deviation. Or, we could enforce the constraint that a attribute
is bounded within [a, b]. The question is which specific model of many θ ∈ Π for the
attributes X is preferable. The maximum entropy principle (Jaynes, 2003) states that
one should pick the model that results in maximum entropy. For a definition of entropy,
refer to Sect. 3.1. There are three main interpretations and generalizations of the MaxEnt
approach (Topsøe, 2004, Grünwald, 1998):

• Entropic loss (Jaynes, 2003). If entropy is interpreted as a loss function, the
maximum entropy model will be the worst of all the satisfactory models:

θME = arg max
θ∈Π

H(X|θ) (2.12)
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In that sense, it will not provide any more information than what is provided by the
constraints that form Π.

• Entropic projection (Csiszár, 1991). If relative entropy is interpreted as a distance
from a particular ‘prior’ model θ0, we seek the model in Π that is closest to θ0, or
the I-projection of θ0 on Π:

θMD = arg min
θ∈Π

D(P (X|θ)‖P (X|θ0)) (2.13)

The same idea was suggested earlier by Kullback (1968), and is currently referred to
as variational inference (Wainwright and Jordan, 2003). The justification for this
approach is that while θ0 might be unknown or intractable, the hypothesis space Π
is tractable and can be used to represent θ0. Also note that this approach closely
resembles minimization of expected logarithmic p-loss, just that the expectation is
computed using the approximation, not using the ‘truth’.

• Entropic equilibrium (Harremoës and Topsøe, 2001). Let us imagine a game
played by nature and the statistician, where the nature picks distributions from
P and the statistician the predictions from Π. What the statistician seeks is the
minimum risk model:

θMR = arg min
θ∈Π

(

sup
ϑ∈P

D(P (X|ϑ))‖P (X|θ)
)

(2.14)

There is an equilibrium in this game if the risk equals the maximum entropy Hmax =
supϑ∈P H(X|ϑ).

Some of the concepts we refer to are described in Sect. 3.1. It turns out that many of
the probability distributions in statistics are truly maximum entropy distributions given a
particular type of constraint (Kapur, 1990). For example, the Gaussian is the maximum
entropy distribution given the constraints upon the first two momenta: the mean and the
standard deviation. The uniform distribution is the maximum entropy distribution given
the constraint of the boundaries.

Therefore, non-Bayesian statistics seeks to minimize the loss with a model based on
maximum entropy distributions. The distributions are hence the carriers of timidity and
uncertainty. If the distributions are too flexible, however, the minimum loss model may
overfit the data. On the other hand, MaxEnt seeks to maximize the loss with a model
based on constraints. Thereby, the constraints are the carriers of boldness that connect
the model with the data. It is possible to overfit the data by providing powerful con-
straints. Statistical and MaxEnt approaches both seek to balance boldness and timidity,
but approach the problem from opposite directions.

2.2.5 Uncertainty about the Model

It is commonly assumed that the result of learning is a single model. However, several
of the approaches in Sect. 2.2.4 actually result in models that are not singular and crisp,
but vague. Vagueness does not imply a set of models without any organization. In-
stead, vagueness is a well-defined coexistence of models, where each of them has a certain
probability.
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Fiducial Vagueness

In the fiducial perspective (Fisher, 1935), a model θ is given, along with a particular
sample D. The model θ can be used to generate other samples of the same size as D.
If the parameters were estimated from these samples, they would not all be equal to θ
but would be distributed around it. A sample of size n = D is drawn from a normally-
distributed population with an unknown mean µ, while x̄ and s are estimated from the
sample as:

x̄ =
1

|D|
∑

x∈D
x (2.15)

s2 =
1

|D| − 1

∑

x∈D
(x− x̄)2 (2.16)

t =
(x̄− µ)

√

|D|
s

(2.17)

It is known that t has a specific distribution (the Student distribution or t-distribution)
which in this case depends only on a single parameter, n = |D|. The implication is that
the estimates of a parameter based on a finite sample will be distributed around the true
value under a specific distribution. The underlying assumption is that the sample is indeed
from that specific distribution, something that might be unfounded.

Significance testing is thus performed by postulating a particular null model, for ex-
ample, that attributes X and Y are uncorrelated. If random samples are created from
such a null model, and the correlation coefficient is estimated, the correlation coefficient
will rarely be zero! Even the correlation coefficient of 1 or -1 could be obtained from
the null model, but increasingly rarely with increasing sample size. Hence, we have to
decide between the unlikeliness of the sample or the inappropriateness of the null model.
It is always possible that the large difference between the estimate and the null model is
purely due to a coincidence. In fact, we are biased towards explaining the difference as
a coincidence, except when the probability of such or greater a coincidence is reasonably
low, such as 5% or 1%.

Fiducial vagueness can also be used to obtain confidence intervals. Confidence intervals
for parameters can be derived from these notions. For example, the 95% range of µ would
be would be bounded by the µ at the 2.5%-th and the µ at the 97.5%-th percentile of
the t-distribution. However, this characterization is logically dangerous because the µ is
unknown: often x̄ is used in the place of µ by trusting the unbiasedness and low variance
of the estimator. The original approach to fiducial inference (Fisher, 1930) was based on
asking questions such as: For which µ1 the 97.5% of samples of such size would result in
an estimate of mean lower than x̄? For which µ2 the 97.5% of samples of such size would
result in an estimate of mean larger than x̄? This way, we can bound the value of µ, even
though the probabilities involved do not carry a consistent meaning.

Frequentist Vagueness

The Neyman-Pearson approach to hypothesis testing (Berger, 2003) seeks to fulfill the
frequentist principle: “In repeated use of a statistical procedure, the long-run average
error should not be greater than (and ideally should equal) the long-run average reported
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error.” This notion corresponds to calibration of probabilities involved in hypothesis
testing.

In the frequentist approach, there are two models, the null θ0 and the alternative θ1.
There is also a sample D. The question that frequentist hypothesis testing tries to answer
is whether D came from θ0 or θ1. Normally, we compute the loss of the alternative and
the null, and classify the sample based on the loss. Often, the decision rule is that D is
from the null if the loss of the null is less or equal to a specified critical level c, and from
the alternative otherwise. Such classification of D might not be correct, and there are two
kinds of error:

• Type I error probability α refers to classifying the alternative as true when it is
not. This situation is referred to as false rejection, and the corresponding α is the
significance level of the test;

• Type II error probability β refers to classifying the null as true when it is not. The
situation is referred to as false acceptance, and the corresponding β is the power of
the test.

The significance level α and the power β are computed for a particular pair of hypotheses
along with the decision rule. It is not specified what the ‘long-run’ means, so the frequentist
approach forms independent samples of a specified size from either the alternative or the
null hypotheses (usually the null), performing the classification with the test. From these
samples, the probability of misclassification can be estimated. Usually, the significance
level α is fixed, but the power β can be computed.

Bayesian Vagueness

In the fiducial approach, the data is seen as vague: a single model corresponds to a large
number of data sets, and the estimates from those data sets can be used to characterize the
behavior of the original estimate. The frequentist approach is usually also made tractable
by fixing the null and the alternative hypotheses. There are numerous paradoxes that
arise from the above assumptions. For example, α and β depend on how the data sets
are simulated. If a data set can also be cast from Θ1, not just from Θ0, the α and β
will be affected. For that reason, the nonparametric resampling approaches such as cross-
validation and the nonparametric bootstrap can be used (Davison and Hinkley, 1997)
instead. These resampling approaches do not form samples from the hypotheses, but
instead form samples that are subsets of the original data set.

The fundamental difference of the Bayesian approach (Gelman et al., 2004b, Bernardo
and Smith, 2000) is that while the frequentist and fiducial approach view the data as
uncertain but the model as fixed and certain, the Bayesians view the data as certain and
fixed, while a number of models can be consistent with the data. The results of both
paradigms may be quite similar. The interpretations, however, are subject to various
disputes: the Bayesian paradigm requires the prior, which frequentists view as subjective,
and the frequentist paradigm requires the prior assumption of a fixed true model, which
Bayesians view as pretentious.

Epicurus’ principle of indifference states (Kirchherr et al., 1997): Keep all hypotheses
that are consistent with the facts. These hypotheses form an ensemble model. Therefore,
instead of making an arbitrary selection, one could perform a combination. Consistency is
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not a binary decision: in a probabilistic context several models have a non-zero posterior
belief, meaning that they are all consistent, to some extent.

In Bayesian inference, the prior is an essential element of picking a model family or
a hypothesis space. Some find the priors arbitrary and subjective, but the choice of the
model family is inherently subjective too. The key is in choosing a prior and a model
family that the research community will find acceptable. The result of the inference is a
posterior belief distribution over the models of the hypothesis space given the data, or the
posterior. The Bayesian posterior is Epicurean, as it is actually a belief distribution over
the parameter values: all the models with non-zero likelihood and non-zero prior belief
are to some extent consistent. It is usually impossible to pinpoint a particular model,
but it is possible to characterize this distribution. Only when there is a lot of data, it
is possible to use a single model as a reliable characterization of the whole distribution.
Such a point-characterization can be the MAP or the expected posterior.

In frequentist inference, the choice of the model family and the estimator corresponds
to choosing a prior. The estimators are expected to have certain desirable properties,
such as unbiasedness and low variance. In the second step of inference, it is assumed
that the estimated model is true, and the fiducial and frequentist vagueness can then
be characterized. This step is sometimes problematic, especially in circumstances with
insufficient data. For example, a coin is tossed five times, and three times it was a head,
while two times a tail. The estimated probability for heads under the binomial model is
3
5 . The very assumption of the truth of this estimate is quite misleading.

Even if the Bayesian posterior distribution is vague, the predictions made with it can
be crisp. This is important because we cannot make a series of predictions in practice, but
only a single one. We can interpret the model Θ as a nuisance attribute, and integrate it
out:

P̂ (Y|D) =

∫

ℜΘ

P̂ (Y |Θ)P̂ (Θ|D)dΘ (2.18)

This is sometimes referred to as the Bayesian model averaging (Hoeting et al., 1999).
Certain approaches to ensemble learning in machine learning, such as bagging (Breiman,
1996) can effectively be seen as frequentist equivalents to Bayesian model averaging: for
each resample drawn from the original data set, a crisp model is estimated. All these
models are then averaged for making the final prediction. Other ensemble approaches to
machine learning, such as boosting (Freund and Schapire, 1997), differ from the idea of
model averaging: as iterative reweighting of instances is employed in forming an additive
model.

Let us consider the familiar example of the coin toss. We start with some prior belief
about the coin’s probability: the coin may be biased, or unbiased. We can represent
this belief by saying that our prior is an ensemble of all possible Bernoulli parameter
values, and our belief in each parameter is equal (Fig. 2.7, left panel). Then we toss the
coin five times, and the tally is 3 tails and 2 heads. The resulting ensemble reflects this
(Fig. 2.7, middle panel): those probabilities that indicate that the coin always falls heads
are impossible, and the most likely is the parameter value that claims that the probability
of heads is 2

5 . The data has narrowed the range of our beliefs about the probability. It
would be improper, however, to claim that this single parameter value is representative of
the coin: we have not seen enough data to be so specific. All we can say is that we believe
that the probability of heads is in the interval [0.1, 0.8]. Performing a few more tosses,
we end up with the tally of 9 heads and 10 tails. The distribution of our beliefs over the
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Figure 2.7: A Bayesian ensemble of models. Each probability of the unknown coin
falling heads is an individual parameter value, and these parameter value form an ensemble.
Each parameter value is assigned a particular belief. Our prior belief is uniform over all
the probabilities. Successive observations of coin toss outcomes induce greater and greater
precision in our beliefs about the posterior belief (left to right). Still, there is always some
uncertainty about the exact probability.

ensemble (Fig. 2.7, right panel) shows that the probability is almost certainly somewhere
on [0.2, 0.8], but we cannot yet say anything beyond that with complete certainty.

When such an ensemble is used to make a prediction, each parameter value makes
a distinct prediction. This way, we obtain an ensemble of predictions, each of them
weighted by the posterior belief in the corresponding parameter value. We can interpret
the ensemble as an imprecise prediction: not just that the ensemble is not sure about
the outcome, it is also unsure about the probability. The other way of interpreting the
ensemble is by stating that the identity of the parameter value is a nuisance parameter,
a property that exists but we do not want to know. The Bayesian approach for dealing
with nuisance parameters is to average the predictions of all parameter values, so that
each prediction is weighted by our belief in the parameter value that yielded it.

If we consider the parameter value as a nuisance parameter, we need not treat the
model as an ensemble: it is somewhat expensive to lug along all the parameter values
and their individual worths. Instead, we may average them together. In this case, we can
represent the average as a single model being guided by the following probability:

pH
BMA =

nH + 1

nH + nT + 2

This is referred to as the Laplace estimate of probability, because the legend says that
Laplace wondered what is the probability of seeing another sunrise after having seen only
a single one. Of course, in some applications it is important to keep note of the whole
ensemble: pH

BMA is identical for the tally of 1 head and 1 tails and for the tally of 10000
heads and 10000 tails. However, the ensemble is much more distinctly peaked for the latter
one. Averaging, therefore, is a way of replacing the Epicurean ensemble with a single
parameter value that is closest to the average of the ensemble, but any single parameter
value from the ensemble does not faithfully represent the variation in the ensemble.
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2.2.6 Parametric vs Nonparametric Learning

One way of dividing the hypothesis spaces is into the parametric and the nonparametric.
Some definitions (Bernardo and Smith, 2000) associate nonparametric models with infinite
dimensionality of the parameter space, and parametric models with finite dimensionality.

The parameters in some nonparametric models are placed in the same space as the
instances: for each possible instance, there is a distinct probability in the model. In the
coin toss example, we associate a probability with each of the possible instances or events
(heads or tails). This probability is itself the parameter. This approach is extremely
flexible on finite instance spaces, but becomes unwieldy when there are infinitely many
possible instances.

When the instance space has very high cardinality, we can avoid working with a pa-
rameter for each of the possible instances. However, we can assign a parameter to each
of the instances from the data set. An example of such parametrization are the support
vector machines (Schölkopf and Smola, 2002), where each instance is associated with a
parameter (Lagrange multiplier) that identifies the weight of the instance. Support vector
machines are usually combined with parametric kernels, and these parameters are not
placed in the instance space.

Somewhat differently, nonparametric test procedures are those that are unconcerned
about the parameters of the distribution (NIST/SEMATECH, 2002). This means that the
test procedure is not trying to answer questions about the parameters of the model, but
about other properties that are only indirectly related to the parameters, such as inde-
pendence, factorization, and so on. A related category of distribution-free test procedures
is based on statistics that are not dependent on the form of the underlying model. We
will discuss some distribution-free and nonparametric test procedures in Ch. 4.

2.3 Probability

In the previous sections we have described models, hypothesis spaces and data, and iden-
tified probability as a way of allowing for uncertainty, both of predictions and of models.
We will now provide a more specific account of the assumptions of probability. We will
also address some of the criticisms of probability. On the other hand, we will not discuss
various interpretations of probability: our applications of probability are compatible with
several interpretations, but there may definitely be interpretations incompatible with our
applications.

We need to formalize the notion of a ‘model’. To do this, we will use two concepts:
the universe and the attribute. A universe is a collection of possibilities (sun, clouds,
rain), while probability measures the likelihood of each of them (sun: 0.7, clouds: 0.2,
rain: 0.1). On the other hand, an attribute wet/not-wet is a shortened projection of the
universe (wet:(rain), not-wet:(sun,clouds)). Using attributes, we can condition a universe,
split it into separate subuniverses, one for each value of the attribute (wet:(rain:1), non-
wet:(sun:0.78, clouds:0.22)). Alternatively, we may marginalize a universe by collapsing all
events that cannot be distinguished with the given set of attributes (wet:0.3, non-wet:0.7).
The following subsections are intended to be an informal introduction to mathematical
probability. A reader who desires a more formal approach should refer to other literature,
such as (DeGroot and Schervish, 2002).
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2.3.1 Universes

A probability mass function (PMF) defines the probability of each event. When we have
several PMFs, we assure their cohesion by having them all derived from an underlying
universe. The universe is a measure space 〈S, E , P 〉 based on a discrete set of elementary
events E = {e1, e2, . . . , en}. The set of events is sometimes also referred to as sample space
in probability theory, or an alphabet. Note that events may be letters, symbols, things,
entities, objects in a bag, states of some machine, outcomes of an experiment, or words in
a document: events are merely the carriers of distinction. The formal term for a universe
along with probability is a probability space, but information theory refers to probability
spaces with discrete events.

The probability P is a measure of each event in the universe. The probabilities for
all these elementary events should sum up to 1:

∑

i P (ei) = 1. Therefore, in every
circumstance exactly one of the events should happen. The assumption that elementary
events be mutually exclusive is sometimes found problematic, but is easily remedied. One
frequent example is the case of the ‘excluded middle’. Exactly one of a and ¬a, where
¬a signifies not-a, is true at the same time. For example, if a signifies a full cup, and
¬a an empty cup, this appears to be a problem. But it is not a problem of assumptions,
but of the representation: saying that ¬a marks an empty cup is incorrect, as a cup can
be neither full nor empty. More appropriate would be a larger set of four events, based
on a signifying a full cup and ¬a′ an empty cup: {a ∧ ¬a′, a ∧ a′,¬a ∧ a′,¬a ∧ ¬a′}, here
∧ stands for logical conjunction. It is then the task of the probability to capture the
semantic mutual exclusivity of emptiness and fullness: P (a ∧ a′) = 0, but we could have
excluded this joint event when defining the events.

Another problem that may arise with probability are unforeseen circumstances. What
happens if we get a broken cup: is it full or empty? Indeed, in some situations we need
to create a ghost event e0 which means ‘something else’ or ‘something unforeseen’. Also,
it would be incorrect to use a probability larger than 1 to describe an event that has
happened several times: this is achieved by creating multiple events {a1, a2, a3, . . .}. As
these events are mutually exclusive, we have ‘invented’ natural numbers.

The events and probabilities are considered to be pure and objective. We do not
concern ourselves with the notion of an observer and the observed. If this is necessary,
the act of observation should be included among the events. For example, if a signifies
the sun rising, and b me observing the sunrise, the universe should be modelled as four
events: {a ∧ b,¬a ∧ b, a ∧ ¬b,¬a ∧ ¬b}. If the model should allow for the truth of my
claims about the sunrise, a further symbol c would need to be combined with a and b, and
would signify what I claimed about the sunrise. Therefore, these three events capture the
situation in its full scope: a - truth, b - what I see as true, and c - what I say.

There is a difference between observing an event a and performing the event a. There-
fore, for each event a that is under our control, simply a denotes the event happening, and
a† denotes the intervention: the causing of event a (Pearl, 2000). There are four possible
events: {a ∧ a†,¬a ∧ a†,¬a ∧ ¬a†}. If our interventions are sufficient, P (¬a ∧ a†) = 0. If
our interventions are necessary, P (¬a ∧ ¬a†) = 0.

It is obvious that our model is of limited precision: we cannot break any event into
its constituent parts - the events are atomic and internally indistinguishable. Should
we want to do that, we would need a new sample space, a new universe. The universe
is the embodiment of the notion of an ontology: the list of conceivable events along
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with the possibility, impossibility and probability of each one of them. If one prefers
the logical hypothesis space, the set of events is the set of possible atomic statements,
the probability of each event is their semantics, so that each resulting statement has a
probability. The mathematical structure of a sample space generalizes upon this notion
by allowing aggregations of elementary events.

The choice of the universe is in the eye of the beholder. The beholder only distinguishes
those nuances that matter. There are unimaginably many possible states, but as beholders,
we choose not to distinguish all of them. We might distinguish 37.001 and 37.002 as
abstract numbers, but we would generally not distinguish them if they indicated the body
temperature as one attribute in medical diagnosis. On the other hand, 37.049 and 37.051
would be distinguished in the universe where rounding to the nearest number turned them
into 37.0 and 37.1, but not in another universe where all numbers are rounded down. We
avoid associated problems by allowing for a number of universes that model the same
reality: ultimately the choice of the universe is an event like any other. Furthermore, we
may have several probability measures for the same universe: each choice of a probability
measure is an event. Finally, all that we truly require is that the probabilities are consistent
within a particular universe, and that universes can be coalesced into a single universe
which agrees with the above assumption of mutual exclusivity and completeness.

It is also possible to model dynamics with the concept of the universe. Given a static
universe E , the dynamic universe is a Cartesian product of the universe before and the
universe after: Ebefore×Eafter. The implicit time of the dynamic universe is also discrete:
‘before’ and ‘after’ are distinctly separated. At the same time, the model is unable to
account for its possible changes through time: it is necessarily invariant with respect to
translations in time. The invariance of some kind, with respect to moments, types of
cups, translations in time or something else, facilitates the repeatability of a particular
event. Multiplicity or repeatability of occurrence of an event, or at least belief in the
occurrence of an event is what is needed to speak about probability. A ‘thick time’ model
of the universe would be E0 × · · · × Enow, but only ignorance or multiplicity of universes
(multiverse) would allow probability.

The data D is represented as a multiset of events, or as a set of instances or mea-
surements: a single event may have happened several times and so corresponds to several
instances, just the same temperature can be obtained through several acts of measure-
ment. This means that the universe may not distinguish every pair of instances, either
due to ignorance or intentional disregard. There is no ordering of instances, unless the
order is a part of each event. Many possible probability measures are consistent with a
given set of data: the only requirement is that each instance has non-zero probability.

It is possible to learn the probability from the data, too: we can seek the probability
assignments that make the data as likely as possible (Fisher, 1912). Or, more generally, we
can use the Bayes rule to assign probabilities to different probability measures consistent
with the data, e.g. (Good, 1965, Jaynes, 2003), thereby creating a universe of probability
measures. In some cases it is necessary to interpret the data probabilistically, especially
with unreliable sensors or with real-valued measurements. The temperature reading of
37.0 degrees Celsium may be interpreted as an observation that the true temperature has
a uniform distribution between 37.05 and 37.15 degrees Celsium: an additional source of
uncertainty. Not to get bogged down in this complexity, we will always consider a single
universe with a single probability measure. However, if this universe is nested as an event
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within another universe, so will every statement or conclusion based on it.

2.3.2 Attributes

We have interpreted the universe as a formalization of everything that can be distinguished.
There is no structure in the universe, it is a mere structureless list. We will now consider
the notion of an attribute A as a construct built on top of the universe. We will start with
a binary attribute, the simplest of all, whose range ℜA is {0, 1}. The binary attribute
A is a function A : E → ℜA. Thus, for each event, we will know whether the attribute
took the value of 0 or 1. The attribute merges all the states of the universe into those
that have the value of 0 and those that have the value of 1: the attribute values are
mutually exclusive. By summing all the corresponding event probabilities, we can obtain
the attribute value probabilities. We can also envision a universal attribute whose range
is the universe itself: the universe itself is then the original attribute, the alphabet. More
formally, an attribute is a random quantity, and each attribute value corresponds to an
element of the event space in probability theory. The attributes whose range is the set
of real numbers R are sometimes referred to as random variables, and that is why we are
using the term ‘attribute’ and not ‘random variable’.

There are a few arguments against attributes. First, fuzzy logic (Zadeh, 1965) disagrees
with the notion of an attribute which takes a single crisp value for each event. Instead,
fuzzy logic recommends using grades of membership of an attribute value for each event.
We will attempt to do the same in the existing framework by introducing the notion of a
‘perception’ or a sensor. The sensor is unreliable, and may or may not react to a particular
event. But this can easily be handled within our notion of events and attributes. As
earlier, we will include the sensor reading {s,¬s} into the universe, obtaining four events:
{a∧¬s, a∧s,¬a∧s,¬a∧¬s}. If the sensor is precise, P (a∧¬s) and P (¬a∧s) will be low.
Nevertheless, there is a good reason why sensors should not always be precise: consider
a indicating the height of 183.2321 . . . centimeters and the s signifying ‘tall’: there is a
good reason for working with clumpier s rather than with a. Of course, if we have several
heights and several sensors, the situation of sensors ‘tall’ and ‘very tall’ both taking the
value of 1 for the same objective height is perfectly possible. When there are k mutually
exclusive binary attributes, meaning that for each event in the universe there is exactly
one of them taking the value of 1, we may replace them all with a single k-ary attribute
with the range {1, 2, . . . , k}. This is a major gain in economy, but it is contingent upon
mutual exclusivity.

Another common assumption is the invariance of a sensor: it should remain the same
for all instances, in the same way as an event is atomic. This assumption is not always
realistic: there may be drift through time (Widmer and Kubat, 1996), old sensors may
not be the same as new sensors and consequences once upon the time are no longer the
same. A systematic deviation from this assumption cannot be captured by the model,
and the resulting model will carry some uncertainty because of that. The solution lies in
introducing a sensor’s sensor, indicating if the sensor is new, old or broken. And one can
continue by including the sensor of a sensor’s sensor.

In other circumstances, the value of the attribute might be unknown or undefined.
Assume patients coming to a physician: each patient is an event. For some patients, the
body temperature is known, but for others it is not. Technically, the attribute’s range must
then include ‘not known’ as one of its values. Even in the binary case, we can imagine the
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range {‘1’, ‘0 or unknown’}. Using the methods of imputation we can guess the missing
value, but this assumption must sometimes be verified. For example, the sentences in a
censored document have not been deleted by random, and people do not say “I do not
know” purely at random.

Alternatively, we may create a binary attribute {‘temperature known’, ‘temperature
unknown’}, and condition the universe to contain only those patients whose temperature is
known. In that conditional universe, the temperature is always known. This conditioning
is always implicit: the patients themselves are conditioned on the binary attribute ‘The
event is a patient coming to a physician.’ in the first place. The probabilities in each
branch of a conditional universe sum up to 1.

The second kind of operation is marginalization. Here, we take a set of attributes,
for example {A,B,C}, and collapse all events that cannot be distinguished with these
attributes into elementary ones. For example, if we marginalize away all colors except for
two A : {black,not-black} and B : {white,not-white}, every color will be mapped either
to black, white or gray (not-black and not-white). Furthermore, zero probability is put
in effect for each combination 〈a, b, c〉 of attributes’ values, 〈a, b, c〉 ∈ ℜA ×ℜB ×ℜC , that
cannot be found in the universe (such as ‘black and white’). In the example of physician’s
patients, the attribute ‘astrological signs’ has been marginalized away and is not known
or used by the physician (presumably). On the other hand, ‘body temperature’ is usu-
ally marginalized away in the discourse of an astrologer. In all, contemporary medicine
generally assumes that all people are equal, and this assumption both allows generaliz-
ing from one patient to others, but also prevents distinguishing specific characteristics
of patients. Some theories of probability claim that that probability is purely a result of
marginalization and a consequence of the fact that the causes are not known. In summary,
the marginal probability distributions are projections of the joint probability distribution
where we disregard all attributes but a subset of them, for example:

P (A) = P (A, ·, ·) =
∑

b∈ℜB

∑

c∈ℜC

P (A, b, c).

In all, we see that attributes can be seen as projections of the universe, as views of
the universe. Marginalization serves as integration, as merging of events, and probability
reflects this merging. On the other hand, conditioning creates separate universes, each of
them with a consistent definition of probability. The universe serves as a unified foundation
for defining the relationships between attributes, and in turn, these attributes serve as
means for characterizing the events. It is possible to construct or remove attributes as
deemed suitable, and these attributes will transform the perception of the universe.

2.3.3 Probability: Frequency vs Belief

In many circumstances it is impossible to predict the outcomes exactly. I take a coin and
toss it, but even if I try, I cannot perfectly control the outcome. If it is not possible to
reliably predict the outcome, we can still reliably predict the probability of each outcome.
For example, we could say that there is a 50% probability of the coin falling heads, and a
50% probability of the coin falling tails.

There are numerous interpretations of the meaning of probability, but a particularly
important division is into the frequentist probability on one hand, and the interpretation
of probability as a degree of belief on the other hand. Objective frequentist probabilities



2.3. Probability 32

are a part of the ontology, and they refer to reality. On the other hand, subjective beliefs
arise from our limited knowledge about the world, and are an aspect of epistemology.
The worldview with frequentist probability takes the reality as inherently unpredictable,
but guided by a true model. The true model is identifiable, should an infinite number of
observations be made. Probability is defined through the long-run frequency of an event.
Learning is referred to as estimation, and seeks to minimize the fixed utility or risk.

On the other hand, the subjective view considers probabilities as resulting from the lack
of knowledge. The coin toss, for example, appears random purely because the conditions
of each experiment are not precisely controlled. Learning is referred to as inference. The
probability is thus seen just as a way of representing the degree of belief, the ignorance, the
inability or reluctance to state a specific model. Probability as belief refers to statements
in a language, not to objects in the world. It is the model that is unable to predict the
outcome, perhaps due to bad quality of the data, not due to the inherent unpredictability
of the actuality. An ideal observer with all the information would be able to get a model
with less uncertainty. A purely subjective interpretation of an unpredictable quantum
phenomenon tolerates both options: either we do not know what is inside, or that the
inside is inherently unknowable. The process of learning seeks to maximize the utility
of the model, but the utility and the probability are dependent and inherently entangled
(Rubin, 1987). It is possible, however, to use proper score functions and noninformative
priors that favor probabilities that are calibrated and have good properties with respect
to the frequentist criteria.



CHAPTER 3

An Information-Theoretic View of

Interactions

3.1 Basics of Information Theory

In the previous section we have described the three crucial elements needed to discuss
entropy: the universe E , the probability P and the attributes A,B,C, . . .. We can now
begin to disentangle the model with information theory. We will show the connection
between entropy, investment and growth. In the second subsection, we will justify other
information-theoretic expressions through questions we can ask about the truth. We will
use the results and expressions of (Shannon, 1948).

Let us examine an attribute, A. Shannon’s entropy measured in bits is a measure of
its unpredictability:

H(A) , −
∑

a∈ℜA

P (a) log2 P (a) (3.1)

By definition, 0 log2 0 = 0. The higher the entropy, the less reliable are our predictions
about A. We can understand H(A) as the amount of uncertainty about A, as estimated
from its probability distribution.

Another key concept is the Kullback-Leibler divergence or relative entropy (Kullback
and Leibler, 1951). It is a measure of divergence between two probabilistic models P and
Q, both defined on the same range ℜX .

D(P‖Q) ,
∑

x∈ℜX

P (x) log2

P (x)

Q(x)
(3.2)

The unit of measure is a bit. KL-divergence has also been referred to as the ‘expected log-
factor’ (logarithm of a Bayes factor), expected weight of evidence in favor of p as against
q given p, and cross-entropy (Good, 1963). KL-divergence is zero only when the two
functions are equal. It is not a symmetric measure: P is the reference model, and the KL-
divergence is the expected loss incurred by the alternative model Q when approximating
P . We can understand empirical entropy through KL-divergence.

33
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Using conditional KL-divergence, it is possible to compare two conditional probability
models, something particularly useful in supervised learning, when Y is labelled, and X
is not:

D(P (Y |X)‖Q(Y |X)) ,
∑

x∈ℜX ,y∈ℜY

P (y, x) log2

P (y|x)
Q(y|x) (3.3)

This way, we compare how well the model Q approximates the true distribution of Y in
the context of X, P (Y |X). Observe, however, that the conditional KL-divergence cannot
be computed without a joint probability model of P (X,Y ).

3.1.1 Interpretations of Entropy

It is extremely important to note that our universe is a model. It is not necessarily a
true model of reality, but of a partial view of reality. It is the goal of statistical me-
chanics to provide a good model of reality through probabilistic modelling, but we can
use the same tools to model anything, such as patients entering a doctor’s office. And in
such circumstances there is little similarity between Shannon’s entropy and Boltzmann’s
‘quantity called H’ (Tolman, 1979) which refers to molecules of gas. In retrospect, it was
not a good decision to call Shannon’s entropy entropy: a more appropriate term would
be neginformation. For contrast, we will now present two interpretations of entropy that
manifest its decision-theoretic and game-theoretic nature.

Entropy as Loss

We can express entropy and divergence in the terms of loss functions. Consider that the
player whose betting portfolio is q. He suffers the loss of − log2 q(e) in the case of the event
e. This means that we have a loss function L(e, q) = − log2 q(e): the less the player bet,
the more he lost. This specific loss function is used in data compression, where we pay
each symbol proportionally to the logarithm of the probability with which we predicted it,
with the number of bits. Data compression programs, such as zip, are nothing else than
successful probabilistic gamblers.

The expected loss is the expectation of player’s loss. The player is using an im-
perfect model of reality with q instead of the true probability P . The Shannon en-
tropy corresponds to the minimum expected loss, suffered by the omniscient player:
H(E) = infq Ee∼P {L(e, q)}. The KL-divergence thus corresponds to the player’s expected
loss beyond the omniscient player’s: D(P‖q) = Ee∼P {L(e, q) − L(e, P )}. We could also
understand these expressions as definitions of entropy and divergence based on some loss
function. Entropy and divergence are just specific definitions of loss and gain, and we may
introduce quantities corresponding to entropy and divergence with different definitions of
this loss (Grünwald and Dawid, 2004). Of course, not all properties would be retained.

Entropy and the Rate of Growth

We will now consider the definition of entropy through gambling, following a popular
information theory textbook (Cover and Thomas, 1991). Assume that we are playing a
game, trying to predict what event will take place. We start with K coins, and place a
bet on each of the events in the universe, expressing it as a proportion of K. So for event
ei, our bet is b(ei), while

∑

e∈E b(e) = 1. We now let some event e′ happen, and our gain
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is MKb(e′), where M is the maximum reward multiplier: had we bet everything on e′,
b(e′) = 1, our funds would increase M -fold. Therefore, our funds multiply by Mb(e′).

Clearly, we would achieve the highest growth of funds by putting all the money on
the single most likely event, but would also lose everything if that event did not happen.
Alternatively, we minimize the chances by betting on every outcome equally, but if there
are too many possible events, we would be losing in every game. It can be shown that
the maximum rate of growth out of all possible betting portfolios is achieved by betting
proportionally to event probabilities, so that P (e) = b(e), and this is called the Kelly
gambling scheme. The doubling rate of the horse race using the proportional gambling is
log2M +

∑

e∈E P (e) log2 P (e). It is easy to see that for an omniscient player the game is
worth playing only if log2M > H(E), or in other words, if the logarithm of the rewards
exceeds the information entropy of the universe. Of course, it is impossible to stop playing
with reality.

Realistic observers, however, are not omniscient, and their portfolio b deviates from
the true distribution P . For them, the doubling rate is log2M −H(E) −D(P‖b), where
D(P‖b) is the Kullback-Leibler divergence or relative entropy between the truth P and
their belief b. It is important to understand that a linear change either in entropy or
in KL-divergence corresponds to a linear change in the rate of growth. Entropy is the
minimum rate of growth for an omniscient predictor. Furthermore, the rate of growth
or demise is essentially linked with the ability to place bets well. The same conclusion
is valid also if a different M is specified for each event m(e), only the log2M would be
replaced by

∑
P (e) log2m(e).

3.2 Entropy Decompositions

3.2.1 Entropy Calculus for Two Attributes

In addition to the attribute A, let us now introduce a new attribute, B. We have observed
the joint probability distribution, P (A,B). We are interested in predicting A with the
knowledge of B. At each value of B, we observe the probability distribution of A, and
this is expressed as a conditional probability distribution, P (A|B). Conditional entropy,
H(A|B), quantifies the remaining uncertainty about A with the knowledge of B:

H(A|B) , −
∑

a,b

P (a, b) log2 P (a|b) = D(P (B)‖P (A,B)) = H(A,B)−H(B) (3.4)

We quantify the 2-way interaction between two attributes with mutual information:

I(A;B) ,
∑

a∈ℜA,b∈ℜB

P (a, b) log2

P (a, b)

P (a)P (b)
= D(P (A,B)‖P (A)P (B))

= H(A) +H(B)−H(A,B) = H(A)−H(A|B) = I(B;A) = H(B)−H(B|A)

(3.5)

In essence, I(A;B) is a measure of correlation between attributes, which is always zero
or positive. It is zero if and only if the two attributes are independent, when P (A,B) =
P (A)P (B). Observe that the mutual information between attributes is the average mutual
information between values in attributes’ ranges.

If A is an attribute and Y is the labelled attribute, I(A;Y ) measures the amount of
information provided by A about Y : in this context it is often called information gain.
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H(A|B)

H(A,B)

H(B)H(A)

I(A;B) H(B|A)

Figure 3.1: A graphical illustration of the relationships between information-theoretic mea-
sures of the joint distribution of attributes A and B. The surface area of a section corresponds
to the labelled quantity. This illustration is inspired by Cover and Thomas (1991).

It is easy to see that the information gain corresponds to the prediction error made by
predicting the label without the information of the attribute as assessed with the Kullback-
Leibler divergence:

I(A;B) = D(P (A|B)‖P (A)) = D(P (B|A)‖P (B)) (3.6)

A 2-way interaction helps reduce our uncertainty about either of the two attributes with
the knowledge of the other one. We can calculate the amount of uncertainty remaining
about the value of A after introducing knowledge about the value of B. This remaining
uncertainty is H(A|B), and we can obtain it using mutual information, H(A|B) = H(A)−
I(A;B). Sometimes it is worth expressing it as a percentage, something that we will refer
to as relative mutual information. For example, after introducing attribute B, we have
100% ·H(A|B)/H(A) percent of uncertainty about A remaining. For two attributes, the
above notions are illustrated in Fig. 3.1.

3.2.2 Entropy Calculus for Three Attributes

Let us now introduce the third attribute, C. We could wonder how much uncertainty about
A remains after having obtained the knowledge of B and C: H(A|BC) = H(ABC) −
H(BC). We might also be interested in seeing how C affects the interaction between A
and B. This notion is captured with conditional mutual information:

I(A;B|C) ,
∑

a,b,c

P (a, b, c) log2

P (a, b|c)
P (a|c)P (b|c) = H(A|C) +H(B|C)−H(AB|C)

= H(A|C)−H(A|B,C) = H(AC) +H(BC)−H(C)−H(ABC).

(3.7)

Conditional mutual information is always positive or zero; when it is zero, it means that A
and B are unrelated given the knowledge of C, or that C completely explains the associa-
tion between A and B. From this, it is sometimes inferred that A and B are both conse-
quences of C. If A and B are conditionally independent, we can apply the näıve Bayesian
classifier for predicting C on the basis of A and B with no remorse. Conditional mutual
information is a frequently used heuristic for constructing Bayesian networks (Cheng et al.,
2002).
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Conditional mutual information I(A;B|C) describes the relationship between A and
B in the context of C, but we do not know the amount of influence resulting from the in-
troduction of C. This is achieved by the measure of the intersection of all three attributes,
or interaction information (McGill, 1954) or McGill’s multiple mutual information (Han,
1980):

I(A;B;C) , I(A;B|C)− I(A;B) = I(A,B;C)− I(A;C)− I(B;C)

= H(AB) +H(BC) +H(AC)−H(A)−H(B)−H(C)−H(ABC).
(3.8)

Interaction information among attributes can be understood as the amount of information
that is common to all the attributes, but not present in any subset. Like mutual infor-
mation, interaction information is symmetric, meaning that I(A;B;C) = I(A;C;B) =
I(C;B;A) = . . .. Since interaction information may be negative, we will often refer to the
absolute value of interaction information as interaction magnitude. Again, be warned that
interaction information among attributes is the average interaction information among the
corresponding values.

Interaction information has proven to be a considerably better predictor of validity
of the näıve Bayesian classifier assumption in classification tasks than conditional mutual
information I(A;B|C). This can be apparent from the identity, remembering (3.3):

I(A;B;C) = D

(

P (C|A,B)

∥
∥
∥
∥
P (C)

P (A|C)P (B|C)

P (A)P (B)

)

= D

(

P (C|A,B)

∥
∥
∥
∥

P (C|A)P (C|B)

P (C)

)

The two right-hand models closely resemble the non-normalized näıve Bayesian classifier
(NBC). This non-normalization is what yields a negative interaction information, and
I(A;B;C) should really be seen as an approximate model comparison (but with other
convenient properties). Conditional mutual information tends to overestimate the devia-
tion, as it is derived from a joint model comparison, and not a conditional one (Fig 3.2).
However, conditional mutual information can be seen as an upper bound for the actual
NBC loss.

The concept of total correlation (Watanabe, 1960) describes the total amount of de-
pendence among the attributes:

C(A,B,C) , H(A) +H(B) +H(C)−H(ABC)

= I(A;B) + I(B;C) + I(A;C) + I(A;B;C)

= D(P (A,B,C)‖P (A)P (B)P (C)).

(3.9)

It is always positive, or zero if and only if all the attributes are independent, P (A,B,C) =
P (A)P (B)P (C). However, it will not be zero even if only a pair of attributes are depen-
dent. For example, if P (A,B,C) = P (A,B)P (C), the total correlation will be non-zero,
but only A and B are dependent. Hence, it is not justified to claim an interaction among
all three attributes. For such a situation, interaction information will be zero, because
I(A;B|C) = I(A;B).

3.2.3 Quantifying n-Way Interactions

In this section, we will generalize the above concepts to interactions involving an arbitrary
number of attributes. Assume a set of attributes A = {X1, X2, . . . , Xn}. Each attribute
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Figure 3.2: Conditional mutual information I(A;B|C) is often used as the predictor of the
loss caused by the conditional independence assumption in the näıve Bayesian approximation
P̂ ′(C|A,B) ∝ P (C)P (A|C)P (B|C). Interaction information I(A;B;C) works better on this
UCI Mushroom data set, as the conditional mutual information often overestimates the true
loss: for some of the most conditionally dependent attributes, the actual prediction loss was
quite low.

X ∈ A has a range ℜX = {x1, x2, . . . , xp}. If we consider the whole set of attributes A as
a multivariate or a vector of attributes, we have a joint probability distribution, P (a). ℜA

is the Cartesian product of individual attributes’ ranges, ℜA = ℜX1×ℜX2×· · ·×ℜXn , and
a ∈ ℜA. We can then define a marginal probability distribution for a subset of attributes
S ⊆ A, where S = {Xi(1), Xi(2), . . . , Xi(k)}:

P (s) ,
∑

a∈ℜA,
sj=ai(j),
j=1,2,...,k

P (a). (3.10)

Next, we can define the entropy for a subset of attributes:

H(S) , −
∑

v∈S

P (v) log2 P (v) (3.11)

We define k-way interaction information by generalizing from formulae in (McGill, 1954)
for k = 3, 4 to an arbitrary k:

I(S) , −
∑

T ⊆S
(−1)|S\T |H(T ) = I(S \X|X)− I(S \X), X ∈ S, (3.12)

k-way multiple mutual information is closely related to the lattice-theoretic derivation
of multiple mutual information (Han, 1980), ∆h(S) = −I(S), and to the set-theoretic
derivation of multiple mutual information (Yeung, 1991) and co-information (Bell, 2003)
as I ′(S) = (−1)|S|I(S). In this paper, we will neglect to distinguish the applications of
these two formulations, except when discussing positive or negative interactions which are
based on (3.12).

Finally, we define k-way total correlation as (Watanabe, 1960, Han, 1980):

C(S) ,
∑

X∈S
H(X)−H(S) =

∑

T ⊆S,|T |≥2

I(T ) = D

(

P (S)

∥
∥
∥
∥
∥

∏

X∈S
P (X)

)

. (3.13)
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We can see that it is possible to arrive at an estimate of total correlation by summing all
the interaction information existing in the model. Interaction information can hence be
seen as a decomposition of a k-way dependence into a sum of l, l ≤ k dependencies.

3.2.4 A Brief History of Entropy Decompositions

Although the idea of mutual information has been formulated (as ‘rate of transmission’)
already by Shannon (1948), the seminal work on higher-order interaction information was
done by McGill (1954), with application to the analysis of contingency table data collected
in psychometric experiments, trying to identify multi-way dependencies between a number
of attributes. The analogy between attributes and information theory was derived from
viewing each attribute as an information source. These concepts have also appeared in
biology at about the same time, as Quastler (1953) gave the same definition of interaction
information as McGill, but with a different sign. Later, McGill and Quastler (1955) both
agreed on using the McGill’s version.

The concept of interaction information was discussed in early textbooks on information
theory (e.g. Fano, 1961). A formally rigorous study of interaction information was a series
of papers by Han, the best starting point to which is the final one (Han, 1980). A further
discussion of mathematical properties of positive versus negative interactions appeared
in (Tsujishita, 1995). Bell (2003) discussed the concept of co-information, closely related
to the Yeung’s notion of multiple mutual information, and suggested its usefulness in the
context of dependent component analysis.

In physics, Cerf and Adami (1997) associated positive interaction information of three
variables (referred to as ternary mutual information) with the non-separability of a sys-
tem in quantum physics. Matsuda (2000) applied interaction information (referred to as
higher-order mutual information) and the positive/negative interaction dichotomy to the
study of many-body correlation effects in physics, and pointed out an analogy between in-
teraction information and Kirkwood superposition approximation. In ecology, Orlóci et al.
(2002) referred to interaction information as ‘the mutual portion of total diversity’ and
denoted it as I(ABC). Yairi et al. (1998) employed interaction information in robotics.
Leydesdorff and Meyer (2003) applied interaction information to analyzing the relations
between universities, industry and government, referring to it as mutual information in
three dimensions. In the field of neuroscience, Brenner et al. (2000) noted the utility
of interaction information for three attributes, which they referred to as synergy. They
used interaction information for observing relationships between neurons. Gat (1999) re-
ferred to positive interactions as synergy, while and to negative interactions as redundance.
Demšar (2002) referred to it as the relative information gain.

The concept of interactions also appeared in cooperative game theory with applications
in economics and law. The issue is observation of utility of cooperation to different players,
for example, a coalition is an interaction between players which might either be of negative
or positive value for them. Grabisch and Roubens (1999) formulated the Banzhaf inter-
action index, which proves to be a generalization of interaction information, if negative
entropy is understood as game-theoretic value, attributes as players, and all other players
are disregarded while evaluating a coalition of a subset of them (Jakulin, 2003). Kojadi-
novic (2003) discusses the relationship between independence and interaction. Gediga and
Düntsch (2003) applied these notions to rough set analysis.

Watanabe (1960) was one of the first to discuss total correlation in detail, even if the
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same concept had been described (but not named) previously by McGill (1954). Paluš
(1994) and Wienholt and Sendhoff (1996) refer to it as redundancy. Studenỳ and Vej-
narovà (1998) investigated the properties of conditional mutual information as applied to
conditional independence models. They discussed total correlation, generalized it, and
named it multiinformation. Multiinformation was used to show that conditional indepen-
dence models have no finite axiomatic characterization. More recently Wennekers and Ay
(2003) have referred to total correlation as stochastic interaction, and Sporns et al. (2000)
as integration. Chechik et al. (2002) investigated the similarity between total correlation
and interaction information. Vedral (2002) has compared total correlation with interaction
information in the context of quantum information theory. Total correlation is sometimes
even referred to as multi-variate mutual information (Boes and Meyer, 1999).

The topic of interactions was a topic of extensive investigation in statistics, but our
review will be an very limited one: a large proportion of work was concerned about
how to include interactions into the models, but a lesser one concerned ways of quan-
tifying or testing interactions. Darroch (1974) surveyed two definitions of interactions,
the multiplicative, which was introduced by Bartlett (1935) and generalized by Roy and
Kastenbaum (1956), and the additive definition due to Lancaster (1969). Darroch (1974)
preferred the multiplicative definition, and described a ‘partition’ of interaction which is
equivalent to the entropy-based approach described in the present text. Other types of
partitioning were discussed by Lancaster (1969), and more recently by Amari (2001) in
the context of information geometry.

In general, variance partitioning and ANOVA have much in common with entropy
decompositions, something that was noticed already by Han (1977). Variance can be
interpreted as a kind of loss. In the context of multiple and logistic regression, positive
interaction roughly corresponds to the notion of suppression while negative interaction has
much in common with confounding and multicollinearity (Lynn, 2003). These connections
are not direct, however.

The relationship between set theory and entropy

Interaction information is similar to the notion of intersection of three sets. It has been
long known that these computations resemble the inclusion-exclusion properties of set
theory Yeung (1991). We can view mutual information (; ) as a set-theoretic intersection
(∩), joint entropy (, ) as a set-theoretic union (∪) and conditioning (|) as a set difference
(−). The notion of entropy or information corresponds to µ, a signed measure of a
set, which is a set-additive function. Yeung defines µ to be an I-measure, where µ∗

of a set is equal the entropy of the corresponding probability distribution, for example
µ∗(X̃) = H(X). Yeung refers to diagrammatic representations of a set of attributes as
information diagrams, similar to Venn diagrams. Some find these diagrams misleading
for more than two information sources (MacKay, 2003). One reason may be the correct
interpretation of negative interaction information. Another reason is the lack of a clear
concept of what the elements of the sets are. Finally, it is not always possible to keep the
surface areas proportional to the actual uncertainty.

Through the principle of inclusion-exclusion and understanding that multiple mutual
information is equivalent to an intersection of sets, it is possible to arrive to a slightly
different formulation of interaction information (e.g. Yeung, 1991). This formulation is the
most frequent in recent literature, but it has a counter-intuitive semantics, as illustrated
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by Bell (2003): n-parity, a special case of which is the XOR problem for n = 2, is an
example of a purely n-way dependence. It has a positive co-information when n is even,
and a negative co-information when n is odd. For that reason we adopted the original
definition of (McGill, 1954).

3.3 Visualizing Entropy Decompositions

Interactions among attributes are often very interesting for a human analyst (Freitas,
2001). We will propose a novel type of a diagram in this section to present interactions
in a probabilistic model. Entropy and interaction information yield easily to graphical
presentation, as they are both measured in bits. In our analysis, we have used the ‘cen-
sus/adult’, ‘mushroom’, ‘pima’, ‘zoo’, ‘Reuters-21578’ and ‘German credit’ data sets from
the UCI repository (Hettich and Bay, 1999). In all cases, we used maximum likelihood
probability estimates.

3.3.1 Positive and Negative Interactions

A useful discovery is that attributes A and B are independent, meaning that P (A,B) can
be approximated with P (A)P (B). If so, we say that A and B do not 2-interact, or that
there is no 2-way interaction between A and B. Unfortunately, attribute C may affect
the relationship between A and B in a number of ways. Controlling for the value of C, A
and B may prove to be dependent even if they were previously independent. Or, A and
B may actually be independent when controlling for C, but dependent otherwise.

If the introduction of the third attribute C affects the dependence between A and B,
we say that A, B and C 3-interact, meaning that we cannot decipher their relationship
without considering all of them at once. An appearance of a dependence is an example
of a positive interaction: positive interactions imply that the introduction of the new
attribute increased the amount of dependence. A disappearance of a dependence is a
kind of a negative interaction: negative interactions imply that the introduction of the
new attribute decreased the amount of dependence. If C does not affect the dependence
between A and B, we say that there is no 3-interaction.

There are plenty of real-world examples of interactions. Negative interactions imply
redundance, which may be complete or partial. For example, weather attributes clouds and
lightning are dependent, because they occur together. But there is a negative interaction
between thunder, clouds and lighting. Should we wonder whether there is lightning, the
information that there are clouds would contribute no additional information beyond what
we learned by hearing the thunder. The redundancy of clouds for predicting lightning in
the context of thunder is thus complete. On the other hand, there is only a partial
redundancy between wind and thunder when predicting the rain: there may be just the
wind with rain, just the thunder with rain, or both thunder and wind with rain.

Positive interactions imply synergy instead. For example, employment of a person and
criminal behavior are not particularly dependent attributes (most unemployed people are
not criminals, and many criminals are employed), but adding the knowledge of whether
the person has a new sports car suddenly makes these two attributes dependent: it is a
lot more frequent that an unemployed person has a new sports car if he is involved in
criminal behavior; the opposite is also true: it is somewhat unlikely that an unemployed
person will have a new sports car if he is not involved in criminal behavior.
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The above intuitive ideas can be mathematically dealt with through interaction in-
formation of Sect. 3.2.2. Interaction information can either be positive or negative. Per-
haps the best way of illustrating the difference is through the equivalence I(A;B;C) =
I(A,B;C)− I(A;C)− I(B;C): Assume that we are uncertain about the value of C, but
we have information about A and B. Knowledge of A alone eliminates I(A;C) bits of
uncertainty from C. Knowledge of B alone eliminates I(B;C) bits of uncertainty from C.
However, the joint knowledge of A and B eliminates I(A,B;C) bits of uncertainty. Hence,
if interaction information is positive, we benefit from a synergy. A well-known example of
such synergy is the exclusive or: C = A+B (mod 2). If interaction information is nega-
tive, we suffer diminishing returns by several attributes providing overlapping, redundant
information. Another interpretation, offered by McGill (1954), is as follows: Interaction
information is the amount of information gained (or lost) in transmission by controlling
one attribute when the other attributes are already known.

3.3.2 Information Graphs

We can illustrate the interaction quantities we discussed with information graphs, intro-
duced in (Jakulin, 2003) as interaction diagrams. They are inspired by Venn diagrams,
which we render as an ordinary graph, while the surface area of each node identifies the
amount of uncertainty. The representation of information with the surface area is the
novelty of our approach.

White circles indicate the positive ‘information’ of the model, the entropy eliminated
by the joint model. Gray circles indicate the two types of negative ‘entropy’, the initial
uncertainty of the attributes and the negative interactions indicating the redundancies.
Redundancies can be interpreted as overlapping of information, while information is over-
lapping of entropy. For example, in a redundancy I(A;B) can be seen as overlapping with
I(A;C) in the context of A. In a synergy, I(A;B;C) is overlapping of H(A), H(B) and
H(C) that is not accounted for by the 2-way interactions. The joint entropy of the at-
tributes, or any subset of them, is obtained by summing all the gray nodes and subtracting
all the white nodes linked to the relevant attributes.

Mutual Information

We start with a simple example involving two attributes from the ‘census/adult’ data set,
illustrated in Fig. 3.3. The instances of the data set are a sample of adult population from
a census database. The occupation is slightly harder to predict a priori than the education

education occupation

Figure 3.3: Education and occupation do have something in common: the area of the white
circle indicates that the mutual information I(education; occupation) is non-zero. This is a
2-way interaction, since two attributes are involved in it. The areas of the gray circles quantify
entropy of individual attributes: H(education) and H(occupation).
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because occupation entropy is larger. Because the amount of mutual information is fixed,
the knowledge about the occupation will eliminate a larger proportion of uncertainty about
the level of education than vice versa, but there is no reason for asserting directionality
merely from the data, especially as such predictive directionality could be mistaken for
causality.

A Negative Interaction

The relationship between three characteristics of animals in the ‘zoo’ database is rendered
in Fig. 3.4. All three attributes are 2-interacting, but there is an overlap in the mutual
information among each pair, indicated by a negative interaction information. It is il-
lustrated as the gray circle, connected to the 2-way interactions, which means that they
have a shared quantity of information. It would be wrong to subtract all the 2-way in-
teractions from the sum of individual entropies to estimate the complexity of the triplet,
as we would underestimate it. For that reason, the 3-way negative interaction acts as a
correcting factor.

eggs

breathes

milk

Figure 3.4: An example of a 3-way negative interaction between the properties ‘lays eggs?’,
‘breathes?’ and ‘has milk?’ for different animals. The negative interaction is indicated with
the dark circle connected to positive 2-way interactions, as it can be understood as overlap
between them.

This model is also applicable to supervised learning. If we were interested if an animal
breathes, but knowing whether it gives milk and whether it lays eggs, we would obtain
the residual uncertainty H(breathes|eggs,milk) by the following formula:

H(breathes)− (I(breathes; eggs) + I(breathes; milk) + I(breathes; eggs; milk)) .

This domain is better predictable than the one from Fig. 3.3, since the 2-way interac-
tions are comparable in size to the prior attribute entropies. It is quite easy to see that
knowing whether whether an animal lays eggs provides us pretty much all the evidence
whether it has milk: mammals do not lay eggs. Of course, such deterministic rules are
not common in natural domains.

Furthermore, the 2-way interactions between breathing and eggs and between breath-
ing and milk are very similar in magnitude to the 3-way interaction, but opposite in sign,
meaning that they cancel each other out. Using the relationship between conditional
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mutual information and interaction information from (3.8), we can conclude that:

I(breathes; eggs|milk) ≈ 0

I(breathes; milk|eggs) ≈ 0

Therefore, if the 2-way interaction between such a pair is ignored, we need no 3-way
correcting factor. The relationship between these attributes can be described with two
Bayesian network models, each assuming that a certain 2-way interaction does not exist
in the context of the remaining attribute:

breathes← milk→ eggs

breathes← eggs→ milk

If we were using the näıve Bayesian classifier for predicting whether an animal breathes,
we might also find out that feature selection could eliminate one of the attributes: Trying
to decide whether an animal breathes, and knowing that the animal lays eggs, most of the
information contributed by the fact that the animal doesn’t have milk is redundant. Of
course, during classification we might have to classify an animal only with the knowledge
of whether it has milk, because the egg-laying attribute value is missing: this problem is
rarely a concern in feature selection and feature weighting.

A Positive Interaction

Most real-life domains are difficult, meaning that it is hopeless trying to predict the out-
come deterministically. One such problem domain is a potential customer’s credit risk es-
timation. Still, we can do a good job predicting the changes in risk for different attribute
values. The ‘German credit’ domain describes credit risk for a number of customers.
Fig. 3.5 describes a relationship between the risk with a customer and two of his char-
acteristics. The mutual information between any attribute pairs is low, indicating high
uncertainty and weak predictability. The interesting aspect is the positive 3-interaction,
which additionally reduces the entropy of the model. We emphasize the positivity by
painting the circle corresponding to the 3-way interaction white, as this indicates infor-
mation.

It is not hard to understand the significance of this synergy. On average, unemployed
applicants are riskier as customers than employed ones. Also, applying for a credit to
finance a business is riskier than applying for a TV set purchase. But if we heard that
an unemployed person is applying for a credit to finance purchasing a new car, it would
provide much more information about risk than if an employed person had given the same
purpose. The corresponding reduction in credit risk uncertainty is the sum of all three
interactions connected to it, on the basis of employment, on the basis of purpose, and on
the basis of employment and purpose simultaneously.

It is extremely important to note that the positive interaction coexists with a mutual
information between both attributes. If we removed one of the attributes because it is
correlated with the other one in a feature selection procedure, we would also give up the
positive interaction. In fact, positively interacting attributes are often correlated.
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purpose

employment

risk

Figure 3.5: An example of a 3-way positive interaction between the customer’s credit risk,
his purpose for applying for a credit and his employment status.

Zero Interaction

The first explanation for a situation with zero 3-way interaction information is that an
attribute C does not affect the relationship between attributes A and B, thus explaining
the zero interaction information I(A;B|C) = I(A;B)⇒ I(A;B;C) = 0. A homogeneous
association among three attributes is described by all the attributes 2-interacting, but not
3-interacting. This would mean that their relationship is fully described by a loopy set of
2-way marginal associations. Although one could imagine that Fig. 3.6 describes such a
homogeneous association, there is another possibility.

insulinglucose

mass

Figure 3.6: An example of an approximately homogeneous association between body mass,
and insulin and glucose levels in the ‘pima’ data set. All the attributes are involved in 2-way
interactions, yet the negative 3-way interaction is very weak, indicating that all the 2-way
interactions are independent. An alternative explanation would be a mixture of a positive
and a negative interaction.

Imagine a situation which is a mixture of a positive and a negative interaction. Three
attributes A,B,C take values from {0, 1, 2}. The permissible events are {e1 : A = B + C
(mod 2), e2 : A = B = C = 2}. The event e1 is the familiar XOR combination, denoting
a positive interaction. The event e2 is an example of perfectly correlated attributes, an
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example of a negative interaction. In an appropriate probabilistic mixture, for example
Pr{e1} ≈ 0.773, Pr{e2} ≈ 0.227, the interaction information I(A;B;C) approaches zero.
Namely, I(A;B;C) is the average interaction information across all the possible combi-
nations of values of A,B and C. The distinctly positive interaction for the event e1 is
cancelled out, on average, with the distinctly negative interaction for the event e2. The
benefit of joining the three attributes and solving the XOR problem exactly matches the
loss caused by duplicating the dependence between the three attributes.

Hence, 3-way interaction information should not be seen as a full description of the
3-way interaction but as the interaction information averaged over the attribute values,
even if we consider interaction information of lower and higher orders. These problems
are not specific only to situations with zero interaction information, but in general. If a
single attribute contains information about complex events, much information is blended
together, which should rather be kept apart. Not to be misled by such mixtures, we may
represent a many-valued attribute A with a set of binary attributes, each corresponding to
one of the values of A. Alternatively, we may examine the value of interaction information
at particular attribute values. The visualization procedure may assist in determining
the interactions to be examined closely by including bounds or confidence intervals for
interaction information across all combinations of attribute values; when the bounds are
not tight, a mixture can be suspected.

Patterns of Interactions

If the number of attributes under investigation is increased, the combinatorial complexity
of interaction information may quickly get out of control. Fortunately, interaction infor-
mation is often low for most combinations of unrelated attributes. We have also observed
that the average interaction information of a certain order is decreasing with the order in
a set of attributes. A simple approach is to identify N interactions with maximum interac-
tion magnitude among the n. For performance and reliability, we also limit the maximum
interaction order to k, meaning that we only investigate l-way interactions, 2 ≤ l ≤ k ≤ n.
Namely, it is difficult to reliably estimate joint probability distributions of high order.
The estimate of P (X) is usually more robust than the estimate of P (X,Y, Z,W ) given
the same number of instances.

Mediation and Moderation A larger scale information graph with a selection of in-
teractions in the ‘mushroom’ domain is illustrated in Fig. 3.7. Because edibility is the
attribute of interest (the label), we center our attention on it, and display a few other
attributes associated with it. The informativeness of the stalk shape attribute towards
mushroom’s edibility is very weak, but this attribute has a massive synergistic effect if
accompanied with the stalk root shape attribute. We can describe the situation with the
term moderation (Baron and Kenny, 1986): stalk shape ‘moderates’ the effect of stalk
root shape on edibility. Stalk shape is hence a moderator variable. It is easy to see
that such a situation is problematic for feature selection: if our objective was to predict
edibility, a myopic feature selection algorithm would eliminate the stalk shape attribute,
before we could take advantage of it in company of stalk root shape attribute. Because
the magnitude of the mutual information between edibility and stalk root shape is similar
in magnitude to the negative interaction among all three, we can conclude that there is a
conditional independence between edibility of a mushroom and its stalk root shape given
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the mushroom’s odor. A useful term for such a situation is mediation (Baron and Kenny,
1986): odor ‘mediates’ the effect of stalk root shape on edibility.

The 4-way interaction information involving all four attributes was omitted from the
graph, but it is distinctly negative. This can be understood by looking at the information
gained about edibility from the other attributes and their interactions with the actual
entropy of edibility: we cannot explain 120% of entropy, unless we are counting the evi-
dence twice. The negativity of the 4-way interaction indicates that a certain amount of
information provided by the stalk shape, stalk root shape and their interaction is also
provided by the odor attribute.

edible

odor
stalk−shape

stalk−root

Figure 3.7: A selection of several important interactions in the ‘mushroom’ domain.

Conditional interaction graphs The visualization method applied to the ‘mushroom’
domain is unsupervised in the sense that it describes 3-way interactions outside any con-
text, for example I(A;B;C). However, it was customized for supervised learning by only
examining the interactions that involve the labelled attribute, edibility. We now focus on
higher-order interactions in the context of the label, such as I(A;B|Y ) and I(A;B;C|Y )
where Y is the label. These are useful for verifying the grounds for taking the conditional
independence assumption in the näıve Bayesian classifier. Such assumption may be prob-
lematic if there are informative conditional interactions between attributes with respect
to the label.

In Fig. 3.8 we have illustrated the informative conditional interactions with large mag-
nitude in the ‘adult/census’ data set, with respect to the label – the salary attribute.
Learning with the conditional independence assumption would imply that these inter-
actions are ignored. The negative 3-way conditional interaction with large magnitude
involving education, years of education and occupation (in the context of the label) of-
fers a possibility for simplifying the domain. Other attributes from the domain were left
out from the chart, as only the race and the native country attribute were conditionally
interacting.

Synonymy and Polysemy In complex data sets, such as the ones for information
retrieval, the number of attributes may be measured in tens of thousands. Interaction
analysis must hence stem from a particular reference point. For example, let us focus
on the keyword ‘franc’, the currency, in the ‘Reuters’ data set. This keyword is not
a label, but merely a determiner of context. We investigate the words that co-appear
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workclassage education−numsexrelationship occupationmarital−status education

Figure 3.8: An informative conditional interaction graph illustrating the informative condi-
tional interactions between the attributes with respect to the salary label in the ‘adult/census’
domain.

with it in news reports, and identify a few that are involved in 2-way interactions with it.
Among these, we may identify those of the 3-way interactions with high normed interaction
magnitude. The result of this analysis is rendered in Fig. 3.9. We can observe the positive
interaction among ‘Swiss’, ‘French’ and ‘franc’ which indicates that ‘franc’ is polysemous.
There are two contexts in which the word ‘franc’ appears, but these two contexts do not
mix, and this causes the interaction to be positive. The strong 2-way interaction between
‘franc’ and ‘francs’ indicates a likelihood of synonymy: the two words are frequently both
present or both absent, and the same is true of pairs ‘French’-‘Paris’ and ‘Swiss’-‘Zurich’.
Looking at the mutual information (which is not illustrated), the two negative interactions
are in fact near conditional independencies, where ‘Zurich’ and ‘franc’ are conditionally
independent given ‘Swiss’, while ‘French’ and ‘franc’ are conditionally independent given
‘Paris’. Hence, the two keywords that are best suited to distinguish the contexts of the
kinds of ‘franc’ are ‘Swiss’ and ‘Paris’. These three are positively interacting, too.
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francs

Paris

Zurich

FrenchSwiss

franc

Figure 3.9: A selection of interactions involving the keyword ‘franc’ in news reports shows
that interaction analysis can help identify useful contexts, synonyms and polysemy in infor-
mation retrieval. Because not all 2-way interactions are listed, the negative 3-way interaction
is attached to the attributes and not to the underlying 2-way interactions.
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CHAPTER 4

The Statistics of Interactions

In Chapter 3 the probability model was given and interactions were examined in the
context of it. Although we did examine the interactions on data, we did not focus on how
the probability model was estimated. The purpose of this chapter is to tackle the issues
of Sects. 2.2.4 and 2.2.5: we may believe that several models are valid in explaining the
data, or that there are several data sets consistent with a given model.

The probability model is derived from the data using either Bayesian or frequentist
methods. There may be several probability models, and we may be uncertain about them.
For each probability model, it is possible to induce the probability or belief distributions
over the information-theoretic quantities. Mutual information is never less than zero,
yet sometimes it is preferable to assume independence. We approach this problem by
contrasting it with the notion of a significance test. We integrate significance tests with the
notion of loss functions. We compare cross-validation, goodness-of-fit testing, permutation
and bootstrap tests, and a novel formulation of fully Bayesian significance testing.

In Sect. 4.4 we re-examine the relationship between interaction information and par-
ticular models that underlie it. We define the underlying models as part-to-whole approx-
imations, and list three ways of coming up with them: by approximation, by maximum
entropy and by maximum likelihood.

4.1 Two Kinds of ‘Interaction’

Before we start, we need a clarification. There are two different concepts, entropy decom-
positions (Chapter 3) and model comparisons. We will now summarize both, pointing out
the similarities and stressing the differences.

4.1.1 Entropy Decompositions

The starting point in information theory is often a single unambiguous joint probability
model P (X1, X2, . . . , Xn). Interaction information, mutual information and total correla-
tion take the joint model and decompose the joint entropy H(X1, X2, . . . , Xn) into a sum
of terms through an analogy with set theory (Yeung, 1991).

51
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We can approximate the joint entropy by adding and subtracting the terms, facilitated
by the useful properties of Shannon entropy. Examples of such approximations to joint
entropy are the Bethe and Kikuchi approximations (Yedidia et al., 2004). We can evaluate
the quality of certain types of approximations using the notions of mutual information
(Shannon, 1948), and total correlation (Watanabe, 1960). Furthermore, we can create
lattice structures in the entropy space that can be used to reconstruct the entropy of
subsets of attributes (Han, 1975). The terms in these lattice-based decompositions, such
as interaction information (McGill, 1954), are informative and provide insight into the joint
probability model. Slightly different approaches to decomposing entropy were proposed
by Han (1978) and Amari (2001).

Assume that P̂BN is a Bayesian network (Pearl, 1988) based on P . It can then
be represented as a directed acyclic graph G = (V, E). The approximate global joint
probability model P̂BN (X ) based on G is defined as:

P̂BN (V) =
∏

X∈V
P (X|ParentsX) (4.1)

Thus, P̂ is based on conditioning and marginalization of P , and the chain rule is used to
merge these portions together. If the Kullback-Leibler divergence D(P‖P̂ ) is used as the
loss function, it can be expressed as:

D(P‖P̂BN ) =
∑

X∈V
H(X|ParentsX)−H(V) (4.2)

Here, the entropy H is based on the underlying P . The chain rule guarantees that the
joint probability model P̂BN requires no normalization, and that the parameters of P̂BN

can be computed in closed form.
It is characteristic of entropy decompositions that the assumption of no interaction

cannot provide a positive utility: the global joint model P (·) is assumed to be ‘true’.

4.1.2 Model Comparisons

In statistics, model comparisons start with two inferred or estimated probability models,
the reference P , and the approximation Q. The quantification of an interaction corre-
sponds to the loss incurred or the gain obtained by the approximation that does not
assume that interaction. The definition of interaction thus corresponds to the restriction
imposed on the approximation. The quantification of the interaction depends on the loss
function used.

P and Q need not be joint models, and can also be conditional models of the type
P (X|Y) and Q(A|B). The sufficient usual requirement for meaningful comparison here is
that X = A and Y ⊆ B. More generally, however, there must be a function f that relates
X × Y to A× B:

f : X × Y → A× B (4.3)

To obtain the expected loss, the joint reference P (X ,Y) must be defined. It quantifies
the weight of loss that corresponds to an individual case L(P (x|y), Q(a|b)). With the joint
reference, the expected loss is then:

L(P,Q) = Ex,y∼P (X ,Y), (a,b)=f(x,y){L(P (x|y), Q(a|b))} (4.4)
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Given a finite data set, the statistical models of either P or Q are generally not
unique and cannot be determined with precision. For that reason, the result of a model
comparison, the loss c = L(P,Q), is itself a random quantity, and can itself be modelled
with a probability model P (c). P (c) can be summarized with confidence intervals, point-
estimated using the expected loss.

It is characteristic for a model comparison that the removal of an interaction may
reduce the loss. Because the joint model P (·) is inferred from the data, a simpler model
may involve less risk. However, the amount of reduction or gain is generally dependent
on other interactions in a global model, and depends on whether the model is conditional
or joint.

Although entropy decompositions are not directly concerned with model comparisons,
they can still be used as heuristics. However, when the entropy decomposition does not
correspond to a Bayesian network, we must be careful: the implicit alternative model may
not be normalized, as happens in the case of negative interaction information.

4.2 Probability Estimation

Probabilities are not given a priori: all we have is the data. The fundamental model
normally used to connect the probabilities with the data is the multinomial distribution
Multinomialk(n, p1, p2, . . . , pk), where pi ≥ 0 and

∑k
i=1 pi = 1. There are k types of events,

and each event has a specified probability. If k = 2, we speak of the binomial distribution,
and when k = 2 and n = 1 we have the Bernoulli distribution.

The attribute X with the range ℜX = {1, 2, . . . , k} is given, along with the data
D. We can examine the distribution of the attribute using the number of occurrences of
each of the k values, ni = #D {X = i}, ∑i ni = n = |D|. The resulting count vector
n = [n1, . . . , nk]

T is a sufficient statistic: all that we seek to recover from the data is the
count vector, and other properties of the data are ignored, including the ordering of the
instances, or other attributes. Each instance is an event, and each attribute value is the
type of the event, counted separately.

The vector of counts n can be assumed to have the multinomial distribution, which
we express as

n ∼ Multinomialk(n, p1, p2, . . . , pk).

We can summarize the vector of probabilities as p = [p1, p2, . . . , pk]
T . The probability of

an occurrence of the data with such a sufficient statistic from a particular model p under
the assumption of n having a multinomial distribution can be expressed as a probability
mass function:

P (n|p) ,

(
n

n1, n2, . . . , nk

) k∏

i=1

pni

i (4.5)

For each p we can imagine the multinomial model in the generative sense as a dice-
tossing machine, which explains the working of the model. We construct a dice with k
sides, biased in such a way that the i-th side falls with the probability of pi. We now
toss the dice n times, and obtain a data set of size n. Each toss is independent of all
others. We now perform this experiment infinitely many times, where each experiment is
also independent of all others. Then, P (n|p) is the proportion of the experiments that
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resulted in the same value n of the sufficient statistic, based on an infinite sequence of
experiments made with the dice-tossing machine corresponding to p.

In an empirical situation, the the probability vector p is unknown, and we have just
the data. The data is summarized through the sufficient statistic, obtaining the counts
n, where n =

∑k
i=1 ni. Relative frequencies are often used as approximate estimates of

probabilities, and are defined as π̂i , ni

n . It can be shown that relative frequencies are
the maximum likelihood estimates. This means that among all multinomial dice-tossing
machines, the ones parameterized by the relative frequencies will yield the data sets having
such counts most frequently.

4.2.1 Frequentist Vagueness

We now assume that the relative frequencies π̂ are indeed the true probabilities. We
can generate new random data sets of equal size with the dice-tossing machine. If we
estimate the relative frequencies in the data sets that come out from the machine, they
will generally differ from the original ones π̂, unless the sample is infinite. Therefore, the
true probability based on a finite sample is a vague concept, something we have addressed
in Sect. 2.2.5.

Parametric Bootstrap. The approach of generating random data sets through an as-
sumed model is referred to as the parametric bootstrap (Efron and Gong, 1983). The above
dice-tossing machine is nothing but a a metaphor for parametric bootstrap. Using the rela-
tive frequencies, we now generate B resamples or resampled data sets {D∗1,D∗2, . . . ,D∗B}
of the same size as the original one |D∗·| = |D| = n. Each instance in each data set is
independent of all others, but that instances are distributed in accordance with the esti-
mated model Multinomial(n, π̂). Ideally, B → ∞, but choices of B = 100 or B = 1000
are used in practice. From each resample D∗i, we can re-estimate the relative frequencies,
and end up with a vector of bootstrap replications, {π̂∗1, π̂∗2, . . . , π̂∗B}.

Nonparametric Bootstrap. The nonparametric bootstrap does not operate on suffi-
cient statistics. Instead, each instance di ∈ D is considered to be a value of a n-valued
attribute D, where ℜD = D, and n = |D|. Each value d has the equal probability of 1

n ,
so the probability vector is pD = [ 1

n ,
1
n , . . . ,

1
n ]T . Nonparametric bootstrap thus draws

samples of size n from the multinomial distribution parameterized by pD. For each value
of D with a non-zero count, the corresponding number of instances are drawn from D.
Thus, D ∼ Multinomialn(n,pD) results in the resample D∗ = {d(i); i ∈ {1, 2, . . . , n}}.
In the case of the multinomial distribution, the parametric and nonparametric bootstrap
are equivalent, but nonparametric bootstrap is useful when no parametric distribution is
sufficiently persuasive.

Bayesian Bootstrap. Another interpretation of the nonparametric bootstrap is that it
assigns weights to instances, so that the weights have a multinomial distribution. Weights
are always integers, and Rubin (1981) suggested smoother real-valued weights instead.
This is especially useful when we have small data sets. We achieve this by introducing
a weight vector that has the Dirichlet distribution w ∼ Dirichletn(1, 1, . . . , 1) (Lee and
Clyde, 2004). The i-th instance has weight w(i).
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Bootstrap and Inference. The frequentist approach may be misleading for inference.
For example, we take a coin that falls heads with pH = 0.9. We toss it three times and
obtain {H,H,H}. The relative frequency would be π̂H = 1, and all generated data sets
of size 3 will be also {H,H,H}. All estimates from the generated data sets will also have
π̂∗H = 1, and not one of them will match the truth. If we obtained {H,T,H}, and generated
data sets of the same size, the probability estimates would only take the following values
{0, 1

3 ,
2
3 , 1}. Again, pH = 0.9 does not appear in the sample. In neither case would the

employment of the nonparametric bootstrap help arrive at a non-zero estimate of the true
probability, although the Bayesian bootstrap would help in the latter case. Nevertheless,
bootstrap ‘works well in practice.’

Asymptotic Vagueness. We can approximate the multinomial distribution with a mul-
tivariate Gaussian one (Agresti, 2002), whose mean µ = p, and the covariance matrix
Σ = diag(p) − ppT . It is easy to see that the vague probability can be modelled with a
multivariate Gaussian centered at the relative frequency:

p ∼ Gaussian(π̂,Σ/n) (4.6)

This realization also entails the use of χ2 distribution in testing.

4.2.2 Bayesian Vagueness

The original disposition of the Bayesian approach is that the relative frequencies are not
an appropriate way of obtaining the model, not even as the center of vagueness. Instead,
a prior is postulated, which models how much belief we have in different probabilities
before seeing the data. Often, a conjugate prior is chosen for a number of convenient
properties. For the multinomial parameters, the commonly used conjugate prior is the
Dirichlet distribution, and obtain the probability density function of the probability vector
given the data:

p ∼ Dirichletk(n1, . . . , nk) (4.7)

p(p|n) ,
Γ
(
∑k

i=1 ni

)

∏k
i=1 Γ (ni)

k∏

i=1

pni−1
i for pi ≥ 0 and

k∑

i=0

pi = 1 (4.8)

The use of a Dirichlet prior parameterized by α = [α1, . . . , αk]
T results in a Dirichlet

posterior [α1 +n1, . . . , αk +nk]
T . When all αi → 0, we speak of an improper prior (which

does, however, result in a proper posterior if all ni > 0). When all αi = 1, we have
the usual noninformative uniform prior, which is the basis for the Laplace probability
estimate. A special case of the Dirichlet distribution for k = 2 is the beta distribution.

We can sample from a Dirichlet distribution using the following approach (Gelman
et al., 2004a): draw x1, . . . , xk from independent gamma distributions with shape param-
eters α1, . . . , αk and common scale, then form each of the probabilities by normalizing
pi = xi/

∑

i xi.

4.2.3 Vagueness of Loss

Entropy and mutual information can be interpreted as loss, as we have seen in Sect. 3.1.1.
Specifically, the model P suffers the loss of L(x, P ) = − log2 P (x) for an instance x ∈ D.
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The empirical entropy of X given P and the Kullback-Leibler divergence between P and
Q can then be defined as:

H(X|P ) = Ex∼P {L(x, P )} (4.9)

D(P (X)‖P̂ (X)) = Ex∼P {L(x, P̂ )− L(x, P )} (4.10)

It is possible to keep P and Q fixed, and only vary the distribution over which the ex-
pectation is computed. This way, a large variance in loss over the whole range will be
reflected in an increased variance in entropy or divergence. Specifically, we can compute
the expectation of loss on various resamples of the data set, but maintaining the two
models. For example:

Î(A;B)∗,i =
1

|D∗,i|
∑

x∈D∗,i

(

L(x, P̂ )− L(x, P )
)

(4.11)

4.3 Case Study: Distribution of Mutual Information

All the methods of the previous section result in a probability distribution on probability
vectors. Individual probability vectors are parameters to the multinomial distribution.
The bootstrap methods yield a sequence of the probability vector estimates, the asymp-
totic approach results in a multivariate normal approximation to the estimate of the
probability vector, and the Bayesian approach result in a posterior distribution over the
probability vectors. In every case, we have a number or a continuum of probability mod-
els consistent with the data. We can interpret them as inverse probabilities, second-order
probability distributions, or conditional probability distributions. We will refer to them
as belief distributions or ensemble models, because we have non-zero belief in a number
of probability models, and because our uncertain knowledge can be represented with an
ensemble of probabilities.

While it may be interesting to examine the ensembles by themselves, as we have done
in Fig. 2.7, the interpretation soon becomes overwhelming without making additional
assumptions. Entropy and mutual information are always expressed relative to a particular
probability model p that assigns probabilities to an arbitrary combination of the values
of the attributes. We make this dependence explicit by writing I(A;B|p) and H(A|p).

Miller (1955) noticed that entropy and mutual information based on the relative fre-
quency estimates are biased: based on count data we often underestimate entropy, and
overestimate mutual information. He proposed the following unbiased estimates of entropy
and mutual information:

E′{H(X)} = H(X) + log2 e

(

|ℜX | − 1

2n
−

1−∑x∈ℜX
p̂(x)−1

12n2

)

+O(n−3) (4.12)

E′{I(X;Y )} = I(X;Y )− log2 e
(|ℜX | − 1)(|ℜY | − 1)

2n
+O(n−2) (4.13)

Wolpert and Wolf (1995) theoretically analyzed the problem of Bayesian estimation of
mutual information, and have suggested using the uniform Dirichlet prior. When p is the
probability model based on the data D, we can speak of the posterior probability model of
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entropy :

Pr{H(X|D) ≤ w} =

∫

I{H(X|D,p)) ≤ w}p(p|D)dp (4.14)

Here, I{C} is the indicator function, taking the value of 1 when the condition C is fulfilled
and 0 otherwise. We can summarize the posterior probability model of entropy with the
expected posterior entropy :

Ep∼p(p|D){H(X|p)} (4.15)

In most cases, however, entropy given the posterior predictive model of p is used,

H(X|Ep∼p(p|D){p}) = H

(

X

∣
∣
∣
∣
D,
∫

P (X,p|D)dp

)

(4.16)

We will generally use the posterior distribution of entropy (4.14), but will sometimes
summarize it with the expected posterior entropy (4.15). We will not employ the posterior
predictive models of p for evaluating entropy, because it makes the misleading impression
of entropy being a scalar when it is really a random quantity.

Hutter and Zaffalon (2005) combined the Bayesian approach with asymptotic approx-
imations, and provide the approximate moments of the mutual information in accessible
closed form. The equations end up being very similar to the ones of Miller (1955), and
are as follows:

E′′{I(X;Y )} = I(X;Y )− log2 e
(|ℜX | − 1)(|ℜY | − 1)

2n+ 1
(4.17)

Var′′{I(X;Y )} = E
{

(I(X;Y )− E{I(X;Y )})2
}

=
1

n+ 1




∑

x∈ℜX ,y∈ℜY

(
P (x, y)I(x; y)2

)
− I(X;Y )2





(4.18)

As an example, we examined a realistic pair of attributes from a concrete data set:
‘Harris hip score’ and ‘diabetes’ from the HHS data set discussed in Sect. 7.3.3. The
contingency table lists the number of patients for every combination of the attribute values:

HHS = excellent HHS = good HHS = bad

diabetes = no 37 30 28
diabetes = yes 6 4 7

We have employed both asymptotic corrections along with other approaches. We
performed the nonparametric bootstrap and the Bayesian bootstrap with B = 20000.
We also took 20000 samples from p’s posterior based on the improper Dirichlet prior
α → 0 (Bernardo and Smith, 2000) (also referred to as the Haldane prior) and the
uniform noninformative prior ∀i : αi = 1 (Wolpert and Wolf, 1995) (also referred to as the
Laplacean prior). For each p we computed the mutual information. The results obtained
with these methods differ:
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Figure 4.1: We can obtain the belief distribution of mutual information estimates by resam-
pling from the count data using the nonparametric bootstrap (top), and by sampling from the
Bayesian posterior using the improper Dirichlet prior α→ 0 (bottom).

I(A;B|π̂) relative frequency estimate 0.006
E{I(X;Y |π̂∗)} bootstrap 0.020
E{I(X;Y |π̂∗)} Bayesian bootstrap 0.019
Ep∼Dirichlet(n,n1,...,nk){I(X;Y |p)} Dirichlet posterior (α→ 0) 0.019

Ep∼Dirichlet(n+k,n1+1,...,nk+1){I(X;Y |p)} (Wolpert and Wolf, 1995) 0.017

E′{I(X;Y )} (Miller, 1955) -0.007
E′′{I(X;Y )} (Hutter and Zaffalon, 2005) -0.007

Var′′{I(X;Y )}1/2 (Hutter and Zaffalon, 2005) 0.013

Interestingly, the asymptotic corrections result in negative values. More illuminating than
the mean values may be the histogram of bootstrapped mutual information estimates
shown in Fig. 4.1.

There is a clear similarity between the two asymptotic corrections, and between the
Bayesian bootstrap and the improper Dirichlet prior. However, other results seem to
differ, and there is little empirical ground for making a choice: one has to pick the method
one trusts the most. Nevertheless, all methods seem to agree that the ‘diabetes’ attribute
does not have a consistently high information gain.

The mean of the mutual information is not a good representation for the distributions
like those in Fig. 4.1, not even if accompanied by variance. Because the distribution is
asymmetric, saying that the mean is 0.019± 0.017 (bootstrap) or −0.007± 0.013 (asymp-
totic) might be misleading. A better summary is a confidence interval, expressed in terms
of the distribution percentiles. The 99% confidence interval reaches between the mutual
information at the 0.5%-th percentile and the 99.5%-th percentile of the posterior belief.
We summarize some of the distributions listed earlier:
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expected loss of P(A)P(B) as compared to P(A,B) over resamples
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Figure 4.2: The distribution of mutual information obtained by through vague loss is quite
different from other approaches.

bootstrap [ 0.0001, 0.0969 ]
Bayesian bootstrap [ 0.0001, 0.0876 ]
Dirichlet posterior: α→ 0 [ 0.0001, 0.0887 ]
Dirichlet posterior: ∀i : αi = 1 (Wolpert and Wolf, 1995) [ 0.0001, 0.0807 ]

All these confidence intervals agree with the 0.005 belief that the mutual information will
be less than 0.0001.

The approach with vagueness of loss Î(A;B) (4.11), estimated using the Bayesian
bootstrap, resulted in a distinctly different distribution, as shown in Fig. 4.2. The 99%
confidence interval of Î(A;B) was [-0.0255,0.0418].

4.4 Part-to-Whole Approximations

We are often not interested in the estimate of mutual and interaction information itself,
but have other goals. For example, mutual and interaction information are used for
attribute selection or split selection, as we will do in Sect. 7.3. In such circumstances,
we do not seek the quantity of interaction, but whether to assume it or not. Why not
assume an interaction? We are often better off assuming that a dependence between two
attributes does not exist if there is not enough information to support this increase in
model’s complexity.

A model comparison contrasts two models: one that assumes that there is an inter-
action, and another one that does not. As a principled definition of what is the defining
property of an interaction, we propose the notion of the ‘part-to-whole’ approximation.

An interaction can be understood as an irreducible whole. This is where an interaction
differs from a mere dependency. A dependency may be based on several interactions, but
the interaction itself is such a dependency that cannot be broken down. To dispel the haze,
we need a practical definition of the difference between the whole and its reduction. One
view is that the whole is reducible if we can predict it without observing all the involved
attributes at the same time. We do not observe it directly if every measurement of the
system is limited to a part of the system. In the language of probability, a view of a part of
the system results from marginalization: the removal of one or more attributes, achieved
by summing it out or integrating it out from the joint probability model.

Not to favor any attribute in particular, we will observe the system from all sides,
but always with one or more attributes missing. Formally, to verify whether P (A,B,C)
can be factorized, we should attempt to approximate it using the set of all the attainable
marginals: M = {P (A,B), P (A,C), P (B,C), P (A), P (B), P (C)}, but not P (A,B,C) it-
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self. Such approximations will be referred to as part-to-whole approximations. If the
approximation of P (A,B,C) so obtained from these marginal densities fits P (A,B,C)
well, there is no interaction. Otherwise, we have to accept an interaction, and potentially
seek a tractable model to model it.

4.4.1 Examples of Part-to-Whole Approximations

Marginal and Conditional Independence

Using the chain rule, we can decompose any joint probability model into a product of its
marginalizations and conditionings, based on the assumptions of mutual and conditional
independence. There are several models of that type, as we have seen in Ch. 7. In
the simple case of three attributes, there are three models that involve two marginals
of two attributes each: P (B|A)P (C|A)P (A), P (A|B)P (C|B)P (B), P (A|C)P (B|C)P (C).
For example, the first model assumes that B and C are independent in the context of
A. There are three models that involve one marginal of two attributes: P (A,B)P (C),
P (B,C)P (A), P (A,C)P (B). Finally, there is a single model with only one-attribute
marginals: P (A)P (B)P (C). Neither of these approximations alone is a proper part-to-
whole approximation, however, all the available parts are not employed at the same time;
for example, the first model disregards the dependence between B and C.

It is possible to combine several such models in a mixture (Meilă and Jordan, 2000).
However, trees only make use of two-attribute marginals, and more sophisticated models
based on the chain rule and conditional independence may be used for k-way interactions
k > 3 (Matúš, 1999).

Kirkwood Superposition Approximation

Kirkwood superposition approximation (Kirkwood and Boggs, 1942) combines all the
available pairwise dependencies in closed form in order to construct a complete joint
model. Matsuda (2000) phrased KSA in terms of an approximation P̂K(A,B,C) to the
joint probability density function P (A,B,C) as follows:

P̂K(a, b, c) ,
P (a, b)P (a, c)P (b, c)

P (a)P (b)P (c)
= P (a|b)P (b|c)P (c|a). (4.19)

Kirkwood superposition approximation has many analogies with the cluster-variation
method (CVM) (Yedidia et al., 2004), and the Kikuchi approximation of free energy
(Kikuchi, 1951).

Kirkwood superposition approximation does not always result in a normalized PDF:
Z =

∑

a,b,c P̂K(a, b, c) may be more or less than 1, thus violating the normalization condi-

tion. We define the normalized KSA as 1
Z P̂K(a, b, c). It is not necessary to find a global

normalizing factor: if A and B are known to have the values of a and b, we need to
compute the normalizing factor only for different values of C.

Instead of normalization, one can employ an alternative to KL-divergence proposed by
Cziszár (1998):

D′(P‖Q) ,
∑

x∈ℜX

(

P (x) log2

P (x)

Q(x)
− P (x) +Q(x)

)

(4.20)



4.4. Part-to-Whole Approximations 61

However, the properties of this divergence function are unclear.

In a general case for a k-way interaction, the Kirkwood superposition approximation
for a set of attributes V can be phrased simply as:

P̂K(V) ,
∏

T ⊂V
P (T )(−1)1+|V\T |

(4.21)

It should be quite easy to see the connection between interaction information and the
non-normalized Kirkwood superposition approximation:

I(V) = D(P (V)‖P̂K(V)) (4.22)

We can interpret the interaction information as the approximate weight of evidence in
favor of not approximating the joint probability model with the generalized Kirkwood
superposition approximation. Because the approximation is inconsistent with the normal-
ization condition, the interaction information may be negative, and may underestimate
the true loss of the approximation. Therefore, the Kirkwood superposition approximation
must be normalized before computing the divergence.

Parts-as-Constraints, Loglinear Models and Maximum Entropy

The loglinear part-to-whole model employs M as the set of association terms (Agresti,
2002). If we view each lower-order interaction as a constraint, we may seek a joint proba-
bility model that complies with all the constraints. There may be many models that agree
with the constraints, and there are two basic strategies for choosing a single one.

The observed data has the highest likelihood given the maximum likelihood estimate,
which has to be compliant with the constraints. In this case, however, we would be observ-
ing the joint PDF and retro-fitting an approximation, which we should not, according to
the above definition of a part-to-whole model, unless we assure that no information enters
the model beyond what is given by the constraints. On the other hand, the maximum
entropy estimate is the most uncertain probability density function that is still compliant
with the constraints. There have been many justifications for the maximum entropy es-
timate, but the most important one is that it carries no additional information beyond
what is provided by the constraints (Good, 1963).

The principled definition of the part-to-whole approximation is that it should be the
worst joint model that still satisfies the given constraints. If entropy is our loss function,
then the maximum entropy estimate fulfills the principle. For a different loss function, a
different estimate should be used.

In the context of determining whether there exists a k-way interaction among attributes
V = {A,B,C}, the approximation to the joint PDF should be based on its marginalsM,
but now each of them is viewed as a constraint. Because the (k−1)-order constraints, such
as P (A,B) subsume all the underlying restraints, such as P (A) and P (B), the resulting
set of constraints is simply C = {(P (V \X|θ)); X ∈ V}. Note that all constraints are in
the context of the same parameter, θ. This common context assures that the constraints
are consistent.

Although there are far more efficient constraint satisfaction procedures, we will make
use of the generalized iterative scaling method to obtain the loglinear part-to-whole model
P̂IS (Darroch and Ratcliff, 1972):
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1. Estimate θ̂ from the data by whatever means preferred (maximum likelihood,
Laplace estimate, picking a sample from the posterior, . . . ). Use the resulting joint
probability model P (V|θ̂) to construct a consistent set of constraints C.

2. Initialize P̂ 0
IS(V) as the uniform distribution, which is also the unconstrained max-

imum entropy distribution. This assures that no information is passed to the opti-
mization procedure: P̂ 0

IS(v) = |ℜV |−1 for all v ∈ ℜV.

3. Employ iterative scaling to obtain P̂IS from C, iteratively cycling through X ∈ V:

P̂
(n+1)
IS (V) = P̂

(n)
IS (V)

∏

P (V\X|θ̂)∈C

P (V \X|θ̂)
P̂

(n)
IS (V \X)

, (4.23)

where

P̂IS(v \X) ,
∑

wX=x, x∈ℜX

P̂IS(w), wY = vY , Y ∈ V \X

is just another notation for marginalization.

It is not necessary to employ an iterative algorithm for part-to-whole approximations
when using binary attributes. Good (1965) notes a closed form expression resembling the
Fourier transform. The expression for k-way interaction derived through information ge-
ometry by Amari (2001) for the case of 3-attribute part-to-whole model appears identical.
The existence of maximum likelihood estimators has recently been discussed by Eriksson
et al. (2004).

Recently, the MaxEnt and Bayesian methods have been unified (Cheeseman and Stutz,
2004). One can obtain the posterior distribution of MaxEnt models simply from the joint
prior distribution for the constraints. Essentially, for a given set of data, there are many
imaginable configurations of constraints, and we are uncertain about which configuration
to choose. However, for each configuration of constraints, there is a unique posterior Max-
Ent model. A simple implementation might sample posterior constraints, and from each
choice of constraints create the MaxEnt posterior that satisfies the constraints. MaxEnt
methods may also be interpreted as ‘maximum independence’ models.

More specifically, in a Bayesian context we can define a prior P (Θ) rather than estimate
θ̂ from the data. We can then sample from the posterior P (Θ|D). For each sample θ we can
obtain both the joint and the set of constraints that correspond to θ; we can speak of the
posterior distribution of constraints P (C|Θ). For the set of constraints that correspond to
θ we employ generalized iterative scaling to obtain the maximum entropy model P̂IS(V|θ).
Across the samples of Θ, this yields the posterior distribution of maximum entropy models.

There is also a Bayesian version of GIS, referred to as Bayesian IPF (Gelman et al.,
2004a), that replaces the step in (4.23) by a stochastic version:

P̂
(n+1)
BIPF (V) =

A

2P (V \X)
P̂

(n)
BIPF (V)

∏

(P,X)∈C

P (V \X)

P̂
(n)
BIPF (V \X)

(4.24)

Here, A is a random draw from a χ2
2|ℜV\X | distribution. The result is a sampling from the

posterior given a conjugate Dirichlet-like prior. P (V \ X) must be a posterior based on
this prior.
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The MaxEnt model is the worst of the models by considering the joint entropy. In some
cases, however, we employ conditional models for predicting a particular labelled attribute
Y . The jointly MaxEnt model is the worst-case joint model, but may not be the worst-
case conditional model. For that purpose we may maximize the conditional entropy of Y
given the unlabelled attributes (Lafferty et al., 2001), or minimize the mutual information
between Y and the unlabelled attributes (Globerson and Tishby, 2004), while maintaining
the agreement with the parts.

Theorems of (Good, 1963) In the context of maximum entropy, it should be helpful
to reproduce a somewhat more restricted form of the Theorems 2 and 3 by Good (1963):
The following propositions are equivalent:

1. Let P̂ (V), V = {X1, X2, . . . , Xk} be the maximum entropy model consistent with the
constraints C = {P (V \X; X ∈ V}, and also that P̂ = P . This means that there is
no k-way interaction among V given the model P .

2. P (V) is a product of k positive functions F1(V \ X1), F2(V \ X2), . . . , Fk(V \ Xk).
This corresponds to the ability to express P using a Boltzmann model (Sect. 8.2.3),
where there is a bijection between potentials φ(S) and constraints P (S) ∈ C.

3. For every configuration of values v ∈ ℜV , there is no k-way interaction among the
following k binary attributes Ẋ1, Ẋ2, Ẋk, where:

ẋi ,

{

1 ; Xi = vi

0 ; otherwise.

4. There are no k-way interactions in any superset of attributes V ⊆ W.

The first item (corresponding to Good’s Theorem 2) defines an interaction with a
particular choice of the maximum entropy method for obtaining the part-to-whole model.
Furthermore, it provides the means of expressing the model purely through the set of its
marginals. The second item in the theorem associates the absence of k-way interactions
a Boltzmann model with a particular set of potentials. The third item explains that each
interaction can be localized for particular attribute value combinations. The fourth item
assures that no additional attribute can eliminate the existence of an interaction.

4.4.2 A Comparison of the Part-to-Whole Approximations

The advantage of loglinear models fitted by iterative scaling is that the addition of addi-
tional consistent constraints can only improve the fit of the model. Kirkwood superposition
approximation has the advantage of making use of all the available data in theory, and of
being phrased in closed form. For that reason, it is highly efficient. However, it does not
obey any objective criteria, and its performance is not guaranteed. Finally, we can make
use of the conditional independence approximations, but giving up the information about
certain marginals that cannot be integrated with the chain rule.

We have taken 16 data sets from the UCI repository, and for each pair of attributes
in each domain, we have investigated the 3-way interaction between the pair and the la-
bel. We compared the Kullback-Leibler divergence between the maximum likelihood joint
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Figure 4.3: The Kirkwood superposition approximation does not always outperform the
best of the conditional independence models (left), but practically always outperforms the
fully factorized model P (A)P (B)P (C) (right). The error of the fully factorized model is
measured by total correlation.

probability model P (A,B,C) and its part-to-whole approximation P̂ (A,B,C). We have
used all the three approximations: the normalized Kirkwood superposition approxima-
tion, the loglinear model, and the single best one of the three conditional independence
approximations. The number of iterative scaling iterations was bounded at 10, and there
were only few situations where the convergence did not occur in this time.

It turns out that the conditional independence model was somewhat more frequently
worse than the Kirkwood superposition approximation (1868 vs 1411), but the average
error was almost 8.9 times lower than that of the Kirkwood superposition approximation
(Fig. 4.3). On the other hand, it also shows that models that include KSA may achieve
better results than those that are limited to models with conditional independence.

The Kirkwood superposition approximation is high both with distinctly negative in-
teraction information and with distinctly positive interaction information, as shown in
Fig. 4.5. However, the error may be high even if the interaction information is near zero.
This possibility has been discussed in Sect. 3.3.2, and arises when there is a mixture of
value combinations, some involved in synergies and some in redundancies. The particular
pattern of bad behavior of the Kirkwood superposition approximation can be predicted
on the basis of its deviation from normalization, as shown in Fig. 4.6. This provides
both an effective heuristic for deciding when to apply iterative scaling. Furthermore, pos-
itive interaction information is quite informative about the quality of the iterative scaling
approximation (Fig. 4.7).

Summary of the Results The results plotted in Fig. 4.4 indicate that iterative scaling
always gives better performance than either KSA or conditional independence, and is
hence better suited to play the role of the part-to-whole approximation.

Apart from Good (1963), several authors have spoken in favor of a constraint-based
view of part-to-whole modelling. Amari (2001) has discussed a decomposition of entropy
that is based on loglinear models without interactions. Meo (2002) has proposed using
such a ‘maximum independence’ model as the foundation for expressing a generalization
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Figure 4.4: The approximation divergence achieved by iterative scaling consistently outper-
forms both the Kirkwood superposition approximation (left) and the best of the conditional
independence models (right).

of mutual information to multiple attributes, also providing an algorithm for obtaining
the part-to-whole model. Nemenman (2004) and Schneidman et al. (2004) have applied
the same notion for investigating correlations in networks.

When we are building models, however, there is a trade-off involved. On one hand, we
can gain in computational performance by using the Kirkwood superposition approxima-
tion or assume a pattern of conditional and mutual independencies. With these procedures,
we have to include more parts, but we can work efficiently with them. On the other hand,
we can use fewer parts and work with iterative methods, such as iterative scaling.

4.5 Model Comparisons

In Sect. 4.4 we have compared several methods for coming up with two models, where one
that assumes an interaction and one that does not. The approximation loss D(P‖P̂ ) is
a measure of how important the interaction is. The approximation loss depends on what
part-to-whole approximation method we use. It also depends on what probability model
we employ: although we have only discussed the multinomial model, there are very many
possible models.

It is exceedingly unlikely that the loss would be exactly zero, and it would seem that
there are always interactions. Of course, some interactions are stronger than others. We
could sort them by mutual information, and then pick them one by one. Or, we could pick
them by the reduction in loss that they yield, as it has been done by Della Pietra et al.
(1997). But almost everything would eventually become an interaction if we proceeded this
way. And, whether something is or isn’t an interaction is dependent upon the interactions
already in the model. The alternative is to state that a certain amount of loss caused by
ignoring the interaction is insignificant. Or, we can evaluate the loss in such a way that
penalizes the complexity of the model.

We will now provide ways of testing whether an interaction is significant or not. We
will employ the standard statistical hypothesis testing infrastructure, both frequentist and
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Figure 4.5: It is possible to predict the performance of the Kirkwood superposition ap-
proximation using interaction information. Both distinctly high and distinctly low interaction
information is associated with high KSA divergence. However, even low interaction informa-
tion may result in high KSA divergence.
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Figure 4.6: The Kirkwood superposition approximation deviates from the iterative scaling
approximation when the normalization coefficient is large.
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Figure 4.7: Interaction information is not particularly suggestive about the divergence of
the iterative scaling approximation.
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Bayesian. The fundamental idea will be that of the distribution of loss. We will address
this distribution in two ways, approximately using the null model, or for two models at the
same time via paired comparisons. The latter approach can be generalized to a comparison
of K models at the same time.

4.5.1 The Null Model

We often have a default, preferred model. We refer to it as the null model, and we stick to
it unless it can be refuted by the data. Usually, the default model is simple and skeptical:
smoking is not associated with cancer, the drug does not cure a disease, the attribute does
not predict the label. It is not necessary, however, for the null model to be simple: we
can start from the assumption that working with computers hurts the eyesight. Through
statistical inference we attempt to refute this model and replace it with a better one, with
the alternative model. We achieve this is by examining the distribution of loss as expected
under the null model, and examining the expected loss of the alternative model.

In the context of interactions, the null model can either be the model with the interac-
tion or the model without the interaction. We confirm the interaction when we can reject
the no-interaction model by providing a distinctly better alternative, or when we cannot
reject the interaction model by providing a good-enough alternative.

The fundamental concept used in testing is perhaps best described as self-loss: even
if the model is correct, it will generally achieve non-zero loss on a random sample from
the model itself. Alternatively, if we estimate a model from the sample, it will generally
deviate from the true model. The statistical testing itself is based upon examining how the
approximation loss compares to the self-loss distribution. Naturally, the testing depends on
the choice of the loss function. As usual, we will employ the Kullback-Leibler divergence.

The Asymptotic Approach

Assume an underlying null probability model P of categorical attributes. We then generate
a sample of n instances from P , and estimate P̂ with from relative frequencies in the
sample. The KL-divergence between P and its estimate P̂ multiplied by 2n/ log2 e is
equal to the Wilks’ likelihood ratio statistic G2. For large n, the G2 in such a context
follows a χ2

df distribution with df degrees of freedom:

2n

log2 e
D(P̂‖P ) ∼

n→∞
χ2
|ℜV |−1 (4.25)

By the guideline (Agresti, 2002), the asymptotic approximation is poor when n/df < 5.
For example, to evaluate a 3-way interaction of three 3-valued attributes, where df = 26,
there should be least 135 instances. Without that much data, the comparison itself is
meaningless. The choice of degrees of freedom df depends on the properties of the null
model. There are two alternatives, using the null assumption of interaction, and using the
null assumption of no interaction. We now describe each possibility.

Null: Interaction The Pearson’s approach to selecting the number of degrees of free-
dom disregards the complexity of the approximating model. df = |ℜV | − 1 is based on
the cardinality of the set of possible combinations of attribute values |ℜV |. ℜV is a subset



4.5. Model Comparisons 68

of the Cartesian product of ranges of individual attributes. Namely, certain value combi-
nations are impossible, where the joint domain of two binary attributes A and B, where
b = ¬a, V should be reduced to only two possible combinations, V = {(a,¬b), (¬a, b)}.
The impossibility of a particular value conjunction is often inferred from the zero count
in the set of instances, and we followed this approach in this paper. A more detailed
discussion of these structural zeros appears in (Krippendorff, 1986).

The P -value φ (or the weight of evidence for rejecting the null model) is defined to be

φ , Pr

{

χ2
df (x) ≥ 2n

log2 e
D(P‖P̂ )

}

(4.26)

The P -value can also be interpreted as the probability that the average loss incurred by P
on an independent sample from the null Gaussian model approximating the multinomial
distribution parameterized by P itself, is greater or equal to the average loss incurred by
the approximation P̂ in the original sample.

This P -value can be interpreted as the lower bound of P -values of all the approxima-
tions. Using df assures us that no simplification would be able to reduce the P -value,
regardless of its complexity.

Null: No Interaction In Fisher’s scheme (Fisher, 1922), we are not examining the
self-loss of the interaction-assuming null. Instead, we are examining the self-loss of the
no-interaction-assuming null. Asymptotically, it also results in a χ2 distribution, but with
a different setting of the degrees of freedom. The residual degrees of freedom should
instead be df ′ =

∏

X∈V (|ℜX | − 1).
For discrete data there are two ways of interpreting the no-interaction null. We can

maintain the marginal counts and re-shuffle the values among instances. This is the
foundation for the hypergeometric or multiple hypergeometric model of independence.
Alternatively, we can fix marginal probabilities and then form the joint probability model
under the assumption of independence: the model is a product of multinomials.

The Resampling Approach

Bootstrapped P -Values We can randomly generate independent bootstrap samples of
size n′ from the original training set. Each bootstrap sample is created by randomly and
independently picking instances from the original training set with replacement. This non-
parametric bootstrap corresponds to an assumption that the training instances themselves
are samples from a multinomial distribution, parameterized by P . For each bootstrap
sample we estimate the model P ∗, and compute the loss incurred by our prediction for
the actual sample D(P ∗‖P ). We then observe where D(P‖P̂ ) lies in this distribution
of self-losses. The P -value is P (D(P ∗‖P ) ≥ D(P‖P̂ )) in the set of bootstrap estimates
P ∗. If we perform B replications P ∗1, . . . , P ∗B, we obtain the bootstrapped P -value as a
probability from the proportion of resamples where the alternative model outperformed the
null model. We employ the uniform prior to estimate the probability from the frequency:

P̂ (D(P ∗‖P ) ≥ D(P‖P̂ )) ,
#B

i=1{D(P ∗i‖P ) ≥ D(P‖P̂ )}+ 1

B + 2
(4.27)

This way we prevent the extreme P -values of 0 and 1 from occurring with a finite number
of bootstrap resamples.
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The bootstrap sample size n′ is a nuisance parameter which affects the result: the
larger value of n′, the lower the deviation between P ′ and P . The P -value is conditional
on n′. Usually, the size of the bootstrap sample is assumed to be equal to the original
sample n′ = n. The larger the n′, the more likely is the rejection of an approximation
with the same KL-divergence.

The default nonparametric bootstrap corresponds to sampling from the null multino-
mial interaction model, e.g., P (A,B). We can perform the parametric bootstrap from
P (A)P (B) in order to treat the no-interaction model as the null.

Permutation Tests While bootstrap generates independent samples with the dice-
tossing machine, the permutation tests start from the original data, breaking down the
structure in data in particular ways (Frank and Witten, 1998). For example, we can per-
mute the values for each attribute independently, maintaining the frequency distribution
of the values, but eliminating any kind of dependence between the values of two attributes.

Permutation testing only works for the no-interaction model as the null, and corre-
sponds to the multiple hypergeometric distribution. The exhaustive computation using
the odds ratio as a ‘loss’ function on a 2× 2 contingency table in this manner corresponds
to Fisher’s exact test of independence.

The Bayesian Approach

Suppose that we have two models, Θ1 and Θ2 for the same data. This should be inter-
preted as having two hypothesis spaces H1 and H2, where Θ1 is in the context of H1 and
Θ2 in the context of H2. We can examine the divergence between posteriors as follows:

Pr{DΘ1|Θ2
(P‖P ) ≤ w} , Pr{D(P (X|Θ1)‖P (X|Θ2)) ≤ w} ∝

∫∫

I{D(P (X|θ1)‖P (X|θ2)) ≤ w}P (θ1|D)P (θ2|D)dθ1dθ2 (4.28)

We may build these models with the same prior and with the same data, but independently
one of the another. This means that they share the hypothesis space, and it implies
P (Θ1 = θ) = P (Θ2 = θ) and P (Θ1 = θ|D) = P (Θ2 = θ|D). In such a case, the self-loss
distribution is described by Pr{D(PΘ|Θ(P‖P ) ≤ w).

This approach can be contrasted with the definition of a Bayesian P -value (Gelman
et al., 2004a) based on a statistic T and on sampling new data sets from the posterior
model:

pB =

∫∫

I{T (D∗,θ) ≥ T (D,θ)}P (D∗|θ)P (θ|D)dD∗dθ (4.29)

The B-values do not involve any sampling of data sets, just of parameters.

Making Decisions with P -Values

On the basis of the thus obtained P -value, we can decide whether an interaction exists
or not. P -value identifies the probability that the loss of D(P‖P̂ ) or greater is obtained
by the true model on a finite sample. For example, the P -value of 0.05 means that
the loss incurred by the null model will be greater or equal to the loss obtained by the
approximation P̂ on the training sample in 5 independent samples out of 100 on the
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average. P -value thus only provides a measure of robustness of the interaction, but not
of its importance.

Now assume that the P -value is φ. With the interaction null, we may classify the
situation into two types: the interaction is discovered when φ ≤ α, and the interaction is
rejected when φ > α. The lower the value of α, the more unwilling we are to choose the
alternative model. It must be noted that α does not directly correspond to the the Type
I error probability.

Confidence Intervals

A P -value measures how unusual is the error of the alternative model as compared to the
distribution of the null model. In many situations, however, it is interesting to examine the
distribution of the alternative model’s error. Although we have examined the distribution
of mutual information in Sect. 4.3, the problem has to be interpreted in a different sense:
in terms of the difference between the loss achieved by the alternative model as compared
to the loss of the null model across the circumstances.

Although the approach that we will present can be applied in a variety of circum-
stances, let us adopt the context of using bootstrap under the assumption of the interac-
tion null. Under the interaction null we generate a number of resample-derived models
P ∗1, . . . , P ∗B. A symmetric 99% confidence interval of the alternative model loss is based
on two numbers w< and w>, so that

Pr{D(P ∗‖P̂ )−D(P ∗‖P ) ≤ w<} = (100%− 99%)/2 ∧ (4.30)

Pr{D(P ∗‖P̂ )−D(P ∗‖P ) ≥ w>} = (100%− 99%)/2 (4.31)

The probability that the difference results in a negative number corresponds to the P -
value. A practical implementation will obtain a number of bootstrap resamples, record a
list of the performance differences D(P ∗‖P̂ )−D(P ∗‖P ), sort them, and retrieve w< and
w> through appropriate quantiles.

4.5.2 Paired Comparison

A disadvantage of the null model significance testing approach is that the alternative and
the null models are estimated only once. We can address this problem either by perform-
ing cross-validation and learning both the alternative and the null models and comparing
them. Alternatively, we can follow a Bayesian approach by assuming independence be-
tween the null and the alternative models.

Cross-Validation

For each replication and fold, the set of instances D is partitioned into subsets for testing
(Ḋ) and for training (D′). For F folds, we have F configurations {Ḋ1,D′1, . . . , ḊF ,D′F }.
As in bootstrap, the number of folds is a nuisance parameter, but with the choice of 2
folds, the training and the test set have equal size, so the probability estimates are equally
reliable in both. To avoid the dependence on the particular choice of the partitioning, we
should perform B replications of cross validation {Ḋ1,·,D′1,·, ḊB,·,D′B,·}.
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For each pair of subsets, we estimate two null probability models: the training null
model P ′ and the testing null model Ṗ . We then also construct the part-to-whole approx-
imation P̂ ′. The CV -value ν is defined as:

ν , Pr{D(Ṗ‖P̂ ′) ≥ D(Ṗ‖P ′)} (4.32)

in a large set of cross-validated estimates of (p′, p̂′, ṗ). In the context of cross-validation, we
estimate the number of times the null model achieved a greater loss than the approximation
model in predicting the test set. This way we penalize the variance of the probability
model.

The Bayesian Approach

Bayes Factor The usual approach to Bayesian hypothesis testing are Bayes factors.
Assuming two models of data D parameterized by Θ1 and Θ2, the Bayes factor is defined
as (Bernardo and Smith, 2000):

BFD(Θ1‖Θ2) ,
P (Θ1)

∫
P (θ1)P (D|θ1)dθ1

P (Θ2)
∫
P (θ2)P (D|θ2)dθ2

(4.33)

The prior beliefs in each model are P (Θ1) and P (Θ2). If the testing is objective, these
beliefs are equal, and sometimes the Bayes factor is defined already with this assumption
(Gelman et al., 2004a, Berger, 2003). The Bayes factor may be calculated for any data
set, or even for an individual instance.

B-values The Bayes factor is a scalar value, and the variation of the posterior model in
the context of the data is not included into consideration. There are means of addressing
this issue, such as DIC (Speigelhalter et al., 2003). However, we can extend the Bayesian
self-loss distribution (4.28) also in the context of comparing the null, an independent null
and the alternative model.

The expected self-divergence E{DΘ|Θ(P‖P )} of a reference posterior model P (Θ|D)

should be an order of magnitude lower than the expected loss of a model P̂ based with
respect to the reference model P , E{DΘ|Θ̂(P‖P̂ )}. If this is not the case, the reference
model would be too complex given the data, and the variance of the estimate is not low
enough to reliably estimate the bias.

Both comparisons can be joined into a unique probability corresponding to a B-value
β for the comparison between the null posterior P (Θ|D) and the alternative posterior
P (Θ̂|D), where KL-divergence is used instead of a test statistic. There is no need to
draw samples from the model as with Bayesian P -values because KL-divergence compares
probabilistic models directly. The probability that P (Θ̂|D) is worse than an independent
P (Θ′|D), where Θ = Θ′, is:

β ,

∫∫∫

I{Dθ|θ′(P‖P ′) ≥ D
θ|θ̂(P‖P̂ )}P (θ|D)P (θ′|D)P (θ̂|D)dθdθ′dθ̂ (4.34)

The B-values do not have several of the properties of P -values.
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4.5.3 Multiple Comparisons

P -values are said to be meaningful if performing a single hypothesis test, but an analysis of
the whole domain involves a large number of tests. We have to account for the consequently
increased risk of making an error in any of them. The best-case approach is to assume
that all P -values are perfectly correlated, and we can use them without adjustment. The
worst-case approach is to assume that all P -values are perfectly independent, and adjust
them with Bonferroni correction.

A number of researchers have proposed ways of avoiding this problem, such as the false
detection rate paradigm of Benjamini and Hochberg (1995) and the q-values by Storey
(2003). The fundamental idea is to define a measure of error across all the decisions, and
then assume the decisions to be independent. It can still be seen as an oversimplification
to assume independence between models, especially as these models relate to the same
data and potentially to the same attributes. This oversimplification can be demonstrated
by either duplicating a significant attribute (where a single attribute will now have two
P -values), or by adding a perfectly independent and random attribute (which will affect
the P -values of non-random attributes in the model). Methods have been developed that
account for assumptions about the pattern of dependence (Yekutieli and Benjamini, 1999).

Without such assumptions, multiple testing can be examined in our earlier framework:
all that needs to be changed is the indicator function. Correct multiple testing becomes
increasingly difficult with a large number of attributes without making strong prior as-
sumptions, because a complex global model needs to be built. For example, the B-value
corresponding to the test of the conjunction of statements “X is independent of Y” and
“X is independent of Z” would have to be based on the model P (X,Y,Z|D) conditioned
on the prior Θ̂ and an independent pair of identical priors Θ and Θ′:

∫∫∫

I{D
θ|θ̂(P (X,Y)‖P (X)P (Y)) ≤ Dθ|θ′(P (X,Y)‖P (X,Y))∧

D
θ|θ̂(P (X,Z)‖P (X)P (Z)) ≤ Dθ|θ′(P (X,Z)‖P (X,Z))}

P (θ|D)P (θ′|D)P (θ̂|D)dθdθ′dθ̂ (4.35)

The same approach can be used to estimate the error rate. Furthermore, in appropriate
circumstances, the bootstrap may be used in the place of the Bayesian integral over the
parameter space.

4.5.4 Value at Risk

The usefulness of P -values is somewhat restricted. A P -value is only an indication of how
likely it is that using the interaction will not be beneficial. At the same time, we do not
know how large will the benefit be: it might be risk-free but trivially low. For that reason,
the concept of value at risk (VaR) is interesting and important. The value of risk at the
confidence level φ is the level under which the utility will drop only with the probability
of φ (Cherubini et al., 2004). Synonymously, it is the level of losses that will only be
exceeded with the probability of φ. If we employ the KL-divergence as our loss function,
the VaR can be defined as:

Pr{D(P‖P̂ ) ≥ VaRφ,P̂ } = φ (4.36)
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In effect, VaR is a one-tailed confidence interval, so that the tail reaches towards pessimism.
The justification is that in the worst case, an act will always result in a net loss. However,
we can attempt to bound our risks so that the net loss will occur only rarely. VaR is
directly associated with the utility, yet it has been discounted to include risk. Expected
utility does not distinguish between high and low risk, while P -values do not distinguish
between high and low utilities. VaR combines the benefits of both measures.

A certain model of vagueness needs to be presupposed in order to come up with the
distribution of KL-divergence. We may apply the vagueness of loss approach if we desire
efficiency. The self-loss distribution can be used if we trust the model P . If we are
forced to approximate with P̂ , we may examine the distribution of loss that captures the
imperfection of P̂ approximating the reference P .

4.5.5 Anomalies and Testing Procedures

There are several problems with certain testing procedures applied to extreme cases.
Partly the problems may be remedied using paired testing which includes the variation to
the alternative model, but not always.

Perfect Independence

Consider the following discrete coin toss data set with coins A and B, resembling the
experimental setup of (Frank and Witten, 1998):

A B

H H
H T
T H
T T

1. Assume the null model to be P (A,B) and the alternative to be P (A)P (B). This
is the context for the goodness-of-fit with Pearson’s protocol, and for the bootstrap
with infinitely many replications. The resulting P -value will tend towards 1.0: an
impossibly small value given the circumstances.

2. Assume the null model to be P (A)P (B) and the alternative to be P (A,B). This is
the context for permutation tests with infinitely many replications. The resulting
P -value also tends towards 1.0: impossibly large, as it is foreseeable that the two
coins are indeed dependent.

Fortunately, perfect independencies break down through paired testing.

Perfect Dependence

Consider this discrete coin toss data set with coins A and B (Frank, 2004):
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A B

H H
H H
T T
H H
T T
T T

It is a rather small sample, and the two coins always matched perfectly: it can be imagined
that such a situation may occur purely by chance. The coins are matched perfectly in every
resample also if we use cross validation or bootstrap. So cross validation and bootstrap
will be overconfident about the dependence. Therefore, cross-validation cannot prevent
certain types of overfitting, something that we have already noticed in Sect. 7.3.1.

4.5.6 An Empirical Comparison

We compared the 2-way interactions between each attribute and the label in several stan-
dard benchmark domains with the number of instances in the order of magnitude of 100:
‘soybean-small’, ‘lung’, ‘horse-colic’, ‘post-op’, ‘lymphography’ and ‘breast-cancer’. In do-
mains with more instances, the 2-way interactions are practically always significant, which
means that there is enough data to make it worth to model them. But on such small do-
mains, it is sometimes better to disregard weakly relevant attributes, as they may cause
overfitting.

Comparing χ2 and resampled P -values We examined the similarity between the P -
values obtained with the assumption of χ2 distribution of KL-divergence, and the P -values
obtained through the bootstrap procedure. The match shown in Fig. 4.8 is good enough
to recommend using χ2-based P -values as a reasonable heuristic which perhaps tends to
slightly underestimate. The number of bootstrap samples was 10000. The agreement
between the permutation test and the χ2-based P -values in Fig. 4.9 is also close, but less
reliable.

On the difference between P -values and cross-validated CV -values We com-
pared the P -values obtained with bootstrap with similarly obtained CV -values, using
500 replications of 2-fold cross-validation. The result is illustrated in Fig. 4.10 and shows
that the two estimates of significance are correlated, but behave somewhat differently.
P -values are more conservative, while very low and very high P -values do not guarantee
an improvement or deterioration in CV performance. Although CV -values might seem
intuitively more appealing (even if the number of folds is another nuisance parameter), we
are not aware of suitable asymptotic approximations that would allow quick estimation.
The permutation test seems not to be as predictive of CV -values as bootstrap, as is shown
in Fig. 4.11.

P -values and cross-validated performance We have employed cross-validation to
verify whether a classifier benefits from using an attribute, as compared to a classifier
based just on the prior label probability distribution. In other words, we are comparing
classifiers P (Y ) and P (Y |X = x) = P (Y,X = x)/P (X = x), where Y is the label and X
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Figure 4.8: A comparison of P -values estimated by using the bootstrap and by assuming
the χ2 distribution with df = |ℜV | − 1.
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Figure 4.9: A comparison of P -values estimated by using the permutation test and by
assuming the χ2 distribution with df = (|ℜA| − 1)(|ℜB | − 1).
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Figure 4.10: A comparison of P -values estimated with the bootstrap with the probabil-
ity that the test set loss of the interaction-assuming model was not lower than that of the
independence-assuming one in 2-fold cross-validation (CV -value).
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Figure 4.11: A comparison of P -values estimated with the permutation test with the prob-
ability that the test set loss of the interaction-assuming model was not lower than that of the
independence-assuming one in 2-fold cross-validation (CV -value).
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Figure 4.12: A comparison of P -values assuming χ2 distribution with the average change in
log-likelihood of the data given the information about the attribute value.
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Figure 4.13: A comparison of P -values from the permutation test with the average change
in log-likelihood of the data given the information about the attribute value.
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is an attribute. The loss function was the expected change in negative log-likelihood of
the label value of a test set instance when given the instance’s attribute value. This way,
we use no probabilistic model of the testing set ṗ, but instead merely consider instances
as samples from it. The probabilities were estimated with the uniform prior to avoid zero
probabilities and infinitely negative log-likelihoods. We employed 2-fold cross-validation
with 500 replications. The final loss was the average loss per instance across all the
instances, folds and replications. The results in Fig. 4.12 show that the goodness-of-fit
P -value was a very good predictor of the increase in loss. The permutation test seems not
to perform as well again (Fig. 4.13).

Focusing on the results obtained with the goodness-of-fit P -values, the useful attributes
appear on the left hand side of the graph. If we pick the first 100 of the 173 total attributes
with φ < 0.3, there will not be a single one of them that would increase the loss. On the
other hand, if we picked the first 100 attributes on the basis of mutual information or
information gain, we would end up with a deterioration in 7 cases, which is still a two-fold
improvement upon the base rate, where 14.4% of all the attributes yield a deterioration
in this experiment.

On the other hand, it must be noted that 60% of the 30 most insignificant attributes
with φ > 0.9 also result in a decrease of prediction loss! The cut-off used for detecting
overfitting through an increase in loss by cross-validation is obviously somewhat ad hoc,
especially as both CV -values and P -values turned to be largely equivalent in this experi-
ment. For that reason we should sometimes be skeptical of the performance-based results
of cross-validation. Significance can be seen as a necessary condition for a model, carrying
the aversion to chance and complexity, but not a sufficient one, neglecting the expected
performance difference.

B-values and cross-validated performance We have assumed the uniform prior both
for the joint multinomial model of P (A,B) and for each of the marginals P (A), P (B).
There are now three independent models, sampled from the posterior: the reference joint
model, the independence-assuming model and the dependence-assuming model. The B-
value indicates the proportion of times the independence-assuming model matched or
outperformed the dependence-assuming model.

The results in Figs. 4.14 and 4.15 show that it is a reasonably associated with cross-
validation. More interesting, however, is the clustering of domains. The fact that some
domains are skewed to the left or to the right indicates that data set size influences the
difference between B-values and cross-validation.

Summary From experiments we made, there seems to be a difference between the boot-
strap formulation and the cross-validated formulation of hypothesis testing, but the two
are not considerably different when it comes to judging the risk of average deterioration.
This conclusion has been disputed, but a tenable explanation for our results could be that
all our evaluations were based on the Kullback-Leibler divergence, while earlier experi-
ments tried to employ statistical testing based on probabilistic statistics for improving
classification performance assessed with a conceptually different notions of classification
accuracy (error rate) or instance ranking (area under the ROC).

The permutation test seems to differ in its nature from both the bootstrap and the
cross-validation, and it proved to be a less reliable heuristic. Furthermore, it was not
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Figure 4.14: A comparison of B-values based on the uniform prior and the multinomial
model with the CV -values obtained through 2-fold cross-validation.
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Figure 4.15: A comparison of B-values based on the uniform prior and the multinomial
model with with the average change in log-likelihood of the data given the information about
the attribute value.
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reliably approximated by the χ2 distribution. The best-performing were B-values, and it
would be interesting to find more efficient approximations.

We should choose the evaluation method based on the reasonableness of the assump-
tions it makes, rather than try to pick a favorite (such as cross-validation or the Bayesian
approach) and then attempt to approximate it by other methods. The comparisons we
have made are intended to demonstrate similarities and differences between the methods.
Our formulation of the significance testing methods includes the assumption of the loss
function, which is used as a statistic.



CHAPTER 5

Interactions among Continuous Attributes

5.1 Differential Entropy

Although entropy is often computed for an attribute or a set of them, Shannon did not
define entropy for attributes, but for a joint probability model of the attributes, a particular
joint probability mass function P . Entropy should be seen as a characteristic of a model
and not of an attribute or a data set. That is why expressing entropy as H(A) is somewhat
misleading; a more appropriate expression is H(A|P,D), where D is the data and P is the
probability model P (A|θ,D), the one actually used for computing the entropy. Although
we will not always express entropy conditionally, the assumptions are always implicit:
entropy is usually computed by assuming a maximum likelihood multinomial model.

Entropy H is defined for probability mass functions, not for probability density func-
tions. For a multivariate joint density function p modelling an attribute vector X, we can
define a somewhat different concept of differential entropy h, also measured in bits (Cover
and Thomas, 1991):

h(X|p) , −
∫

ℜX

p(x) log2 p(x)dx = Ep{− log2 p(x)} (5.1)

The properties of differential entropy do not fully match those of ordinary entropy (Shan-
non, 1948). For example, differential entropy may be negative or even zero. For example:

σ ≤ 1/
√

2πe : h(X|X ∼ Normal(µ, σ)) ≤ 0 (5.2)

Differential entropy is also sensitive to the choice of the coordinate system. Nonetheless,
the magnitude of entropy and the sign of changes in entropy remain meaningful: the higher
the entropy, the harder the predictions. Entropy should be understood as the expected
loss of the model, given the model itself. Shannon entropy results from the choice of
the logarithmic loss function. Other loss or utility functions may be employed and a
corresponding generalized notion of entropy thus derived (Grünwald and Dawid, 2004),
but its properties might not match those of Shannon entropy.

An analytical derivation of differential entropy has been made only for a few model
families. Therefore, empirical entropy (Yeung, 2002), sometimes also referred to as sample

81
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entropy (Roberts et al., 1999), often proves to be a useful approximation. If the data is
D sampled from ℜX, a probability model p(X|D) can be learned from it. If the modelling
is reliable, D can be understood as a representative random sample drawn from ℜX using
p. The approximation to h is the expected negative log-likelihood of the model p:

ĥ(X|p,D) , − 1

|D|
∑

x∈D
log2 p(x). (5.3)

The resulting differential empirical entropy is the average negative log-likelihood of the
model p. Observe that 1/|D| is the probability of choosing a certain instance in D. The
resulting sum can then be understood as the expectation of entropy given a uniform
probability distribution over the data: all instances in D have equal probability, and those
outside are impossible.

KL-divergence or relative entropy D(p‖q) (Kullback and Leibler, 1951) assesses the
difference between two probability density functions p and q:

D(p‖q) ,

∫

ℜX

p(x) log2

p(x)

q(x)
dx (5.4)

KL-divergence is zero only when the two functions are equal. It is not a symmetric
measure: P is the reference model, and the KL-divergence is the expected loss incurred
by the alternative model Q when approximating P . We can understand empirical entropy
through KL-divergence. If UD is the uniform probability mass function on the data D:

Ĥ(X|P,D) = D(UD‖P )−H(UD), (5.5)

UD(x) , 1− |D \ {x}||D| (5.6)

The same formula can be used to compute the differential empirical entropy of a PDF
p, mixing probability mass and probability density functions, but ultimately yielding the
same result as (5.3). If we interpret entropy as defined using KL-divergence, some problems
of differential entropy, such as negativity, would be remedied with a better choice of the
reference model U .

An important connection between entropy and KL-divergence appears when q is a
marginalization of p:

∫
p(x, y)dx = q(y). In such a case, D(p‖q) = h(p) − h(q). If

q is a factorization of p, the KL-divergence can be expressed as a sum of entropies.
Generally, the KL-divergence between p and any product of probability mass or den-
sity functions obtained by conditioning or marginalization p is expressible by adding or
subtracting entropies of p’s marginals. For example, the divergence between p(X,Y, Z)
and q(X,Y, Z) = p(X|Z)p(Y |Z)p(Z) is

D(p(X,Y, Z)‖p(X|Z)p(Y |Z)p(Z)) =

h(X,Z|p) + h(Y, Z|p)− h(Z|p)− h(X,Y, Z|p) (5.7)

Mutual and conditional mutual information provide a short-hand notation, in this case:
D(p‖q) = I(X;Y |Z). Conditional and marginal entropies can be calculated through KL-
divergence. Assuming x = [a,b, c], marginalization over C, the entropy of a conditioned
on B is h(A)− h(A,B) or:

h(A|B) =

∫

ℜx

p(x) log2 p(ax|bx)dx = D(p(A,B)‖p(B)) (5.8)
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Using conditional KL-divergence, it is possible to compare two conditional probability
density functions, something particularly useful in supervised learning:

D(p(X|Y)‖q(X|Y)) =

∫∫

p(x,y) log2

p(x|y)

q(x|y)
dxdy (5.9)

Observe, however, that conditional KL-divergence cannot be computed without a joint
probability model of both X and Y, p(X,Y).

Fisher Information and Invariantized Entropy

The fact that differential entropy is sensitive to parametrization is a major hindrance to the
applicability of differential entropy. For that reason, Good (1983) proposed invariantized
entropy with the help of Fisher’s information matrix. For an appropriate probability
model p(X|Θ), where Θ is a k-dimensional vector: Θ = [θ1, θ2, . . . , θk]

T . We define
Fisher’s information matrix I(θ) as a k × k matrix (Bernardo and Smith, 2000):

(I(θ))i,j , −
∫

p(x|θ) ∂2

∂θi∂θj
log p(x|θ)dx (5.10)

I(θ) is symmetric and positive semidefinite, and can also be written as (Amari and Na-
gaoka, 2000):

(I(θ))i,j =

∫

p(x|θ) ∂
∂θi

log p(x|θ) ∂

∂θj
log p(x|θ)dx = 4

∫
∂

∂θi

√

p(x|θ) ∂

∂θj

√

p(x|θ)dx
(5.11)

We can now define invariantized entropy h∞(X|θ) using the determinant of the Fisher
information matrix |I(θ)| (Good, 1983):

h∞(X|θ) , −
∫

p(x|θ) log2

p(x|θ)
√

|I(θ)|
dx (5.12)

Invariantized entropy can too be negative or zero. Besides, Kullback-Leibler divergence
D(p‖q) is already invariant to such transformations.

Some definitions of entropy express it based on a particular ‘prior’ π (Caticha, 2000):

hπ(X|p) , −
∫

p(x) log2

p(x)

π(x)
dx = −D(p‖π) (5.13)

One should note that Caticha’s ‘prior’ does not correspond to the Bayesian notion of a
prior. Nonetheless, Good’s invariantized entropy corresponds to Caticha’s definition of
entropy with the choice of Jeffreys’ prior for ‘prior’ π. Jeffreys’ prior is constant across x
given a fixed value of the parameters.

5.2 Multivariate Normal Distribution

We can now study individual models of continuous attributes. The most familiar one is
the multivariate normal distribution. The vector of attributes X is now treated as a single
multi-dimensional attribute. If a d-dimensional attribute X ∼ Normal(µ,Σ):

p(X = x|µ,Σ) =
1

√

(2π)d|Σ|
exp

{

−1

2
(x− µ)TΣ−1(x− µ)

}

(5.14)
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I(A;B) 0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5 1.0
ρ 0.037 0.117 0.259 0.360 0.492 0.583 0.652 0.707 0.866
R2 0.1% 1.4% 6.7% 12.9% 24.2% 34.0% 42.6% 50.0% 75.0%
I(A;B) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
ρ 0.935 0.968 0.984 0.992 0.996 0.998 0.999 1.000 1.000
R2 85.5% 93.7% 96.9% 98.4% 99.2% 99.6% 99.8% 99.9% 100.0%

Table 5.1: A comparison of mutual information I(A;B) for a bivariate normal model, mea-
sured with bits of information, correlation coefficients ρ, and percentages of explained variance
R2 = ρ2.

If d = 1, the differential entropy can be expressed in closed form as (Cover and Thomas,
1991):

h(X|µ, σ) =
1

2
log2(2πeσ

2) (5.15)

And in the general case the differential entropy is (Billinger, 2004):

h(X|µ,Σ) =
1

2
log2(|2πeΣ|) (5.16)

Here, | · | denotes the determinant.

A simple reference model p that allows correlation is a multivariate normal distribu-
tion. The d-dimensional attribute vector X = [X1, . . . , Xd] is treated as a single multi-
dimensional attribute. On the other hand, the alternative model q models each attribute
independently.

p : x ∼ Normal(µ,Σ) (5.17)

q : x ∼
d∏

i

Normal(µi, σi) (5.18)

This scheme is not limited to two dimensions, so correlations involving an arbitrary number
of attributes can be investigated easily. For the case of d = 2, Fig. 5.1 demonstrates the
relationship between the KL-divergence and the correlation coefficient ρ, which can also
be expressed in closed form (Billinger, 2004):

D(p‖q) = −1

2
log2(1− ρ2) (5.19)

It may be helpful to interpret the units of bits in terms of correlation coefficient values.
For that reason, we provide Table 5.1. However, the table may be quite misleading for
the interpretation of mutual information for discrete attributes.

In a more general situation, we may partition the attributes of X into two groups
X = [A,B]T . Here we assume that A is r-dimensional, and B s-dimensional. Similarly,
we can partition the covariance matrix:

Σ =

(
ΣAA ΣAB

ΣBA ΣBB

)

(5.20)
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Figure 5.1: We may express correlation using KL-divergence instead of the correlation coef-
ficient, retaining a monotonic relationship. In this figure we plot the importance of correlation
for all pairs of attributes in the ‘Boston housing’ data. The confidence intervals are estimated
with vagueness of loss. The wide confidence interval on the extreme right should raise suspi-
cion: the high correlation for that particular pair of attributes (property tax and highways) is
merely due to a few high property tax outliers. The next two correlations, (nitric oxides with
employment distance and non-retail acres) are more meaningful and more stable.

We can now express the mutual information between A and B in closed form (Billinger,
2004):

D(p(A,B)‖p(A)p(B)) = I(A;B) = −1

2
log2

( |Σ|
|ΣAA||ΣBB|

)

(5.21)

The resulting mutual information has a χ2 asymptotic distribution (although better ap-
proximations have been proposed) (Billinger, 2004):

I(A;B)

log2 e
∼ χ2

rs (5.22)

Of course, we can employ this approach to obtain partial correlation coefficients, and many
other interesting structures. Non-zero correlation corresponds to the existence of a 2-way
interaction between the attributes. However, linear dependence is only a particularly
simple type of interaction.

Interaction information using the multivariate normal model can also be positive. A
possible interpretation is suppression (Lynn, 2003): an attribute B suppresses the variance
in A unrelated to C, while A predicts the value of the label C.

5.3 Mixture Models

The multivariate Gaussian model is ubiquitous, but has certain limitations: it is strictly
linear and strictly unimodal. This does not mean that it is inappropriate for non-linear
and multimodal data. It is just that the model does not capture as much information as
would be captured by a different model.

Mixture models have recently risen to prominence with their flexibility. Mixture models
are based on a set of components, each component is a probability density function in the
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attribute space. Each component has a corresponding probability of occurrence, and a
point in the attribute space may have non-zero density for several components. If the set
of components is finite, the model is a finite mixture (McLachlan and Peel, 2000).

We will focus on a restricted form of mixture models by making the assumption of
local independence, so that the latent attribute Z having a range ℜZ = {z1, . . . , zK} will
account for all the dependence between attributes X = [X1, X2, . . . , Xd]:

p(X|Z) =
K∑

k=1

πk

d∏

i=1

p(Xi|φk,i) (5.23)

Each individual value of Z can be interpreted both as a component, a probabilistic pro-
totype, a cluster a set of instances that correspond to the prototype (to some extent),
or as an axis or dimension of a vector space where the instances can be represented as
points. Since the value of Z is unknown, we infer X using a multinomial model for Z:
p(zk) = πk,

∑

k πk = 1. The näıve Bayesian classifier (NBC) of the label Y given the
attributes X is identical to the above formulation of (5.23), but with the non-hidden label
Y playing the role of the latent attribute. An added benefit of using local independence
is that for computing the marginalizations of X, all that needs to be done is to compute
the product for a subset of attributes.

The choice of the functions in the mixture depends on the type of the attribute. Most
implementations are based on normal or Gaussian mixtures, which work for continuous
attributes, e.g. (Roberts et al., 1999). Recently, multinomial mixtures for discrete or
count-based attributes have been successfully utilized in information retrieval, e.g. (Bun-
tine, 2002). Most implementations are based on normal or Gaussian mixtures, which work
for continuous attributes, e.g. (Roberts et al., 1999). Recently, multinomial mixtures for
discrete or count-based attributes have been successfully utilized in information retrieval,
e.g. (Buntine, 2002). The MULTIMIX program (Hunt and Jorgensen, 1999) handles both
continuous and discrete attributes simultaneously with the local independence assump-
tion, adopting the multinomial distribution for any discrete attribute Xd (5.24) and the
normal distribution for any continuous attribute Xc (5.25):

Xd ∼ Multinomial(λ, 1) p(Xd = xj |λ) = λj ,
∑

j

λj = 1 (5.24)

Xc ∼ Normal(µ, σ) p(Xc = x|µ, σ) =
1

σ
√

2π
exp

{

−1

2

(
x− µ
σ

)2
}

(5.25)

Finally, mixture models are not the only choice of probability models involving continuous
attributes. An active area of research in statistics, finance and econometrics involves the
concept of copulas (Joe, 1997, Cherubini et al., 2004).

5.3.1 The EM Algorithm

We have employed the expectation-maximization algorithm to determine the parameters
π and φ in (5.23). The EM algorithm is an iterative procedure for improving the fit
of the model by interleaving two separate optimization steps. In the expectation step
we compute the latent attribute value probabilities for each instance of the data, while
keeping π and φ constant. In the maximization step, we compute the maximum likelihood
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(and therefore also minimum sample entropy) parameter values for each component, given
the set of instances having the latent attribute value which corresponds to the component:
each instance is weighted with the probability that it belongs to the component. Because
the distributions we use in the mixture are simple, the maximum likelihood equations can
be solved analytically (Hunt and Jorgensen, 1999).

Instead of the common practice of using random values as initial parameter settings,
each instance was assigned crisply to one of the clusters as found by pam, a robust greedy
medoid-based clustering algorithm (Kaufman and Rousseeuw, 1990), instead of the first
E step. To prevent correlated attributes from skewing the metric, the instances were
presented to pam projected to their eigenspace using principal component analysis (PCA).
Since PCA is sensitive to the scale of attributes, each attribute was standardized to have
the mean of 0 and the variance of 1 beforehand.

The role of the expectation step in iteration [t+1] is the computation of the probability

distribution of the latent attribute values in each instance x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
d ] of the

data, and for k-th of the K components, while keeping π and φ constant:

p(zk|x(i)) = τ (i),[t+1] =
π

[t]
k

∏d
m=1 p(x

(i)
m |φ[t]

k,m)
∑K

k=1 π
[t]
k

∏d
m=1 p(x

(i)
m |φ[t]

k,m)
(5.26)

Since we allow the full range of probabilities, this allows each instance to be a possi-
ble member of several components. In the maximization step, we compute the maximum
likelihood (and therefore also minimum sample entropy) parameter values for each compo-
nent, weighing each instance according to its membership in the component. Because the
model is simple, the maximum likelihood equations can be solved analytically, averaging
over all the instances of the data D = {x(1), . . . ,x(n)}:

π[t+1] =
1

n

n∑

i=1

τ (i),[t+1] (5.27)

λ
(t+1)
k,m,j =

1

nπ[t+1]

∑

i,x
(i)
m =j

τ (i),[t+1] (5.28)

µ
[t+1]
k,m =

1

nπ[t+1]

∑

i

τ (i),[t+1]x(i)
m (5.29)

σ2[t+1]
k,m =

1

nπ[t+1]

∑

i

τ (i),[t+1](x(i)
m − µ[t+1]

k,m )2 (5.30)

If a d-dimensional attribute X ∼ Normal(µ,Σ), the two corresponding M steps for the
mean vector µ and the covariance matrix Σ are:

µ
[t+1]
k,m =

1

nπ[t+1]

∑

i

τ (i),[t+1]x(i)
m (5.31)

Σ
[t+1]
k,m =

1

nπ[t+1]

∑

i

τ (i),[t+1](x(i)
m − µ[t+1]

k,m ) · (x(i)
m − µ[t+1]

k,m )T (5.32)

Using the multivariate normal distribution for X is no longer consistent with the local
independence model (5.23): X is now treated as a single multi-dimensional attribute.
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5.3.2 Supervised, unsupervised and informative learning

The primary target in classification is predicting the label. The unsupervised learning
approach of maximizing the joint likelihood or entropy, is not directly concerned with this
aim, using the following criterion:

arg min
p
ĥ(X, Y |D, p) (5.33)

Instead, a separate mixture model can be built for each label value. This is referred to as
informative learning (Rubinstein and Hastie, 1997), and the objective is to minimize the
entropy of the attributes given the label:

arg min
p
ĥ(X|Y,D, p) (5.34)

Class-conditional modelling is a type of informative learning, where we fit k components
for each label. This technique has been used for improving the näıve Bayesian classifier
by several researchers (Vilalta and Rish, 2003, Monti and Cooper, 1999).

Class-conditional modelling of attributes is not, however, discriminative modelling of
class boundaries, the true goal of pure supervised learning. In our context we can formalize
the objective of non-Bayesian supervised learning as minimization of the entropy of the
predictive distribution of the label given the attributes:

arg min
p
ĥ(Y |X, T , p) (5.35)

This way we are fulfilling the fundamental task of minimizing the loss in predicting the
label from the attributes. It is important to distinguish these three learning objectives,
as they all differ one from another, in spite of the apparent similarity between supervised
and informative learning. Fig. 5.2 illustrates that neither unsupervised nor informative
learning match the supervised learning objectives, and that informative learning is not
necessarily better than unsupervised learning. Fig. 5.3 compares certain supervised and
unsupervised discretization methods with mixture models.

In the context of MaxEnt approaches, we seek the worst model given the constraints.
The basic MaxEnt (arg maxpH(X, Y |p), (Jaynes, 2003)) can be used for unsupervised
learning, and either maximum conditional entropy for discriminative (arg maxpH(Y |X, p))
and class-conditional (arg maxpH(X|Y, p)) learning. An alternative for the non-joint case
is the minimum mutual information (MinMI) principle (arg minp I(X;Y |p), (Globerson
and Tishby, 2004)).
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Figure 5.2: This analysis of the ‘voting’ data set demonstrates that increasing the number
of components does not always result in better classification performance on the training set,
regardless of whether an unsupervised or a class-conditional scheme is used. Furthermore, an
unsupervised scheme may well yield better results than a class-conditional one, with smaller
confidence intervals. The reason for this is that the maximum likelihood EM algorithm is not
seeking to maximize the conditional likelihood of the label given the attributes, the goal of
pure supervised learning.
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Figure 5.3: In the ‘CMC’ data set, we assessed the mutual information between the trichoto-
mous label and the pair (wife age, number of children), varying the number of components
and the method used to construct them. The alternative to mixture modelling is space par-
titioning, as it appears in classification trees and in discretization methods, but which yields
mutually-exclusive partitions as components. It is possible to see that the Fayyad and Irani
(1993) discretization method, which tries to capture the dependence between an attribute
and the label, is competitive with mixture modelling at the same level of complexity, but not
the discretization methods based on equally large or equally represented bins. Again, mutual
information is not monotonically increasing with the number of components trained with an
unsupervised criterion.
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CHAPTER 6

Visualization with Interactions

6.1 The Methodology of Interaction Analysis

Before beginning with interaction analysis, we first need the underlying probabilistic
model. The ways of coming up with the model have been discussed in Ch. 4. In practical
analysis, however, it is not necessary to have a single global model: through local analysis
we build a separate model for each subset of attributes under investigation, as the global
model would match the local one if the attributes outside the focus were marginalized
away. Namely, marginalization can be performed both on the data or on the model. The
disadvantage of the local analysis is that the local models, especially if they are estimated
and not modelled, might be mutually inconsistent.

The general procedure for interaction analysis in an unsupervised learning problem
described with attributes X = {A1, A2, . . . , Am} thus takes the following form:

1. Form the set of one-attribute set of projections S1 = {{A1}, {A2}, . . . , {Am}}, two-
attribute set of projections S2 = {{A1, A2}, {A1, A3}, . . . , {Am−1, Am}}, and so on.

2. If there is a label Y , add it to each projection S ∈ S1 ∪ S2 ∪ · · · .

3. Build a local probability model for each S.

4. Evaluate interaction information for each S.

5. Process the results:

• Summarize the pattern of interactions in a comprehensible form (interaction
matrix, interaction dendrogram, metric scaling, Sect. 6.2).

• Identify the most distinct interactions and visualize them (interaction graphs,
Sect. 6.3).

• Examine a distinct interaction in detail, potentially explaining it with rules
(Sect. 6.4).

91
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For tractability, we only perform interaction analysis up to a particular k. Usually k =
2. The complexity in such a case is quadratic, as there are

(
m
k

)
ways of choosing k

attributes out of m. We can label several attributes to set the context for interaction
analysis, maintaining the combinatorial tractability. We never attempt to build the global
probability model of P (A1, A2, . . . , Am).

6.2 Interaction as Proximity

In initial phases of exploratory data analysis we might not be interested in detailed rela-
tionships between attributes, but merely wish to discover groups of mutually interacting
attributes. In supervised learning, we are not investigating the relationships between at-
tributes themselves (where mutual information would have been the metric of interest),
but rather the relationships between the mutual information of either attribute with the
label. In other words, we would like to know whether two attributes provide similar in-
formation about the label, or whether there is synergy between attributes’ information
about the label.

6.2.1 Attribute Proximity Measures

To perform any kind of similarity-based analysis, we should define a similarity or a dissim-
ilarity measure between attributes. With respect to the amount of interaction, interacting
attributes should appear close to one another, and non-interacting attributes far from one
another. One of the most frequently used similarity measures for clustering is Jaccard’s
coefficient. For two sets, A and B, the Jaccard’s coefficient (along with several other sim-
ilarity measures) can be expressed through set cardinality (Manning and Schütze, 1999):

J(A,B) ,
|A ∩ B|
|A ∪ B| (6.1)

If we understand interaction information as a way of measuring the cardinality of the
intersection in Fig. 3.1 and in Section 3.2.4, where mutual information corresponds to the
intersection, and joint entropy as the union, we can define the normed mutual information
between attributes A and B:

Ī(A;B) ,
I(A;B)

H(A,B)
(6.2)

Rajski’s distance is closely related to normed mutual information, and can be defined as

〈A,B〉R = 1− Ī(A;B) =
2H(A,B)−H(A)−H(B)

H(A,B)
=
H(A|B) +H(B|A)

H(A,B)
(6.3)

It takes the value of 1 when the attributes are completely dependent, and 0 when the
attributes are completely independent. Furthermore, it obeys the triangle inequality (Ra-
jski, 1961). It is highly applicable for various visualizations.

Màntaras’ distance (López de Màntaras, 1991) is identical to Rajski’s distance, has
been shown to be a useful heuristic for feature selection, less sensitive to the attribute
alphabet size. Dividing by the joint entropy helps us reduce the effect of the number of
attribute values, hence facilitating comparisons of mutual information between different
attributes. Normed mutual information is identical to interdependence redundancy (Wong
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and Liu, 1975). Rajski’s distance was recently generalized in the terms of Kolmogorov
complexity by Li et al. (2004). Meilă (2003) has employed the variation of information,
the non-normalized Rajski’s distance, to assess clusterings. She has also proved a number
of interesting properties of variation of information that also hold for Rajski’s distance,
such as collinearity of attribute refinements and convex additivity.

For visualizing higher-order interactions in an analogous way, we can introduce a fur-
ther attribute C either as context, using normed conditional mutual information:

Ī(A,B|C) ,
I(A;B|C)

H(A,B|C)
(6.4)

Alternatively, we may employ interaction information in a normalized form. We refer to
it as normed interaction magnitude:

|Ī(A;B;C)| , |I(A;B;C)|
H(A,B,C)

(6.5)

Here, the interaction magnitude |I(A;B;C)| is the absolute value of interaction informa-
tion. C has to be fixed and usually corresponds to the label, while A and B are attributes
that iterate across all combinations of remaining attributes. We define a distance as
〈A,B,C〉R = 1 − |Ī(A;B;C)| in order to summarize interaction information across a set
of attributes.

While the distance 〈A,B,C〉R functions as an approach to summarizing interaction
information, it does not have particularly convenient metric properties. For that purpose
we will define two multimetrics: interaction distance (6.6) and total correlation distance
(6.7):

〈X 〉ID ,

∑

X∈X H(X|X \ {X})
H(X )

(6.6)

〈X 〉TD , 1− H(X )
∑

X∈X H(X)
(6.7)

Both of these distances are in the range of [0, 1]. The interaction distance corresponds to
the proportion of joint entropy that remains unaccounted for after examining all interac-
tions. The total correlation distance is related to the proportion between the actual joint
entropy and the sum of individual attributes’ entropies.

6.2.2 The Interaction Matrix

The Library of Congress in Washington maintains the THOMAS database of legislative
information. One type of data are the senate roll calls. For each roll call, the database
provides a list of votes cast by each of the 100 senators. There were 459 roll calls in the
first session of the 108th congress, comprising the year 2003. For each of those, the vote
of every senator is recorded in three ways: ‘Yea’, ‘Nay’ and ‘Not Voting’. The outcome
of the roll call is treated in precisely the same way as the vote of a senator, with positive
outcomes (Bill Passed, Amendment Germane, Motion Agreed to, Nomination Confirmed,
Guilty, etc.) corresponding to ‘Yea’, and negative outcomes (Resolution Rejected, Motion
to Table Failed, Veto Sustained, Joint Resolution Defeated, etc.). Hence, the outcome can
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be interpreted as the 101st senator. Each senator and the outcome can be interpreted as
binary attributes. Each roll call can be interpreted as an instance.

Special-purpose models are normally used in political science, and they often postulate
a model of rational decision making. Each senator is modelled as a position or an ideal
point in a spatial model of preferences (Davis et al., 1970, Stewart III, 2001), where the
first dimension often delineates the liberal-conservative preference, and the second region
or social issues preference (McCarty et al., 2001). In the corresponding voting model
senators try to maximize their utility, and the voting process is interpreted as the attempt
of each senator to decide about the roll call based on his or her ideal point. In this model,
it is the similarity in ideal points that accounts for the similarities between senators’ votes.
The algorithms for fitting the spatial models of parliamentary voting can be understood
as constructive induction algorithms that try to explain the actions of each senator over
all the roll calls simply with the senator’s ideal point. These models can be evaluated by
comparing the true votes with the votes predicted by the model. The ideal points can
be obtained either by optimization, e.g., with the optimal classification algorithm (Poole,
2000), or by Bayesian modelling (Clinton et al., 2004). Of course, not all analysis methods
postulate a model of decision making, e.g. (Lawson et al., 2003, de Leeuw, 2003).

Distances as plain numbers provide little insight. However, we can provide the dis-
tances between all pairs of senators in the form of a graphical matrix (Fig. 6.1). The color
can be used to indicate the proximity: the darker, the higher the dependence between
the two senators. Dissimilarity matrices are clearer if similar senators are adjacent to one
another, so we have sorted them. Furthermore, we can exploit the symmetry of Rajski’s
distance by only visualizing the bottom-left half of the dissimilarity matrix. It is impor-
tant to realize that high Rajski’s distance may imply that the votes are systematically
opposed: the low Rajski’s distance between Kerry (D-MA) and the Republican senators
is an example of this.

6.2.3 Interaction Matrix with the Label

All interactions in supervised learning domains include the label. The interaction matrix
thereby describes the relationship between each pair of attributes with regards to the way
they predict the label together. Along the diagonal, we may visualize the information gain
of the attribute alone. We have employed a slightly different diverging color scheme from
cartography (Brewer et al., 2003): as before, red color encodes positive, and blue color
negative interaction information, but no-interaction is simply white. An example of such
an interaction matrix is shown in Fig. 6.2.

6.2.4 Metric Scaling

If each senator is denoted with a point in some k-dimensional space, we can try to place
these points so that the Euclidean distances between the points would match Rajski’s
distances. Most algorithms for metric scaling are based on iterative procedures. We
have employed Torgerson-Gower scaling (Borg and Groenen, 1997), and SMACOF (de
Leeuw, 1977). The Torgerson-Gower algorithm employs the scalar product algorithm and
a single step of singular value decomposition. On the other hand, SMACOF is an iterative
majorization algorithm which optimizes a simpler auxiliary function that bounds the true
criterion of matching metric distance. In Fig. 6.3 we can see that both methods separate
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Figure 6.1: The symmetric dissimilarity matrix graphically illustrates Rajski’s distance
between all pairs of senators, based on their votes in 2003. Three large clusters can be
identified visually from this graph, and one group of moderate senators in each party. The
major clusters correspond to the political parties even if the party information was not used
in the computation of distance.
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Figure 6.2: From this depiction of the ‘CMC’ data set, we can interpret the importance of
individual attributes to predicting the label (contraception method), and all attribute pairs.
From the diagonal, we can identify that the two most important attributes are age and edu-
cation of the wife. There are two distinct negative interactions involving the education of the
wife: with the standard of living and the husband’s education. The most distinctly positive
is the interaction between the age and the number of children.

the Republicans from the Democrats, with a single outlier (Miller, D-GA).

6.2.5 Interaction Dendrograms

Hierarchical Clustering Algorithms

The agglomerative nesting algorithm agnes (Kaufman and Rousseeuw, 1990, Struyf et al.,
1997) constructs a hierarchy of clusterings. At first, each observation is a small cluster
by itself. Clusters are merged until only a single large cluster remains which contains all
the observations. At each stage the two nearest clusters are combined to form one larger
cluster. In hierarchical clustering there are n − 1 fusion steps for n observations. The
decision, which two clusters are the closest, is made with a linkage method :

• The average linkage method attempts to minimize the average distance between all
pairs of members of two clusters. If R and Q are clusters, the distance between
them is defined as

d(R,Q) =
1

|R||Q|
∑

i∈R,j∈Q
d(i, j) (6.8)

• The single linkage method is based on minimizing the distance between the closest
neighbors in the two clusters. In this case, the hierarchical clustering corresponds
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Figure 6.3: Multi-dimensional scaling attempts to capture the given dissimilarity matrix
with Euclidean distances between points. The outcome depends highly on the algorithm used,
e.g., Torgerson’s (left) and SMACOF (right). Regardless of that, the results are comparable.

to the minimum spanning tree:

d(R,Q) = min
i∈R,j∈Q

d(i, j) (6.9)

• The complete linkage method is based on minimizing the distance between the fur-
thest neighbors:

d(R,Q) = max
i∈R,j∈Q

d(i, j) (6.10)

• Ward’s minimum variance linkage method attempts to minimize the increase in the
total sum of squared deviations from the mean of a cluster.

• The weighted linkage method is a derivative of average linkage method, but both
clusters are weighted equally in order to remove the influence of different cluster
size.

The linkage distance between R and Q indicates the quality of the merger. The ‘height’
in the graphical presentation of the cluster corresponds to d(R,Q).

Unsupervised Attribute Clustering

We can cluster the attributes by how much they are associated with one another, simply
using the Rajski’s distance between them. The label is just one of the attributes, treated
equally. This is useful for obtaining a broad overview of the data set, as shown in Fig. 6.4.

Supervised Attribute Clustering

In the example of the ‘Spam’ data set, the label got assigned to a specific cluster. This
may give a misleading indication that other attributes are irrelevant. This is not the
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Figure 6.4: This clustering of the ‘Spam’ data set illustrates the dependencies between co-
appearances of individual words in email messages. The color indicates the strength of the
dependence: green is weak, and red is strong. Several clusters of keywords identify typical top-
ics. The label is class, and it appears in a cluster along with remove, free and the exclamation
mark.
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case. In most classification and regression tasks we are not particularly interested in
the relationships between attributes themselves. Instead, we are interested in how the
attributes provide the information about the label.

Interaction information can be seen as the change in dependence between pairs of
attributes after introducing the context. The direction of change is not important: we
will distinguish this later. If we bind proximity in our presentation to the amount of
change in dependence, regardless of whether it is positive or negative, we can employ the
aforementioned generalization of Rajski’s distance 〈A,B,C〉R = 1 − |Ī(A;B;C)|. The
attributes that co-interact with the label will hence appear close to one another; those
that do not co-interact with the label will appear far from one another.

In the example in Fig. 6.5, we have used Ward’s method for agglomerative hierarchi-
cal clustering. We include each attribute’s individual information gain in the form of a
horizontal bar: the longer the bar, the more informative the attribute. Clustering helps
identify the groups of attributes that should be investigated more closely. We can use
color to convey the type of the interaction. We color the branches of the dendrogram
based on the average interaction information inside the cluster, again mapping to the
blue-green-red scale. For example, we color zero interactions green, positive interactions
red and negative interactions blue, mixing all three color components depending on the
normed interaction information. Blue clusters indicate on average negatively interacting
groups, and red clusters indicate positively interacting groups of attributes.

The resulting interaction dendrogram is one approach to variable clustering, where
the proximity is based on the redundancy or synergy of the attributes’ information about
the label. We can observe that there are two distinct clusters of attributes. One cluster
contains attributes related to the lifestyle of the person: age, family, working hours, sex.
The second cluster contains attributes related to the occupation and education of the
person. The third cluster is not compact, and contains the information about the native
country, race and work class, all relatively uninformative about the label.

6.2.6 Attribute Selection and Interaction Dendrograms

Jakulin and Leban (2003) have proposed a graphical representation of the interaction in-
formation, making use of the Venn diagram analogy, but expressing the sets as overlapping
bars and not as overlapping circles. Namely, we can decompose the joint information gain
I(A,B;Y ) into a sum of I(A;B;Y ) + I(A;Y ) + I(B;Y ). In a dendrogram the horizon-
tal bars already indicate the mutual information of each attribute I(·;Y ). Furthermore,
interacting attributes are already adjacent in the diagram. For every pair of adjacent at-
tributes in the dendrogram, we can express the I(A;B;Y ) as an arrow, directed towards
left and colored blue if the interaction is negative, and towards right and colored red if
the interaction is positive. The result of such visualization for the ‘mushroom’ data set is
shown in Fig. 6.6.

6.2.7 Taxonomies and Interaction Dendrograms

In a previous study (Zupan et al., 2001) the participating physician defined an attribute
taxonomy for this domain in order to construct a required concept hierarchy for the deci-
sion support model: this provided grounds for comparison with the taxonomy discovered
by observing attribute interactions from the data. In Fig. 6.7, we compare the attribute



6.2. Interaction as Proximity 100

age

marital−status

relationship

sex

hours−per−week

education

education−num

occupation

capital−gain

capital−loss

workclass

native−country

fnlwgt

race

Figure 6.5: An interaction dendrogram illustrates which attributes interact, positively or
negatively, with the label in the ‘census/adult’ data set. The label indicates the individual’s
income. The width of the horizontal bar indicates the amount of mutual information between
an attribute and the label.

cap−shape

ring−number

odor

spore−print−color

stalk−surface−above−ring

stalk−surface−below−ring

stalk−color−above−ring

stalk−color−below−ring

bruises

habitat

gill−spacing

gill−attachment

veil−color

cap−surface

stalk−shape

stalk−root

gill−color

cap−color

ring−type

gill−size

population

veil−type

Figure 6.6: An interaction dendrogram for the ‘mushroom’ data set helps us perform rudi-
mentary attribute selection and combination. The label is a mushroom’s edibility. We observe
that spore-print-color is next to being useless once odor has been taken into consideration.
On the other hand, a holistic treatment of bruises and habitat would result in a synergy that
is itself worth as much as bruises on its own.
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Figure 6.7: An attribute interaction dendrogram (top) illustrates which attributes interact,
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from (Zupan et al., 2001).
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Figure 6.8: The output of a classifier can be understood as an attribute. This way, we
can examine the similarities between machine learning algorithms. The ones shown are im-
plemented in Orange (Demšar and Zupan, 2004). They were evaluated on the ‘CMC’ data
set under the 10-fold cross-validation protocol. Logistic regression performed best, but the
differences were small.

interaction dendrogram with an expert-defined concept structure (attribute taxonomy).
While there are some similarities (like the close relation between the abilities to stand
and to walk), the two hierarchies differ. The domain expert appears to have defined her
structure on the basis of medical (anatomical, physiological) taxonomy; they do not seem
to correspond to attribute interactions.

6.2.8 A Taxonomy of Machine Learning Algorithms

Assume k classification algorithms, L = {L1, L2, . . . , Lk}. Each of the classification algo-
rithms is trained on the data set, and then evaluated on the test set. The predictions of the
classifier are labelled attribute values. The output of each classifier can thus be understood
as an attribute, and we can apply the interaction dendrogram to organize the results, as
shown in Fig. 6.8. We can identify several clusters of methods; the first cluster consists
of linear methods (näıve Bayesian classifier, logistic regression, SVM with a dot product
kernel), the second cluster contains C4.5-based methods, the third cluster is composed
of SVM with various non-linear kernels, and the final cluster comprises nearest neighbor
algorithms. The CN2 classifier and an alternative implementation of classification trees
are different. These taxonomies generally depend on the data set.

6.2.9 Missing Values

Attribute values are sometimes not given. The missing value is usually represented with
a special attribute value if the attribute is discrete, or we only infer the model from those
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instances that have no missing values. We have employed both techniques in this work.

The concept of ignorability (Gelman et al., 2004a) relates to whether the missing
values are truly missing at random or whether there is some pattern to whether the value
is missing or not. We can study the pattern of missing values with interaction analysis,
however. To do this, we define the binary inclusion attribute IA for an attribute A (Gelman
et al., 2004a), which is defined as follows:

IA ,

{

0 ; The value of A is missing;

1 ; The value of A is observed.
(6.11)

Of course, we could define the inclusion attribute for several underlying attributes, e.g.
IABC that would take the value of 1 when all of them would be known and 0 otherwise.

These inclusion attributes can be added to the data set, and the interaction analysis
can be performed as usual. This way, we can infer whether a particular attribute is not
missing at random. For experiments, we have focused on the ‘pima’ data set from the
UCI repository (Hettich and Bay, 1999). The ‘pima’ data set is described as having no
missing values. Yet, if we examine the histograms for attributes, as shown in Fig. 6.9, we
see that there is a considerable number of anomalous values. They are often coded as 0
or as 99, because experimenters frequently impute illogical values when the true value is
missing: body mass and blood pressure of 0 are obviously impossible.

For the analysis, we have included the inclusion attributes for the following attributes:
body mass, blood pressure, insulin level and skin fold. From Fig. 6.10 we can see that the
inclusion of insulin level is not importantly associated with the labelled attribute, but
there are stronger associations with other inclusion attributes. From the dendrogram we
can understand how the observations were recorded.

6.2.10 Concept Drift

The idea of concept drift (Kukar, 2003, Widmer and Kubat, 1996) is that the characteris-
tics of certain attributes change with time. A practical example of drift is in medicine, as
different doctors may judge different characteristics of disease differently. Moreover, the
experience derived from the data gathered over a period will reflect in the actions done in
the subsequent periods.

We have taken the familiar HHS data set, but extended with more recent observations
(Jenul, 2003). The attribute period indicates whether an instance came from the first
batch of observations or from the second one. It is then interesting to examine what
has changed. For this, we can employ unsupervised attribute clustering. The results in
Fig. 6.11 show that the properties of several attributes have changed.

6.3 Interaction Graphs

The analysis described in the previous section was limited to rendering the magnitude
of interaction gains between attributes. Many interesting relationships are not visible in
detail in the dendrogram. An interaction graph presents the interactions among a smaller
number of interactions in more detail, focusing on individual interactions rather than on
trying to include all the attributes.
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Figure 6.9: The histogram of attribute values for three attributes in the ‘pima’ data set indi-
cates that there are frequent but unmarked missing values, coded as 0 or as 99. Furthermore,
we can clearly see the influence of rounding and a few potential outliers.
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Figure 6.10: This interaction dendrogram was built with the inclusion attribute of insulin
as the label. We can see that the inclusion of the insulin attribute is associated with the
inclusion of the skin fold attribute. Fortunately, however, the association of the inclusion
attribute with the main attributes, especially with the outcome y, is negligible. Therefore, we
can safely assume that the values of insulin are missing at random.
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Figure 6.11: This unsupervised interaction dendrogram indicates which attributes have
changed most with time. The period attribute appears in the topmost cluster accompanied
by fr-walking, fr-sitting, complications-treatment-based and endoprosthesis. A more detailed
analysis would reveal that in the second phase there were fewer complications, a certain
endoprosthesis type was no longer used, and the evaluation of the walking and sitting ability
changed considerably. The dendrogram also serves as a taxonomy of attributes that disregards
the label.
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To reduce clutter, only the strongest N interactions are shown, usually 5 ≤ N ≤ 20.
For classification, all visualized interactions should involve the label. This limitation is
associated with the clarity of the visualization. It is extremely important to note that an
interaction graph does not attempt to provide a predictive model, but merely to visualize
the major interactions among the attributes, neglecting many weaker interactions and all
potential higher-order interactions. Furthermore, with an interactive method for graph
exploration, more interactions could be included. Fortunately, the distribution of interac-
tion gains usually follows a bell-like distribution, with only a few interactions standing out
from the crowd, either on the positive or on the negative side, so the presentation does
capture the most distinct ones.

Each node in the interaction graph corresponds to an attribute. The information gain
of each attribute is expressed as a percentage of the label entropy H(Y ), and written below
the attribute name. There are two kinds of edges, bidirectional arrows and undirected
dashed arcs. Arcs indicate negative interactions, implying that the two attributes provide
partly the same information. The amount of shared information, as a percentage of the
class entropy, labels the arc. Analogously, the amount of novel information labels the
arrow, indicating a positive interaction between a pair of attributes. Figure 6.12 explains
the interpretation of the interaction graph, while Figs. 6.13 and 6.14 illustrate two domains.
We used the ‘dot’ utility (Koutsofios and North, 1996) for generating the graph.

Clearly, it is possible to apply interaction graphs on unsupervised learning problems
as well. For an example, we again consider the US Senate in 2003. The nodes in the graph
correspond to senators, and edges to their similarities. We only select a certain number
of the strongest similarities to create a graph, using a threshold to discriminate between
a strong similarity and the absence of it. Fig. 6.15 graphically illustrates the 20 pairs of
senators with the highest Rajski’s distance between their votes.

6.3.1 Interaction Graphs with P -Values

The decision about the strength of an interaction can be made either on the basis of
interaction information, or based on the P -value that corresponds to the interaction.
Usually we select some threshold that the P -values need to obey, which prevents spurious
uncertain interactions. From those that remain, we visualize as many as we can, preferring
to include those ones with high interaction information magnitude.

We have employed the significance testing approach to identify the significant inter-
actions in a graph. We have used the Kirkwood superposition approximation to come
up with the model, and have used the goodness-of-fit test to decide whether the model
significantly deviates from the no-interaction estimate. This way we construct a model
of the significant 2-way and 3-way interactions for a supervised learning domain. The
resulting interaction graph is a map of the dependencies between the label and other at-
tributes and is illustrated in Figs. 6.16 and 6.17. Kirkwood superposition approximation
observed both negative and positive interactions. However, these interactions may some-
times be explained with a model assuming conditional independence: sometimes the loss
of removing a negatively interacting attribute is lower than imperfectly modelling a 3-way
dependence. Also, if two attributes are conditionally independent given the label, they
will still appear redundant.

The interaction graph does not attempt to minimize any global fitness criterion, and
should be seen as a very approximate guideline to what the model should look like. It
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Figure 6.12: The four most informative attributes were selected from a real medical domain.
In the interaction graph (left), the most important attribute A alone eliminates 78% of class
entropy. The second most important attribute B alone eliminates 76% of class entropy, but
A and B interact negatively (dashed arc), and share 75% of class entropy. So B reduces class
entropy by only 76-75=1% of its truly own once we have accounted for A: but if we leave B
out in feature subset selection, we are giving this information up. Similarly, C provides 4%
of its own information, while the remaining 13% is contained in both, A and B. Attribute
D provides ‘only’ 16% of information, but if we account for the positive interaction between
A and D (solid bidirectional arrow), we provide for 78+16+6=100% of class entropy. Con-
sequently, only attributes A and D are needed, and they should be treated as dependent. A
Bayesian network (Myllymaki et al., 2002) learned from the domain data (right) is arguably
less informative, as it only captures the strongest two interactions AB and AD, but not BC
and AC.
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Figure 6.13: An interaction graph containing eight of the 3-way interactions with the largest
interaction magnitude in the ‘adult/census’ domain, where the label is the income. The most
informative attribute is relationship (describing the role of the individual in his family), and
the mutual information between the label and relationship amounts to 20.7% of the label’s
entropy. All interactions in this graph are negative, but there are two clusters of them. The
negative interaction between relationship, marital status and the label, income, comprises 19%
of the income’s entropy. If we wanted to know how much information we gained about the
income from these two attributes, we would sum up the mutual information for both 2-way
interactions and the 3-way interaction information: 20.7 + 19.6− 19 = 21.3% of entropy was
eliminated using both attributes. Once we knew the relationship of a person, the marital
status further eliminated only 0.6% of the income’s entropy.
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Figure 6.14: An interaction graph containing eight of the positive and eight of the negative
3-way interactions with the largest interaction magnitude in the ‘mushroom’ domain. The
positive interactions are indicated by solid arrows. As an example, let us consider the positive
interaction between stalk and stalk root shape. Individually, stalk root shape eliminates 13.4%,
while stalk shape only 0.75% of the entropy of edibility. If we exploit the synergy, we gain
additional 55.5% of entropy. Together, these two attributes eliminate almost 70% of our
uncertainty about a mushroom’s edibility.
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Figure 6.15: The nodes are labelled with the total number of votes cast, while the edges
are marked with the percentage of those roll calls in which both senators voted and cast the
same vote.



6.3. Interaction Graphs 109

P<0.003

P<0.0010.63%

religion
Wife

P<0.0002.11%

living
of

Standard

P<0.0001.02%

exposure
Media

Husband
occupation

1.98% P<0.000

Husband
education

2.60% P<0.000

Wife
age

3.33% P<0.000

0.90%
P<0.280

Number
children

5.82% P<0.000

1.85%
P<0.000

Wife
education

4.60% P<0.000

−0.58%

P<0.264

−1.15%

Figure 6.16: An interaction graph is illustrating interactions between the attributes and
the label in the ‘CMC’ domain. The label in this domain is the contraception method used
by a couple. The chosen P -value cutoff of 0.3 also eliminated one of the attributes (wife
working). The strongest interaction between wife age and number of children among other
things captures the pattern that wives without children do not use any contraception.
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Figure 6.17: Only the significant interactions of the ‘German credit’ domain are shown in
this graph, where the P -value cutoff is 0.5. The label in the domain is credit risk. Most
notably, attributes telephone, residence duration and job are only useful as a part of a 3-way
interaction, but not alone. We can consider them to be moderators.
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Figure 6.18: The interactions in the ‘Harris hip score’ data set are shown along with their
P -values.

may also turn out that some attributes may be dropped. For example, the results from
Sect. 4.4.2 indicate that the Kirkwood superposition approximation is not uniformly better
than conditional independence models. So, one of the conditional independence models
for a triplet of attributes could fit the data better than Kirkwood superposition approx-
imation, and the interaction would no longer be considered significant. Nevertheless, it
was already Freeman (1971) who proposed using the M tuples of attributes with the high-
est 2-way and positive 3-way interaction information as a heuristic to construct a model,
inspired by and extending the work of Chow and Liu (1968)!

Another issue is that of multiple testing. As we have explained in Sect. 4.5.3, multiple
testing corrections are based upon the underlying P -values along with assumptions about
the dependencies between them. We provide a ranked list of the P -values in the scheme,
and it is possible to employ one of the existing corrections to account for multiple testing:
Streitberg (1999) recommends the Holm procedure. However, we do not make any kind of
model-based decisions with the interaction graph. It is only a partial overview of certain
dependencies in the data. Here, P -values are informative because they account for the
complexity of the underlying interaction. Furthermore, they are grounded through an
actual predictive model and its error, rather than through entropy decomposition which
may fail to account for dependencies that yield zero interaction information.

We have also asked an expert to comment the interaction graph for the Harris hip
score domain shown in Fig. 6.18 (Jakulin et al., 2003); the interactions surprised her (she
would not immediately think about these if she would be required to name them), but
could all justify them well. For instance, with her knowledge or knowledge obtained from
the literature, specific (bipolar) type of endoprosthesis and short duration of operation
significantly increases the chances of a good outcome. The presence of neurological disease
is a high risk factor only in the presence of other complications during operation. It was
harder for her to understand the concept of negative interactions, but she could confirm
that the attributes related in this graph are indeed, as expected, correlated with one
another. In general, she found the positive interactions more revealing and interesting.

It later turned out that only two negative interactions were at least somewhat sig-
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nificant, so the expert was correct in disagreeing with the negative interactions. On the
other hand, the positive interactions have distinctly higher significance, but still relatively
low in the context of clinical research. For that reason, we would need to perform a
decision-theoretic study to determine the clinical implications of taking those interactions
into consideration.

6.3.2 Confidence Intervals and Attribute Importance

To demonstrate the application of mixture models to interaction analysis, we analyzed two
UCI regression data sets, ‘imports-85’ and ‘Boston housing’. Three kinds of models were
learned: (1) the label alone, (2) each unlabelled attribute with the label, and (3) each pair
of unlabelled attributes with the label. For each tuple, a five-component joint mixture
model was estimated using the EM algorithm. Because both data sets are regression
problems, the outcome was always included in the model.

The interaction information for each of these models was estimated along with its 95%
confidence interval. This corresponds to an application of VaR (Sect. 4.5.4). For perfor-
mance reasons we have employed the vagueness of loss method (Sect. 4.2.3), approximating
the distribution of loss by computing the KL-divergence for each instance, and using the
bootstrap replications over instances to compute the percentiles. The sample information
gain was expressed as a proportion of the label sample entropy. The numbers below each
attribute indicate the proportion of label entropy the attribute eliminates, with a bottom
bound. The bottom bound corresponds to VaR0.025,P̂ , as interaction information is noth-
ing but a change in utility. The interaction information was expressed as a percentage
of the outcome entropy alone. The percentages are not always sensible for probability
density functions, but with care they can nevertheless be more interpretable than bits of
information.

Figure 6.19 shows the interactions between attributes applied to predicting the price
of the car. Now consider this example of a greedily built regression model for car prices:

Estimate Std.Error t-val Pr(>|t|)

(Intercept) -32254.698 17385.307 -1.855 0.0651 .

curb.weight 13.126 1.406 9.333 <2e-16 ***

width 753.987 313.931 2.402 0.0173 *

height -316.178 148.979 -2.122 0.0351 *

length -119.198 64.586 -1.846 0.0665 .

The ‘estimate’ lists the combination of coefficient values that resulted in minimum loss.
Often, the ‘estimate’ is considered to be a measure of importance of a particular attribute,
but it does not account for the variance of that attribute. The ‘std. error’ is the standard
error of the coefficient. The t-value is the t statistic, indicating the importance of the
attribute. Pr(> |t|) expresses the t statistic relative to the null distribution. The asterisks
indicate the importance of a particular attribute, based on the Pr(> |t|).

From the multiple regression model it would seem that the length, height, and width
of the automobile are not particularly relevant about its price. This pitfall inherent to
conditional models is avoided by constructing joint models, performing model comparisons,
and by using information-theoretic examination of interactions in the models. This way,
looking at Fig. 6.19, we would observe that length gives us very little additional information
about the car price once we already know curb.weight, but in case the weight is not known,
length alone is nevertheless quite a useful attribute.
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Figure 6.19: This interaction graph identifies the strongest 2-way and 3-way interactions
in the ‘imports-85’ data set with the price of a car as the continuous label. For example,
highway mpg alone eliminates 6.7% of uncertainty about the price on average, but in 97.5% of
cases more than 5.5%. fuel type is apparently a useless attribute on its own, eliminating only
0.2% of entropy, but there is a positive interaction or a synergy between fuel type and the
fuel consumption on the highway, eliminating an additional 1.13% of label entropy. Dashed
edges indicate negative interactions or redundancies, where two attributes provide partly the
same information about the label. For example, should we consider the fuel consumption
both on highways and in the city, the total amount of label entropy eliminated would be
6.7+5.9−5.1 percent, accounting for their overlap. Due to the imprecision of sample entropy
and the unsupervised modelling criteria, apparent illogicalities may appear: the length of the
automobile is hurting the predictions of the car’s price in combination the car’s weight.
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Figure 6.20: The strongest two-way and three-way interactions involving the label in the
model of ‘Boston housing’.

Figure 6.20 illustrates the result of interaction analysis of the ‘Boston housing’ data set.
The outcome of interest is the median value of apartment in a certain area, as predicted
by various properties of the area, such as unemployment, crime rate, pollution, etc. The
most informative attribute is the proportion of lower status population. In the context of
this attribute, non-retail acres becomes almost totally uninformative (7.99−7.93 = 0.06).
Another useful attribute is crime-rate, which subsumes most of the information provided
by prior-1940 and employment-dist. Furthermore, a strong negative interaction between
pupil-teacher and nitric-oxides must be noted. Although most negative interactions are
due to correlations between attributes, these two are themselves not highly correlated, and
the negative interaction is nonlinear in character. At low levels of pollution, the housing
value is mostly independent of pollution given the pupil-teacher ratio. On the other hand,
at higher levels of pollution, the pupil-teacher ratio does not vary.

Using the above interaction graph it is also possible to understand why non-retail acres
and prior 1940 prove to be insignificant (with P -values of 0.74 and 0.96, respectively) in a
multiple regression model (R Development Core Team, 2004), even if they are significant
on their own:

Estimate Std.Error t-val Pr(>|t|)

(Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***

crime.rate -1.080e-01 3.286e-02 -3.287 0.001087 **

zoned.lots 4.642e-02 1.373e-02 3.382 0.000778 ***

non.retail.acres 2.056e-02 6.150e-02 0.334 0.738288

Charles.River 2.687e+00 8.616e-01 3.118 0.001925 **

nitric.oxides -1.777e+01 3.820e+00 -4.651 4.25e-06 ***

rooms 3.810e+00 4.179e-01 9.116 < 2e-16 ***

prior.1940 6.922e-04 1.321e-02 0.052 0.958230

employment.dist -1.476e+00 1.995e-01 -7.398 6.01e-13 ***

highways 3.060e-01 6.635e-02 4.613 5.07e-06 ***

property.tax -1.233e-02 3.761e-03 -3.280 0.001112 **

pupil.teacher -9.527e-01 1.308e-01 -7.283 1.31e-12 ***

B 9.312e-03 2.686e-03 3.467 0.000573 ***

low.status -5.248e-01 5.072e-02 -10.347 < 2e-16 ***

These attributes are not irrelevant, they merely become insignificant in the context of
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Figure 6.21: The strongest two-way and three-way interactions involving the label in the
model of ‘Boston housing’ and ‘imports-85’ based on a multivariate normal model.

other attributes, such as low status. Of course, deciding which attribute should get the
credit for predicting the outcome is often arbitrary: we may greedily credit just the best
attribute, or we may be egalitarian in distributing the information credit among them all.

For comparison with the multivariate normal model that was described in Sect. 5.2,
we show the interaction graph in Fig. 6.21. The units are bits, but the corresponding
correlation coefficients can be looked up in Table. 5.1. It may interesting to compare these
two graphs with the results obtained with the mixture model used for Figs. 6.19 and 6.20.
There do not seem to be major differences, but the example should illuminate the fact
that an interaction graph depends on the underlying probability model.

6.4 Interaction Drilling

The previous sections have focused on mapping the whole data set. The purpose of
interaction dendrograms and matrices is to focus on a particular cluster of attributes, or
to choose a representative attribute from each cluster. In the next phase, we use interaction
graphs to evaluate the interactions in more detail. From the graph, we choose interactions
that are significant, informative and interesting. We then focus on an interaction and
examine it in more detail. This kind of analysis is performed for only a small set of
attributes at once. This section will describe ways of performing this kind of localized
analysis. The techniques are dependent on the model used. We will discuss nominal
(unordered discrete) and continuous attributes.

6.4.1 Inside an Interaction

We have taken a record of all the marriages in Hawaii in 2002 (Hawaii State Department
of Health, 2002). For each marriage, the nationality of the groom and of the bride were
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recorded. We can interpret the pair of nationalities as attributes, groom’s nationality G
and bride’s nationality B. The ranges of both attributes are the same. We can perform a
test of the 2-way interaction, and find out that it is highly significant. However, the result
of the test does not illuminate the nature of the interaction.

Recalling the interpretation of KL-divergence in Sect. 3.1.1, we can see that the loss
is computed for every attribute value combination. The independence assuming model
P (G)P (B) implies that there is no pattern to intermarriage: all we control is the total
number of grooms and brides of a particular nationality. Alternatively, we control for all
possible intermarriage pairs in P (G,B). But the error might not be the same for all pairs!

Again, we may resort to visualization. For each attribute value combination, such
as (groom:Caucasian, bride:Causasian), we can calculate the probability of occurrence
under the independence assumption p̂ = P (G = Caucasian)P (B = Caucasian). Further-
more, we can calculate the probability under the dependence assumption p = P (G =
Caucasian, B = Caucasian). We can compute a very simple error measure p− p̂ that will
reveal the extent of deviation from independence.

However, because of chance, the deviations for frequent attribute value combinations
would swamp significant deviations for less frequent combinations. For that reason it is
preferable to apply the standardized Pearson residuals (Agresti, 2002):

d(g, b) ,
√
n

P (G = g,B = b)− P (G = g)P (B = b)
√

P (G = g)P (B = b)(1− P (G = g))(1− P (B = b))
(6.12)

If n is the data set size, d(g, b) asymptotically has a standard normal distribution
Normal(0, 1). Therefore, under the null independence model it has the same scale for
all value combinations. This makes it particularly appropriate for visualization. Fig. 6.22
demonstrates how the independence and dependence models can be visualized along with
the standardized Pearson residuals between them.

6.4.2 Rules from Interactions

While we can add interactions one by one, finding the most salient one using the present
visualization or, e.g., the mosaic plots (Theus and Lauer, 1999), it is often unnecessary
to include the interaction as a whole: only a subset of situations is the source of the
deviations from independence. The deviations in Fig. 6.22 can be captured by additional
rules that account for the significant exceptions from independence. However, there is
no single ‘correct’ rule when it comes to this. For example, there are two rules, the first
specific and the second general:

1. Caucasian brides tend to marry Caucasian grooms.

2. Grooms and brides of the same nationality prefer to marry one another.

We can represent each rule as an additional attribute (Della Pietra et al., 1997). For
example, for the first rule, we form an attribute R1 with the range:

ℜR1 = {bride = Caucasian ∧ groom = Caucasian, bride 6= Caucasian ∨ groom 6= Caucasian}

In the second case, we form a relational attribute R2 with the range:

ℜR2 = {bride nationality = groom nationality,bride nationality 6= groom nationality}
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Figure 6.22: The marriages between brides and grooms in Hawaii are not independent
of their nationalities. The colored rectangle indicates the prediction under the assumption
of independence. The black rectangle indicates the truth. The area is proportional to the
probability. The color reveals the standardized Pearson residual between the two models: blue
means that the independence model overestimated, while red means that the independence
model underestimated. The graph has a distinct red tone along the diagonal, which indicates
the preference to marry a person of the same nationality.
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Figure 6.23: If we account for the Caucasian tendency to intermarry with rule R1, the errors
decrease considerably. If we introduce exceptions in the independence-assuming model, re-
normalization introduces errors elsewhere (left). On the other hand, interpreting the rule R1

as a binary attribute, and employing maximum entropy inference results in distinctly superior
performance (right). The residuals are approximated by (6.12).
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This relational attribute is closely associated with the notion of quasi-independence
(Agresti, 2002). These two binary attributes can then be included into the model.

It is important to note, however, that they are definitely not independent of the pre-
vious two attributes, so we cannot exploit conditional and marginal independencies. Fur-
thermore, in ascertaining the value of particular rules, we have to note that the importance
of a particular rule depends on rules that are already in the model: there can be nega-
tive interactions between rules as well. Finally, the statistical model used in assessing
the significance of rules should account for the fact that rules may be deterministically
derived from the attribute values, so they should not be seen as an additional source of
uncertainty.

It is possible, however, to merge certain attribute value combinations (Kononenko,
1991). It is clear simply replacing P (g)P (b) with P (g, b) would result in a non-normalized
joint probability model. Re-normalization is simple enough:

P̂ (g, b) =

{
1−P (g,b)

1−P (g)P (b)P (g)P (b) ; g 6= b

P (g, b) ; g = b
(6.13)

If we employ this technique for R1, the KL-divergence is reduced from 0.628 with the
independence-assuming model, to 0.546 with this simple approach.

Unfortunately, the normalization causes the model to deviate from the true marginal
statistics P (G) and P (B). The benefit from better approximating P (g, b) may not exceed
the losses caused by the normalization, as we have seen in Sect. 7.3.4. An alternative is to
employ the iterative scaling algorithm to find the joint model with maximum entropy that
still satisfies all the constraints: the marginals P (G) and P (B), and both rules P (R1) and
P (R2). An additional benefit of iterative scaling is that R2 is truly binary: we do not have
to control for each individual nationality (e.g., Caucasian-Caucasian, Hawaiian-Hawaiian,
etc.), just for the overall pattern. It is unclear how to include R2 into consideration by
working with exceptions.

It is interesting to examine the meaning of P (R1) and P (R2). For example, P (R1)
indicates that 53% of marriages were between two Caucasians. By including just the
R1 into the model, and using the algorithm of Sect. 4.4.1, the KL-divergence is reduced
dramatically to 0.247, even if the model has no more information than with (6.13). It
is just that the iterative scaling algorithm tries to make sure that the joint model agrees
both with the constraint of 53% marriages between Caucasians, and with the marginal
statistics, such as that 63% of brides and 58% of grooms are Caucasian. The comparison
is shown in Fig. 6.23.

If we introduce R2, the KL-divergence falls to just 0.019. In general, R2 is more
powerful as it alone results in KL-divergence of 0.020. The meaning of P (R2) is that
77% of all marriages were between grooms and brides of the same origin. Again, iterative
scaling makes sure that this constraint is fulfilled along with others.

Summary It is not necessary to assume an interaction between all attribute combina-
tions. Each rule can be expressed as an attribute. Furthermore, we introduce relational
rules into consideration. To include these attributes into consideration, methods such as
maximum entropy may be applied to constrain the model with the rules. Instead of max-
imum entropy, we can apply closed-form methods, but they do not reach the same level
of performance.
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Figure 6.24: A latent class model may also be used to explain an interaction. ‘Weight’ in-
dicates the number of instances covered by the class, essentially the marginal model of P (C).
The lines below show the distribution of attribute values corresponding to the component in-
dicated in the column, essentially the model of P (B|C) and P (G|C) (left). The KL-divergence
of the resulting model is relatively low at 0.076, but fails to capture the quasi-independence
within class 0 (right).

6.4.3 Mixture Models

Discrete Attributes

It is possible to effectively visualize mixture models, which were defined in Sect. 5.3. First
we will focus on discrete attributes by re-address the problem of Hawaiian marriages from
Sect. 6.4.2. To do this, we will apply the latent class model, which is a special case of a
mixture model (Agresti, 2002).

With the latent class model, we can identify groups of instances that contain no inter-
actions. The interaction between the attributes is thus captured by the new class attribute
C. The bride and groom attributes are assumed to be conditionally independent given C:

P̂ (B,G) =
∑

c∈ℜC

P (c)P (B|c)P (G|c) (6.14)

The class C is essentially a constructed attribute that attempts to explain the interaction
between B and G.

To obtain the model, we have performed 20 random initializations of C, followed by the
EM algorithm to maximize the model’s likelihood. From these attempts the one with the
lowest KL-divergence was selected. This KL-divergence was 0.076: not as competitive as
the quasi-independence model of the previous section, but considerably more competitive
than the independence-assuming model.

The model can be shown visually, as we have done in Fig. 6.24. The first component
covers 20% of the population and is an Asian/Pacific mixture, but with an excess of
Caucasian grooms. The second component covers 66% of the population and is mostly
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Caucasian, with a small excess of Japanese and Filipino brides. The third component
describes 14% of population of unspecified nationality with a tiny surplus of Hawaiian
brides. As we could have seen, the interpretability of the latent class model is quite good.
Similar analysis is instinctively performed by humans: the latent class ‘dog’ can be seen as
explaining the interactions between barking sounds, fur, sharp teeth and a wagging tail.

Continuous Attributes

Fig. 6.25 demonstrates the difference between a locally independent mixture of Gaussians
and a general mixture of Gaussians. Generally, there is a trade-off between a larger number
of components in a locally independent mixture, or a smaller number of components in a
general finite mixture.

Another useful discovery that can be made about the data is evidence for multiple
groups in data. Generally, the decision-theoretic value of structure is the reduction in
entropy achieved by using K instead of K ′ components in a finite mixture model, K > K ′.
Structure allows a relatively simple model to capture complex non-linear relationships in
data, not just multimodality. Through local analysis, we may investigate the structure
aspect in small subsets of attributes. We do this by examining two models, a locally
independent mixture model p that allows for structure, and a multivariate normal model
q that only accounts for correlation:

p : x ∼
5∑

k=1

πk

d∏

i

Normal(µk,i, σk,i) (6.15)

π ∼ Multinomial(λ, 1),
∑

k

λk = 1 (6.16)

q : x ∼ Normal(µ,Σ) (6.17)

When the KL-divergence D(p‖q) is large, we have gained information through the as-
sumption of structure, and this is what often makes a projection interesting. The results
of such analysis are illustrated in Fig. 6.26 for the ‘Boston housing’ data set shows the
pair of attributes with the maximum and the minimum D(p‖q).

Each component can also be viewed as a separate rule, as a leaf in a classification tree,
as a prototypical instance, or as a support vector. For example, the component identifying
living people can be described with temp = 37◦C ± 10, while the component identifying
healthy people is temp = 37◦C ± 2.

3-way interactions involving continuous attributes are not as easily visualized in two
dimensions. Let us focus on the interaction involving pollution, pupil/teacher ratio and
the housing prices. This is a negative interaction, which is slightly weaker than others in
the data set, so it does not appear in Fig. 6.20. Nevertheless, it is an interaction, and it
can be visualized.

It is possible to give up the information on the variability in the labelled attribute,
housing price, by only providing the mean. To obtain the mean, we employ a regression
model. For this task, we employed a support vector machine with a polynomial kernel
(Chang and Lin, 2005). Because the distribution of pupil/teacher ratio and the pollution
are not independent, it is helpful to indicate the projections of instances so that we never-
theless see where the regression model is interpolating (either in the areas of low pollution
and a low pupil/teacher ratio or in the areas of high pollution and a high pupil/teacher
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Figure 6.25: A multivariate normal mixture may unravel nonlinearities in the data. In
this example, the pollution as measured by the concentration of nitric oxides is non-linearly
decreasing with distance. The ellipses depict the circumference of each component at one
standard deviation in the reference mixture model. Each component captures localized lin-
earity in an area of the attribute space (left), achieving the logarithmic loss of 0.561 bits. A
locally independent mixture model is not as efficient, but nevertheless achieves a relatively
good result in terms of logarithmic loss (0.581 bits) (right). This can be compared to 2.05
bits achieved by the the locally independent model with a single component, and 1.41 bits by
the multivariate normal model: both mixtures are distinctly better.
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Figure 6.26: For the ‘Boston housing’ data set, the scatter plot on the top illustrates the
nonlinear dependence between crime rate and zoned for lots, which has the highest amount
of structure among all attribute pairs. On the other hand, structure is not of considerable
utility to the model of nitric oxides and rooms (bottom).
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Figure 6.27: The nonlinear dependence between housing values, pollution, and quality of
education is modelled using SVM regression with a polynomial kernel, and visualized with a
contour plot.

ratio) and where it is extrapolating (in the areas of high pollution and a low pupil/teacher
ratio – such areas do not exist). From Fig. 6.27 we can see that the gradient of average
housing prices is distinctly non-linear.

6.4.4 Attribute Value Proximity Measures

In Sect. 6.2 we have seen that the concept of similarity needs not be seen as primary.
Instead, similarity can be derived from a loss function, a probability model, and data.
Our earlier discussion focused on the similarities between whole attributes. Yet, inside
each attribute there are many values, and we might also discuss similarities between the
values themselves.

Assume an attribute A with a range {a1, a2, . . . , ak}. This attribute can be transformed
into a set of k binary attributes {A1, A2, . . . , Ak}, where Ai , {A = ai}. It would
be meaningless trying to investigate mutual information between Ai and Aj : there is a
distinct pattern of dependence, as only one of these attributes can take the value of 1 for
a given instance.

A better definition of similarity would be based on whether other attributes can be
predicted by distinguishing between ai and aj . Or, similarly, whether other attributes
can be used to distinguish between ai and aj . Let us define a binary attribute Ȧi,j that
distinguishes between ai or aj , and all other values. It is used to select only those instances
where A takes the value of either ai or aj . The value ȧi,j is therefore defined as:

ȧi,j ,

{

1 ; A = ai ∨ A = aj

0 ; otherwise.

Assuming other attributes to be V, we can now define the attribute-value distance
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using information theory:

〈ai, aj〉V , 1− I(A;V|Ȧi,j = 1)

H(A,V|Ȧi,j = 1)
(6.18)

Because this is merely an application of Rajski’s distance, it is a metric. Furthermore,
because of the uncertainty regarding the probability model, it is an uncertain quantity.
Finally, while it would in general be very rare for the attribute-value distance to be zero,
interpreting interaction information as a model comparison might sometimes result in a
considerable probability being assigned to the possibility that the two attribute values
should not be distinguished. Distinguishing the two attribute values would result in a
greater loss than not distinguishing them. In such a case, a negative attribute-value
distance would correspond to the indistinguishability of the attribute values.

It is clear that if V contains many attributes, the attribute-value distance is not
tractable: we face the usual assortment of problems associated with the curse of di-
mensionality. However, we can assume that higher-order interactions do not exist. If
we assume only 2-way interactions between each attribute X ∈ V and the focal attribute
Ǎi,j , the resulting Rajski’s distance is as follows:

〈ai, aj〉V = 1−
∑

X∈V I(A;X|Ȧi,j = 1)

(1− |V|)H(A|Ȧi,j = 1) +
∑

X∈V H(A,X|Ȧi,j = 1)
(6.19)

For computing Ĥ we subtract the term corresponding to A that would otherwise be
counted several times using the Bethe approximation to free energy (Yedidia et al. (2004),
also see Sect. 8.2.4). Some care is required, as these approximations may not have all
of the properties of Rajski’s distance. For example, the value of (6.19) can be negative,
because we are not accounting for the overlap between the 2-way interactions. If some
interactions are to be assumed, we can include them in (6.19), and the distance 〈·〉V will
be affected.

We have used the ‘census/adult’ data set to examine the performance of this approach.
The results of attribute-value clustering are shown in Fig. 6.28. Perhaps most notable is
the taxonomy of occupations into the blue and white collar, with the service occupations
in the blue collar group. By their education, we can divide individuals into those with
elementary school, those with high school, those with university degrees, and those with
junior college degrees. Finally, by their nationality, we can separate the Latin American,
Asian and the European countries. There are some exceptions, especially among the less
frequent groups. Among the European nations, we can clearly identify the Mediterranean
cluster.

Instead of forming hierarchies, we can also convert nominal attributes into continuous
attributes with meaningful distances between values. To do this, we can employ the
multidimensional scaling algorithms (Borg and Groenen, 1997), we have employed the
SMACOF algorithm (de Leeuw, 1977). The result for the occupation attribute is shown
in Fig. 6.29, and can be easily paralleled with the clustering above. Such mapping of
attributes is appropriate for adapting nominal attributes for various metric classifiers,
such as support vector machines or the nearest neighbor algorithm.

Our definition of similarity based on dependence and independence differs from other
definitions that have appeared in the literature. One of the first contributions on this
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Figure 6.28: Hierarchical clustering based on attribute-value proximities clearly captures
the similarities between values as derived from the data. The number in the brackets indicates
the number of instances with the particular attribute value; for several values this number
is too low to allow reliable positioning, noticeable especially for the native-country attribute.
This can be seen as automated taxonomy construction.
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Figure 6.29: Applying multidimensional scaling to embed the attribute-value proximities
into a euclidean space can help replace a nominal attribute by one, two or more continuous
attributes. The euclidean distances between the positions of attribute values correspond to
their information-theoretic proximities. This can be seen as continuous-valued constructive
induction.
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topic was the concept of value difference metric (VDM) (Stanfill and Waltz, 1986), where
the difference between two nominal values x1 and x2 corresponds to the squared differ-
ence between P (Y |x1) and P (Y |x2), Y being the labelled attribute. Generalizing this
idea, Baxter (1997) defined similarity between two attribute value combinations x and
x′ through a canonical distortion measure based on the relevant probabilities in the two
contexts that correspond to x and x′. The same definition was put in the context of su-
pervised learning, Fisher information and KL-divergence by Kaski and Sinkkonen (2000).
Recently, Kang et al. (2004) have employed this definition for attribute value clustering.

Our attribute-value distance should be distinguished from general distances that can
defined directly on the attribute values. For example, each instance that enters support
vector machine classification (Schölkopf and Smola, 2002) can be seen as described with
a vector of distances to a specified set of support vectors. The support vectors comprise
an informative subset of the training data set. The distance from the instance to a
particular support vector corresponds to a distinct attribute in the corresponding model.
This then allows the model to be essentially linear, as the distances and support vectors
allow capturing the nonlinearity. Furthermore, the model is linear in the reproducing
kernel Hilbert space that linearizes the non-linear kernel.

The choice of the kernel determines how the distance is computed. In that sense, we
can redefine the kernel and the resulting distance in order to improve the classification
performance, at the same time learning the metric. Learning the metric then corresponds
to maximizing classification performance. This has been done in the context of support
vector machines (Lanckriet et al., 2004), by maximizing the alignment between label sim-
ilarities and the inferred similarities between instances. The similarities can be adjusted
directly to maximize classification accuracy, as it has been done for nearest-neighbor clas-
sifiers (Wettschereck et al., 1997, Hastie and Tibshirani, 1996).

Our scheme goes in the opposite direction: the distance 〈ai, aj〉V is determined by the
choice of the loss function, the model and the data. Furthermore, it is general in the sense
that the similarity can be defined both between attribute values and between instances.
The distance between instances is merely a special case of attribute-value proximity. We
can define a new attribute id, and assign each instance a unique value. The resulting
attribute-value proximity will serve as an constructed measure for assessing the distances
between instances under a particular set of assumptions about the pattern of interactions
between attributes.

If attribute-value clustering is performed on the labelled attribute, we may use classifi-
cation algorithms that can benefit from this representation (Frank and Kramer, 2004). Al-
ternatively, the attribute-value taxonomies for non-labelled attributes have also been found
to benefit the classification performance (Kang et al., 2004). Of course, the attribute-value
distance should reflect the predictive relevance with respect to predicting the label.

6.4.5 Latent Attributes

There are very many interactions of low order in some data sets. An example of such
a data set are the roll call votes. As shown in Fig. 6.1, there is a tremendous number
of 2-way interactions between the attributes. It is usually quite difficult to work with
such models, and many assumptions are required. Although we have discussed the finite
mixture models, latent attributes provide more versatility.

A solution people often intuitively employ is to seek latent factors that account for
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the interactions. For example, people often use the concept of a bloc to explain the
correlations between strategic or political preferences of senators. Alternatively, people
infer a dimension and arrange the senators on an ideological axis. We will now explain
how these concepts may be obtained automatically on the example of the US Senate votes
in 2003.

There has been a tremendous amount of work on inference of latent structure, some
of which we have already addressed in Ch. 4 and will revisit in Ch. 7. Some of them
are based on information-theoretic criteria, like the information bottleneck (Tishby et al.,
1999). Our intention is not to reinvent or replace, but to induce both continuous and
discrete latent attributes on the same data, and compare their implications.

Blocs: Discrete Latent Attributes

Many clustering algorithms assign an instance wholly to a single cluster. For example,
we have to decide whether a whale is a fish or a mammal: it cannot be a half-fish and a
half-mammal. On the other hand, probabilistic clustering algorithms assign each instance
a probability of membership in a particular cluster. Of course, the probabilities have to
sum up to 1, so the clusters should be seen as mutually exclusive. A practical statistical
model, discrete PCA, and the algorithm are described by Buntine and Jakulin (2004) as
applied to the analysis of text.

Blocs are not clusters of instances. Instead, blocs are clusters both of attributes and
of instances, of senators and of issues. In the latent class models, an instance is described
by a probability distribution over classes, but each class covers all the attributes. In
discrete PCA, however, a particular component covers both a distribution of instances
and a distribution of attributes. For our example, we will refer to a group of attributes
belonging to the same component as a bloc.

A bloc can be seen a fictional senator that has an opinion on every issue. A bloc may
also be seen as a fixed ideological position. Again, the opinion may be probabilistic: the
bloc may be uncertain about how to vote. On the other hand, each true senator can be
seen as having a probability distribution of belonging to a particular bloc or another. This
membership is assumed to be constant for the whole duration of the analysis. The votes
in each issue are to be described solely using the blocs.

We can now pursue the parameters that agree with the data. We seek the opinions of
the blocs across the issues, and we seek the memberships of senators in blocs. There is
an important issue of the number of blocs. We can interpret this as a nuisance parameter
and avoid making an arbitrary decision about the ‘best’ number of blocs (Neal, 2000). On
the other hand, the information about blocs is informative to a human analyst, even if
other configurations of memberships could also agree with the data.

We provide a novel visualization that combines the 2-way interaction dendrogram and
the 5-valued bloc attribute in Fig. 6.30. We have examined multiple setting of the bloc
number, and the setting of 5 proved distinctly likelier under our prior expectations for the
parameter values. The setting of 4 blocs lost the nuances in data, and there was not enough
data to distinguish a specific configuration of bloc membership when assuming more than
5 blocs. We can see that the the blocs have well-defined meanings: the Republican party
is split into three blocs, the majority (A), the extreme minority (B) and the moderate
minority (C); the Democratic party is split into the majority (E) and a moderate minority
(D). It turns out that the outcome is primarily a member of A and E: we can explain the
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Figure 6.30: In the hierarchi-
cal clustering of senators based on
their pair-wise Rajski’s distance, we
can identify the two major clusters:
the Republican and the Democratic.
Both the cluster color and the clus-
ter height indicate the compactness
of the cluster: green clusters are
weakly connected, while red clusters
are strongly connected. The bars
on the right hand side depict the
five blocs resulting from the discrete
latent attribute analysis, the dark
blocks indicating a high degree of
membership.
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outcome purely through through the interaction of these two blocs.

Of course, our analysis is just a particular model using which we are able to interpret
the voting choices of the senators. While it may hopefully be clear and informative, it is
not true or optimal in any way.

Dimensions: Continuous Latent Attributes

The task of the ubiquitous principal component analysis (PCA) or Karhunen-Loeve trans-
formation (Press et al., 1992) is to reduce the number of dimensions, while retaining the
variance of the data. The dimension reduction tries not to crush different points together,
but to remove correlations. The remaining subset of dimensions are a compact summary
of variation in the original data. The reduction can be denoted as u = W(x− µ), where
u is a 2-dimensional ‘position’ of a senator in a synthetic vote space obtained by a linear
projection W from the V -dimensional representation of a senator.

The roll call data can be is represented as a J × V matrix P = {pj,v}. The J rows
are senators, and the V columns are roll calls. If pj,v is 1, the j-th senator voted ‘Yea’
in the v-th roll call, and if it is -1, the vote was ‘Nay’. If the senator did not vote,
some value needs to be imputed, and we have used simply the outcome of the vote. The
transformation W by applying the SVD algorithm to the centered matrix P: the centering
is performed for each vote, by columns. The SVD represents the centered matrix P − µ
as a product of three matrices: UDV

T , where U is a column-orthogonal matrix, V a
square and orthogonal matrix, and D a diagonal matrix containing the singular values.
The dimensionality-reduced ‘locations’ of senators are those columns of U that correspond
to the two highest singular values, but they must be multiplied with the corresponding
singular values. These two columns can be understood as uncorrelated latent votes that
identify the ideological position of the senator. The position ‘explains’ the votes cast by a
senator in roll calls, and similarities between positions ‘explain’ the associations between
the votes.

We employed the ordinary SVD algorithm, and the results are shown in Fig. 6.31. We
can see the distinct left-right axis that corresponds to the intuitive liberal-conservative
dimension in perceiving politicians. Of course, SVD is not the best choice, and we use it
merely for illustration: there are other scaling algorithms developed especially for roll call
analysis (Clinton et al., 2004, de Leeuw, 2003, Poole, 2000), but the results are close.

6.5 Text Mining and the Curse of Dimensionality

In a typical text mining data set, the documents are represented with a bag of words.
Each document is an instance, and the number of occurrences of each word is an attribute.
In the popular Reuters-21578 benchmark data set there are over 21000 documents with
over 38000 individual words. The complexity of even 2-way interaction analysis would
be overwhelming with approximately 1.5 billion combinations. We will now describe two
practical approaches that can be used to cope with such an onslaught of attributes.

A Probability Model for Interacting Words in Text

Before we can discuss interaction analysis, we need to define a probability model to be
used for modelling text. Namely, how can we characterize an interaction between two
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Figure 6.31: Ordinary principal component analysis manifests a distinct clustering of Re-
publican and Democrat senators with some dispersion. ‘OUT’ denotes the outcome. It is
possible to see all the clusters that appeared in earlier analysis: bloc A is the distinct dense
cluster to the right, bloc B appears to the top of it, bloc C is left of B. The Democrat bloc
D is in the bottom, the Democrat core is to the left. Senators Kerry (D-MA) and Lieberman
(D-CT) appear in the center due to their infrequent voting and the imputation method we
used. The coloring of individual senators is based on their membership in individual blocs: A
is blue, B is purple, C is violet, D is yellow, and E is green.

words? The number of appearances of the word in a document can be seen as a discrete
attribute, but it is often undesirable to treat the count as an attribute directly.

Instead, let us define a binary attribute A′ for a word A with the following range
ℜA′ = {1 : A appears, 0 : A does not appear}. Thus, k appearances of a word can be seen
as k instances with A′ = 1, and a document without the word can be seen as an instance
with A′ = 0. This model is quite suitable when we are classifying documents: the type
of each document is another nominal attribute, and is the context in which a word can
appear multiple times. This approach is referred to as the multinomial model in contrast
with the multivariate Bernoulli model where we only consider whether the word appeared
in a document or not, disregarding the count of appearances. The multinomial model was
found to be superior (McCallum and Nigam, 1998).

However, when there are two or more words we have to account for the pattern of their
co-appearance. Although it is possible to use complex probability models (Buntine and
Jakulin, 2004), we had reasonable success with the following two-attribute combination
representing the words A and B:

B′ = 1 B′ = 0

A′ = 1 A appears along with B; A appears without B.
B appears along with A.

A′ = 0 B appears without A. The document contains neither A nor B.

Except with A′ = B′ = 0, a single document generates a number of instances that cor-
responds to the sum of occurrences of A and B. It is possible to work quite efficiently
with such a model, and it is possible to extend it to several words. It was used both for
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Sect. 3.3.2 and for the present one.

Dynamic Context

Let us focus on a particular word, A. It is reasonably cheap to examine all words that
co-appear with A and compute the mutual information I(A′;B′). The number of co-
occurrences can be seen as a heuristic that indicates dependence (Goldenberg and Moore,
2004), but we have to note that it can also be the co-absence of frequently appearing
words or the mutual exclusion of words that yields high mutual information.

It is possible to extend the search further: is there a word C that co-appears with A,
yet does not co-appear with B, even if B co-appears with A? Such triples are examples of
positive 3-way interactions. This approach to search yielded the unexpected polysemous
words discussed in Sect. 3.3.2. In general, we can always examine the interactions that
include the context in which we are placed. Frequently used contexts justify more detailed
analysis, but it would not be tractable to perform such detailed analysis beforehand.

On-Line Clustering

The agglomerative clustering approach is based on the dissimilarity matrix. But such
a dissimilarity matrix cannot be tractably computed for such a tremendous number of
attributes as are present in text mining. Instead of working purely with words as at-
tributes, we can form new attributes that combine multiple words. Consider a set of
words S = {A,B, . . .}. The corresponding binary attribute S′ for the set is defined as:

S′ ,

{

0 ; if the document d does not contain any of the words in S;

1 ; if the document d at least one of the words in S.
(6.20)

The appearance of any word in S corresponds to a single event. For example, if A appeared
5 times, and B 6 times in a particular document, there would be 11 events involving S′ = 1
if S = {A,B}.

The set-based attributes thus attempt to represent the whole cluster of words. We can
approximate the result of analyzing interactions between a particular word Y and a whole
set of words S, by simply examining the interaction between Y ′ and S′.

However, we do not usually have clusters of attributes in the data. The clustering of
attributes needs to be performed during the analysis itself. To achieve this, we can employ
the notion of ǫ-clustering: if the mutual information between a word and the set-based
attribute corresponding to any of the existing clusters exceeds ǫ, we form a new cluster. On
the other hand, if there is at least one set-based attribute that has a mutual information
with the word greater than ǫ, we include the word in the corresponding cluster. The full
algorithm is disclosed in Fig. 6.32.

The number of clusters is proportional to ǫ but is not known in advance: the higher the
ǫ, the more likely it is that a word will form a new cluster. The computational complexity
of the algorithm is linear in the best case (when ǫ is sufficiently high that at most k clusters
will be formed) and quadratic in the worst case (when ǫ is too low, each word forms its own
cluster). Therefore, the computational complexity depends on ǫ and the characteristics of
the data.

Over several attempts and a constant number of clusters, we can evaluate the clustering
quality with the following simple measure that deems all clusters and all words equally
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C ← ∅ {Initial clusters}
A ← {A1, A2, . . . , Am}
while i ∈ {1, 2, . . . ,m} do
S ← arg maxX∈C I(Ai;X

′) {The most informative cluster about Ai}
if I(Ai;S

′) < ǫ then {Not informative enough}
C ← C ∪ {{Ai}} {Form a new cluster consisting solely of Ai}

else {Informative enough}
S ← S ∪ {Ai} {Include the word in the cluster}

end if
end while

Figure 6.32: In the incremental ǫ-clustering algorithm, the number of clusters is not known
in advance.

important:

q =
∑

X∈C

∑

A∈X
I(A;X ′) (6.21)

A clustering thus has a higher quality if the set-based attributes have higher mutual
information about individual words.

Because the formation of the clusters is sequential, different assignments to clusters
may result depending on the order of introduction of the attributes. It is possible to
execute the construction with several different permutations and pick the assignment to
clusters that maximizes some measure of assignment utility. In a somewhat different
context, this strategy was used by (Slonim et al., 2002, Peltonen et al., 2004). However,
they start with the instances already being assigned to K clusters, and then they shuffle
instances among clusters if this increases the utility.

In our application, we simply sorted the words from the most to the least frequent,
and started forming the clusters with the most frequent words. The frequent words serve
as contexts and bridges, associating the contextually related but infrequent words that
do not always co-appear. The clustering of the 38800 words over 19000 documents with
ǫ = 0.001 takes only 2 seconds on a contemporary notebook computer, and results in the
structure in Table 6.1.

This clustering of words is distinctly different from clustering of documents, which
results in sets of words that are all associated with a particular topic. Instead, word
clusters seem to indicate the tone of a particular word, its grammatical properties, and
the characteristics of the writer. For example, clusters 0-2 capture the frequently used
grammatical words. Cluster 8 captures grammatically incorrect or infrequent words. On
the other hand, cluster 4 refer to financial reports, cluster 13 refers to policies, and cluster
15 to politics.

Every clustering is an approximation. However, with a sufficiently low ǫ, we can assume
that there are no associations between clusters, and can perform interaction analysis purely
with the words within a certain cluster, digging deeper. On the other hands, interpreting
clusters as topics, we can analyze the interactions between topics, exploring the breadth.
Finally, we can cluster the clusters, rising above the representation. Clusters serve as
emergent levels of detail.

The clustering algorithm we have examined is not intended to replace other methods:
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idx #w #e typical words
0 45 568885 the (0.359), of (0.312), said (0.300), to (0.259), and (0.255)
1 307 189482 it (0.176), is (0.137), mln (0.115), will (0.115), company (0.064)
2 364 170231 its (0.126), was (0.112), an (0.106), as (0.097), not (0.094)
3 1997 139369 from (0.128), dlrs (0.118), year (0.107), pct (0.096), has (0.073)
4 564 128181 banks (0.036), japan (0.035), such (0.035), markets (0.034), most (0.032)
5 743 112457 budget (0.023), deficit (0.022), committee (0.021), way (0.020), must (0.020)
6 2404 111506 reforms (0.007), tough (0.007), increasingly (0.007), success (0.007), often (0.006)
7 990 105839 they (0.056), stock (0.053), more (0.053), than (0.050), bank (0.049)
8 20585 99502 reuter (0.462), urbaine (0.036), underwritng (0.036), suborindated (0.036)
9 1702 97534 coffee (0.009), consumers (0.009), exporters (0.009), economist (0.008)
10 646 90099 trade (0.051), we (0.049), there (0.049), under (0.046), all (0.046)
11 952 88385 price (0.040), prices (0.039), when (0.037), because (0.037), dlr (0.037)
12 1002 87310 bond (0.026), manager (0.025), selling (0.022), bonds (0.022), chief (0.021)
13 1114 84737 political (0.015), marks (0.015), mark (0.015), policies (0.014), rather (0.013)
14 1340 84643 economists (0.012), lending (0.012), china (0.012), overseas (0.011), hard (0.010)
15 2301 80157 opposition (0.011), won (0.010), motors (0.010), majority (0.009)
16 875 79894 economy (0.026), policy (0.026), many (0.025), what (0.024), demand (0.024)
17 882 77599 offer (0.035), tax (0.034), profit (0.031), general (0.029), statement (0.029)

Table 6.1: The ǫ-clustering of words in the ‘Reuters’ data set, using ǫ = 0.001. In the listing
‘#w’ denotes the number of words in the cluster and ‘#e’ the number of all events the cluster
generates. The listed words have the highest mutual information with the cluster itself (and
is noted in the bracket behind the word), and are therefore the most representative.

we have not performed any rigorous experiments and validations. The intention is merely
to show that interaction analysis can be done extremely efficiently in an incremental on-
line fashion for very large data sets. But how to do it best remains an open problem.
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CHAPTER 7

Attribute Selection and Construction

7.1 Interactions in Classification Trees and Discretization

The machine learning community has long been aware of interactions, and many methods
have been developed to deal with them. There are two problems that may arise from
incorrect treatment of interactions: myopia is the consequence of assuming that interac-
tions do not exist, even if they do exist; fragmentation is the consequence of acting as if
interactions existed, when they are not significant.

We will briefly survey several popular learning techniques in the light of the role they
have with respect to interactions. We will show how mutual and conditional mutual
information are routinely used for machine learning applications. The novel aspect of the
present section is that it points at the importance of negative interactions, and that it
interprets the concepts of myopia and fragmentation in terms of information theory.

7.1.1 Myopia

Greedy attribute selection and split selection heuristics are often based on various quan-
tifications of 2-way interactions between the label Y and an attribute A. The frequently
used information gain heuristic in decision tree learning is a simple example of how in-
teraction magnitude has been used for evaluating attribute importance. With more than
a single attribute, information gain is no longer a reliable measure. First, with positive
interactions, such as the exclusive or problem, information gain may underestimate the
actual importance of attributes, since I(A,B;Y ) > I(A;Y ) + I(B;Y ). Second, in nega-
tive interactions, information gain will overestimate the importance of attributes, because
some of the information is duplicated, as can be seen from I(A,B;D) < I(A;D)+I(B;D).

These problems with positive interactions are known as myopia (Kononenko et al.,
1997). Myopic attribute selection evaluates an attribute’s importance independently of
other attributes, and it is unable to appreciate their synergistic effect. The inability of
myopic attribute selection algorithms to appreciate interactions can be remedied with
algorithms such as Relief (e.g. Kira and Rendell, 1992, Robnik-Šikonja and Kononenko,
2003), which increase the estimated quality of positively interacting attributes, and reduce
the estimated worth of negatively interacting attributes.

133
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Ignoring negative interactions may cause several problems in machine learning and
statistics. We may end up with attributes providing the same information multiple times,
hence biasing the predictions. For example, assume that the attribute A is a predictor
of the outcome y0, whereas the attribute B predicts the outcome y1. If we duplicate A
into another attribute A′ but retain a sole copy of B, näıve Bayesian classifier trained
on {A,A′, B} will be biased towards the outcome y0. Hence, negative interactions offer
opportunity for eliminating redundant attributes, even if these attributes are informative
on their own. An attribute A′ would then be a conditionally irrelevant source of informa-
tion about the label Y given the attribute A when I(A′;Y |A) = 0, assuming that there
are no other attributes positively interacting with the disposed attribute (Koller and Sa-
hami, 1996). Indirectly, we could minimize the mutual information among the selected
attributes, via eliminating A′ if I(A;A′) is large (Hall, 2000). Finally, attribute weight-
ing, either explicit (by assigning weights to attributes) or implicit (such as fitting logistic
regression models or support vector machines), helps remedy some examples of negative
interactions. Not all examples of negative interactions are problematic, however, since
conditional independence between two attributes given the label may result in a negative
interaction information among all three.

Attribute selection algorithms are not the only algorithms in machine learning that
suffer from myopia. Most supervised discretization algorithms (e.g. Fayyad and Irani,
1993) are local and discretize one attribute at a time, determining the number of intervals
with respect to the ability to predict the label. Such algorithms may underestimate the
number of intervals for positively interacting attributes (Nguyen and Nguyen, 1998, Bay,
2001). For example, in a domain with two continuous attributes A and B, labelled with
classes y1 when A > 0, B > 0 or A < 0, B < 0, and with class y0 when A > 0, B < 0 or
A < 0, B > 0 (the continuous version of the binary exclusive or problem), all univariate
splits are uninformative. On the other hand, for negatively interacting attributes, the
total number of intervals may be larger than necessary, causing fragmentation of the data.
Hence, in case of positive and negative interactions, multivariate or global discretization
algorithms may be preferred.

7.1.2 Fragmentation

To both take advantage of synergies and prevent redundancies, we may use a different set
of more powerful methods. We may assume dependencies between attributes by employ-
ing dependence modelling (Kononenko, 1991, Friedman et al., 1997), create new attributes
with structured induction methods (Shapiro, 1987, Pazzani, 1996, Zupan et al., 1999), or
create new classes via class decomposition (Vilalta and Rish, 2003). The most frequently
used methods, however, are the classification tree and rule induction algorithms. In fact,
classification trees were originally designed also for detection of interactions among at-
tributes in data: one of the first classification tree induction systems was named Automatic
Interaction Detector (AID) (Morgan and Sonquist, 1963).

Classification trees are an incremental approach to modelling the joint probability
distribution P (Y |A,B,C). The information gain split selection heuristic (e.g. Quinlan,
1986) seeks the attribute A with the highest mutual information with the label Y : A =
arg maxX I(Y ;X). In the second step, we pursue the attribute B, which will maximize
the mutual information with the label Y , but in the context of the attribute A selected
earlier: B = arg maxX I(Y ;X|A).
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In case of negative interactions between A and B, the classification tree learning
method will correctly reduce B’s usefulness in the context of A, because I(B;Y |A) <
I(B;Y ). If A and B interact positively, B and Y will have a larger amount of mutual
information in the context of A than otherwise, I(B;Y |A) > I(B;Y ). Classification trees
enable proper treatment of positive interactions between the currently evaluated attribute
and the other attributes already in the context. However, if the other positively interact-
ing attribute has not been included in the tree already, then this positive 2-way interaction
may be overlooked. To assure that positive interactions are not omitted, we may construct
the classification tree with look-ahead (Norton, 1989, Ragavan and Rendell, 1993), or we
may seek interactions directly (Pérez, 1997).

Instead of performing a full search with look-ahead, Esmeir and Markovitch (2004)
simply evaluate tuples of attributes for split selection in classification tree induction. For
example, the attribute A from the set of attributes outside the model A should be chosen
that results in the greatest improvement in some context of k attributes from A:

arg max
A∈A

(

max
C⊆A,|C|≤k

I(A;Y |C, X)

)

(7.1)

The lookahead is of size k in this case, while X is the current context of the model, e.g.,
the nodes in the classification tree that are above the current position. This procedure
will assure that those attributes that are involved in positive l-way interactions with the
label, l ≤ k+ 2, will enter the model quickly, even if they provide no information on their
own.

The classification tree learning approach does handle interactions, but it is not able
to take all the advantage of mutually and conditionally independent attributes. Assum-
ing dependence increases the complexity of the model because the dimensionality of the
probability distributions estimated from the data is increased. A consequence of this is
known as fragmentation (Vilalta et al., 1997), because the available mutual information
between an attribute B and the label Y is not assessed on all the data, but merely on
fragments of it. Fragmenting is harmful if the context A is independent of the interaction
between B and Y . For example, if I(B;Y ) = I(B;Y |A), the information provided by B
about Y should be gathered from all the instances, and not separately in each subgroup of
instances with a particular value of the attribute A. This is especially important when the
training data is scarce. Although we used classification trees as an example of a model that
may induce fragmentation, other methods too are subject to fragmentation by assuming
dependence unnecessarily.

Three approaches may be used to remedy fragmentation. One approach is based
on ensembles: aggregations of simpler trees, each specializing in a specific interaction.
For example, random forests (Breiman, 1999) aggregate the votes from a large number
of small trees, where each tree can be imagined to be focusing on a single interaction.
One can use hybrid methods that employ both classification trees and linear models that
assume conditional independence, such as the näıve Bayesian classifier (Kononenko et al.,
1988, Kohavi, 1996) or logistic regression (Abu-Hanna and de Keizer, 2003, Landwehr
et al., 2003). Finally, feature construction algorithms may be employed in the context of
classification tree induction (e.g. Pagallo and Haussler, 1990, Setiono and Liu, 1998).
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7.2 Interactions in Näıve Bayesian Classification Models

The näıve Bayesian classifier (NBC) in its general form is used to predict the conditional
probability of the label Y given the values of the attributes A1, A2, . . . , Ak. It is assumed
that the attributes are conditionally independent given the label:

P (A1, A2, . . . , Ak|Y ) =
k∏

i=1

P (Ai|Y ) (7.2)

This assumption is frequently violated, and several approaches attempt to improve the
prediction performance by joining the attributes that are not conditionally independent.

From the conditional independence assumption (7.2), we can develop the conditional
probability model using the Bayes rule:

P (Y |A1, A2, . . . , Ak) = P (Y )

∏k
i=1 P (Ai|Y )

P (A1, A2, . . . , Ak)
(7.3)

Because P (A1, A2, . . . , Ak) is not modelled, we may assume that it is constant for all values
of Y and integrate it out. The näıve Bayesian classifier does have the ‘Bayesian’ in it, but
it does not involve priors as described in Sect. 2.2.4, the epitome of Bayesian statistics.
NBC is normally used in a perfectly non-Bayesian context.

The NBC is a special case of a more general class of Bayesian networks (Pearl, 1988). It
is possible to use Bayesian networks structured similarly as the NBC, but solving certain
problems of the conditional independence assumption. Of course, the structure has to
satisfy the demand that the Bayesian network must be a directed acyclic graph. Whenever
two attributes are no longer conditionally independent given the label, we can say that
the model accounts for a particular dependence. There are two specific ways of extending
the näıve Bayesian model, illustrated in Fig. 7.1. Furthermore, as shown in Fig. 7.2, latent
attribute models and tree-augmented näıve Bayesian classifiers cannot be reduced to one
another (Ling and Zhang, 2002): the TAN cannot model the 3-parity problem, while latent
attributes cannot perform a non-disjunct decomposition into two groups of attributes, but
require a full collapse into a single group.

The key problem for machine learning is how to identify these dependencies. There
are three main directions of approaching this problem:

• Algorithmic identification of the dependence structure using heuristics (Chow and
Liu, 1968).

• Utility-driven search in the model space (Pazzani, 1996).

• Constructive induction of latent attributes that capture the dependencies (Monti
and Cooper, 1999).

We will now investigate these approaches, and report on our experiments that employed
interaction information as a heuristic.

7.2.1 Heuristic Models

The importance of tree-structured models lies in the ability to reconstruct the joint model
in closed form using the chain rule. For example, the expansion from Fig. 7.2(b) would
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(a) Basic Näıve Bayesian Classifier
{(Y ), (A1|Y ), (A2|Y ), (A3|Y ), (A4|Y )}

Y

A1 A2 A3 A4

(b) Tree-Augmented Näıve Bayes (TAN)
{(Y ), (A1|Y ), (A2|Y,A1), (A3|Y,A4), (A4|Y )}

Y

A1 A2 A3 A4

(c) Näıve Bayes with Merged Attributes (ENB)
{(Y ), (L1|Y ), (L2|Y ), (A1|L1), (A2|L1), (A3|L2), (A4|L2)}

Y

L1 L2

A1 A2 A3 A4

(d) Näıve Bayes Augmented with a Finite Mixture Model (FAN)
{(Y ), (L), (A1|Y, L), (A2|Y, L), (A3|Y, L), (A4|Y, L)}

Y

A1 A2 A3 A4

L

Figure 7.1: The näıve Bayesian classifier and its generalizations. All are special cases
of Bayesian networks, but intended for classification. The illustrated TAN and ENB models
can be equivalent. Theoretically, FAN can capture any pattern of dependence, but might not
be the most efficient approach.
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be simply:

P (Y |A1, A2, A3) ∝ P (Y )P (A1|Y )P (A2|Y,A1)P (A3|Y,A1) (7.4)

The Chow-Liu algorithm (Chow and Liu, 1968) is a fast algorithm for finding the
maximum likelihood tree-structured joint model for a given joint probability model
P (A1, A2, . . . , Ak). The algorithm first computes mutual information I(Ai;Aj) for each
pair of attributes, and then builds the maximum spanning tree with Kruskal’s algorithm.
Effectively, the pairs of attributes are sorted by their mutual information, and consecu-
tively introduced into the model as arcs. A pair is skipped if it would result in a cycle.
Because the arcs are directed in a Bayesian network, we can pick any attribute and make
sure that all the arcs are directed outwards as to prevent cycles.

However, using the Chow-Liu algorithm would have the same problem as other
Bayesian network structure learning algorithms: the maximum likelihood criterion does
not seek to improve the label prediction performance. Friedman et al. (1997) combined
the Chow-Liu algorithm with the näıve Bayesian classifier. Instead of using the mutual
information Friedman et al. employ the conditional mutual information I(Ai;Aj |Y ). Con-
ditional mutual information is a frequently used heuristic for using maximum likelihood
techniques for classification tasks. While most approaches seek to draw dependencies be-
tween whole attributes, Kononenko (1991) performs this for individual attribute values.
This approach, however, will be discussed in later sections.

Bayesian Model Averaging With the ideas about model uncertainty from Sect. 2.2.5,
using maximum likelihood models may be inappropriate. Because the TAN models are
more complex than the original NBC ones, there is an increased likelihood of overfitting.
One way of remedying overfitting is by assuming Bayesian priors and averaging over them.
Friedman et al. used the Laplace probability estimate, and observed an improvement in
classification performance. The Laplace probability estimate uses Bayesian inference using
the uniform Dirichlet prior to obtain the conditional probabilities for each node and arc.
It is possible, however, to be Bayesian over the structure, too: Meilă and Jaakkola (2000)
define a tractable prior over the structures. Cerquides and López de Màntaras (2003)
have developed a simplified implementation of Bayesian model averaging that resulted in
improved performance on standard machine learning benchmarks.

7.2.2 Search Algorithms

As in Sect. 3.2.2, it has been observed (Domingos and Pazzani, 1997, Rish et al., 2001) that
conditional mutual information is not always a reliable heuristic when we are concerned
about classification accuracy. For that reason, several researchers have considered the
actual classification performance as a heuristic. Unlike the methods of Sect. 7.2.1, the
methods of this section do not attempt to maximize the (conditional) likelihood of the
model. Instead, the methods maximize the predictive performance directly.

Pazzani (1996) formulates learning as a search in the state space of the models. There
are two formulations, the forward sequential selection and joining (FSSJ) and the backward
sequential elimination and joining (BSEJ). The FSSJ starts with an empty model, and
can perform the following types of operations:

• Add a new attribute into the model assuming its independence of other attributes.
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• Add a new attribute joined with another attribute that is already in the model.

All possible actions are analyzed using internal leave-one-out validation, and the action
that resulted in the best performance is selected. The procedure continues until an im-
provement can be made. On the other hand, BSEJ starts with the complete model of
independent attributes, and then performs the identical procedure, but with the following
two kinds of operations:

• Remove an attribute from the model.

• Merge a pair of attributes already in the model.

Pazzani found that BSEJ worked somewhat better in most cases, but resulted in more
complex models.

The disadvantage of both FSSJ and BSEJ is that they are restricted to joining at-
tributes through latent attribute approach. The more general Bayesian networks can
tolerate more flexible arrangements, such as the one shown in Fig. 7.2. However, Fried-
man et al. (1997) argued that more general Bayesian networks are often outperformed
in classification tasks by the simple näıve Bayesian classifier. Namely, the structure of
Bayesian networks is usually selected through their performance as generative models,
not as discriminative ones. The structure learning algorithms generally do not use the
conditional loss functions, such as (3.3), that are appropriate for supervised learning and
for classification, but generative ones, such as (3.2).

It is simple to modify the loss function for discriminative learning. Such an optimiza-
tion procedure for learning Bayesian networks intended specifically for classification was
developed by Keogh and Pazzani (2002) and by Grossman and Domingos (2004). Gross-
man and Domingos (2004) perform a hill-climbing search with the following operations:

• Add a new arc into the model.

• Remove an existing arc from the model.

• Reverse an existing arc in the model.

The search space is quite large and widely branching, and various simplifications were
required to keep it tractable. They also found that it was useful to restrict the complexity
of Bayesian networks because high-order dependencies resulted in unreliable performance:
the best results were achieved by restricting the maximum number of parents of each node
to 2. Unlike other researchers, Grossman and Domingos have used p-loss functions, not
just classification accuracy.

Keogh and Pazzani (2002) investigated a restricted form of the above search space: arcs
may only be added, not removed and not reversed. Even so, their algorithm seems to quite
consistently outperform the procedure of Friedman et al. (1997). In order to reduce the
learning time, the introduced a more specialized algorithm, SuperParent, which restricts
the above search space into a unidimensional sequence of a single operation:

1. Find the best ‘super parent’ attribute P that improves the performance the most
by putting all unconnected attributes into the context of P by creating an arc from
P to each of them.
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2. Among all unconnected attributes, find the ‘favorite child’ attribute A that im-
proved the model’s classification performance the most in the context of P . If the
improvement is positive, the arc P → A is made permanent in the model.

Thereby, the single operation made by SuperParent is: find the super parent, and connect
it to its favorite child.

These algorithms are all greedy search algorithms. As such, the algorithms tend to
be slow, require internal cross-validation or some other kind of regularization to prevent
overfitting, and can be improved by non-greedy search methods. But because they directly
seek to optimize the same criterion that is used in the final evaluation, they very often
perform distinctly better than any of the alternatives.

7.2.3 Latent Attribute Induction Algorithms

Dependencies between pairs of attributes capture isolated sources of correlation. In many
data sets, however, there may be a global source of variation. The idea of latent attribute
induction is to get rid of dependencies by postulating a global source of variation repre-
sented with a hidden attribute L that influences both labelled and unlabelled attributes.
The approach was applied to classification by Monti and Cooper (1999), who have experi-
mented with two variants: in FM, they performed the classification purely with a mixture
model of the type P (L)P (Y |L)

∏

i P (Xi|L). In FAN, they augmented the näıve Bayesian
classifier with the mixture model, as in Fig. 7.1(d). They find that FAN is generally better
for classification, whereas FM is better for estimation of the label’s probability.

There is no need for the hidden attribute L to be relevant to the class. This has
been addressed by Vilalta and Rish (2003), who infer a separate L for each label. The
resulting model can be seen as being of the form P (Y )P (L|Y )

∏

i P (Xi|L) and is shown
in Fig. 7.3. In some cases, a single latent attribute is inappropriate. Zhang et al. (2004)
have generalized the above approaches so that a hierarchy of latent attributes is inferred,
quite similar to the deterministic scheme of Zupan et al. (1999).

A somewhat different approach to decomposing than latent attributes are Bayesian
multinets (Geiger and Heckerman, 1996, Peña et al., 2002). A practical application of
multinets would be to create a separate TAN for each class, as the pattern of dependencies
may differ for each class. The conditional mutual information I(Ai;Aj |Y ) is actually the
average over all values of Y :

I(Ai;Aj |Y ) =
∑

y∈ℜY

P (y)I(Ai;Aj |Y = y) (7.5)

For that reason, a separate TAN can be constructed for each labelled attribute value y,
using the conditional mutual information in the context of that particular value.

7.3 Case Studies of Interactions and the NBC

We will now examine how interaction information can help us understand the reasons for
low or high näıve Bayesian classifier performance. In Sect. 7.3.1 we will examine whether
interaction information is a useful heuristic for merging the attributes over a number of
data sets, repeating some material from (Jakulin and Bratko, 2003). In Sect. 7.3.4 will
show that it is often the negative interaction information and not overfitting that explains
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(a) A Tree-Augmented Näıve Bayes Model
that cannot be represented with the merged attributes.

{(Y ), (A1|Y ), (A2|Y,A1), (A3|Y,A1)}

Y

A1A2 A3

(b) A Näıve Bayes Model with Merged Attributes
that cannot be represented with the TAN model.
{(Y ), (L|Y ), (A1|L), (A2|L), (A3|L), (A4|Y )}

Y

L

A1 A2 A3 A4

Figure 7.2: The TAN and ENB models are not subsets of one another.

Class-Decomposed Näıve Bayesian Classifier
{(Y ), (L|Y ), (A1|L), (A2|L), (A3|L), (A4|L)}

Y

L

A1 A2 A3 A4

Figure 7.3: Class decomposition extends the range of the labelled attribute by creating
pseudo-classes.
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the benefits of attribute selection for the näıve Bayesian classifier. In Sect. 7.3.3 we will
study an application of interaction information to guiding attribute construction, using
some material from (Jakulin et al., 2003). In Sect. 7.3.4 we will show that certain problems
with interactions are noticeable already on the training set, and they are better referred to
as approximation than generalization errors. Finally, we will present a context-dependent
attribute selection heuristic based on interaction information that successfully compares
with exhaustive greedy search.

7.3.1 Positive and Negative Interactions

In each experimental data set, we select the most interacting pair of attributes according to
(a) conditional mutual information (CI), (b) positive interaction information (PIG), and
(c) negative interaction information (NIG). We build näıve Bayesian classifiers (NBC) in
which the selected interactions are “resolved.” That is, the selected pair of most interacting
attributes is replaced in NBC by its Cartesian product. This interaction resolution is done
for the result of each of the three interaction detection heuristics (CI, PIG and NIG), and
the performance of the three resulting classifiers is compared.

We chose to measure the performance of a classifier with Brier loss (described below).
We avoided classification accuracy as a performance measure for the following reasons.
Classification accuracy is not very sensitive in the context of probabilistic classification:
it usually does not matter for classification accuracy whether a classifier predicted the
true label with the probability of 1 or with the probability of, e.g., 0.51. To account
for the precision of probabilistic predictions, we employed the Brier loss. Given two
probability distributions, the predicted label probability distribution P̂ , and the actual
label probability distribution P , the (half-)Brier loss of the prediction is (Brier, 1950):

b(P, P̂ ) ,
1

2

∑

y∈ℜY

(

P (y)− P̂ (y)
)2

(7.6)

Brier loss is usually referred to as Brier score. Since the prediction is getting worse the
increasing Brier loss, it would be misleading to refer to it as ‘score’, a word that carries a
positive connotation. Error rate is a special case of Brier loss for deterministic classifiers,
while Brier loss could additionally reward a probabilistic classifier for better estimating
the probability. In a practical evaluation of a classifier given a particular testing instance,
we approximate the actual class distribution by assigning a probability of 1 to the true
class of the testing instance. For multiple testing instances, we compute the average Brier
loss.

As the basic learning algorithm, we have used the näıve Bayesian classifier. After the
most important interaction was determined outside the context of other attributes, we
modified the NBC model created with all the domain’s attributes by taking the single
most interacting pair of attributes and replacing them with their Cartesian product, thus
eliminating that particular dependence. All the numerical attributes in the domains were
discretized beforehand, and missing values represented as special values. Evaluations of
the default NBC model and of its modifications with different guiding heuristics were
performed with 10-fold cross-validation. For each fold, we computed the average loss. For
each domain, we computed the loss mean and the standard error over the 10 folds. We
performed all our experiments with the Orange toolkit (Demšar and Zupan, 2004).
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Figure 7.4: The 3-way interaction between A12, A3 and the label y in the ‘lung’ data
set yields the P -value of 0.023. Cross-validation also deems this interaction as significant.
However, there are very many degrees of freedom involved, and it might be unclear whether
this example counts as an interaction or not.

In Table 7.1 we sorted 26 of the UCI KDD archive (Hettich and Bay, 1999) domains
according to the number of instances in the domain, from the smallest on the top to
the largest on the bottom, along with the results obtained in the above manner. The
most distinct observation can be made is the bad performance of conditional mutual
information. Only in one data set (adult) joining the pair of attributes with maximum
conditional mutual information gave the best result. But even in that data set, the
improvement was not significantly better than the original. On the other hand, CI resulted
in significantly worse performance in 14 out of 26 experiments.

Positive interactions or synergies are frequent in artificial data sets (monk1, monk2,
KRKP), when they are often introduced intentionally to test the myopia of a learning al-
gorithm. Somewhat surprisingly, they are also frequent in small data sets (lung, soy-small,
wine): it is unclear whether their existence here truly indicates significant interactions,
or merely demonstrates the deficiencies of using cross-validation to penalize overfitting on
small data sets. For example, the two interacting attributes in the lung-cancer data set,
A12 and A3, each have four values, and the label three. The conditional probability model
under the assumption of dependence thus estimates 4 × 4 × 3 = 48 different probability
values. At the same time, there are only 32 instances, shown in Fig. 7.4. It is known
that statistical methods for determining the goodness-of-fit are unreliable with so many
degrees of freedom and so few instances (Agresti, 2002), so the cross-validation result may
be misleading.

We can summarize the findings as:

• Conditional mutual information is not a good heuristic for determining whether two
attributes should be assumed as dependent in classification with the näıve Bayesian
classifier.
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Brier Loss

NBC PIG NIG CI

lung 0.382 ± 0.045 0.313 ± 0.049 0.380 ± 0.046 0.382 ± 0.045

soy-small 0.032 ± 0.013 0.032 ± 0.013 0.032 ± 0.013 0.032 ± 0.013

zoo 0.062 ± 0.012
√

0.061 ± 0.013 0.062 ± 0.013
√

0.069 ± 0.015
√

lymphography 0.181 ± 0.020 0.207 ± 0.027 0.182 ± 0.021
√

0.198 ± 0.029
√

wine 0.015 ± 0.006
√

0.014 ± 0.006 0.020 ± 0.008
√

0.024 ± 0.008

glass 0.224 ± 0.017 0.227 ± 0.021
√

0.239 ± 0.014
√

0.227 ± 0.023
√

breast 0.221 ± 0.015 0.267 ± 0.011 0.222 ± 0.023
√

0.232 ± 0.015
√

ecoli 0.141 ± 0.013 0.155 ± 0.015 0.233 ± 0.023 0.233 ± 0.023

horse-colic 0.222 ± 0.014
√

0.275 ± 0.021 0.219 ± 0.013 0.257 ± 0.013

voting 0.090 ± 0.010 0.095 ± 0.010 0.070 ± 0.010 0.098 ± 0.012

monk3 † 0.042 ± 0.004 0.030 ± 0.006 0.043 ± 0.005 0.030 ± 0.006

monk1 † 0.175 ± 0.008 0.002 ± 0.000 0.186 ± 0.011 0.002 ± 0.000

monk2 †
0.229 ± 0.006 0.254 ± 0.008 0.235 ± 0.007

√
0.254 ± 0.008

soy-large 0.080 ± 0.009
√

0.073 ± 0.008 0.080 ± 0.009
√

0.076 ± 0.009
√

wisc-cancer 0.024 ± 0.004 0.025 ± 0.005
√

0.026 ± 0.004
√

0.026 ± 0.004
√

australian 0.112 ± 0.007
√

0.123 ± 0.009 0.111 ± 0.008 0.112 ± 0.008
√

credit/crx 0.113 ± 0.008
√

0.127 ± 0.007 0.110 ± 0.008 0.125 ± 0.009

pima 0.160 ± 0.006 0.176 ± 0.009 0.168 ± 0.007 0.169 ± 0.006

vehicle 0.289 ± 0.010 0.267 ± 0.010 0.290 ± 0.007 0.290 ± 0.007

heart 0.285 ± 0.010 0.307 ± 0.011 0.294 ± 0.010
√

0.296 ± 0.010

german 0.173 ± 0.007 0.190 ± 0.006 0.179 ± 0.008
√

0.181 ± 0.009

cmc 0.297 ± 0.007
√

0.297 ± 0.008 0.312 ± 0.007 0.309 ± 0.007

segment †
0.057 ± 0.004 0.061 ± 0.004

√
0.060 ± 0.004

√
0.058 ± 0.004

√

krkp † 0.092 ± 0.004 0.078 ± 0.003 0.098 ± 0.005 0.110 ± 0.005

mushroom 0.002 ± 0.000 0.009 ± 0.001 0.000 ± 0.000 0.001 ± 0.000

adult 0.119 ± 0.002
√

0.128 ± 0.002 0.121 ± 0.002
√

0.119 ± 0.002

Table 7.1: A comparison of heuristics for merging attributes. The table lists Brier
losses obtained with 10-fold cross validation after resolving the most important interaction,
as assessed with different methods. A result is set in bold face if it is the best for the domain,
and checked if it is within the standard error of the best result for the domain. We marked
the artificial† domains.

• Cross-validation may not detect overfitting through joining of attributes on small
data sets.

• According to empirical results in real-world domains, strong positive interactions are
quite rare, while negative interactions are plentiful.

• Positive interactions often appear in artificial data sets.

7.3.2 Interactions, Classifiers and Loss Functions

We have seen earlier that interaction information can be interpreted as a KL-divergence be-
tween a model that assumes dependence and another one that does not. The independence-
assuming model resembles the näıve Bayesian classifier (Sect. 3.2.2):

I(A;B;Y ) = D

(

P (Y |A,B)

∥
∥
∥
∥
P (Y )

P (A|Y )P (B|Y )

P (A)P (B)

)

(7.7)
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times NBC PIG NIG CI

best 11 10 6 4

good
√

8 3 12 8

bad 7 13 8 14

Table 7.2: No heuristic for joining attributes is consistently better than the default
näıve Bayesian classifier. However, joining through maximum conditional independence is
bad.

However, our learning algorithm is näıve Bayesian classifier proper, and we use Brier loss
and not KL-divergence. Therefore, it makes sense to derive a measure that will make use
of the same loss function and the same classifier in the heuristic as are used for the final
evaluations. Such a measure is BS(A,B):

BS(A,B) ,
∑

a∈ℜA,b∈ℜB ,y∈ℜY

P (a, b, y)

(

P (y|a, b)− P (y)P (a|y)P (b|y)
∑

y′∈ℜy
P (y′)P (a|y′)P (b|y′)

)2

(7.8)

It computes the expected Brier loss between the true conditional probability of the label
Y given the attribute values, and the näıve Bayesian prediction. The larger the value of
BS, the more we gain by assuming dependence between the attributes. From the results
in Table 7.3, the following conclusions can be made:

• Generally, it is slightly better for the heuristics to make use of the same utility
functions and of the same classification model we use to score the final results.
There are some exceptions, such as classification error, that are not desirable as
they lack discrimination power and are not proper.

• Even so, our heuristic did not result in consistent improvements across the data
sets. The decision about whether to join two attributes is not independent of other
attributes in the model.

7.3.3 Using Interaction Information to Guide Attribute Merging

We have examined attribute interactions and the effect they have on performance of the
näıve Bayesian classifier in the domain of predicting the patient’s long term clinical status
after hip arthroplasty. The data we have considered was gathered at Department of Trau-
matology of University Clinical Center in Ljubljana from January 1988 to December 1996.
For each of the 112 patients, 28 attributes were observed at the time of or immediately
after the operation. All attributes are nominal and most, but not all, are binary (e.g.,
presence or absence of a complication). Patient’s long-term clinical status was assessed in
terms of Harris hip score (Harris, 1969) at least 18 months after the operation. Harris hip
score gives an overall assessment of the patient’s condition and is evaluated by a physician
who considers, for example, patient’s ability to walk and climb stairs, patient’s overall
mobility and activity, presence of pain, etc. The numerical Harris hip score in scale from
0 to 100 was discretized into three classes: bad (up to 70, for 43 patients), good (between
70 and 90, for 34 patients) and excellent (above 90, for 35 patients).
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Brier Loss

NB PIG BS

lung 0.382 ± 0.045 0.313 ± 0.049 0.375 ± 0.056

soy-small 0.032 ± 0.013 0.032 ± 0.013 0.032 ± 0.013

zoo 0.062 ± 0.012
√

0.061 ± 0.013 0.061 ± 0.013
√

lymphography 0.181 ± 0.020
√

0.207 ± 0.027 0.175 ± 0.022

wine 0.015 ± 0.006
√

0.014 ± 0.006 0.021 ± 0.007

glass 0.224 ± 0.017 0.227 ± 0.021
√

0.242 ± 0.017
√

breast 0.221 ± 0.015 0.267 ± 0.011 0.246 ± 0.020

ecoli 0.141 ± 0.013 0.155 ± 0.015 0.300 ± 0.022

horse-colic 0.222 ± 0.014 0.275 ± 0.021 0.230 ± 0.014
√

voting 0.090 ± 0.010 0.095 ± 0.010 0.057 ± 0.014

monk3 0.042 ± 0.004 0.030 ± 0.006 0.030 ± 0.006

monk1 0.175 ± 0.008 0.002 ± 0.000 0.002 ± 0.000

monk2 0.229 ± 0.006 0.254 ± 0.008 0.256 ± 0.008

soy-large 0.080 ± 0.009
√

0.073 ± 0.008 0.081 ± 0.010

wisc-cancer 0.024 ± 0.004 0.025 ± 0.005
√

0.025 ± 0.004
√

australian 0.112 ± 0.007
√

0.123 ± 0.009 0.107 ± 0.009

credit 0.113 ± 0.008
√

0.127 ± 0.007 0.106 ± 0.008

pima 0.160 ± 0.006 0.176 ± 0.009 0.174 ± 0.007

vehicle 0.289 ± 0.010 0.267 ± 0.010 0.254 ± 0.010

heart 0.285 ± 0.010 0.307 ± 0.011 0.303 ± 0.009

german 0.173 ± 0.007 0.190 ± 0.006 0.191 ± 0.008

cmc 0.297 ± 0.007
√

0.297 ± 0.008 0.314 ± 0.008

segment 0.057 ± 0.004 0.061 ± 0.004 0.051 ± 0.004

krkp 0.092 ± 0.004 0.078 ± 0.003 0.080 ± 0.004
√

mushroom 0.002 ± 0.000 0.009 ± 0.001 0.000 ± 0.000

adult 0.119 ± 0.002 0.128 ± 0.002 0.133 ± 0.002

times NBC PIG BS

best 11 9 10

good
√

7 2 5

bad 8 15 11

Table 7.3: Generally, heuristics aligned with the method and the loss function (BS) are
slightly better than generic ones (PIG).
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In our experimental evaluation, interaction information scores were obtained from
considering the complete data set, new attributes were created and added into the data
set. Here is the outline of the particular implementation of this procedure as used in the
test case:

1. Consider all pairs of attributes and estimate their interaction information with the
label.

2. Select N attribute pairs with the highest interaction information, and for each pair:

• Construct a new joined attribute, such that each distinct pair of values of
original attributes maps to a distinct value of a new attribute.

• Add the constructed attribute to the attribute set.

3. Obtain a new data set with the original and the N new attributes. Order these
attributes by mutual information, and build a classifier from the n best ranked
attributes, n = 1, 2, 3, . . ..

In the second phase, the näıve Bayesian classifier was built using the altered data
set and evaluated at different sizes of the selected attribute subset. The ordering of the
attributes for attribute subset selection using information gain and modelling using the
subset were both performed on the learning data set, but evaluated on the test set. The
evaluation was performed using the leave-one-out scheme: for the data set containing l
instances, we performed l iterations, j = 1, 2, . . . , l, in which all instances except j-th were
used for training, and the resulting predictive model was tested on the j-th instance. We
report average performance statistics over all l iterations. All the experiments were per-
formed with the Orange toolkit (Demšar and Zupan, 2004). To measure the performance
of classification models we have used two error measures, error rate and Brier loss. Brier
loss has recently gained attention in medicine (Margolis et al., 1998), because it is better
suited for evaluating probabilistic classifiers.

We have assessed how the inclusion of different number of newly constructed and orig-
inal attributes affects the prediction performance. Figure 7.5 illustrates the search space
for our domain, where the number n of attributes selected is plotted on the horizontal and
the number N of interactions resolved on the vertical axis. The best choice of n and N
can be determined with a wrapper mechanism for model selection. We can observe several
phenomena: increasing the number of attributes in the attribute subset does not increase
the error rate as much as it hurts the precision of probability estimates, as measured by the
Brier loss. Furthermore, there are diminishing returns to resolving an increasing number
of interactions, as illustrated in the contour diagrams in Fig. 7.5. Unnecessary interac-
tions merely burden the attribute subset selection mechanisms with additional negative
interactions. Figure 7.6 presents the results in terms of Brier loss and error rate with four
resolved interactions.

There are several islands of improved predictive accuracy, but the best appears to be
the area with approximately 4 resolved interactions and 4 selected attributes. Classifica-
tion accuracy reaches its peak of 60% at the same number of attributes used. This accuracy
improves upon the accuracy of 56% obtained in our previous study, where manually crafted
attributes as proposed by domain experts were used in the näıve Bayesian classifier (Zu-
pan et al., 2001). Both are a substantial improvement over models constructed from the
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Figure 7.5: Dependence of the Brier loss and error rate on the attribute subset
size, n (horizontal axis) and on the number of interactions resolved, N (vertical axis). Em-
phasized are the areas of the best predictive accuracy, where Brier loss is less than 0.3 and
the error rate less than 0.45.

0.27

0.30

0.33

0.36

2 4 6 8 10 12 14 16 18 20

B
ri
e

r 
L

o
s
s

Feature Subset Size

Original
Best 4 Int.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2 4 6 8 10 12 14 16 18 20

E
rr

o
r 

R
a

te

Feature Subset Size

Original
Best 4 Int.

Figure 7.6: Average Brier loss and error rate as computed by leave-one-out and its de-
pendence on the number of attributes used in the model for N = 4 (solid line) and N = 0
(dashed). For all measurements, the standard error is shown.

original set of attributes, where the accuracy of NBC with the original 28 attributes is
45%, and does not rise beyond 54% even with use of attribute subset selection. The TAN
model on all attributes gets 55% accuracy. Attribute selection helps TAN models too, as
the TAN on the 9 best attributes achieved 57% accuracy. The general Bayesian network
model obtained via B-Course achieved only 47% accuracy, only slightly better than the
näıve Bayes. Overall, our simple method proved to be quite competitive.

The results in Fig. 7.7 show that three of the four constructed attributes were chosen
in building of the model. The table provides the set of important interactions in the
data, where an important increase in predictive accuracy can be seen as an assessment
of the interaction importance itself, given the data. Because the attribute ‘diabetes’ ap-
pears twice among the merged attributes, we can avoid double-counting the attribute by
using a Bayesian network as shown at the top of Fig. 7.7. The model can be easily inter-
preted using the concepts of Sect. 3.3.2. The ‘diabetes’ attribute moderates the influence
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pulmonary
disease

neurological
disease

diabetes

hospitalization
duration

injury
operation

time

luxation

HHS

Mutual Information Attribute

0.118 luxation + injury operation time
0.116 diabetes + neurological disease
0.109 hospitalization duration + diabetes
0.094 pulmonary disease

Figure 7.7: The best predictive model for the HHS dataset for the case N = 4, n = 4
is shown as a Bayesian network (above). We also list the average mutual information between
the label and an attribute or a pair of them in the table (below). The attribute pairs are
typeset in bold.

of neurological disease and hospitalization duration on the outcome. This means that
the influence of the neurological disease and of hospitalization duration on the outcome
should be considered separately for diabetics and non-diabetics. For example, there were
more bad outcomes among diabetics with a long hospitalization time. There is another
moderation effect between luxation and injury operation time. Similarly, the influence of
injury operation time should be considered separately, depending on whether there was a
luxation or not. Unfortunately, there were relatively few luxations and relatively few dia-
betics in our sample, and it is difficult to remove the possible influence of chance. Hence,
our findings about moderation effects are not conclusive. It known that mediation and
moderation effects are more difficult to confirm (McClelland and Judd, 1993).

We have compared the results obtained with the greedy method with global search-
based attribute subset selection as implemented by B-Course (Myllymaki et al., 2002).
The model without interactions achieved classification accuracy of 59% and Brier loss
of 0.30 with 7 selected attributes. If the 10 interactions with the highest interaction
information were added, the model achieved classification accuracy of 62% and Brier loss
of 0.28 with a model consisting of 8 attributes. B-Course’s model is quite complex and
includes all the attributes from Table 7.7, in addition to two of the original attributes and
two interactions.

In summary, we have used interaction information to identify a small group of po-
tential interactions, which restricts the space of possible models. These interactions are
represented as ordinary attributes. We then perform attribute selection to come up with
the model. The resulting model can usually be expressed as a Bayesian network with-
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out latent attributes. Greedy attribute selection yields much smaller models with slightly
worse performance than does search-based attribute selection using B-course. Of course,
this case study is not systematic in terms of scientific conclusions.

7.3.4 Approximation and Generalization Error

The conclusion to be taken from the previous section is that heuristics are not generally
reliable. Furthermore, there are many dependencies between attributes: the importance
of assuming the dependence between any pair of attributes cannot be decided without
knowing what other attributes are already in the model.

What some may find somewhat surprising is that the problems associated with depen-
dencies can be identified already on the training data. With the näıve Bayesian classifier,
adding an attribute that is perfectly useful on its own may deteriorate the results because
of overcounting of evidence (Langley and Sage, 1994). For example, if attributes are sorted
by their information gain, and introduced into the näıve Bayesian classification model one
by one, the performance already on the training set is not monotonically decreasing, as
shown in Fig. 7.8. On the other hand, logistic regression generally does improve almost
monotonically with the addition of new attributes, as shown in Fig. 7.9.

Therefore, an introduction of an attribute into a model may result in approximation
error. Approximation error is noticeable already on the training data. On the other hand,
generalization error results from the difference between the training and the test set. It is
quite well-known that logistic regression can overfit. However, with attribute selection the
näıve Bayesian classifier can also overfit: we can build very many functions if we perform a
selection among 10000 randomly tossed coins, yet none of them is going to work in future.

7.3.5 Contextual Attribute Selection in Näıve Bayes

The main realization we can draw from Sect. 7.3.4 is that adding an attribute can corrupt
the näıve Bayesian classifiers’ performance. The cause of the loss is the disagreement with
the assumptions, the approximation error. The deterioration in performance is already
noticeable on the training data. This contrasts with classification trees that tend to
uniformly gain in performance with increasing complexity on the training data.

We can follow the approach of sequential Bayes (Michie and Al Attar, 1991) in pick-
ing the best attribute at each step in the context of the attributes already in the model.
This kind of attribute selection is contextual: we are looking for the attribute that will
contribute the most in the company of other attributes. Only the first attribute is chosen
by its solo performance. Formally, if D(P‖Q) is our loss function, Y is our label, and
A the existing set of attributes in the model, we should pick the attribute X among the
attributes Ā outside the model that results minimum expected loss:

arg min
X∈Ā

D

(

P (Y |A, Ā)

∥
∥
∥
∥
∥

1

Z
P (Y )P (X|Y )

∏

A∈A
P (A|Y )

)

(7.9)

Here, Z is a normalization constant, needed to assure that the probabilistic predictions of
the näıve Bayesian classifier sum up to 1. Because P (Y |A, Ā) is unknown, we approximate
it with the data set, by examining the distribution of the values of Y at each possible
combination of the values of the attributes in A ∪ Ā.
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Figure 7.8: Näıve Bayesian classifier’s performance loss on the training data does not improve
monotonically with the addition of new attributes.
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Figure 7.9: The loss of logistic regression, on the other hand, does improve almost mono-
tonically. However, we must account for a larger amount of overfitting.
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An interesting information-theoretic heuristic is described by Fleuret (2004), where
a single attribute already in the model is used as the context for a candidate attribute.
The basic idea is to consider each candidate X among the attributes outside the model.
Attribute X alone provides I(X;Y ) bits of information about the label Y . When we
have the context attributes A, however, it would seem that I(X;Y |A) would be a good
heuristic. This is not the case, as conditional mutual information is never negative, but
above we saw that the contribution of an attribute may be indeed negative. The problem
is that mutual information refers to the ‘true’ probability model, while the näıve Bayesian
classifier uses a simplified approximation to this unknown ‘true’ model. Fleuret (2004)
suggests that we should find a context attribute A in A with the most distinct negative
interaction with the candidate X. Such attribute A is the worst possible context for X,
and the information gain of X should be evaluated in the context of A: I(X;Y |A). We
can express this criterion formally as:

arg max
X∈Ā

(

min
A∈A

I(X;Y |A)

)

(7.10)

Another benefit of this criterion is that conditional mutual information can often be as-
sessed more reliably than the loss on the full space of attributes, so it might be more robust
to overfitting. The conditional mutual information can be cached for a more efficient ex-
ecution of the algorithm. Fleuret (2004) found that this approach is highly competitive;
in his experiments, NBC with such feature selection outperformed the support vector
machine (SVM) classifiers and AdaBoost in the test set performance.

The disadvantage of the approach is that it only considers a single attribute of the
context. The second disadvantage is that it will reward an attribute that is involved
in positive interactions with other attribute in the model, although the näıve Bayesian
classifier is unable to make use of positive interactions. Using interaction information,
we can account for all the negative interactions the attribute is involved with. However,
since the näıve Bayesian classifier in unable to take advantage of positive interactions, the
interaction information can be capped at zero. The selection procedure in the style of
previously listed ones picks the attribute X according to the following criterion:

arg max
X∈Ā

(

I(X;Y ) +
∑

A∈A
min{0, I(X;Y ;A)}

)

(7.11)

The capping is denoted by min{0, I(X;Y ;A)}, where we prevent positive interactions
from improving the performance of a particular attribute. The computational cost of
this procedure is equal to the one of Fleuret (2004). This heuristic may consider all
attributes in the context, but it still neglects higher-order interactions: there may be
positive interactions between negative interactions.

We have compared these three context-aware attribute selection algorithms on a ran-
dom selection of UCI data sets. In the training set experiments in Fig. 7.10, it is clear that
the brute force algorithm maintains an advantage, but that the interaction information-
based algorithm (7.11) seems to hold a slight advantage over the Fleuret algorithm (7.10).

The advantage is even more pronounced in the generalization error on the training
data, illustrated in Fig. 7.11, where we employed twice replicated 5-fold cross-validation:
the sum of interaction information is less sensitive to the choice of the training data. This
effect can be easily seen in the ‘Mushroom’ and ‘Voting’ data sets, which are smaller than
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Figure 7.10: A comparison of context-sensitive attribute selection algorithms on the training
data manifests the approximation error.
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Figure 7.11: A comparison of context-sensitive attribute selection algorithms on the test data
indicates that aggregate interaction information is a more reliable indicator of approximation
error than the maximum conditional mutual information.
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Brier Loss of the Näıve Bayes Classifier with:
all attributes brute force mutual info. Fleuret sel. interaction info.

lung 0.575 ± 0.085
√

0.562 ± 0.079 0.581 ± 0.085
√

0.567 ± 0.088
√

0.634 ± 0.069
√

soy-small 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zoo 0.125 ± 0.047

√
0.133 ± 0.046

√
0.106 ± 0.038 0.123 ± 0.046

√
0.125 ± 0.047

√

lymph 0.537 ± 0.056 0.326 ± 0.033 0.360 ± 0.027 0.368 ± 0.028 0.330 ± 0.018
√

wine 0.013 ± 0.008 0.008 ± 0.006
√

0.020 ± 0.011 0.017 ± 0.010 0.006 ± 0.003
glass 0.618 ± 0.047 0.630 ± 0.051

√
0.618 ± 0.047 0.618 ± 0.047 0.635 ± 0.053

√

breast 0.208 ± 0.016 0.198 ± 0.011
√

0.192 ± 0.010 0.194 ± 0.010
√

0.194 ± 0.010
√

ecoli 1.070 ± 0.056 0.916 ± 0.042 1.056 ± 0.054 1.070 ± 0.056 1.044 ± 0.049
horse-colic 1.013 ± 0.074 0.423 ± 0.016 0.426 ± 0.012

√
0.431 ± 0.012

√
0.431 ± 0.012

√

voting 0.091 ± 0.010 0.037 ± 0.008 0.044 ± 0.010
√

0.037 ± 0.009
√

0.040 ± 0.010
√

monk3 0.043 ± 0.004
√

0.043 ± 0.004 0.043 ± 0.004
√

0.043 ± 0.004
√

0.043 ± 0.004
√

monk1 0.174 ± 0.008
√

0.175 ± 0.008
√

0.174 ± 0.008 0.174 ± 0.008 0.174 ± 0.008
monk2 0.229 ± 0.006 0.229 ± 0.006

√
0.229 ± 0.006

√
0.229 ± 0.006

√
0.229 ± 0.006

√

soy-large 0.832 ± 0.095 0.696 ± 0.088 1.566 ± 0.103 1.039 ± 0.087 0.803 ± 0.082
wisc-cancer 0.023 ± 0.004 0.028 ± 0.005 0.031 ± 0.005 0.027 ± 0.005 0.026 ± 0.005

√

australian 0.112 ± 0.008
√

0.104 ± 0.008
√

0.111 ± 0.010
√

0.104 ± 0.008
√

0.103 ± 0.010
credit 0.111 ± 0.007 0.104 ± 0.007

√
0.110 ± 0.007 0.100 ± 0.007 0.102 ± 0.007

√

pima 0.160 ± 0.006 0.154 ± 0.005
√

0.154 ± 0.005
√

0.155 ± 0.005
√

0.151 ± 0.005
vehicle 0.589 ± 0.021 0.446 ± 0.020 0.584 ± 0.013 0.494 ± 0.019 0.487 ± 0.021
heart 0.713 ± 0.024 0.664 ± 0.019 0.696 ± 0.021 0.691 ± 0.021 0.670 ± 0.019

√

german 0.174 ± 0.007
√

0.172 ± 0.005 0.172 ± 0.007
√

0.174 ± 0.008
√

0.176 ± 0.008
√

cmc 0.445 ± 0.010 0.417 ± 0.006
√

0.416 ± 0.006 0.416 ± 0.006 0.416 ± 0.006
segment 0.262 ± 0.015 0.150 ± 0.008 0.287 ± 0.018 0.161 ± 0.009 0.200 ± 0.014

krkp 0.092 ± 0.004 0.074 ± 0.002 0.085 ± 0.003 0.078 ± 0.003 0.081 ± 0.002
mushroom 0.034 ± 0.003 0.005 ± 0.001 0.008 ± 0.000 0.008 ± 0.000 0.008 ± 0.001

adult 0.120 ± 0.002 0.098 ± 0.001 0.117 ± 0.002 0.101 ± 0.001 0.101 ± 0.001

times NB B MI CMI IG

best 3 15 5 4 5

good
√

6 10 8 10 13

bad 17 1 13 12 8

Table 7.4: Näıve Bayesian classifier almost always benefits from attribute selection. The
greedy context-dependent brute force selection algorithm distinctly outperforms other algo-
rithms. The interaction information heuristic is the most competitive of the heuristics, but
not considerably better than the conditional mutual information heuristic.
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‘Spam’. The minimum and maximum performance over all 10 experiments is illustrated
with error bars. A more complete evaluation with the same methodology as in previous
sections is shown in Table 7.4: we used the model that resulted in the best performance
on the training data.

Even if it would seem that the brute force algorithm is more prone to overfitting, its
direct reference to the näıve Bayesian model maintains the advantage in comparison to
the Fleuret and interaction information heuristics. This is no longer true, however, if we
employ logistic regression instead of the näıve Bayes. As shown in Fig. 7.12, applying the
brute force algorithm to logistic regression results in overfitting. Here, it might even be
wiser to use information-theoretic attribute selection algorithms.

We can summarize our findings as:

• In the Sect. 7.3.4 we have seen that adding an attribute into a näıve Bayesian
classifier may deteriorate the classification performance already on the training set.
The reason for this is approximation error, caused by deviation from the conditional
independence assumptions. This is generally not the case for logistic regression.

• A solution for this problem is to regard an attribute, which is a candidate for inclu-
sion in the model, in the context of the attributes that are already in the model.

• The brute force heuristic (7.9) that examines the addition of all the available at-
tributes and computes the performance of the resulting classifier on the test set is
the best greedy heuristic we have found.

• The second best heuristic (7.11) accounted for the negative interaction information
of the attribute with the attributes already in the model.
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Figure 7.12: Brute force context-sensitive attribute selection for logistic regression may be
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CHAPTER 8

Prediction with Interaction Models

We have already discussed how interactions may help in attribute selection in Ch. 7. Fur-
thermore, we have also used interaction information as a heuristic to construct graphical
models in Sect. 7.3.3, but the procedure was only half-automated. In Sect. 6.3.1, we men-
tioned that interaction graphs based on the significance tests of interactions are heuristical
graphical models, but significance tests do not directly address the requirements for clas-
sification. In this chapter, we will discuss a fully automated approach specifically targeted
towards supervised learning.

Most probability modelling work in machine learning has been based on graphical
models (Darroch et al., 1980). In this chapter we will provide a practical approach to
learning a considerably more general family of hierarchical models for classification. But
because the term of hierarchical models has become roughly synonymous with multilevel
models (Gelman et al., 2004b), we will try to avert confusion and refer to non-multilevel
hierarchical models as interaction models. While graphical models are restricted with
respect to different interactions that can exist in the same model, interaction models
allow any k-tuple of attributes, labelled or unlabelled, to engage in a k-way interaction.

Because interaction models cannot be estimated in closed form in general, we will make
use of methods that were developed in statistical physics for the purpose of approximating
the joint and conditional probability models from a collection of marginal parts. We will
fuse several local models, submodels, into a global joint model. Individual submodels act
as constraints upon the joint or conditional models. With an approximate fusion method,
Kikuchi-Bayes, we never have a globally normalized predictive model, but we renormalize
it within a given classification context.

Although we work with discrete attributes and classification problems, the framework
of prediction translates to continuous attributes and to regression problems. The notion of
submodels as constraints is not trivial to be solved in an exact fashion, but the approximate
fusion approach of Kikuchi-Bayes avoids the problem with ease.

159
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8.1 Interaction Models

We will begin with the definition. First assume a set of attributes V = {X1, X2, . . . , Xm}.
The attributes need not all be ‘natural’ but can also be constructed, hidden or latent.
Each attribute may be labelled or unlabelled, and we identify the subset of labelled ones
with Y ⊆ V, and the unlabelled ones with X = V\Y. We will refer to the value assignment
to X as X = x, and to the value assignment to Y as Y = y. The whole value assignment
will be V = X ⊕ Y , where ⊕ denotes a concatenation of vectors. The model is specified
with a set of marginal probability submodels M = {P (S|θS); S ⊆ V}. We can refer to
a particular submodel P (S) as a k-way interaction, where k denotes the cardinality of S,
k = |S|. The submodel is defined with its parameters θS .

While general models place no constraints on the setM, the condition for interaction
models is that there is no probability submodel P (S1) that could be obtained by marginal-
izing another submodel P (S2): such a submodel P (S1) would be redundant. This happens
when S1 is wholly contained in S2, and can be expressed by the non-redundancy condition:
∀P (S1), P (S2) ∈M : S1∩S2 /∈ {S1,S2}. The non-redundancy condition keeps reduce the
total number of hierarchical models, but neither by giving up the flexibility of the model,
nor by increasing the complexity of the models.

The concept of an interaction model is not novel. An interaction model can also be
represented with a factor graph (Kschischang et al., 2001), where attributes correspond
to variable nodes, and submodels to factor nodes. It can also be represented as a log-
linear model, or as a ‘probabilistic database with a hypergraph scheme’ (Badsberg and
Malvestuto, 2001). It is important to distinguish graphs and hypergraphs. In a graphical
model a k-clique corresponds to a single k-way interaction. In a hypergraph model, a
k-clique corresponds to k(k − 1) 2-way interactions, and a k-hyperedge identifies a k-way
interaction. The part-to-whole model corresponds to the complete hypergraph (Sect. 4.4).

Although the submodels are joint, it is possible to account for conditional submodels:
If there is a conditional submodel P (S1|S2), it has to be collapsed into a joint submodel
P̂ (S1,S2|M) by using M to build the model for P̂ (S2|M). After this, P̂ (S1,S2|M) =
P (S1|S2,M)P̂ (S2|M) can be included among the submodels inM. It is possible to express
Bayesian networks as interaction models: for every conditional probability P (X|Y ), we
insert P (X,Y ) intoM.

8.2 Fusion Algorithms for Interaction Models

Let us now assume that an interaction model M is given for the attributes in V. We
will denote all the attribute values at once as a vector V. M is composed of a number
of submodels, and the goal of fusion is to form a single joint P (V) based on the set of
submodels M = {P (VS1), . . . , P (VSℓ

)}. To this aim, we will employ a fusion algorithm.

The usual approach is to parameterize P (V|Θ) and view the submodels as constraints
upon Θ. There are many values of Θ that are consistent with their marginal constraints,
and the question is which individual Θ = θ to pick. The maximum entropy principle
(Sect. 2.2.4) states that among the several consistent models, one should pick the one that
has the highest entropy. If we interpret entropy as expected loss, the MaxEnt model is
worst-case optimal. The downside to the direct maximum entropy approach is that the
model has to be specified in its exponentially increasing entirety (Wallach, 2004). For that
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purpose, it is helpful to seek approximations. But approximations are feasible, even for
partially overlapping submodels, and they are examined in Sect. 8.2.3.

8.2.1 Maximum Entropy Fusion

Depending on our purpose, we may choose to maximize the joint entropy or the conditional
entropy. Maximum joint entropy assures that the joint model will be as unpretentious
as possible for joint modelling given the submodel constraints. Maximum conditional
entropy assures that the conditional model will be as careful as possible for prediction of
the conditioned attributes with the ones conditioned with. For a more detailed discussion
see Sect. 5.3.2.

Generally, maximizing entropy directly is problematic. Most present methods take a
number of assumptions regarding the form of the joint model, usually focusing on the
exponential family models on binary attributes. Instead of maximizing the Shannon en-
tropy, we may maximize the empirical entropy Ĥ(V|θ,D) in the context of the data D.
It is also possible to employ Rényi entropy instead of Shannon entropy for maximization
(Jaynes, 1957, Zitnick and Kanade, 2004).

A different strategy is to employ a constraint satisfaction algorithm from the iterative
scaling family (Darroch and Ratcliff, 1972). It can be shown that if the initial approxima-
tion is a uniform distribution, the constraint-satisfied solution will try to remain as close
as possible to the initial approximation. Generalized iterative scaling is not a particularly
efficient optimization algorithm, and more sophisticated gradient descent algorithms may
be used instead (Malouf, 2002).

Entropy maximization is a constrained primal optimization problem in the space of
consistent distributions, but we may tackle the unconstrained dual problem of maximizing
the log-likelihood with gradient descent in the space of maximum entropy distributions
(Berger et al., 1996, Della Pietra et al., 1997). Namely, entropy maximization given the
constraints can be modelled with the Boltzmann distribution (Jaynes, 2003).

The Boltzmann distribution (also referred to as a Gibbs state with potentials ψ, as
Gibbs or Boltzmann-Gibbs distribution, or as a loglinear model in statistics) is expressed
as (Darroch et al., 1980):

P (v|β) ,
1

Z

∏

P (S)∈M
ψS(vS) = exp







∑

P (S)∈M
logψS(vS)− logZ






(8.1)

We can see that instead of a marginal P (S), we have an potential ψ(S), a nonnegative
function from ℜS . The parametrization β defines the potentials. Z is referred to as the
partition function and it assures that the global model is normalized:

Z ,

∫

ℜV

∏

P (S)∈M
ψS(vS)dv (8.2)

8.2.2 Region-Based Approximation to Free Energy

We will now describe a few terms from statistical mechanics, associating them with the
terms that have already been used in this text. For a particular global configuration v
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we can define the energy, also referred to as the Hamiltonian, by the following (Yedidia
et al., 2004):1

E(v) , −
∑

P (S)∈M
logψS(vS) (8.3)

The Helmholtz free energy of the system is − logZ (Yedidia et al., 2004). Often the Boltz-
mann distribution is written as exp{−E(v)/T}/Z(T ), where T stands for temperature,
and E for energy. We will henceforth assume that T = 1/kB, but remember why Z is
referred to as a function.

P (v|β) and Z are generally intractable. For that reason, we would prefer to make use
of a hypothetical P̂ . The methods that make use of this are referred to as variational.
We can now define the variational average energy U(V|P̂ ) and the variational entropy
H(V|P̂ ) (Yedidia et al., 2004):

U(V|P̂ ) ,

∫

ℜV

P̂ (v)E(v)dv (8.4)

H(V|P̂ ) , −
∫

ℜV

P̂ (v) log P̂ (v)dv (8.5)

The variational free energy F (V|P̂ ) can now be defined as:

F (V|P̂ ) , U(V|P̂ )−H(V|P̂ ) = D(P̂‖P ) + logZ (8.6)

Clearly, the variational free energy is at the minimum precisely when P̂ and P are equal.
We employ the variational free energy minimization to seek a tractable P̂ that approx-

imates the true P well. We can ignore the partition function in performing this variational
optimization, because it is constant. We have not gained much unless P̂ is in some way
simpler than P . We can employ the mean-field form for P̂ where P̂MF =

∏

V ∈V P̂MF (V ).

Given, say, a Bayesian network model P̂BN , we could then minimize the variational free
energy D(P̂MF ‖P̂BN ) to obtain P̂MF (V ) for each V ∈ V.

Another path, suggested by Yedidia et al. (2004) is to redefine the variational free
energy expression. Now assume that there are several regions that can possibly overlap.
A region is defined as a subset of the potentials in (8.1), but we will interpret it as a set of
attributes. We represent the regions with a weighted set of regions GR = {〈R, cR〉}, where
cR denotes the counting number of the region R. The importance of counting numbers is
to assure that each attribute and each interaction2 is counted exactly once.

Based on the weighted set of regions, we can define the region-based approximate
entropy, which can be computed on the whole V:

ĤGR
(V|P̂ ) , −

∑

〈R,cR〉∈GR

cR

∫

ℜR

P̂ (vR) log P̂ (vR)dvR (8.7)

Within a particular region, Yedidia et al. (2004) define the region energy based on the
Boltzmann probability model:

ER(vR) , −
∑

P (vS)∈M,S⊆R
logψS(vS) (8.8)

1Neal and Hinton (1998) refer to E(v) + log Z = − log P (v|β) as energy.
2Here we interpret each interaction S as a factor in the factor graph terminology of Yedidia et al. (2004).

Namely, each S corresponds to a hyperedge, and a factor graph is just a way of denoting hypergraphs with
bigraphs.
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In the context of generalized belief propagation, there is a definition of region-based average
energy, based on the Boltzmann probability model within the region, and of the resulting
region-based free energy. It is then possible to seek the such marginals P̂ (vR) for each
region R so that the region-based free energy is minimized:

F̂R(V|P̂ ) ,
∑

〈R,cR〉∈GR

cR

∫

ℜVR

P̂ (vR) log
P̂ (vR)

∏

S⊆R ψS(vR)
dvR (8.9)

The fixed points of the generalized belief propagation algorithm then correspond to the
stationary points of the region-based free energy.

8.2.3 Region-Based Approximation to Probability Models

Before using the region-based free energy F̂R(V|P̂ ) as a criterion in optimization, let us
first question whether region-based approximate entropy on the true marginals on regions
is a faithful approximation to the true entropy. We will interpret the difference in entropies
as a Kullback-Leibler divergence and infer an approximate joint probability model that
corresponds to a given set of regions.

If there is no region in GR that would not be contained within some submodel P (S) ∈
M, we can compute the non-approximate region-based entropy with respect to the true
joint probability model ĤGR

(V|P ). Namely, if the marginals in region-based approximate
entropy are indeed correct, as it is sought by the free energy minimization, the region-based
approximate entropy will be equal to the region-based entropy.

Calculating the region-based entropy for an interaction model can be done in closed
form without actually having the ‘true’ joint model P , just the set of its ‘true’ marginals.
These are already given as the submodels. The reliability of the approximation to entropy
can be evaluated by the following:

ĤGR
(V|P )−H(V|P ) = D(P‖P̂ ′

GR
), P̂ ′

GR
(V) ,

∏

〈R,cR〉∈GR

P (R)cR (8.10)

Unfortunately, as we have seen in Sect. 4.4.1, there are valid weighted sets of regions
that may result in negative region-based entropy: the underlying P̂GR

is non-normalized.
Nevertheless, in many circumstances the subsequently normalized region-based probability
approximation P̂GR

(V) ∝ P̂ ′
GR

(V) is a reasonable approximation to the Boltzmann model
P (V|β), and in some cases it is exact. Region-based probability approximation generalizes
the Kirkwood superposition approximation from Sect. 4.4.1.

8.2.4 Constructing Region-Based Representations

When we approach the problem of obtaining the region-based probability approximation
for a given interaction model, we have to decide which regions to pick. Generally, each
interaction should be assigned an initial region. Clearly, each region should be a subset
of some submodel S, as otherwise there would not be enough information to obtain the
marginal. However, the initial regions may overlap, so heuristics are needed to account
for this. Yedidia et al. (2004) describe a few properties of a region-based representation.
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Validity The weighted set of regions is a valid approximation of the interaction model
M iff:

∀V ∈ V :
∑

〈R,cR〉∈GR, V ∈R
cR = 1 (8.11)

∀P (S) ∈M :
∑

〈R,cR〉∈GR,S⊆R
cR = 1 (8.12)

This means that each attribute and each interaction is counted exactly once. Yedidia et al.
(2004) prove that if the region-based representation is valid, the region-based average en-
ergy will be exact. They also prove that if the true joint probability model is a multivariate
uniform distribution, and if the marginals are correct, the region-based entropy will be
exactly the true entropy.

MaxEnt-Normality A weighted set of regions is MaxEnt-normal if it is valid and if the
corresponding region-based entropy for some set of marginals P̂ (R) achieves its maximum
when all the marginals of P̂ are uniform.

In addition to this, Yedidia et al. (2004) mention an additional property that results in
good performance:

∑

R cR = 1. We will now address the methods for obtaining the region
graph given a set of interactions or initial regions, summarizing Yedidia et al. (2004). We
will unfairly neglect to discuss other approximations, such as the hypertree factorization
(Wainwright and Jordan, 2003) that can also be used to construct region graphs of higher
quality than the Kikuchi approximation. It is not necessary that the counting numbers
are integers, namely.

Exact Special Cases

For a few configurations of interactions, the resulting P̂ ′
GR

requires no normalization and
is exact. In reality, the configurations are chosen as to facilitate exactness, and not by the
actual properties of the data.

Mean Field / Fully Factorized The mean field approximation is applicable when the
interactions are disjunct (non-overlapping). In such a case, each submodel P (S) has a
corresponding region 〈S, 1〉.

Junction Tree Some arrangements of interactions can be represented with junction
trees. A junction tree is a tree whose nodes are subsets of attributes, and obeys the
junction tree property : if a node S2 is on the path between S1 and S3, then S1 ∩ S3 ⊆ S2.
Furthermore, if S1 ∩ S3 6= ∅, there must exist a path between S1 and S3. We form a
region-based representation of the junction tree by assigning 〈S, 1〉 to each node S, and
〈S1 ∩ S2,−1〉 to each edge 〈S1,S2〉 in the junction tree.

Bethe Approximation

The Bethe approximation starts with the initial regions, and each of which is assigned the
weight of 1. So, for each P (S) ∈ M there is a 〈S, 1〉 ∈ GR. Because the same attribute
V ∈ V may appear in multiple regions, we introduce a small region for every V ∈ V, where
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R0 ← {∅} {Redundancy-free set of initial regions.}
for all S ∈ M do {for each initial region}

if ∀S ′ ∈ R0 : S * S ′ then
R0 ← R0 ∪ {S} {S is not redundant}

end if
end for
R ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {there are feasible subsets}
Rk ← {∅}
for all I = S† ∩ S‡ : S†,S‡ ∈ Rk−1, I /∈ Rk do {feasible intersections}
c← 1 {the counting number}
for all 〈S ′, c′〉 ∈ R, I ⊆ S ′ do
c← c− c′ {consider the counting numbers of all regions containing the intersec-
tion}

end for
if c 6= 0 then
R ← R∪ {〈I, c〉}

end if
Rk ← Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 6= 0} {Region graph with the counting numbers.}

Algorithm 8.1: This algorithm yields the Kikuchi approximation when given the initial set
of regionsM = {S1,S2, . . . ,Sℓ}.

cV = 1 − |P (S) ∈ M;V ∈ S| is 1 less the number of interactions in which V is involved.
Based on this region-based approximation, we may define the Bethe entropy as

∑

P (S)∈M
H(S) +

∑

V ∈V
H(V )(1− |{P (S) ∈M|V ∈ S}|). (8.13)

We have already employed Bethe entropy in Sect. 6.4.4. Our joint model included all
interactions of the type {A,Xi}, and we used it to compute the Bethe entropy (denomi-
nator), and the difference between the mean field entropy and Bethe entropy (nominator)
in (6.19).

Kikuchi Approximation

The Kikuchi approximation, also referred to as the cluster variation method, is perhaps
the most flexible approach to constructing the region-based representation of a given
interaction model. It is based on assigning each initial region the counting number of 1.
To account for the overlap, it considers all the intersections between pairs of initial regions
and forms the first new layer of regions that correct for the overlap. All the overlap might
not be accounted for yet, so it continues by considering all intersections among the first
layer of regions and forms the second layer of regions. The full procedure is shown as
Algorithm 8.1.
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When the initial regions are disjunct, the Kikuchi approximation is identical to the
mean field. It is not difficult to see that the Kikuchi approximation is identical to the
Bethe approximation when no pair of initial regions shares more than a single attribute.
Furthermore, the Kikuchi approximation on the complete set of regions of size n−1 given
n attributes is identical to the Kirkwood superposition approximation. Most importantly,
the Kikuchi approximation is exact when the initial regions are the maximal cliques of a
Markov network. In general, Kikuchi approximation is exact when only the initial regions
have their counting numbers greater than zero (Yedidia et al., 2001).

8.3 Learning Interaction Models

In the previous section we have described two ways of defining the joint probability dis-
tribution based on the set of submodelsM. The first is to discover the parameter vector
β that defines the Boltzmann distribution consistent with the interactions. The second
approach is to approximate the Boltzmann distribution with the region-based approxima-
tion. Regardless of which approximation we pick, a practical learning algorithm has to
decide which submodels to pick and how to estimate them from the data. This will be
the topic of the present section.

We will adopt the Bayesian framework, based on an explicit description of the model
in terms of its parameters φ = (M,Θ, ϑ). It is desirable that the structureM is indepen-
dent of the submodel prior ϑ and the submodel parameters Θ. It would be paradoxical
that some submodel P (X1, Y ) changed because some new attribute X2 was introduced
into the model. Submodels and marginals of the joint should remain invariant given the
overall model structure. Our goal is achieved by the following factorization of the prior
P (φ) = P (M)P (ϑ)P (Θ|ϑ) = P (M)P (ϑ)

∏

i P (θi|ϑ). We will now address two additional
constraints: first, the submodels must be a posteriori consistent in spite of the conditional
independence of their parameters; second, the models should be parsimonious: as simple
as possible but not simpler.

For a certain model structure M, we compute the class predictive distribution
P̂ (y|x, φ) by applying Algorithm 8.1 to the set of submodels. The resulting region graph
GR is used as the basis for the joint approximation:

P̂ ′(v|M) ∝
∏

〈R,cR〉∈GR

P (vR)cR (8.14)

We do not employ the joint approximation directly, we will not even attempt to normalize
it. Instead we will compute the conditional probability distribution of the label y in
the context of the attribute vector x, and at the same time we will also perform the
normalization solely in the context of x:

P̂ (y|x,M) ,
P̂ ′(y,x|M)

∑

y′∈ℜY
P̂ ′(y′,x|M)

(8.15)

For prediction we thus integrate the model structure out (‘Bayesian model averaging’),
because this technique has shown its virtues a number of times (Buntine, 1991, Hoeting
et al., 1999, Cerquides and López de Màntaras, 2003). The final result of our inference
based on data D will thus be the following class predictive distribution, obtained by
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integrating over several choices of the structureM and possibly other components of the
prior:

P̂ (y|x) ∝
∫

P (φ|D)P̂ (y|x, φ)dφ (8.16)

We can see that an individual structure is weighted accordingly to its likelihood and its
prior. Because of that, we implement the Bayesian maxim that all models are equally
justifiable if they have the same likelihood and the same prior. In the following sections
we will discuss the details of our priors and our greedy algorithm for efficiently integrating
in the space of φ. Still, the value of φ with the maximum a posteriori probability is
interesting as the best individual model in the ensemble.

It should be easy to see that our algorithms are based on some method of fusion used
to come up with P̂ . Although the Kikuchi approximation is used, effectively nothing
changes if Bethe approximation of the actual Boltzmann distribution is used instead. We
do employ (8.15) to obtain the class-predictive distribution for a specific structure M,
conditioning the joint probability model. However, there is no reason why an inherently
conditional model is used instead, for example maximizing the conditional entropy, or
maximizing the conditional likelihood. An example of such conditional models are the
conditional random fields (CRF) (Lafferty et al., 2001). The main difference is that the
purpose of CRF here would be to fuse the interactions, and not to model the data directly.

8.3.1 Estimating Consistent Submodels

The submodels have no specific ordering, and should be estimated independently from
data D. After the estimation, we work with posterior predictive distributions P (vR|D),
without referring back to their parameters. It is important, however, to assure that the
predictive submodels are in fact consistent. Consistency means that there does exist some
joint probability model P (V|D) for data D so that each submodel P (VS) ∈ M and
W = V \ S: P (vS) =

∫

ℜW
P (vS ,vW |θ)dvW , ∀vS ∈ ℜS . For example, an indication

of inconsistency is the existence of a subset of attributes W ⊆ V that appear in two
submodels S1 and S2: W ⊆ S1 ∩ S2, but where the marginalizations do not match:

∃vW ∈ ℜW :

∫

ℜS1\W

P (v|θ)dvS1 6=
∫

ℜS2\W

P (v|θ)dvS2 (8.17)

While maximum likelihood estimation would result in consistent submodels, Bayesian
modelling requires some forethought. Namely, each submodel is modelled based on the
same prior, but independently of other submodels, including those that overlap with it.
Some popular choices of parameter priors, such as the Laplacean prior, would result
in inconsistent submodel posteriors. Imagine estimating two entangled coins using the
Laplacean prior. If a single coin c1 is estimated independently, we will obtain the pos-
terior predictive probability of pH = (1 + #c1=H)/(2 + #). If we estimate two co-tossed
coins simultaneously, and marginalize c2 out, we obtain a non-matching

pH =
2 + #(c1 = H, c2 = H) + #(c1 = H, c2 = T )

4 + #
.

Let us now consider a submodel on attributes Xs = {X1, X2, . . . , Xk}. All the at-
tributes are assumed to be nominal, and the multinomial submodel would be appropriate.
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The multinomial submodel is parameterized by the vector θS whose dimensionality cor-
responds to the cardinality of

∏k
i=1 |Xi|. A coordinate θS:x1,...,xk

can be interpreted as the
probability of occurrence of (x1, . . . xk). What we need is a prior P (θS) that assures that
the posterior predictive distribution P (xS |D) =

∫
P (θS |D)P (xS |θS)dθS will be consistent

with all submodels that share attributes with XS .

It is quite easy to see that the following choice of the symmetric Dirichlet prior fulfills
the demand of predictive consistency, if the same value of ϑ is used for all the submodels:

P (θS |ϑ) = Dirichlet(α, . . . , α), α =
ϑ

∏k
i=1 |ℜXi

|
(8.18)

This prior is best understood as the expected number of outliers: to any data set, we add
ϑ uniformly distributed instances. There is also an implied assumption of no structural
zeros: not making such an assumption may result in zero likelihood of the test data.

In some cases, it is desirable not to integrate the parameters θS out. Instead, we would
want a posterior distribution over θS . The main problem here is to assure the consistency
in each posterior sample: this can be achieved by sampling in the space of consistent
parameter values, by ensuring that the prior probability of inconsistent parameters is zero.
For each such sample, we perform the maximum entropy fusion. A further discussion of
the relation between Bayesian and MaxEnt inference appears in (Cheeseman and Stutz,
2004). Again, we will not follow this approach and will only work on the submodel
posterior means.

8.3.2 Parameterizing the Structure

The structure in the context of Kikuchi-Bayes is simply a selection of the submodels.
P (M) models our prior expectations about the structure of the model. Parsimony means
that we should not select all the submodels, and the motivation for this is not just the
subjective desire for simplicity but also the frequentist problem of objective identifiability
and the decision-theoretic desire to minimize the expected loss. We will now provide a
parsimonious prior that asserts a higher prior probability to simpler selections of submod-
els.

The primary question is how to quantify the complexity of the set of submodels.
Neither the number of submodels nor the total number of parameters across the submodels
inM would be sensible choices: some submodels describe attributes with a greater number
of values, and some submodels may be partly contained within other submodels. An
interesting quantification of complexity that solves this dilemma is given by Krippendorff
(1986) in the context of loglinear models without structural zeros. Let us assume a set
of overlapping submodels of the attribute vector V, and the resulting region graph R
obtained using the CVM. The number of degrees of freedom of the joint modelM with a
corresponding region graph R is:

dfM ,
∑

〈S,c〉∈R
c
(

− 1 +
∏

X∈S
|ℜX |

)

(8.19)

The overlap between submodels is hence handled in an analogous way both for fusion in
(8.15) and for the assessment of degrees of freedom.
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The following prior corresponds to the assumption of exponentially decreasing prior
probability of a structure with an increasing number of degrees of freedom (or effective
parameters):

P (M)
△∝ exp

{

− m dfM
m− dfM − 1

}

(8.20)

We discourage the degrees of freedom from exceeding the number of training instances
m. This choice of the prior has a frequentist justification: it corresponds to the Akaike
information criterion (AIC) with small-sample correction (Burnham and Anderson, 2002).
Akaike information criterion and the underlying objective of minimizing the expected loss
on an independent sample from the model itself has been justified in philosophy of science
(Forster and Sober, 1994). Performing MAP inference of the structure parameterM with
such a prior would correspond to maximizing the AIC. Thus, our prior corresponds to
the subjective choice of the frequentist paradigm along with a particular loss function. A
Bayesian will make sure that the prior is properly normalized, of course, and will attempt
to account for multiple models.

A submodel can be included into M without increasing the degrees of freedom. As-
sume that Kikuchi approximation has considerable approximation error fusing a set of
interactions Mc ⊂ M. We can perform the perfect MaxEnt fusion solely on the at-
tributes involved in Mc, form a submodel and include that submodel. Some care must
be consequently taken to assess the degrees of freedom correctly. Furthermore, we should
note that ordinary MaxEnt is not necessarily appropriate for classification, as we have
seen in Sect. 5.3.2. But in the simple joint case, it is easy to see that Kikuchi approxima-
tion would be exact had we performed the above procedure on all maximal cliques of the
Markov network that corresponds toM.

8.3.3 The Prior and the Likelihood Function for Classification

Our objective is predictive class probability estimation with the Kikuchi approximation
(8.15). We need to define the prior on the structure variableM and the likelihood ofM
given the data. IfM is going to be used for prediction, the effective degrees of freedom are
fewer (“Conditional density estimation is easier than joint density estimation.”). Assuming
a single attribute Xi, the degrees of freedom of the conditional model P (Y |Xi) correspond
to the difference between the cardinality of the range of both Y and X1 at once less the
cardinality of the range of X1 alone: dfY |Xi

= |ℜXi
× ℜY | − |ℜX1 |. In general, if we

condition upon a subset of attributes Y ⊆ X , the degrees of freedom of the resulting
conditional model will be defined as:

dfMY
,

∑

〈S,c〉∈R
c

(
∏

X∈S
|ℜX | −

∏

X∈S
X /∈Y

|ℜX |
)

(8.21)

The prior P (MY) is obtained by plugging (8.21) into (8.20).

The growth of structures should be guided by whether the addition of a submodel is
of benefit in predicting the label. The following conditional likelihood function takes this
into account:

P̂ (v(1)...(m)|MY) ,

m∏

i=1

P̂ (y(i)|x(i),MY) (8.22)
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Figure 8.1: The negative logarithm of the parsimonious prior is well-aligned with the ex-
pected log-loss across bootstrap resamples in conditional density estimation (left). It is also
reasonably well-calibrated with 3-fold cross-validation (right).

BecauseM was assumed to be independent of ϑ and Θ, we prepare Θ in advance, before
assessing M. The P̂ (y(i)|x(i),M) is obtained by applying the Bayes rule on a Kikuchi
approximation. A different approach to submodel fusion is conceivable, e.g., based on
replacing the Kikuchi approximation with a maximum entropy one.

We can examine the resulting conditional prior empirically on several smaller bench-
mark domains with the number of instances in the order of magnitude of 100 and dis-
cretized attributes: ‘soybean-small’, ‘lung’, ‘post-op’, ‘lymphography’, ‘german credit’
and ‘breast-cancer’. We have compared the posterior log-likelihood of a particular model
M, P (v(1)...(m)|MY , ϑ = 0)P (MY) with the expected total log-loss of the maximum
likelihood estimates on nonparametric bootstrap resamples D∗, across many resamples:
ED∗{−∑v(i)∈D∗ logP (y(i)|x(i))}. The sampling zeros were assumed to be structural zeros,
i.e., if a particular attribute-class combination did not appear in the training data, it was
assumed to be impossible and did not count towards the df (Jakulin and Bratko, 2004b).
The result is shown in Fig. 8.1, and it can be seen clearly that the prior captures the
increase in the variance of the loss on an independent sample.

8.3.4 Structure Search and Path Averaging

It is important to note that only those interactions that include the class label can affect
the predictions. Assume that there is a certain interaction P (X ′) that does not contain
any labelled attributes. If the attribute values are given X = x, the contribution of X ′ will
be a constant ψX ′(x′) = pX′ for all the values of Y. We obtain the following expression:

P̂ (y|x) =
pX′

∏

i ψi(y,xi)
∑

y′ pX′

∏

i ψi(y′,xi)
=

∏

i ψi(y,xi)
∑

y′∈ℜY

∏

i ψi(y′,xi)

Therefore, for a practical classification problem with a single labelled attribute and n
unlabelled attributes, there is only a single relevant submodel of order 1, P (Y ), n relevant
submodels of order 2, P (Xi, Y ), and in general n!

k!(n−k)! =
(
n
k

)
submodels of order k + 1.
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This assumption is not valid, however, in the context of semi-supervised learning and in
severe cases of missing attribute values. In such situations, we can infer the values of a
certain attribute X ′ based on other attributes, and employ this inferred information in
predicting the label.

Although integrating the structure out using (8.16) is theoretically simple, we need to
sample in the space of M. It is very expensive to exhaustively survey the whole lattice
of possible structures. Even if we did that, we would not be able to explain what our
model is. We will adopt a simpler approach: hill-climbing. We will greedily ascend to
the local maximum a posteriori structure by including the best individual region at each
step, one that maximizes the posterior structure probability. Even once we get there, we
keep descending for a while, as long as the structure’s likelihood keeps increasing. On the
termination of ascent, we integrate out the stage of the path. In other words, we perform
Bayesian model averaging with respect to the length of the greedy path to the top and
beyond.

This way, we obtain a compact depiction of the optimal hilltop (maximum a posteriori
structure), the continuing of the path towards the dangerous peak (maximum likelihood
structure). Integrating out the stage of the path prevents overconfidence in a particular
structure and overfitting on the test data. Furthermore, the model average is essentially
transparent and interpretable, as we can easily present the ordering of the regions as they
were included into the model.

During the climb, we are guided by one-level lookahead (Buntine, 1991). This can be
done efficiently with Kikuchi-Bayes using the tricks of Caruana et al. (2004): including a
new region corresponds to just multiplying the approximate joint PMF with another term
and renormalizing for each instance. With the considerable increase in performance that
ensues, we can afford to find the best region at every step of the forward selection.

In addition to the look-ahead, we use the step-wise forward selection algorithms, nor-
mally used for loglinear models (Jobson, 1992). We first ascend by adding regions of size
k attributes. When this becomes impossible, we continue ascending through addition of
regions of size k+ 1 attributes. The purpose of the step-wise approach is both to increase
the performance by decreasing the fanout in the search tree and to smooth the path. For
example, we prevent immediately adding the initial region ABY if adding AY and BY
is just as good. Still, we grow models faster than we would by only attempting unitary
increases in their degrees of freedom: we skip forward by adding whole regions. In all,
other search algorithms could be used, especially stochastic ones, but we should be careful
as counting the same model structure multiple times would interfere with the prior.

The algorithm for greedy model search is shown as Algorithm 8.2. The end result is a
sequence of ℓ pairs 〈pi,Si〉 ∈ M. We compute the Bayesian model average (Hoeting et al.,
1999) for the sequence as:

P̂ (y|x) =

∑ℓ
i=1 piP̂ (y|x, CV A(S1,S2, . . . ,Si))

∑ℓ
i=1 pi

(8.23)

The Occam window C is used to stop the search once the new models would have an
overwhelmingly small impact on the outcome. This improves the efficiency and restricts
the number of models we have to average over. Otherwise, our approach to Bayesian
model averaging along a greedy ascent was inspired by and has much in common with
the ideas from computational learning theory, such as boosting (Freund et al., 2004), and
regularization paths (Hastie et al., 2004).
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M← ∅
S ′ ← {Y }, φ′ ← CV A(S ′) {Initial model.}
k ← 1, j ← 1, p← 0, p′ ← 0
repeat

if P̂ (φ′|D) > p ∧ CP (φ′)P̂ (φ′|D) ≥ p′ then {better likelihood, a relevant posterior}
p← P̂ (φ′|D) {new likelihood}
if pP (φ′) > p′ then {improvement in the posterior}
p′ ← pP (φ′) {new maximum a posteriori model}

end if
Mj ← 〈pP (φ′),S ′〉 {include the best interaction of the previous iteration}
j ← j + 1
for all S ⊆ X , |S| = k do {examine all interactions of the present order}
φS ← CV A(M∪{S ∪ {Y }}) {parameters obtained by including an interaction}

end for
〈S ′, φ′〉 ← arg max〈S,φ〉 P (φ)P̂ (φ|D) {pick the best a posteriori interaction}

else
k ← k + 1 {try interactions of higher order}

end if
until k > K
returnM
Algorithm 8.2: This algorithm yields an initial set of regions with their posterior proba-
bilities M = [〈p1,S1〉, . . . , 〈pℓ,Sℓ〉} based on the data D. The data is represented with the
set of attributes X , and the objective is to predict the label Y . The algorithm examines all
interactions of the order K + 1 or less for possible inclusion in the predictive model. The
window C = 100 is used to limit how far away from the best a posteriori model it is worth
venturing.

The actual implementation is highly efficient, and avoids recomputing the full region-
based approximation. Instead, it is possible to include a region to an existing region
graph in constant time. Furthermore, we employ various caching techniques, and operate
on log-probabilities. Finally, to avoid a combinatorial explosion, a certain limit is placed
on the maximum number of 2-way and 3-way interactions that will be examined (in our
case, 1500). The choice of which ones will be considered is based on an estimate obtained
for the lower-order interactions with a calculation that resembles interaction information.

8.3.5 Examples

If our intention is to visualize the learned structure, a reasonable choice is to pick the
structure with the maximum a posteriori probability. An example is shown in Fig. 8.2.
Interactions of size 4 are not merely a theoretical curiosity, but identify certain intuitive
symmetries and features of the tic-tac-toe board.

Although we perform a Bayesian model average, we can show the whole chain by
enumerating individual interactions, and labelling them with the posterior probability
of the structure. The enumeration provides a measure of importance, and the posterior
structure probability an indication of what complexity is most appropriate. The posterior
probability is not shown if it is lower than C−1. Two examples of resulting models are
shown in Fig. 8.3.
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Figure 8.2: The tic-tac-toe game board comprises 9 squares, each described with a 3-valued
attribute with the range {×, ◦, }. The goal is to develop a predictive model that will indicate
if a board position is winning for × or not: this is the 2-valued class attribute. The illustration
shows the interactions of the MAP model identified by our algorithm: 2-way interactions (5
green circles), 3-way interactions (4 blue serif lines), and 4-way interactions (6 red dashed
lines). Each interaction includes the label.

8.3.6 Experiments

We have taken 46 UCI data sets. The data sets were discretized with the Fayyad-Irani
method and the missing values were interpreted as special values. For each data set, we
performed 5 replications of 5-fold cross-validation.

The comparison included the Kikuchi-Bayes algorithm, both with model averaging
(kBMA) and with the maximum a posteriori structure (kMAP). It was compared with the
näıve Bayes (NB) and tree-augmented näıve Bayes (TAN), using the same Dirichlet prior
for estimating the conditional probabilities. We examined multinomial logistic regression
with the baseline (Agresti, 2002), as implemented in the Orange toolkit (Jakulin, 2002),
and with the well-known C4.5 (Quinlan, 1993, Demšar and Zupan, 2004) as a typical
representative of classification trees.

All recommendations regarding optimal performance both for SVM and logistic regres-
sion were used. For example, the most frequent class was used as the baseline, and the
most frequent value of a discretized attribute was used to count towards the baseline in
logistic regression. Furthermore, care was taken to prevent singularities, and a weak prior
was used to prevent infinite logarithmic loss. In all, we have put a considerable effort to
assure that the comparison will be fair to alternative methods. We list the results along
with the commentary in Tables 8.1 through 8.6.

Simple Probabilistic Models and Calibration of the Prior

Table 8.1 shows that Kikuchi-Bayes with model averaging manages to outperform several
of the today’s most frequently used probabilistic classifiers: multinomial logistic regression
with the baseline, tree-augmented näıve Bayes and the näıve Bayesian classifier. At the
same time, Kikuchi-Bayes is efficient in spite of the fact that it follows a fully Bayesian
approach by treating the structure as a nuisance variable and that it uses exhaustive
lookahead in exploring the structure space: most data sets were processed in a fraction
of a second, although a large number of attributes reduces the performance (‘yeast class’
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Figure 8.3: The Kikuchi-Bayes model can be visualized effectively using interaction graphs
of Chapter 6. Two elements are included: the rank of an interaction, and the weight of the
model in the ensemble. For example, in ‘Titanic’ the sex attribute ranks first - it is the most
important attribute of survival chances, followed in that order by status and age. Further
interactions involved a positive and a negative interaction with status. Practically all the
predictive weight in the ensemble is assigned to the final model. On the other hand, in ‘CMC’
we interpolate between three models: 6, 7 and 8.

with 79 attributes, ‘audiology’ with 69 attributes). Logistic regression had the worst error
rate, and TAN the worst log-loss. The log-loss performance does not correlate well with
the error rate. Nevertheless, the same Kikuchi-Bayes models are ranked as the best.

Still, there are a few data sets where kBMA is inferior. A relatively large proportion
of them are marked with ‘*’ meaning that the number of degrees of freedom of the näıve
Bayesian classifier exceeded the number of instances. In frequentist terms, this would indi-
cate severe overfitting. Nevertheless, such a complex model performs quite well according
to the cross-validated score. When the number of attributes exceeds 50, the performance
of Kikuchi-Bayes drops. In such cases, the order of interactions should be decreased for
tractability, or the attributes could be handled with more efficient methods, such as with
those of Sect. 6.5.

The prior we are employing to discount the complexity is not well-calibrated with
cross-validation performance, as shown in Fig. 8.4. This does not matter, though: the
correction would be a constant factor. The influence of this constant factor would be
eliminated in normalization. We are not using absolute posterior probabilities anywhere,
we merely use them to assign weights to individual structures. Nevertheless, the final loss
estimate does depend on the number of cross-validation folds.

Nevertheless, we can conclude that a combination of Kikuchi-Bayes and logistic re-
gression almost always outperforms the näıve Bayesian classifier and the tree-augmented
näıve Bayes. But, there are several domains where the Kikuchi-Bayes does not perform
well. Interestingly, the nature of these domains conflicts with the assumption indepen-
dently and identically distributed instances (IID): the instances are not a random sample.
For example, the domain ‘car’ is a function that was sampled exhaustively. ‘Zoo’ is a list
of representative animals. ‘Tic-tac-toe’ is a list of all possible board positions. However,
cross-validation or bootstrap as evaluation protocols already enforce certain assumptions,
and the learning algorithm has to match them in order to obtain good performance. So
the learning algorithm does not have the freedom of choosing the assumptions: it has to
match the assumptions of the evaluation protocol. The choice of the evaluation protocol



8.3. Learning Interaction Models 175

 2

 4

 6

 8

 10

 12

 2  4  6  8  10  12

-l
o

g
-p

ri
o

r

log-loss increase on test data (5xCV)

soy-small
lung

postop
breast

german
zoo

voting
lymph

 4

 6

 8

 10

 12

 14

 16

 18

 4  6  8  10  12  14  16  18

e
x
p

e
c
te

d
 i
n

c
re

a
s
e

 i
n

 l
o

g
-l
o

s
s
 o

n
 t

e
s
t 

d
a

ta
 (

1
0

x
C

V
)

expected increase in log-loss on test data (5xCV)

soy-small
lung

postop
breast

german
zoo

voting
lymph

Figure 8.4: The negative logarithm of the parsimonious prior is conservatively biased in com-
parison to 5-fold cross-validation (left). But on the other hand, 10-fold cross-validation loss is
also a biased estimate of 5-fold cross-validation loss (right). The consequence of this misalign-
ment is that Kikuchi-Bayes is systematically excessively conservative about the complexity of
its models.
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Figure 8.5: There does not seem to be much correlation between leave-one-out (LOO) esti-
mates of expected loss and those of cross-validation with a smaller number of folds. Therefore,
the efficiency of LOO estimates is of little benefit when cross-validation estimates are used in
the end.
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can be likened to the choice of the prior.

Does Kikuchi-Bayes Overfit?

How important are interactions of higher order? We approach this question by applying
Algorithm 8.2 with different settings of K, the maximum order of interaction. K2 denotes
the MAP Kikuchi-Bayes with K = 2. K3T is Kikuchi-Bayes with K = 3 prevented from
forming patterns of interactions that cannot be factorized in an exact fashion. K3 and
K4 are unrestricted with respect to the structure of interactions. The prefix b indicates
that Bayesian model averaging is used instead of the MAP model in K∗. Additionally, we
include KX, the Kikuchi-Bayes model with all possible 3-way interactions involving the
label.

The results are summarized in Table 8.2 for the log-loss, and in Table 8.3 for error rate.
Although high-order interactions help with few data sets, they rarely hurt the performance.
This implies that our method for penalizing the complexity of a model does seem to be
effective. Bayesian model averaging almost consistently helps. The ability to factorize the
interaction model does not seem particularly important, although it might prove to be a
useful heuristic for reducing the search complexity.

The terrible performance of KX in Tables 8.2 and 8.3 indicates the importance of
selecting interactions. Adding an interaction in the context of Kikuchi-Bayes may some-
times reduce the model’s likelihood, not just its posterior probability. We refer to this as
approximation error due to the use of suboptimal Kikuchi approximation. There would
be no decrease in likelihood had we used MaxEnt instead, or if we only used the maximal
cliques of the Markov network as initial regions.

Even if the joint approximation error did not increase when an interaction was added,
the class-predictive approximation error D(P (Y |X)‖P̂ (Y |X)) can well increase. This is
noticeable already in the example of the näıve Bayesian classifier, as we have seen in
Sect. 7.3.4 and in the examples of Sect. 5.3.2. The nature of the difference between the
joint and the class-predictive approximation error probably lies in the problem of double-
counting of evidence (Jakulin and Bratko, 2003). It has been shown that double-counting
of evidence does not hurt the error rate as much as it hurts the log-loss (Domingos and
Pazzani, 1997, Rish et al., 2001). As a confirmation of this observation, we can notice
that NB and TAN are not as disadvantaged when error rate is used as the loss function,
but this does not help them gain considerably in rank.

The Dangers of Myopic Interaction Selection

We could imagine a simple algorithm for constructing models that decides on what in-
teractions should be included using mutual information I(X;Y ), or the importance of a
3-way interaction, as assessed using interaction information I(X1;X2;Y ). We could decide
on a particular significance testing threshold γ, and include all interactions whose P -value
is lower than γ.

Unfortunately, such an algorithm does not work well for a number of reasons:

• Interaction information is based on a non-normalized probability distribution.

• Interaction information does not directly estimate the class-predictive accuracy.
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log-loss / instance error rate
domain tK n df NB TAN LR kMAP kBMA NB TAN LR kMAP kBMA
horse-colic 1.89 369 228 1.67 ·5.97 1.81

√
0.83 0.83 25.7 ·67.3 √

35.0
√

30.1
√

30.6
hepatitis 0.47 155 48 0.78 ·1.31 √

0.77
√

0.48 0.43
√

15.6
√

17.5 ·19.1 14.5
√

15.0
ionosphere 3.71 351 129

√
0.64 ·0.74 0.69

√
0.39 0.33 7.4

√
8.2 ·13.6 √

9.6
√

9.6
vehicle 0.42 846 205 ·1.78 1.14 0.93

√
0.69 0.66 ·39.6 29.7

√
33.4

√
31.4

√
31.3

voting 0.23 435 48 ·0.60 0.53 0.37
√

0.21 0.15 ·9.3 √
7.9

√
6.7

√
4.6 4.6

monk2 0.01 601 17 0.65 0.63 ·0.65 √
0.45 0.45 38.2 36.2 ·39.6 √

27.6 26.8
p-tumor* 0.39 339 552

√
3.17 ·4.76 √

2.76 2.65 2.61 54.7
√

61.5
√

63.6 ·71.3 ·71.3
heart 0.15 920 167 1.25 ·1.53 1.24

√
1.11 1.10 42.8

√
44.1 ·46.2 √

44.8
√

44.8
post-op 0.01 88 19

√
0.93 ·1.78 √

0.81
√

0.79 0.67
√

33.4
√

32.7 ·34.5 28.4
√

28.6
wdbc 0.57 569 61 0.26 0.29 ·0.42 √

0.15 0.13
√

4.2
√

4.4 ·7.8 4.0
√

4.1
promoters* 37.5 106 227

√
0.60 ·3.14 √

0.70
√

0.59 0.54
√

13.4 30.4 ·57.4 10.4
√

10.6
lymph 0.39 148 94

√
1.10 ·1.25 √

0.91
√

0.98 0.86
√

20.1 16.1
√

23.1 ·26.5 √
25.7

cmc 0.04 1473 55 1.00 ·1.03 0.97
√

0.93 0.92 47.8
√

45.8 ·49.7 √
43.6 43.4

adult 1.11 32561 134 ·0.42 0.33 0.35 0.30 0.30 ·16.4 14.3 13.6
√

13.9
√

13.9
crx 0.19 690 58

√
0.49 ·0.93 √

0.39
√

0.37 0.36
√

14.1 ·17.1 √
14.1 13.3

√
13.8

krkp 6.52 3196 69 ·0.29 0.19 0.08
√

0.06 0.05 ·12.4 7.8
√

2.5 1.6
√

1.7
glass 0.03 214 90

√
1.25 ·1.76 √

1.07 1.12 1.05 28.3
√

29.2
√

32.0 ·32.1 √
31.4

australian 0.16 690 49
√

0.46 ·0.94 √
0.39

√
0.41 0.38

√
14.3 ·17.6 √

15.4
√

14.3 14.3
titanic 0.01 2201 8 ·0.52 √

0.48 0.50
√

0.48 0.48 ·22.3 21.1
√

22.2 21.1
√

21.1
segment 0.74 2310 617 0.38 ·1.06 0.45 0.17 0.17

√
6.5 ·14.2 √

7.7 5.4 5.4
lenses 0.00 24 14

√
2.44 ·2.99 √

0.89 0.34 0.39
√

28.3 ·35.8 √
26.7 12.5

√
15.0

monk1 0.01 556 16 0.50 0.09 ·0.50 0.01
√

0.02 25.4 0.0 ·25.5 0.0 0.0
breast-LJ 0.03 286 24

√
0.62 ·0.89 0.58

√
0.67

√
0.58 27.8

√
28.4

√
28.3 ·29.0 √

28.7
monk3 0.01 554 17 ·0.20 √

0.11 0.10
√

0.11
√

0.11 ·3.6 √
1.6

√
1.7

√
1.1 1.1

bupa 0.01 345 12 ·0.62 √
0.60 0.60

√
0.62

√
0.61

√
33.9

√
32.8 ·34.5 √

33.2 32.8
tic-tac-toe 0.03 958 27 ·0.55 0.49 0.06

√
0.08

√
0.07 ·29.8 23.8 2.0

√
3.1

√
2.9

pima 0.02 768 19
√

0.50
√

0.49 0.46 ·0.51 √
0.48

√
22.1

√
22.1 21.8 ·22.4 √

22.0
iris 0.00 150 15

√
0.27 ·0.32 0.21

√
0.27

√
0.23 ·6.3 √

6.0
√

5.6 5.2 5.2
spam 39.9 4601 156 ·0.53 0.32 0.16 0.19

√
0.19 ·9.7 √

6.9 5.9
√

6.2
√

6.2
breast-wisc 0.03 683 28

√
0.21 ·0.23 0.13

√
0.21

√
0.18 2.6

√
3.4

√
3.9

√
3.9 ·4.0

german 0.64 1000 68
√

0.54 ·1.04 0.52 0.65
√

0.59
√

24.5 ·27.3 24.4
√

26.3
√

26.3
anneal 6.16 898 204

√
0.07 ·0.17 0.02 0.11 0.11

√
1.3 ·2.9 0.3 2.4 2.5

ecoli 0.01 336 92
√

0.89 ·0.94 0.68
√

0.85
√

0.83 15.3
√

15.4 ·16.8 √
16.4

√
16.2

hayes-roth 0.00 160 24 0.46 ·1.18 0.26 0.45 0.45
√

14.9 ·29.9 √
17.0 13.5 13.5

balance-scale 0.00 625 40 0.51 ·1.13 0.28 0.51 0.51
√

9.3 ·15.0 8.5
√

9.3
√

9.3
soy-large* 5.95 683 822

√
0.57

√
0.47 0.37 ·0.68 0.68

√
9.0

√
8.4 7.7 ·27.0 27.0

o-ring 0.00 23 7
√

0.83
√

0.76 0.66 ·1.41 √
1.00 13.0 ·22.6 √

17.4
√

22.6
√

19.1
lung-cancer* 35.0 32 233 5.41 ·6.92 1.24

√
2.37

√
1.62 51.9

√
63.8 ·70.6 √

60.6
√

61.9
audiology* 81.2 226 1783 3.55 ·5.56 1.40 2.24 2.23

√
40.8 62.7 26.0 ·68.6 ·68.6

soy-small* 5.29 47 115
√

0.00 0.00 ·0.15 0.00 0.00 0.0 0.0 ·2.1 0.0 0.0
mushroom 1.33 8124 72 ·0.01 0.00 0.00 0.00 0.00 ·0.4 0.0 0.0

√
0.0

√
0.0

shuttle 0.01 253 15 ·0.16 0.06
√

0.10
√

0.07
√

0.07 ·6.7 √
2.8 2.5

√
3.6

√
2.9

car 0.02 1728 48 0.32 0.18 ·0.33 0.19 0.19 14.6 5.9 ·16.7 √
6.5

√
6.5

zoo* 0.23 101 124 0.38 ·0.46 √
0.38

√
0.40

√
0.40 3.6

√
6.3

√
7.5 ·12.9 √

12.1
wine 0.10 178 50 0.06 ·0.29 √

0.09
√

0.19
√

0.14 0.9
√

3.1
√

2.2 ·4.3 √
3.6

yeast-class* 138 186 376 0.01
√

0.03 ·0.90 0.25 0.23 0.1
√

0.3 ·34.9 √
2.9

√
2.9

avg rank 3.68 ·3.99
√

2.54 2.84 1.95 2.98 3.20 ·3.34
√

2.87 2.62

Table 8.1: A comparison of Kikuchi-Bayes with the maximum a posteriori structure (kMAP)
and with Bayesian model averaging (kBMA), logistic regression with the baseline (LR), näıve
Bayesian classifier (NB), and the tree-augmented näıve Bayes (TAN). The best result is typeset
in bold, and the results of those methods that matched or outperformed the best method in at
least 2 of the 25 experiments are tagged with

√
. df are the degrees of freedom of the ordinary

näıve Bayesian classifier, and n is the number of instances. The sparse data sets with fewer
instances than degrees of freedom are tagged with ‘*’. tK marks the time in seconds spent by
the Kikuchi-Bayes algorithm for learning the model structure from k-way interactions, k ≤ 4,
on a contemporary notebook computer. The domains are sorted with respect to what method
performed best.
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log-loss / instance
domain NB TAN KX K2 K3T K3 K4 bK2 bK3T bK3 bK4
adult 0.42 0.33 ·0.67 0.31 0.30 0.30 0.30 0.31

√
0.30

√
0.30 0.30

krkp ·0.29 0.19 0.25 0.26 0.11 0.08
√

0.06 0.26 0.11 0.08 0.05
monk2 0.65 0.63 0.51 ·0.65 0.60 0.54

√
0.45 0.65 0.60 0.53 0.45

spam 0.53 0.32 ·3.74 √
0.21

√
0.19

√
0.19

√
0.19

√
0.21

√
0.19

√
0.19 0.19

tic-tac-toe ·0.55 0.49 0.41 0.53 0.53 0.42
√

0.08 0.53 0.52 0.42 0.07
titanic 0.52

√
0.48

√
0.48 ·0.52 √

0.48
√

0.48
√

0.48 0.52
√

0.48
√

0.48 0.48
glass

√
1.25

√
1.76 ·4.59 1.12 1.12 1.12 1.12

√
1.05

√
1.05 1.05 1.05

heart 1.25 1.53 ·2.77 √
1.10

√
1.11

√
1.11

√
1.11

√
1.10

√
1.10 1.10 1.10

horse-colic 1.67 ·5.97 5.67
√

0.83
√

0.83
√

0.83
√

0.83
√

0.83
√

0.83 0.83 0.83
iris

√
0.27

√
0.32 ·2.87 √

0.27
√

0.27
√

0.27
√

0.27
√

0.23
√

0.23 0.23 0.23
lymph

√
1.10

√
1.25

√
1.98

√
0.98

√
0.98

√
0.98

√
0.98

√
0.86

√
0.86 0.86 0.86

p-tumor*
√

3.17 ·4.76 2.99 2.65 2.65 2.65 2.65
√

2.61
√

2.61 2.61 2.61
promoters*

√
0.60 3.14 ·3.15 √

0.59
√

0.59
√

0.59
√

0.59
√

0.54
√

0.54 0.54 0.54
vehicle 1.78 1.14 ·4.98 √

0.82
√

0.69
√

0.69
√

0.69
√

0.81
√

0.66 0.66 0.66
audiology*

√
3.55 ·5.56 3.11

√
2.24

√
2.24

√
2.24

√
2.24 2.23 2.23 2.23 2.23

segment 0.38 1.06 ·1.79 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
cmc 1.00 1.03 ·1.24 √

0.93
√

0.93
√

0.93
√

0.93
√

0.93 0.92
√

0.92
√

0.92
ionosphere

√
0.64 0.74 ·3.93 √

0.38
√

0.39
√

0.39
√

0.39
√

0.34 0.33
√

0.33
√

0.33
wdbc 0.26 0.29 ·1.16 √

0.14
√

0.15
√

0.15
√

0.15
√

0.13 0.13
√

0.13
√

0.13
ecoli

√
0.89

√
0.94 ·2.71 √

0.85
√

0.85
√

0.85
√

0.85 0.83 0.83
√

0.83
√

0.83
lung-cancer* 5.41 6.92 ·8.26 √

2.37
√

2.37
√

2.37
√

2.37 1.62 1.62
√

1.62
√

1.62
australian

√
0.46 0.94 ·1.45 √

0.37
√

0.39
√

0.39
√

0.41 0.36
√

0.38
√

0.38
√

0.38
breast-LJ

√
0.62

√
0.89 ·1.06 √

0.57
√

0.67
√

0.67
√

0.67 0.56
√

0.58
√

0.58
√

0.58
breast-wisc

√
0.21

√
0.23 ·1.86 √

0.17
√

0.21
√

0.21
√

0.21 0.17
√

0.18
√

0.18
√

0.18
crx

√
0.49 0.93 ·1.22 √

0.36
√

0.37
√

0.37
√

0.37 0.35
√

0.36
√

0.36
√

0.36
german

√
0.54 1.04 ·1.54 √

0.53 0.64 0.64 0.65 0.53
√

0.59
√

0.59
√

0.59
hepatitis

√
0.78 1.31 ·2.03 √

0.48
√

0.48
√

0.48
√

0.48 0.43
√

0.43
√

0.43
√

0.43
post-op

√
0.93

√
1.78 ·2.70 √

0.79
√

0.79
√

0.79
√

0.79 0.67
√

0.67
√

0.67
√

0.67
voting 0.60 0.53 ·3.23 √

0.16
√

0.21
√

0.21
√

0.21 0.15
√

0.15
√

0.15
√

0.15
balance-scale 0.51 1.13 ·1.27 √

0.51
√

0.51 0.51 0.51 0.51
√

0.51
√

0.51
√

0.51
monk1 ·0.50 0.09 0.10 0.49

√
0.08

√
0.08 0.01 0.49 0.08 0.08

√
0.02

hayes-roth
√

0.46 1.18 ·1.71 0.45 0.45 0.45 0.45
√

0.45
√

0.45
√

0.45
√

0.45
lenses

√
2.44 2.99 ·3.87 0.34 0.34 0.34 0.34 0.39 0.39 0.39 0.39

pima
√

0.50
√

0.49
√

0.56 0.48
√

0.49
√

0.49
√

0.51
√

0.48
√

0.48
√

0.48
√

0.48
monk3

√
0.20 0.11 0.10

√
0.20

√
0.11

√
0.11

√
0.11

√
0.20

√
0.11

√
0.11

√
0.11

shuttle 0.16
√

0.06 0.04 0.17
√

0.07
√

0.07
√

0.07 ·0.17 √
0.07

√
0.07

√
0.07

bupa
√

0.62 0.60
√

0.62
√

0.62
√

0.61
√

0.62
√

0.62
√

0.62
√

0.61
√

0.61
√

0.61
car 0.32 0.18 ·2.62 0.32 0.19 0.19 0.19 0.32 0.19 0.19 0.19
mushroom 0.01 0.00 ·0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00
o-ring

√
0.83 0.76

√
0.81

√
1.41

√
1.41

√
1.41

√
1.41

√
0.99

√
0.99

√
1.00

√
1.00

soy-large*
√

0.57 0.47 ·2.88 √
0.68

√
0.68

√
0.68

√
0.68

√
0.68

√
0.68

√
0.68

√
0.68

soy-small*
√

0.00 0.00 ·1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
anneal 0.07

√
0.17 ·1.39 0.12

√
0.11

√
0.11

√
0.11 0.12

√
0.11

√
0.11

√
0.11

wine 0.06
√

0.29 ·7.30 √
0.19

√
0.19

√
0.19

√
0.19

√
0.14

√
0.14

√
0.14

√
0.14

yeast-class* 0.01
√

0.03 ·1.27 0.25 0.25 0.25 0.25 0.23 0.23 0.23 0.23
zoo* 0.38

√
0.46 ·1.79 √

0.40
√

0.40
√

0.40
√

0.40
√

0.40
√

0.40
√

0.40
√

0.40

avg rank 7.79 7.88 ·9.65 6.57 6.26 6.03 5.85 5.09 4.05
√

3.61 3.22

Table 8.2: We have noticed no deterioration by increasing the maximum initial region size,
so the prior effectively prevents overfitting: the rank of classifiers with an increasing size of
interactions is decreasing monotonically. However, attempting the inclusion of large regions
is sometimes futile: the initial regions of size 3 or even just 2 were perfectly sufficient in many
natural data sets. Although these higher-order interactions are relatively rare in real-life data
(they only appear in the first 6 data sets and in ‘monk1’), we should have the capacity to
handle them.
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error rate
domain NB TAN KX K2 K3T K3 K4 bK2 bK3T bK3 bK4
adult 16.4

√
14.3 ·20.9 14.6

√
13.9

√
13.9

√
13.9 14.6

√
13.9

√
13.9 13.9

monk2 ·38.2 36.2
√

27.6 34.3 35.3
√

30.2
√

27.6 34.3 35.3
√

29.7 26.8
balance-scale 9.3 15.0 ·17.5 9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3
cmc 47.8

√
45.8 ·50.0 √

45.1
√

43.6
√

43.6
√

43.6
√

45.3 43.4 43.4 43.4
hayes-roth

√
14.9 29.9 ·33.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5

iris
√

6.3
√

6.0 ·56.7 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
monk1 ·25.4 0.0 0.0 25.4 0.0 0.0 0.0 25.4 0.0 0.0 0.0
monk3 ·3.6 √

1.6
√

1.2 ·3.6 √
1.1

√
1.1

√
1.1 ·3.6 √

1.1 1.1 1.1
segment

√
6.5 14.2 ·85.0 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

soy-small* 0.0 0.0 ·63.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tic-tac-toe ·29.8 23.8 19.4 27.8 26.6 20.8

√
3.1 27.8 26.7 20.4 2.9

australian
√

14.3
√

17.6 ·30.5 √
14.6

√
14.1

√
14.1

√
14.3

√
14.6

√
14.1 14.1

√
14.3

spam 9.7
√

6.9 ·38.2 √
6.9

√
6.3

√
6.2

√
6.2

√
6.9 6.2

√
6.2

√
6.2

pima
√

22.1
√

22.1
√

25.5 21.7
√

22.2
√

22.2
√

22.4 21.7
√

22.0
√

22.1
√

22.0
voting 9.3

√
7.9 ·30.3 4.4

√
4.6

√
4.6

√
4.6 4.4

√
4.6

√
4.6

√
4.6

wdbc
√

4.2
√

4.4 ·10.9 √
4.0

√
4.0

√
4.0

√
4.0 3.9

√
4.0

√
4.1

√
4.1

crx
√

14.1
√

17.1 ·23.4 √
14.4

√
13.7 13.3 13.3

√
14.3

√
13.9

√
13.7

√
13.8

hepatitis
√

15.6
√

17.5
√

20.6 14.5 14.5 14.5 14.5
√

15.4
√

15.0
√

15.0
√

15.0
krkp ·12.4 7.8 6.5 7.6 3.4

√
2.4 1.6 7.7 3.4

√
2.3

√
1.7

lenses
√

28.3
√

35.8
√

60.0 12.5 12.5 12.5 12.5
√

15.0
√

15.0
√

15.0
√

15.0
post-op

√
33.4

√
32.7

√
39.5 28.4 28.4 28.4 28.4

√
28.6

√
28.6

√
28.6

√
28.6

promoters*
√

13.4 ·30.4 √
27.4 10.4 10.4 10.4 10.4

√
10.6

√
10.6

√
10.6

√
10.6

bupa
√

33.9
√

32.8 31.4
√

34.0
√

33.5
√

33.2
√

33.2
√

34.6
√

32.6
√

32.4
√

32.8
shuttle

√
6.7

√
2.8 2.0

√
6.7

√
3.6

√
3.6

√
3.6

√
6.7

√
2.9

√
2.9

√
2.9

titanic
√

22.3
√

21.1 21.0
√

22.3
√

21.1
√

21.1
√

21.1
√

22.3
√

21.1
√

21.1
√

21.1
car 14.6 5.9 ·63.8 14.9

√
6.5

√
6.5

√
6.5 14.9

√
6.5

√
6.5

√
6.5

lymph
√

20.1 16.1 ·49.3 √
26.5

√
26.5

√
26.5

√
26.5

√
25.7

√
25.7

√
25.7

√
25.7

mushroom ·0.4 0.0 0.3
√

0.0
√

0.0
√

0.0
√

0.0
√

0.0
√

0.0
√

0.0
√

0.0
soy-large*

√
9.0 8.4 ·89.3 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0

vehicle 39.6 29.7 ·50.5 36.3
√

31.4
√

31.4
√

31.4 36.2
√

31.3
√

31.3
√

31.3
anneal 1.3

√
2.9 ·24.0 √

2.8
√

2.4
√

2.4
√

2.4
√

2.8
√

2.4
√

2.5
√

2.5
audiology* 40.8 62.7 ·75.8 68.6 68.6 68.6 68.6 68.6 68.6 68.6 68.6
breast-LJ 27.8

√
28.4

√
33.6

√
29.7

√
29.0

√
29.0

√
29.0

√
29.5

√
28.7

√
28.7

√
28.7

breast-wisc 2.6
√

3.4 ·19.8 √
3.9

√
3.9

√
3.9

√
3.9

√
3.9

√
4.0

√
4.0

√
4.0

ecoli 15.3
√

15.4 ·82.3 √
16.4

√
16.4

√
16.4

√
16.4

√
16.2

√
16.2

√
16.2

√
16.2

german 24.5
√

27.3 ·29.2 √
25.4

√
26.4

√
26.3

√
26.3

√
25.3

√
26.2

√
26.4

√
26.3

glass 28.3
√

29.2 ·68.8 √
32.1

√
32.1

√
32.1

√
32.1

√
31.4

√
31.4

√
31.4

√
31.4

heart 42.8
√

44.1 ·51.0 √
44.7

√
44.8

√
44.8

√
44.8

√
44.7

√
44.8

√
44.8

√
44.8

horse-colic 25.7 ·67.3 56.3
√

30.1
√

30.1
√

30.1
√

30.1
√

30.6
√

30.6
√

30.6
√

30.6
ionosphere 7.4

√
8.2 ·34.9 √

9.6
√

9.6
√

9.6
√

9.6
√

9.9
√

9.6
√

9.6
√

9.6
lung-cancer* 51.9

√
63.8

√
71.9

√
60.6

√
60.6

√
60.6

√
60.6

√
61.9

√
61.9

√
61.9

√
61.9

o-ring 13.0
√

22.6
√

21.7
√

22.6
√

22.6
√

22.6
√

22.6
√

19.1
√

19.1
√

19.1
√

19.1
p-tumor* 54.7

√
61.5 ·75.2 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71.3

wine 0.9
√

3.1 ·67.9 √
4.3

√
4.3

√
4.3

√
4.3

√
3.6

√
3.6

√
3.6

√
3.6

yeast-class* 0.1
√

0.3 ·11.1 √
2.9

√
2.9

√
2.9

√
2.9

√
2.9

√
2.9

√
2.9

√
2.9

zoo* 3.6
√

6.3 ·59.4 √
12.9

√
12.9

√
12.9

√
12.9

√
12.1

√
12.1

√
12.1

√
12.1

avg rank 6.00 6.14 ·9.51 6.78 5.74 5.49 5.30 6.51
√

4.86 4.88 4.78

Table 8.3: The näıve Bayes and tree augmented näıve Bayes are not as disadvantaged
when the quality of a classifier is evaluated using the error rate. Nevertheless, Kikuchi-
Bayes outranks them with a margin. We can notice that error rate is a relatively ‘noisy’ loss
function: even when bK4 was not the best, it nevertheless outperformed the winning classifier
in at least some of the experiments: bK4 is not

√
-tagged only in two domains (‘p-tumor’ and

‘audiology’).
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• Significance testing is not directly concerned with maximizing the expected pre-
dictive accuracy of the classifier. Significance only indicates the reliability of a
probability estimate, not the reduction in approximation error.

• Myopic interaction selection disregards the approximation error due to overlapping
interactions.

• Selection of interactions based on the whole model can indirectly manage the ap-
proximation error.

It is interesting to examine the reasons for failure of interaction selection based on signif-
icance testing on a few domains where the differences between methods are most accen-
tuated. We will disregard the generalization error and focus on the approximation error
assessed on the training set itself. Furthermore, we will employ the class-predictive loss
in assessing the interaction. For example, the following definition of a class-predictive
P -value will be used:

γ = Pr
{

D (P ∗(Y |XS)‖P (YS |XS)) ≥ D(P (Y |XS)‖P̂ (YS |XS))
}

Here, P ∗ means an independently drawn resample, P the ‘true’ model, and P̂ the no-
interaction model. We can estimate the P -value using bootstrap, as we have seen in
Sect. 4.2.1. The KL-divergence in our case is such:

D(P (Y |XS)‖P̂ (Y |XS)) =
∑

xS

∑

y

P (xS , y) log2

P (xS , y)
∑

y′ P̂ (xS , y′)

P (xS)P̂ (xS , y)

We plotted the performance of K2, K3 and K3T at various levels of the significance
testing parameter γ. Figure 8.6 illustrates ‘tic-tac-toe’, where KX obtains solid perfor-
mance: the restrictions of K1 and K3T prevent the utilization of these pairs.

Highly significant interactions deteriorate the performance in ‘voting’: after the initial
gains (based on two 2-way interactions and one 3-way interaction), additional interactions
result in large approximation errors. The factorizable model of K3T is better than K3 at
any setting of γ, but adding interactions into the tree may also increase the approximation
error.

On the other hand, ‘segment’ shows the opposite situation: 3-way interactions cause
major approximation errors in spite of highly significant clusters. This domain has 2310
instances, and many interactions are highly significant. Unfortunately, significance only
indicates the reliability of the probability estimate, not the reduction in estimation error,
and the local learning neglects the additional approximation error. We can see that the
curve of the K3 is not monotonically decreasing either, and the last leaf of the tree causes
a deterioration.

‘Pima’ is a particularly well-behaved domain. The structure of interactions is rather
acyclic and K3T and K3 largely overlap. In the end, K3 has the potential of gain, but, if
unrestrained, also slight deterioration. In comparison, the deterioration in ‘voting’ is much
more distinct. As in ‘segment’, the tree-based model is better than K3 at any setting of γ.
It is incorrect to view γ as a domain-dependent tuning parameter: γ does affect how many
clusters will get included, but it has meaning of its own that should remain unrelated to
the issue of approximation error. Modelling the approximation error in Kikuchi-Bayes
remains an open issue.
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Figure 8.6: The classification performance depends on the significance testing threshold γ.
The horizontal scale indicates the logit-transformed value of the P -value threshold log(γ/(1−
γ)) used as a parameter for Kikuchi-Bayes learning.
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Comparisons with Support Vector Machines

Support vector machines (Vapnik, 1999, Schölkopf and Smola, 2002) are often acknowl-
edged as the state-of-the-art in machine learning. Although there are disadvantages to
them, such as inefficiency, abundance of parameters, black-box models, dependence on the
data representation, they achieve excellent performance overall. There are several theo-
ries for their success, but probably the key advantage is that SVM learning algorithms
actually attempt to maximize the classification performance and not an indirect proxy,
such as maximum likelihood. The noisiness of the error rate is tackled by an appropriate
formulation of the optimization problem.

Our comparison included two state-of-the-art SVM implementations: SVMmulticlass

V1.01 (Tsochantaridis et al., 2004, Crammer and Singer, 2001, Joachims, 1999), and LIB-
SVM V2.8 (Fan et al., 2005, Chang and Lin, 2005). A k-valued discrete attribute was
represented with a k-dimensional vector for the SVM classifier, so that the active at-
tribute value was placed at +1, and the inactive attribute value at −1: this method
yielded the best results in our experiments. We have not, however, attempted to execute
internal cross-validation to optimize the parameter values. Instead, we have used the
default parameters as hardwired in the implementations.

Our first experiment in Table 8.4 indicates that SVMmulticlass with the dot product
kernel unsurprisingly outperforms the Kikuchi-Bayes algorithm in error rate. But surpris-
ingly, the versatile radial basis function (RBF) kernel does not outperform Kikuchi-Bayes,
not even the MAP version. What is interesting is that the dot product kernel, a method
that assumes linear separability, manages to be the best ranked method. Furthermore, it is
surprising that Kikcuhi-Bayes with its simplicity and disregard for error rate nevertheless
outperforms C4.5, an algorithm that was tuned for the UCI collection of data sets.

In later experiments (Tables 8.5 and 8.6), we included the latest version of LIBSVM,
which yields excellent results, but also involves a decrease in performance as compared to
SVMmulticlass. LIBSVM also supports probability estimation, so we can assess its log-loss
as well. Interestingly, LIBSVM’s performance is better using the RBF kernel than using
the linear kernel. SVMmulticlass has a hard time competing against LIBSVM.

It has to be stressed that the näıve Bayesian classifier, logistic regression and SVM
with the dot product kernel have the same representation if the label is binary. They
only differ with respect to the criterion used for fitting that representation. Especially for
log-loss, it seems that our own implementation of logistic regression could benefit from
better regularization: LIBSVM is distinctly more mature.

A comparison of the timings for Kikuchi-Bayes and LIBSVM with the dot product
kernel shows that the two methods’s performance follows a different characteristic: SVM
running time is primarily tied to the number of instances, whereas Kikuchi-Bayes running
time is primarily correlated with the number of attributes. A hybrid method could take the
best of both worlds: it would combine the interpretability of Kikuchi-Bayes models with
the utility of optimization methods for fusing submodels without approximation loss. The
path towards integration has already been set by the formulations of Altun et al. (2004)
and Lafferty et al. (2004). Kikuchi-Bayes can be used as efficient means to learning the
structure of kernels, but the fusion can be then performed using the convex optimization.
Furthermore, classification trees could be used instead of the multinomial models we use
for submodels.
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error rate
domain tK tSV M SVMdot SVMrbf C4.5 LR kMAP kBMA
iris 0.00 0.09 5.2

√
6.4

√
5.3

√
5.6 5.2 5.2

soy-small* 5.29 0.11 0.0 0.0
√

0.9
√

2.1 0.0 0.0
monk3 0.01 0.19 ·3.6 √

2.6 1.1
√

1.7
√

1.1 1.1
bupa 0.01 0.20

√
37.2

√
33.7

√
33.8

√
34.5

√
33.2 32.8

car 0.02 1.68 16.3 9.4
√

8.9 ·16.7 √
6.5 6.5

cmc 0.04 3.21
√

45.4 48.6
√

45.6 ·49.7 √
43.6 43.4

hayes-roth 0.00 0.15 22.4 ·30.4 24.9
√

17.0 13.5 13.5
monk1 0.01 0.29 25.4

√
2.2

√
2.8 ·25.5 0.0 0.0

voting 0.23 0.24
√

4.6
√

7.7
√

5.0
√

6.7
√

4.6 4.6
crx 0.19 0.69

√
14.6

√
16.6 13.3

√
14.1 13.3

√
13.8

lenses 0.00 0.05
√

19.2
√

21.7
√

16.7
√

26.7 12.5
√

15.0
titanic 0.01 0.80

√
22.4

√
21.8

√
21.3

√
22.2 21.1

√
21.1

anneal 6.16 1.96 2.0
√

1.0
√

1.4 0.3 2.4 ·2.5
balance-scale 0.00 0.50

√
8.5 13.1 ·34.1 8.5

√
9.3

√
9.3

german 0.64 1.43
√

24.5
√

27.4
√

27.7 24.4
√

26.3
√

26.3
mushroom 1.33 7.57

√
0.1 0.0 0.0 0.0

√
0.0

√
0.0

pima 0.02 0.40
√

23.2
√

24.3
√

23.1 21.8
√

22.4
√

22.0
shuttle 0.01 0.11

√
6.7

√
4.3

√
3.2 2.5

√
3.6

√
2.9

tic-tac-toe 0.03 0.73 13.5
√

5.8 ·14.8 2.0
√

3.1
√

2.9
audiology* 81.2 17.0

√
25.8

√
24.2 23.4

√
26.0 ·68.6 ·68.6

australian 0.16 0.60
√

14.6
√

16.5 13.4
√

15.4
√

14.3
√

14.3
breast-LJ 0.03 0.20

√
28.0

√
26.9 26.8

√
28.3

√
29.0

√
28.7

krkp 6.52 4.02 ·6.2 3.4 0.7 2.5 1.6 1.7
ecoli 0.01 0.34

√
17.8 15.6

√
15.8

√
16.8

√
16.4

√
16.2

glass 0.03 0.28
√

31.0 26.4
√

30.6
√

32.0
√

32.1
√

31.4
lung-cancer* 35.0 0.22

√
57.5 56.3

√
59.4

√
70.6

√
60.6

√
61.9

monk2 0.01 0.35 34.3 23.3 36.6 ·39.6 27.6
√

26.8
vehicle 0.42 2.61

√
29.4 28.9

√
29.0

√
33.4

√
31.4

√
31.3

zoo* 0.23 0.21
√

9.1 3.2
√

7.7
√

7.5
√

12.9
√

12.1
yeast-class* 138 0.72 0.0 0.0

√
3.8 ·34.9 √

2.9
√

2.9
adult 1.11 436 13.3 ·20.0 13.8

√
13.6 13.9 13.9

breast-wisc 0.03 0.23 2.4
√

2.8
√

4.6
√

3.9
√

3.9
√

4.0
heart 0.15 3.46 42.2

√
44.5

√
45.9

√
46.2

√
44.8

√
44.8

hepatitis 0.47 0.15 13.7
√

17.9
√

20.9
√

19.1
√

14.5
√

15.0
horse-colic 1.89 1.68 28.3

√
30.5

√
36.8

√
35.0

√
30.1

√
30.6

ionosphere 3.71 0.57 7.5
√

7.9
√

11.2
√

13.6
√

9.6
√

9.6
lymph 0.39 0.21 16.8

√
18.5

√
23.5

√
23.1

√
26.5

√
25.7

o-ring 0.00 0.05 13.9
√

17.4
√

20.0
√

17.4
√

22.6
√

19.1
p-tumor* 0.39 6.07 54.8

√
60.6

√
57.9 63.6 ·71.3 ·71.3

post-op 0.01 0.08 28.0
√

33.2
√

29.5
√

34.5
√

28.4
√

28.6
promoters* 37.5 0.47 9.6

√
18.3

√
23.2 ·57.4 √

10.4
√

10.6
segment 0.74 26.1 5.0

√
6.0

√
6.2 ·7.7 √

5.4
√

5.4
soy-large* 5.95 11.0 6.6

√
7.4

√
7.0

√
7.7 ·27.0 27.0

spam 39.9 13.2 5.8 ·29.9 √
7.1

√
5.9

√
6.2

√
6.2

wdbc 0.57 0.33 2.3
√

3.1
√

4.0 ·7.8 √
4.0

√
4.1

wine 0.10 0.15 1.6
√

3.1
√

6.2
√

2.2
√

4.3
√

3.6

avg rank 2.97 3.49 3.70 ·4.16 3.46
√

3.23

Table 8.4: Support vector machines, using the SVMmulticlass implementation, outperform
Kikuchi-Bayes when an appropriate kernel is used. There is an interesting trade-off involving
the time consumption of SVM versus Kikuchi-Bayes: Kikuchi-Bayes is extremely fast even
when there are many instances, but is slow when there are many attributes (‘audiology’). On
the other hand, SVM copes with a large number of attributes, but becomes highly inefficient
with a large number of instances (‘adult’).
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error rate LIBSVM SV Mmulticlass

domain SVMp
dot

SVMp
rbf

SVMdot SVMrbf C4.5 LR NB kBMA

cmc
√

46.0
√

44.6
√

45.4 48.6
√

45.6 ·49.7 47.8 43.4
hayes-roth

√
14.5

√
13.8 22.4 ·30.4 24.9

√
17.0

√
14.9 13.5

lenses
√

29.2
√

40.0
√

19.2
√

21.7
√

16.7
√

26.7
√

28.3 15.0
monk1 25.4 0.0 25.4

√
2.2

√
2.8 ·25.5 25.4 0.0

monk3 1.1 ·3.6 ·3.6 √
2.6 1.1

√
1.7 ·3.6 1.1

soy-small* 0.0 0.0 0.0 0.0
√

0.9
√

2.1 0.0 0.0
titanic

√
22.4

√
21.2

√
22.4

√
21.8

√
21.3

√
22.2

√
22.3 21.1

voting
√

4.7
√

4.6
√

4.6
√

7.7
√

5.0
√

6.7 ·9.3 4.6
horse-colic

√
30.4

√
27.3

√
28.3

√
30.5 ·36.8 √

35.0 25.7
√

30.6
ionosphere

√
9.7

√
8.3

√
7.5

√
7.9

√
11.2

√
13.6 7.4

√
9.6

lung-cancer*
√

56.9
√

70.0
√

57.5
√

56.3
√

59.4
√

70.6 51.9
√

61.9
o-ring

√
22.6

√
13.0

√
13.9

√
17.4

√
20.0

√
17.4 13.0

√
19.1

wine
√

1.5
√

1.3
√

1.6
√

3.1
√

6.2
√

2.2 0.9
√

3.6
anneal

√
0.5 ·3.0 2.0

√
1.0

√
1.4 0.3

√
1.3 2.5

mushroom 0.0
√

0.1
√

0.1 0.0 0.0 0.0 ·0.4 √
0.0

pima
√

22.7
√

22.5
√

23.2
√

24.3
√

23.1 21.8
√

22.1
√

22.0
shuttle

√
2.7

√
6.6

√
6.7

√
4.3

√
3.2 2.5

√
6.7

√
2.9

audiology*
√

24.9
√

30.5
√

25.8
√

24.2 23.4
√

26.0
√

40.8 ·68.6
australian

√
15.6

√
14.5

√
14.6

√
16.5 13.4

√
15.4

√
14.3

√
14.3

breast-LJ
√

29.2
√

26.9
√

28.0
√

26.9 26.8
√

28.3
√

27.8
√

28.7
crx

√
13.4

√
14.5

√
14.6

√
16.6 13.3

√
14.1

√
14.1

√
13.8

krkp 3.3 6.1 6.2 3.4 0.7 2.5 ·12.4 1.7
monk2 34.3 33.2 34.3 23.3 36.6 ·39.6 38.2

√
26.8

yeast-class* 0.0
√

0.4 0.0 0.0
√

3.8 ·34.9 √
0.1

√
2.9

zoo*
√

6.3
√

9.9
√

9.1 3.2
√

7.7
√

7.5
√

3.6
√

12.1
breast-wisc

√
3.5

√
2.5 2.4

√
2.8

√
4.6

√
3.9

√
2.6

√
4.0

hepatitis
√

15.9
√

14.8 13.7
√

17.9
√

20.9
√

19.1
√

15.6
√

15.0
lymph

√
21.8

√
18.0 16.8

√
18.5

√
23.5

√
23.1

√
20.1

√
25.7

wdbc
√

3.0
√

2.8 2.3
√

3.1
√

4.0 ·7.8 √
4.2

√
4.1

bupa
√

34.2 32.1
√

37.2
√

33.7
√

33.8
√

34.5
√

33.9
√

32.8
car 7.2 4.9 16.3 9.4 8.9 ·16.7 14.6

√
6.5

ecoli
√

14.7 13.2
√

17.8
√

15.6
√

15.8
√

16.8
√

15.3
√

16.2
german

√
24.9 24.1

√
24.5

√
27.4

√
27.7

√
24.4

√
24.5

√
26.3

glass
√

25.6 24.3
√

31.0
√

26.4
√

30.6
√

32.0
√

28.3
√

31.4
heart

√
42.2 41.3

√
42.2

√
44.5 45.9 ·46.2 √

42.8 44.8
iris

√
5.6 4.9

√
5.2

√
6.4

√
5.3

√
5.6

√
6.3

√
5.2

p-tumor*
√

54.5 53.9
√

54.8 60.6
√

57.9 63.6
√

54.7 ·71.3
post-op 27.3 27.3

√
28.0

√
33.2

√
29.5

√
34.5

√
33.4

√
28.6

promoters*
√

9.2 7.2
√

9.6
√

18.3 23.2 ·57.4 √
13.4

√
10.6

spam
√

5.9 5.8
√

5.8 ·29.9 7.1
√

5.9 9.7
√

6.2
adult 13.1 13.9

√
13.3 ·20.0 13.8 13.6 16.4 13.9

balance-scale 5.6
√

8.2
√

8.5 13.1 ·34.1 √
8.5

√
9.3

√
9.3

segment 4.1 6.6
√

5.0 6.0 6.2 ·7.7 6.5
√

5.4
soy-large* 5.8

√
6.7

√
6.6

√
7.4

√
7.0

√
7.7

√
9.0 ·27.0

tic-tac-toe 1.7 10.5 13.5 5.8 14.8
√

2.0 ·29.8 √
2.9

vehicle 27.3
√

32.2
√

29.4
√

28.9
√

29.0
√

33.4 ·39.6 √
31.3

avg rank
√

3.60 3.42 4.23 4.74 4.97 ·5.66 4.95 4.43

Table 8.5: LIBSVM outperforms all other methods in classification accuracy.
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log-loss / instance LIBSVM SV Mmulticlass

domain tK tSV M tp
SV M

SVMp
dot

SVMp
rbf

SVMdot SVMrbf C4.5 LR NB kBMA

cmc 0.04 3.21 1.92 0.96
√

0.94 3.20 ·3.44 1.07 0.97 1.00 0.92
lenses 0.00 0.05 0.07

√
0.72 0.88

√
0.66

√
0.73

√
0.51

√
0.89

√
2.44 0.39

monk2 0.01 0.35 0.29 0.64 0.54 ·2.12 1.44 0.73 0.65 0.65 0.45
shuttle 0.01 0.11 0.11

√
0.10 0.16 ·0.36 √

0.23
√

0.07
√

0.10 0.16 0.07
titanic 0.01 0.80 0.67 0.53 0.50 ·1.67 1.63

√
0.49 0.50 0.52 0.48

soy-small* 5.29 0.11 0.12 ·0.31 0.27 0.08 0.08 0.11 0.15 0.00 0.00
wine 0.10 0.15 0.16

√
0.09

√
0.08

√
0.09

√
0.17

√
0.27

√
0.09 0.06

√
0.14

yeast-class* 138 0.72 0.19 0.06 0.06 0.01 0.01 0.13 ·0.90 0.01 0.23
anneal 6.16 1.96 0.52

√
0.05 0.11 ·0.13 √

0.07 0.08 0.02
√

0.07 0.11
bupa 0.01 0.20 0.13

√
0.60

√
0.61 ·2.09 1.89 0.68 0.60

√
0.62

√
0.61

hayes-roth 0.00 0.15 0.09
√

0.35
√

0.28 1.10 ·1.48 0.67 0.26 0.46 0.45
mushroom 1.33 7.57 10.4 0.00 0.01 0.01 0.00 0.00 0.00 ·0.01 0.00
pima 0.02 0.40 0.36

√
0.48

√
0.48 1.49 ·1.56 0.53 0.46

√
0.50

√
0.48

tic-tac-toe 0.03 0.73 0.48
√

0.08 0.23 ·0.90 0.39 0.46 0.06 0.55
√

0.07
audiology* 81.2 17.0 0.51 1.31 1.49 1.44

√
1.36 1.04 1.40 ·3.55 2.23

krkp 6.52 4.02 5.42 0.10 0.17 ·0.48 0.27 0.03 0.08 0.29
√

0.05
monk3 0.01 0.19 0.15 0.11 0.14 ·0.22 √

0.16 0.07 0.10 0.20 0.11
soy-large* 5.95 11.0 0.98 0.46 0.47

√
0.44 0.50 0.27

√
0.37 0.57 ·0.68

zoo* 0.23 0.21 0.19 0.47 ·0.51 √
0.47 0.21

√
0.34

√
0.38

√
0.38

√
0.40

o-ring 0.00 0.05 0.11
√

0.80
√

0.54 0.50
√

0.60
√

0.56 0.66
√

0.83
√

1.00
australian 0.16 0.60 0.50

√
0.36 0.36 0.92 ·1.04 √

0.37
√

0.39
√

0.46
√

0.38
breast-LJ 0.03 0.20 0.18 0.59 0.55 ·1.53 1.47 0.62

√
0.58

√
0.62

√
0.58

breast-wisc 0.03 0.23 0.17 0.12 0.09
√

0.15 0.18 0.20
√

0.13
√

0.21
√

0.18
car 0.02 1.68 0.66 0.18 0.14 ·1.18 0.68 0.30 0.33 0.32 0.19
ecoli 0.01 0.34 0.20

√
0.55 0.50 ·1.02 0.89

√
0.66 0.68

√
0.89

√
0.83

german 0.64 1.43 2.34
√

0.51 0.50 1.64 ·1.83 0.82
√

0.52
√

0.54 0.59
glass 0.03 0.28 0.13

√
0.78 0.75 ·1.62 1.38 1.10 1.07 1.25

√
1.05

heart 0.15 3.46 1.60 1.03 1.00 2.79 ·2.94 1.70 1.24 1.25
√

1.10
hepatitis 0.47 0.15 0.14

√
0.39 0.33

√
0.67 ·0.87 0.66

√
0.77

√
0.78

√
0.43

horse-colic 1.89 1.68 0.60
√

0.71 0.69 1.62 1.74 1.33 ·1.81 1.67
√

0.83
ionosphere 3.71 0.57 0.20

√
0.26 0.20 0.42 0.45 0.36 ·0.69 0.64

√
0.33

iris 0.00 0.09 0.09 0.24 0.17
√

0.26
√

0.32
√

0.20
√

0.21
√

0.27
√

0.23
lymph 0.39 0.21 0.16

√
0.56 0.48

√
0.82

√
0.90 0.86 0.91 ·1.10 √

0.86
monk1 0.01 0.29 0.19 0.49 0.01 ·1.55 √

0.13
√

0.05 0.50 0.50
√

0.02
p-tumor* 0.39 6.07 0.39

√
1.93 1.92 3.10 ·3.42 2.76 2.76 3.17 2.61

spam 39.9 13.2 35.9
√

0.16 0.16 0.48 ·2.45 0.29
√

0.16 0.53
√

0.19
voting 0.23 0.24 0.16

√
0.13 0.12 0.27 0.45

√
0.18 0.37 ·0.60 √

0.15
wdbc 0.57 0.33 0.18

√
0.10 0.09

√
0.14

√
0.19 0.19 ·0.42 0.26

√
0.13

adult 1.11 436 2678 0.29 0.31 1.32 ·1.98 0.35 0.35 0.42 0.30
balance-scale 0.00 0.50 0.19 0.17

√
0.22 0.53 0.81 ·1.11 0.28 0.51 0.51

crx 0.19 0.69 0.54 0.34
√

0.35 0.92 ·1.05 √
0.37

√
0.39

√
0.49

√
0.36

lung-cancer* 35.0 0.22 0.13 1.02
√

1.17 1.90 1.86
√

1.54
√

1.24 ·5.41 √
1.62

post-op 0.01 0.08 0.09 0.61
√

0.62
√

1.20 ·1.42 √
0.64

√
0.81

√
0.93

√
0.67

promoters* 37.5 0.47 0.16 0.23
√

0.24
√

0.44 ·0.82 0.74 0.70
√

0.60
√

0.54
segment 0.74 26.1 4.59 0.14 0.18 0.38 0.45 0.27 ·0.45 0.38

√
0.17

vehicle 0.42 2.61 1.10 0.56 0.60 ·1.91 1.88 0.90 0.93 1.78 0.66

avg rank
√

2.83 2.65 6.13 ·6.36 4.21 4.35 5.76 3.72

Table 8.6: LIBSVM yields excellent performance with respect to log-loss as well. It is
somewhat surprising that C4.5 achieves lower log-loss than logistic regression. To obtain the
probabilities from classifiers, we have admixed the uniform distribution with a small weight
(1/(|ℜY | + |D|)): without this, the log-loss could be infinite. This admixing was performed
for SVMmulticlass, LR and C4.5.
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CHAPTER 9

Discussion

We hope that the work has demonstrated the utility of interactions as a descriptive
metaphor of the data. We have provided a definition of an interaction, and many ex-
amples of interactions identified in real-life data. We have provided ways of inducing the
patterns of interactions from the data, for the goals of exploratory data analysis (visu-
alization), confirmatory data analysis (significance testing), and for predictive modelling
(classification). Our methods are practical and effective, and we have already applied them
to numerous cases ranging from medicine, data mining, economics, to political science.

A more detailed list of contributions of this dissertation appeared already in Ch. 1, so
we will conclude with a summary of our subjective impressions. We will list implications
for the field of machine learning. Finally, we will mention some possibilities for further
work.

Although there should be little doubt that interactions are a useful metaphor, it is
clear that it is not the only metaphor that works. Other ideas and concepts in machine
learning are also important. A good way of appreciating the differences is to examine the
experimental results of Ch. 8. We can see that interactions offer a very good explanation
for some situations, such as the ‘CMC’ and the ‘Titanic’ data sets. For some situations,
such as ‘KRKP’ and ‘Monk3’ the classification trees are distinctly more appropriate: the
interaction graphs are sprawling and ineffective as compared to a well-structured depiction
of a single set of rules. Furthermore, the extreme success of SVM with dot product
kernels and of logistic regression reminds us that many practical problems do not involve
sophisticated interactions: instead the problems of weighting and fusion are the ones that
require a proper solution.

It is easy to think that an ensemble-based approach will solve the above conundrum.
We believe otherwise: these methods are complementary and need to be integrated, not
just combined. The following summary in the notation of Salthe captures the idea best:
[ [ [

rules, support vectors and constructs
]

interactions
]

voting, weighting and fusion
]

This means that rules are to be found within an interaction, and that fusion methods
should operate on top of interactions.

Although Kikuchi-Bayes does not win against the cutting-edge SVM classifiers, it is
fair to mention that we are using relatively crude Cartesian products within an interaction,
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and relatively crude Kikuchi approximations for the fusion. Clearly, these methods should
be improved. We have already suggested MaxEnt, hypertree factorization and convex
optimization as means of addressing the problem of fusion in our chapter on classification.
We also suggest methods such as (Buntine and Jakulin, 2004, Clinton et al., 2004) and
(Della Pietra et al., 1997) for handling the inference of structure within an interaction in
our chapter on visualization.

The problem of a large number of attributes is important for text mining, and our
approach is relatively basic. There are various ideas that can be tackled, including those
we mention in the chapter on attribute selection. Although we have provided probabilistic
models for continuous attributes, the results in that area are either simplistic (multivariate
Gaussian model), or potentially non-robust (EM). More work is clearly needed in that area.

There are some ideas in addition to the notion of interactions that proved their worth.
First, the Bayesian philosophy is a solid and cohesive theory of learning. Bayesian model
averaging showed its unambiguous effectiveness in prediction, and Bayesian tests of signif-
icance are the ones that proved to be least sensitive to problems. One should not be afraid
of assuming priors. Even if we assume cross-validation as an evaluation method, we can
select a prior appropriate for the task at hand. Although others have noted this earlier, it
was surprising how well the notion of a parsimonious prior describes the performance of
a learning algorithm on independent data.

Another idea that ‘works’ is the notion of trajectory integration. Our application of
this idea has been inspired by the work on boosting and regularization paths. However,
we have transplanted these heuristics into a Bayesian context; their role is to balance the
breadth and depth in the consideration of models. Our computation of degrees of freedom
according to Krippendorff (1986) should be seen as a heuristic, and a more thorough
formal study is required. In addition to that, it is not clear what is the right way of
assessing degrees of freedom for other models. Still, our experimental framework should
be well-suited to guide and check further work.

We can also informally criticize certain ideas. First, the notion of conditional probabil-
ity adds unnecessary complexity to the problem of building predictive models. We find it
easier to understand conditional probability as a computationally convenient special case
of Kikuchi approximation. The models specified in terms of conditional probabilities are
often unnecessarily complex, and offer confusing and unfounded indications of causality.
Still, we appreciate the work of Pearl (2000) on formalizing causality, which shows nicely
that conditional independence is a way of accommodating causality, but not a way of
inferring causality.

The second idea we criticize is the blind trust in cross-validation and the blind pursuit
for classification accuracy. We hope that the analysis in Chapters 2 and 8 shows how
important is the training/test proportion used in cross-validation. Furthermore, several
authors have pointed out the leave-one-out is not always a sensible evaluation method in
the context of uncertainty, and our results seem to confirm this. Finally, classification
accuracy is a rather unreliable measure of classifier performance in the context of uncer-
tainty, and either proper p-loss functions, ROC measures, or margin width (SVM) are to
be used instead. In the tables of Ch. 8 it can be seen how much more noise there is in
classification accuracy results.

Still, one can criticize that the work in Ch. 8 is done solely in the context of logarithmic
loss. Although log-loss is a well-behaved generic loss function that assures the resulting
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probabilities to be sensible in the frequentist sense, and although most utility functions
are expressed for a decision specified in terms of the expected loss, this criticism is well-
deserved. We point out the work of Rubin (1987), Rissanen (2001), Grünwald (1998):
the prior and the likelihood function can be adjusted for a specific loss function at hand,
and the Bayesian modelling remains the same from that point onwards. Furthermore,
Grünwald and Dawid (2004) show how MaxEnt inference can be adjusted for other loss
functions. The likelihood function can also be adjusted appropriately when the IID as-
sumption is unfounded; IID merely means that the instances are independent given the
model.

We have also observed that relatively complex models, whose degrees of freedom ex-
ceeded the number of instances, nevertheless managed to achieve very good performance
as assessed through cross-validation. This phenomenon should be explained properly: it
might either be due to hidden dependencies, a flaw in our assumptions, a flaw of our
degrees of freedom assessment, or a flaw of the cross-validation procedure of the type we
have already encountered in Sect. 4.5.5 and in Fig. 2.6.

Interaction analysis also seems to be very well-aligned with human intuitions about the
data. Indeed, positive and negative interactions seem intuitive, and they help understand
many ‘anomalies’ such as the mismatch between correlation coefficients and the regression
coefficients, the XOR problem, the redundancies. Even the convenience of conditional
independence is merely a special case of using interaction information and region-based
approximations.

A particular conundrum not handled very well in the present work is the peculiar and
deep influence of the loss functions. In some chapters we use joint loss functions where
the outcome involves all attributes. On other chapters we use conditional loss functions
that only involve the labelled attributes. But one should be highly conscious of what
loss function should be used. For example, the Kikuchi approximation is suited to fusing
interactions under the maximum joint entropy criterion. However, a different notion
of maximum conditional entropy criterion is more suitable for learning class-predictive
models (as assessed through the loss functions on the outcomes). The same applies for
the chain rule. In all, we should also speak of conditional and joint fusion methods.
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DODATEK A

Povzetek v slovenskem jeziku
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Strojno učenje na osnovi interakcij med atributi

Aleks Jakulin

Povzetek

V pričujočem delu definiramo koncept interakcije, ki označuje medsebojno
povezanost atributov. Stopnjo interakcije definiramo kot povečanje korist-
nosti modela s tem, da mu dovolimo hkrati upoštevati vrednost več atributov.
Izkaže se, da so korelacijski koeficienti, informacijski prispevek ter interakcijski
prispevek vsi posebni primeri tega splošneǰsega koncepta.

Če se učimo modela na podlagi omejene količine podatkov in danega
prostora hipotez, moramo vedno upoštevati negotovost glede pravilnosti
posamičnega modela. Pristop k učenju, ki upošteva to načelo, je Bayesova
statistika. Poleg tega na proces učenja vpliva tudi funkcija koristnosti kot
končni vzrok in algoritem kot gonilo procesa sprehajanja po prostoru hipotez.
V splošnem lahko proces opǐsemo na podlagi Aristotelove vzročnosti, ki razloži
neskladja med pristopi k strojnemu učenju: nekateri pristopi se razlikujejo pri
izbiri vzrokov, ali pa nekaterim vzrokom posvečajo več pozornosti kot drugim.

Interakcija v tem okviru je element prostora hipotez, teorija o informaci-
jah pa določi tudi uporabo verjetnosti kot osnovnega gradnika hipotez, logar-
itmično napako kot funkcijo koristnosti, ob tam pa nudi učinkovit izrazni jezik
za ocenjevanje različnih odnosov med atributi in modeli. Ker pa je bistvo
teorije o informacijah analiza verjetnostnih modelov, uporabimo Bayesovo
statistiko, da se teh naučimo iz podatkov. S tem tudi odpremo možnost ne-
gotove obravnave količin kot so medsebojna informacija, pa tudi preskusov
značilnosti, ki temeljijo na Kullback-Leiblerjevi divergenci. Vseeno pa moramo
ločiti med razgradnjo entropije (kjer se lahko pojavljajo tako soodvisnosti
oziroma negativne interakcije kot tudi sodejavnosti oziroma pozitivne inter-
akcije) ter primerjave med modeli (kjer se pojavljajo samo pozitivne razdalje
med koristnostmi).

Da bi človeku lahko učinkovito prikazali vzorce interakcij v podatkih, pred-
stavimo več tipov grafičnih predstavitev. Informacijski graf služi prikazu
informacijsko-teoretičnih količin, kjer ploščino merimo v bitih. Interakcijska
matrika prikaže stopnjo in tip interakcije med vsakim parom atributov. In-
terakcijski graf izloči najmočneǰse posamične interakcije, ki jih označimo s
pomembnostjo, tipom, stopnjo značilnosti. Obstaja tudi več prikazov struk-
ture znotraj posamične interakcije, kot recimo pravil, taksonomij in podobno.

Interakcije lahko v praktičnem strojnem učenju uporabimo za izbiro atrib-
utov: negativne interakcije znižajo kvaliteto posamičnega atributa. Druga
možnost pa je, da dejanski model, ki je rezultat učenja, predstavimo kar
z množico interakcij. S pomočjo metode maksimalne entropije ali s hitrim
in učinkovitim Kikučijevim približkom lahko ustvarimo napovedni model
z združevanjem tudi prekrivajočih se interakcj. Napovedi s tem Kikuči-
Bayesovim modelom posplošujejo Bayesove mreže in se dobro izkažejo v
primerjavi z drugimi postopki strojnega učenja.
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Ključne besede

- strojno učenje

- klasifikacija, razpoznavanje vzorcev, uvrščanje

- interakcija, soodvisnost, sodejavnost, odvisnost, neodvisnost

- teorija o informacijah, entropija, medsebojna informacija

- Bayesova statistika, preizkus značilnosti

A.1 Uvod

A.1.1 Učenje

Ko se učimo modelov, to vedno počnemo v nekem izraznem jeziku. Imamo jezike pravil,
jezike enačb, jezike iz besed. Ko opisujemo pojave, ljudje velikokorat rečemo, da je nekaj
povezano z nečim drugim. Ampak kako bi formalno definirali pomen te ‘povezanosti’? To
je osnovni cilj te disertacije. Povrh tega pa je naš cilj tudi pokazati, kako je lahko ta pojem
koristen v praktičnih uporabah, tako za subjektivne koristi razumljivega prikazovanja
podatkov človeku, kot tudi za objektivno merjene koristi večje točnosti pri napovedovanju.
Namreč, če je naš pojem povezanosti, recimo mu interakcija, res koristen, se mora to
poznati tudi pri klasifikacijski točnosti.

Preden se lotimo modeliranja, si moramo definirati nekaj pojmov, ki so zanj potrebni.
Pojmi so naslednji:

• Prostor hipotez: Ta prostor določi, kaj je smiselna izjava. Prostor linearnih mod-
elov za dva atributa je R2, kjer prva koordinata določi naklonjenost premice, druga
pa odmik premice od izhodǐsča. Nekateri prostori imajo potencialno neskončno di-
menzionalnost, recimo prostor odločitvenih dreves, prostor izračunljivih funkcij, ali
prostori, s katerimi delajo postopki podpornih vektorjev (SVM).

• Predstavitev podatkov: Ponavadi so podatki predstavljeni kot seznam opažanj,
primerov. Vsako opažanje je opisano z množico vrednosti atributov. Pri tem ve-
likokrat predpostavimo, da imajo atributi nek stalen pomen, ki se ne spreminja od
primera do primera.

• Algoritem učenja: Da bi seznamu opažanj pridali pomen v prostoru hipotez,
potrebujemo nek postopek, ki se sprehaja po prostoru hipotez in sestavlja hipotezo,
ki je skladna s podatki. To je naloga algoritma učenja. V preteklosti so se uporabljali
že v naprej pripravljeni modeli, ki niso zahtevali preiskovanja, algoritmi učenja so
bili le enostavni izračuni. Danes pa se področje strojnega učenja večinoma ukvarja
z neskončnimi prostori hipotez. Algoritem je nosilec izkušenj iz preteklih problemov
učenja, tako da zna učinkovito preiskovati prostor hipotez.

• Funkcija koristnosti: Enostavna funkcija koristnosti je dvojǐska: je hipoteza
resnična ali ne? Žal tega ne vemo. Podatki si lahko nasprotujejo, lahko jih je
premalo. Četudi se hipoteza popolnoma ujema s podatki, se mogoče ne bo več uje-
mala na novih podatkih. V vsej tej zmešnjavi je naloga funkcije koristnosti, da tehta,
kako koristna je neka hipoteza: po kriterijih skladnosti s podatki, njene enostavnosti
in mogoče skladnosti s preteklimi podobnimi problemi.
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končni vzrok
↓

koristnost

︸ ︷︷ ︸

snovni vzrok → prostor hipotez { MODEL { podatki ← formalni vzrok

︸ ︷︷ ︸

algoritem

↑
dejni vzrok

Slika A.1: Štirje Aristotelovi vzroki učenja. Simbol a{b pomeni, da je a splošneǰsi od
b. Vzroki omejujejo model. Podatki so formalni vzrok, saj v procesu učenja ne vemo, kaj je
resnični model. Negotovost se mora zato pojaviti v prostoru hipotez.

Je hipoteza tudi model? Načeloma je lahko več hipotez enako koristnih. Ker je korist-
nost osnovni kriterij (to predpostavimo, to je definicija koristnosti), so zato vse te hipoteze
enakovredne in ni razloga, da bi lahko izbirali. Epikurovo načelo neopredeljenosti (Kirch-
herr et al., 1997) pravi: Obdrži vse hipoteze, ki so skladne z dejstvi. Torej izbirati načeloma
niti ne smemo. Model je lahko skupek (ensemble) več hipotez.

Slika A.1 prikazuje Aristotelov model učenja (Jakulin, 2004) opisan kot prepletanje
dveh specifikacijskih hierarhij (Salthe, 1993). Aristotelova vzročnost, ne da bi se tega
zavedali, v veliki meri opisuje strukturo našega razmǐsljanja. Nekateri se opredelijo
na določene vzroke in poskušajo odstraniti vse ostale. Nekatere veje znanosti, recimo,
odstranijo vse vzroke razen dejnega in naravo predstavijo kot mehanski algoritem ali ve-
likanski računalnik. Vendar pa je ta model vzročnosti vedno z nami, ne zato, ker bi bil
resničen ali nujen, ampak ker na ta način ljudje razmǐsljamo.

A.1.2 Negotovost

Bi lahko napovedali izid meta kovanca? Mogoče v principu že, v praksi pa brez popolnega
nadzora nad eksperimentom ne. Vseeno pa lahko nekaj le rečemo o kovancu. Lahko pa
povemo, da ponavadi pade približno enako cifer kolikor glav, če kovanec ni zvit. Prostor
hipotez v našem primeru predstavlja binomska porazdelitev z enim samim parametrom,
verjetnostjo p. Recimo, da imamo nekaj metov kovanca. Kako sklepamo o verjetnosti p?
Odgovor na to vprašanje ponuja Bayesova statistika (Bernardo and Smith, 2000, Gelman
et al., 2004a). V osnovi lahko neko gotovost (belief) za vsako verjetnost (probability). Za
primer kovanca prikažemo porazdelitve gotovosti na sliki A.2.

Podatki so predstavljeni kot množica D. Vektor X predstavlja neoznačene atribute,
ki so ponavadi dani. Vektor Y včasih označuje atribute, ki so označeni, in se jih trudimo
napovedati. Posamični primer je potem v(i) = 〈x(i),y(i)〉, kjer so X = x in Y = y
vrednosti atributov za dani primer i. Zalogo vrednosti posamičnega atributa X (ki je del
vektorja X) označimo z ℜX = {x1, x2, . . . , xk}. Formalno lahko rečemo, da je parameter
p vsebovan v opisu hipoteze, ki ga izrazimo kot vektor parametrov Θ.
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Slika A.2: Bayesov skupek hipotez. Vsaka verjetnost, da bo kovanec padel kot glava
je posamična vrednost parametra p. Vse možne vrednosti tega parametra tvorijo skupek,
vendar niso vse enako gotove. Zato vsaki verjetnosti pripǐsemo aposteriorno gotovost pri
danih podatkih. Na začetku so gotovosti vseh verjetnosti p enake, vendar se z večjim in
večjim številom podatkov tudi naš skupek hipotez bolj in bolj natančno opredeljuje glede
dejanske verjetnosti (od leve proti desni). Vseeno pa smo vedno vsaj malo negotovi glede
verjetnosti.

Izraz P uporabljamo tako za verjetnosti kot tudi za gotovosti: matematično se ne raz-
likujeta, le pomensko. Bistvo Bayesove statistike temelji na eksplicitni predpostavki apri-
orne gotovosti glede parametrov (prior) P (Θ|H). Včasih poznamo razvidnost (evidence)
ali verjetnost, da bomo opazili dane podatke P (D|H). Funkcija zanesljivosti (likelihood)
nam ovrednoti gotovost v vrednost parametrov Θ = θ pri danih podatkih P (D|θ,H).
Končni cilj je ponavadi aposteriorna gotovost (posterior) ali zaupanje v parametre pri
danih podatkih P (Θ|D,H). Vse to opǐsemo z enačbo (MacKay, 2003):

P (Θ|D,H) =
P (Θ|H)P (D|Θ,H)

P (D|H)
. (A.1)

Vidimo, da je vse v kontekstu H: to je prostor hipotez, ki pa ga ponavadi ne omenjamo
eksplicitno. Moramo pa se zavedati, da je to osnovna predpostavka. Funkcija zanesljivosti
ponavadi tudi predpostavi neodvisnost učnih primerov:

P (D|θ,H) =
∏

x∈D
P (x|θ). (A.2)

Ker ponavadi razvidnosti ne poznamo, jo tudi lahko odstranimo, tako da predpostavimo,
da je aposteriorno gotovost normalizirana pri danih podatkih:

P (Θ|D,H) =
P (Θ|H)P (D|Θ,H)

∫

ℜΘ
P (θ|H)P (D|θ,H)dθ

(A.3)

Pri praktičnem napovedovanju se lahko zavedamo negotovosti glede izbire modela, ali
pa tudi ne. Če se te negotovosti nočemo zavedati, jo marginaliziramo (integrate out), tako
da povprečimo napovedi vseh smiselnih modelov:

P (X|D) =

∫

ℜΘ

P (X|Θ)P (Θ|D)dΘ (A.4)
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Temu pravimo Bayesovsko povprečenje modelov, ali BMA (Bayesian model averaging).
Marginalizacija pri zgornjem primeru kovanca, pri čemer smo uporabili enakomerno apri-
orno porazdelitev, nam da Laplacovo oceno verjetnosti:

pH
BMA =

nH + 1

nH + nT + 2

Seveda pa je Laplacova ocena enaka, če smo videli 10000 metov kovanca ali dva meta
kovanca z enakim razmerjem med cifro in glavo: negotovost glede verjetnosti je izgubljena.
Zato ne modela ne smemo vedno obravnavati le kot povprečje.

Včasih nas zanima napovedovati le vrednost označenih atributov Y. Za tako vrsto
modeliranja, primer katere je regresija, uporabimo pogojno funkcijo zanesljivosti. Če
napovedujemo y iz x, je pogojna funkcija zanesljivosti ob predpostavki neodvisnosti med
primeri definirana kot

P (D|θ,H) =
∏

〈x,y〉∈D
P (y|x,θ) (A.5)

Aposteriorno gotovost glede modela P̂ (Θ|D) lahko interpretiramo kot nekakšno
analogijo funkcije koristnosti. S takim pogledom izberemo aposteriorno najbolj gotov
model (maximum a posteriori, MAP) θ̂:

θ̂ = arg max
θ

P̂ (θ|D) = arg max
θ

P̂ (θ)P̂ (D|θ) (A.6)

Precej znanih postopkov v strojnem učenju, kot recimo princip najkraǰsega opisa (MDL),
je le posebnih primerov MAP.

A.2 Teorija informacije

A.2.1 Osnovne količine

Pri teoriji informacije vnaprej predpostavimo nek določen verjetnostni model P . O tem
modelu lahko marsikaj povemo z uporabo količin iz teorije informacij. Osnovna količina
je Shannonova entropija (Shannon, 1948):

H(A) , −
∑

a∈ℜA

P (a) log2 P (a) (A.7)

Po definiciji, 0 log2 0 = 0. Tu smo jo izračunali za atribut A. Načeloma pa jo lahko
izračunamo za poljubno podmnožico atributov Y pri pogoju X = x:

H(Y|x) , −
∑

y∈ℜY

P (x,y) log2 P (y|x) (A.8)

Važno pa je, da so atributi diskretni: večina lastnosti količin iz teorije informacij izhaja iz
te predpostavke.

Druga pomembna količina je Kullback-Leiblerjeva divergenca (Kullback and Leibler,
1951), ki meri razdaljo med dvema verjetnostnima porazdelitvama, ki sta lahko tudi pogo-
jni:

D(P (Y |X)‖Q(Y |X)) ,
∑

x∈ℜX ,y∈ℜY

P (y, x) log2

P (y|x)
Q(y|x) (A.9)
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Tu je porazdelitev P referenčna, Q pa alternativna: KL-divergenca namreč ni simetrična.

Za entropijo in KL-divergenco se skriva funkcija logaritmične napake L(x, Q) =
− log2Q(x). Logaritmična napaka je korektna (proper), saj bo v kontekstu nedetermin-
ističnih dogodkov minimum dosegla ravno pri pravilni verjetnosti; klasifikacijska točnost
ali informacijska vsebina odgovora nimata te lastnosti. Torej, če model Q opisuje naše
napovedi, je L(x, Q) napaka našega modela ob dogodku x. Entropija je minimalna možna
stopnja napake, če je resnica P :

H(X|P ) = inf
Q

Ex∼P {L(x, Q)}

Eksplicitno smo napisali, da entropija temelji na modelu P : to je vedno res, vendar tega
ponavadi ne navajamo. Kullback-Leiblerjeva divergenca pa je obžalovanje (regret) modela
Q pri resnici P . Obžalovanje označuje presežek napake preko stopnje, v katero smo itak
prisiljeni:

D(P (X)‖Q(X)) = Ex∼P {L(x, Q)− L(x, P )}

Vidimo, da pri nekaterih napovednih problemih napovedujemo Y pri danem X = x, za kar
moramo uporabiti pogojne funkcije napake, pogojno entropijo ter pogojno KL-divergenco.
Povrh tega je včasih bolj primerna kaka druga funkcija napake in ne ravno logaritmična.
Takrat KL-diverenco in entropijo ustrezno popravimo, a previdno, saj se nekatere lastnosti
ne ohranijo (Grünwald and Dawid, 2004).

Zelo pomembna količina je medsebojna informacija ali informacijski prispevek, ki jo
sicer uporabljamo za oceno pomembnosti atributov pri napovedovanju razreda:

I(A;B) ,
∑

a∈ℜA,b∈ℜB

P (a, b) log2

P (a, b)

P (a)P (b)

= D(P (A,B)‖P (A)P (B)) = D(P (A|B)‖P (A)) = D(P (B|A)‖P (B))

= H(A) +H(B)−H(A,B) = H(A)−H(A|B) = I(B;A) = H(B)−H(B|A)
(A.10)

Vidimo, da medsebojno informacijo lahko interpretiramo na dva načina: kot KL-
divergenco med dvema verjetnostnima modeloma, ali pa kot vsoto in razliko entropij
podskupin atributov. Poznamo tudi pogojno medsebojno informacijo s podobnimi last-
nostmi:

I(A;B|C) ,
∑

a,b,c

P (a, b, c) log2

P (a, b|c)
P (a|c)P (b|c) = H(A|C) +H(B|C)−H(AB|C)

= H(A|C)−H(A|B,C) = H(AC) +H(BC)−H(C)−H(ABC).

(A.11)

Tule se pojavlja več simbolov. Včasih pǐsemo vejico (, ), ki veže najmočneje in pomeni ’in’,
povezuje dva atributa med seboj, podobno kot P (A,B) ali kot unija napovedi. Podpičje
(; ) veže malce šibkeje in ločuje dve skupini atributov med seboj, podobno kot P (A)P (B),
ali kot presek napovedi. Pogoj (|) veže še šibkeje in loči pogoj na desni strani od izraza
med atributi na levi strani, podobno kot P (A|B), ali kot odštevanje napovedi. Končno,
dvočrta (‖) loči dva modela.

Ko dovolimo več skupin atributov, pridemo do interakcijskega prispevka (McGill, 1954,
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jajca?

diha?

mleko?

namen

zaposlitev

tveganje

Slika A.3: Levo: Primer soodvisnosti ali negativne 3-interakcije med atributi ‘leže jajca?’,
‘diha?’ in ‘daje mleko?’ za različne živali. Če vemo, da leže jajca, skoraj zagotovo vemo,
da nam žival ne daje mleka; zato nam informacija, da diha (torej, da ni podvodna žival) ne
pove nič novega, četudi je malo podvodnih živali z mlekom. Desno: Primer sodejavnosti ali
pozitivne 3-interakcije med atributi ‘namen’ ‘tveganje’ in ‘zaposlitev’ nekega kreditojemalca:
če ima brezposeln človek velike namene pri najemu kredita, se nam zdi to veliko bolj tvegano
kot veliki nameni sami po sebi ali brezposelnost sama po sebi.

McGill and Quastler, 1955, Demšar, 2002):

I(A;B;C) , I(A;B|C)− I(A;B) = I(A,B;C)− I(A;C)− I(B;C)

= H(AB) +H(BC) +H(AC)−H(A)−H(B)−H(C)−H(ABC)

= I(B;C;A) = I(C;B;A) = I(A;C;B) = I(B;A;C)

(A.12)

Ta služi kot nekakšna mera interakcije med tremi atributi. Najbolje ga razumemo
kot razbitje entropije med tremi atributi H(A,B,C) na vsoto posamičnih entropij
H(A), H(B), H(C), 2-informacij med njimi I(A;B), I(B;C), I(A;C), ter 3-interakcije
med njimi I(A;B;C), tako da velja:

H(A,B,C) = H(A) +H(B) +H(C) + I(A;B) + I(B;C) + I(A;C) + I(A;B;C)

Interakcijski prispevek med dvema atributoma je kar medsebojna informacija.

Če iz podatkov ocenimo verjetnostni model, lahko s pomočjo informacijskih grafov
prikažemo odnose med atributi. Vsakemu atributu pripǐsemo temen krog, katerega
ploščina je proporcionalna entropiji tega atributa, torej naši negotovosti glede vrednosti
tega atributa. Pozitivne interakcije ali sodejavnosti prikazujejo prekrivanje med informa-
cijo dveh atributov, kar pomeni, da nam vrednost enega atributa nekaj pove o vrednosti
drugega atributa. To v informacijskem grafu prikažemo kot bel krog, ki povezuje dva
atributa in katerega ploščina ustreza interakcijskemu prispevku. Negativne interakcije ali
soodvisnosti imajo pomen odvečnosti, kjer nam en atribut pove isto kot drugi atribut
o tretjem atributu. To v informacijskem grafu prikažemo kot temen krog, ki povezuje
prekrivajoče se pozitivne interakcije med seboj. Primer obeh tipov interakcij je na sliki
A.3.
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A.2.2 Posplošeni interakcijski prispevek

Tudi interakcijski prispevek lahko interpretiramo kot primerjavo med dvema modeloma:
med dejansko verjetnostno porazdelitvijo P (A,B,C) in približkom Kirkwooda P̂K (Kirk-
wood and Boggs, 1942, Matsuda, 2000):

P̂K(a, b, c) ,
P (a, b)P (a, c)P (b, c)

P (a)P (b)P (c)
= P (a|b)P (b|c)P (c|a) (A.13)

Ob tem velja I(A;B;C) = D(P (A,B,C)‖P̂K(A,B,C)). Mogoče se zdi čudno, da je inter-
akcijski prispevek lahko negativen, vendar to razložimo enostavno: približek Kirkwooda
namreč ni normaliziran, saj se verjetnosti ne seštejejo v 1.

Vseeno pa lahko definiramo interakcijski prispevek za poljubno število atributov, tako
da posplošimo definicijo v (McGill, 1954). Torej, interakcijski prispevek za skupino S
atributov je:

I(S) , −
∑

T ⊆S
(−1)|S\T |H(T ) = I(S \X|X)− I(S \X), X ∈ S (A.14)

A.3 Interakcije in Modeli

A.3.1 Brez-interakcijski približki

Videli smo, da je interakcijski prispevek na nek način primerjava med dvema modeloma,
vendar pa en od teh dveh modelov ni pravilen. Da bi prǐsli do koristnosti interakcije
moramo med seboj primerjati dva modela: eden mora dopuščati obstoj interakcije, drugi
pa je ne sme dovoliti. Interakcijo lahko potem tu obravnavamo kot omejitev.

Recimo, da imamo nek referenčni model P (X|θ) na k atributih X = [X1, X2, . . . , Xk]
T .

Ta model nima nobenih posebnih omejitev, zato lahko vsebuje poljubne interakcije. Zdaj
pa temu modelu preprečimo, da bi vseboval interakcije. To naredimo tako, da najdemo
najslabši alternativni model P̂ (X|θ̂), ki pa se še ujema z referenčnim v vseh projekcijah
atributov, ki so manǰse od k. To zapǐsemo takole:

θ̂ = arg max θ′∈ℜΘ

∀Xi:
R

P̂ (X|θ′)dxi=
R

P (X|θ)dxi

H(X|P̂ (X|θ′)) (A.15)

Uporabili smo princip maksimalne entropije (MaxEnt) (Jaynes, 2003), da bi dobili brez-
interakcijski približek (part-to-whole approximation), ki pa se še vedno ujema z ref-
erenčnim modelom na vsaki podmnožici k − 1 ali manj atributov. V praksi za ta na-
men uporabimo algoritem generalized iterative scaling (GIS) (Darroch and Ratcliff, 1972,
Cziszár, 1998), ki ga inicializiramo z enakomerno porazdelitvijo.1

Maksimizacija entropije je težak optimizacijski problem z omejitvijo. Dualen mu je
problem minimizacije napake modela, ki mu je onemogočeno dopuščati interakcije. Izkaže
se, da ima to lastnost Boltzmannova porazdelitev (Darroch et al., 1980, Jaynes, 2003):

P̂ (x|β) ,
1

Z

∏

S⊂X
ψS(xS) = exp

{
∑

S⊂X

logψS(xS)− logZ

}

(A.16)

1Dejansko ta postopek ne poskuša maksimizirati entropije, ampak zadostiti omejitvam, ob čemer pa se
poskuša čimmanj oddaljiti od enakomerne porazdelitve.
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Namesto omejitev imamo zdaj funkcijo, ki avtomatsko izpolnjuje dane omejitve. S je prava
podmnožica množice atributov X = {X1, X2, . . . , Xk}, tako, da |S| < k. Sicer zadošča, da
upoštevamo le take potenciale, za katere velja |S| = k− 1, saj so manǰsi vsebovani v njih.
Nenegativni funkciji ψ(xS) pravimo potencial na S. Z je particijska funkcija, ki poskrbi,
da je Boltzmannova porazdelitev normalizirana:

Z ,

∫

ℜX

∏

S⊂X
ψS(xS)dx (A.17)

Parametrizacija β določi potenciale. Ker je neobstoj interakcij reda k in več že zagotovl-
jen, moramo za brez-interakcijski približek le izbrati parametre tako, da bo P̂ čimbližje
referenčni porazdelitvi:

β̂ = arg minβ′D(P (X|θ)‖P̂ (X|β′)) (A.18)

Ta problem ponavadi rešimo z metodo Lagrangovih multiplikatorjev.
Ker pa sta oba zgornja postopka računsko zahtevna, lahko uporabljamo normaliziran

Kirkwoodov približek:

P̂K(x) =
1

Z

∏

S⊂X
P (xS)(−1)1+|X\S|

(A.19)

Kakršenkoli brez-interakcijski približek P̂ že uporabimo, količino interakcije ovredno-
timo kot D(P‖P̂ ). Če je vrednotenje količine interakcije v kontekstu napovedovanja
Y iz X, pazimo, da tudi v (A.15) in (A.18) uporabimo ustrezen kriterij, H(Y|X, P̂ )
ter D(P (Y|X)‖P̂ (Y|X)). Torej, zamislimo si, da je referenčnemu modelu dovoljeno
upoštevati interakcijo pri napovedovanju C iz A in B, alternativnemu pa ne. Potem
je informacijski prispevek zmanǰsanje v koristnosti ob prehodu iz referenčnega na alter-
nativni model. Konkretno je tu alternativni model nenormalizirana napoved, ki spominja
na naivni Bayesov klasifikator:

I(A;B;C) = D

(

P (C|A,B)

∥
∥
∥
∥
P (C)

P (A|C)P (B|C)

P (A)P (B)

)

= D

(

P (C|A,B)

∥
∥
∥
∥

P (C|A)P (C|B)

P (C)

)

Na sliki A.4 vidimo, da je približek Kirkwooda slabši od tistega z metodo maksimalne
entropije. Vseeno pa je bolǰsi od popolne faktorizacije in bolǰsi od približka, ki predpostavi
pogojno neodvisnost.

A.3.2 Preskus značilnosti interakcije

V preǰsnjem razdelku smo vedeli, da je naš referenčni model P . Vendar v praksi P ni znan:
imamo le predpostavke in podatke. Zato smo glede P negotovi. To predstavlja podlago
preskusov značilnosti (significance tests) ter intervalov zaupanja (confidence intervals).
Pri preskusih značilnosti nas zanima verjetnost, da bo napaka referenčnega modela večja
od napake alternativnega modela in to ob predpostavki, da je referenčni model pravilen.
Pri intervalih zanimanja pa se posvetimo verjetnostni porazdelitvi napake med obema
modeloma, spet ob predpostavki, da je referenčni model pravilen.

Lahko se odločimo, da bo referenčni model tisti, ki dovoljuje interakcijo. Ob tem je
alternativni model njegov brez-interakcijski približek. Tej izbiri bomo tu sledili, čeprav
bi lahko izbor tudi obrnili ter vzeli brez-interakcijski približek kot referenčni model. V
nadaljevanju bomo tudi predpostavili, da so vsi naši atributi diskretni.
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Slika A.4: Normalizirani približek Kirkwooda ima skoraj vedno večjo napako od brez-
interakcijskega približka glede na referenčni model (levo). Je pa približek Kirkwooda vseeno
skoraj vedno bolǰsi od modela, ki ne dopušča nobene interakcije P (A)P (B)P (C) (desno).

Asimptotični pristop

Predpostavimo nek referenčni model P (X), kjer je X vektor diskretnih atributov. Naš
referenčni model ima popolno svobodo in lahko opisuje poljubne interakcije. Naključno
vzorčimo n primerov iz P , in ocenimo P̂ z metodo relativne frekvence iz vzorca. KL-
divergenca med resnico P in oceno parametrov v pravilnem prostoru hipotez P ′ ponavadi
ne bo nič, četudi je naš prostor hipotez pravilen in četudi se naša ocena parametrov
trudi minimizirati napako. Napako med obema modeloma D(P ′‖P ) lahko opǐsemo z
verjetnostno porazdelitvijo:

2n

log2 e
D(P ′‖P ) ∼

n→∞
χ2
|ℜX|−1 (A.20)

Ob tem smo uporabili dejstvo, da je KL-divergenca pomnožena z 2n/ log2 e enaka Wilksovi
statistiki G2. Pri velikih n ima G2 porazdelitev χ2

df , kjer je df število prostostnih stopenj.

Ta asimptotični približek ni dober ko n/df < 5. Če bi hoteli vrednotiti značilnost 3-
interakcije med tremi 3-vrednostnimi atributi, bi potrebovali vsaj 135 primerov.

Ob zgornji interpretaciji, stopnjo značilnosti (P -value) alternativnega modela P̂ ocen-

imo kot φ , Pr
{

χ2
df (x) ≥ 2n

log2 eD(P‖P̂ )
}

. Če je P̂ brez-interakcijski približek, govorimo

o stopnji značilnosti interakcije.

Število prostostnih stopenj je odvisno od lastnosti referenčnega modela. Če bi, recimo,
referenčni model predpostavil neodvisnost med atributi, bi število prostostnih stopenj bilo
enako

∑

i |ℜXi
− 1|. Paziti moramo še na to, da če ocenimo zgornji referenčni model iz

podatkov, kjer se nekatere vrednosti ne pojavijo, število teh vrednosti odštejemo od števila
prostostnih stopenj. Če to naredimo, se zgornja enačba zelo dobro ujema s postopkom
prevzorčenja z vračanjem (bootstrap). Ob tem naj opozorimo, da smo predpostavili, da
je ocena D(P‖P̂ ) na podlagi omejenega učnega vzorca zanesljiva. To ni nujno utemeljeno
in rešitve bomo obravnavali v nadaljevanju.
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Prečno preverjanje

Pri asimptotičnem računanju stopnje značilnosti predpostavimo, da je mogoče D(P‖P̂ )
oceniti popolnoma natančno. To ni vedno utemeljeno, zato bomo v nadaljevanju razbili
množico danih učnih primerov na učno in testno. Na učni množici ocenimo referenčni
model P ′ ter alternativni P̂ ′, na testni pa se še enkrat naučimo referenčnega, kar označimo
z Ṗ . Rezultat tega preizkusa preko velikega števila prečnih preverjanj je CV -vrednost:

ν , Pr{D(Ṗ‖P̂ ′) ≥ D(Ṗ‖P ′)} (A.21)

Torej ν pomeni verjetnost, da bo napaka alternativnega modela na testni množici večja od
napake referenčnega modela. Če bi referenčni model bil ponavadi bolǰsi, bi se alternativni
model premalo prilegal podatkom. Da bi odstranili odvisnost od posamičnega razbitja,
moramo prečno preverjanje izvesti velikokrat. To je še posebej pomembno, ko učnih
primerov ni veliko.

S pomočjo prečnega preverjanja lahko ocenimo tudi interval zaupanja glede napake
posamičnega modela, pa tudi razlike med referenčnim in alternativnim modelom. Odločiti
se moramo, ali je osnova za izračun posamično prečno preverjanje, ali posamično razbitje
na učno in testno množic primerov. Kakorkoli že, če izvedemo veliko število prečnih
preverjanj ali razbitij na istih podatkih in pri istih postopkih učenja, lahko dobimo tudi
več različnih rezultatov glede napake in razlik v napakah. Res je pričakovana napaka
povprečje teh napak, vendar pa je dobro upoštevati tudi porazdelitev napak.

Ker KL-divergenca ni simetrična, je bolje uporabiti intervale zaupanja, ki temeljijo na
percentilih. Simetrični 99% interval zaupanja glede napake alternativnega modela glede
na referenčni model temelji na dveh številkah w< in w>, kjer

Pr{D(Ṗ‖P̂ )−D(Ṗ‖P ′) ≤ w<} = (100%− 99%)/2 ∧ (A.22)

Pr{D(Ṗ‖P̂ )−D(Ṗ‖P ′) ≥ w>} = (100%− 99%)/2 (A.23)

Verjetnost računamo preko velikega števila preizkusov. Interval potem zapǐsemo kot
[w<, w>], kar pomeni, da bo razlika med modeloma v 99% preizkusov s prečnim pre-
verjanjem znotraj tega okvira, izpustili pa bomo zelo velike in zelo majhne vrednosti.

Četudi smo v tem razdelku govorili o prečnem preverjanju, lahko načeloma uporabimo
poljubno metodologijo, ki temelji na prevzorčenju (resampling). Za vsako metodologijo
potem dobimo svoj nabor značilnosti in intervalov zaupanja.

Bayesovski pristop k preizkusom značilnosti

Načelno mnenje v Bayesovi statistiki je, da preizkusi značilnosti niso primerni. Vsakemu
modelu pripǐsejo svoj prostor hipotez H, kvaliteta modela pa izhaja iz razvidnosti po-
datkov v tistem kontekstu. Težava tega pristopa je, da ni neposredno skladen z uporabo
funkcije koristnosti. Tudi če to potem uvedemo, ponavadi izražajo vse ocene razlik med
modeli popolno gotovost, četudi je aposteriorna gotovost na široko razpršena. Neka-
teri noveǰsi pristopi, kot recimo DIC (Speigelhalter et al., 2003), upoštevajo aposteriorno
razpršenost. Mi pa bomo to naredili v kontekstu preskusov značilnosti.

Verjetnost, da je neka možna vrednost parametrov θ̂ z aposteriorno gotovostjo P (θ̂|D)
v referenčnem prostoru hipotez H1 slabši približek drugi možni vrednosti θ′ z aposteriorno
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gotovostjo P (θ′|D), kot pa neka vrednost parametrov θ̂ iz alternativne družine hipotez
H2:

β ,

∫∫∫

I{Dθ|θ′(P‖P ′) ≥ D
θ|θ̂(P‖P̂ )}P (θ|D)P (θ′|D)P (θ̂|D)dθdθ′dθ̂ (A.24)

B-vrednosti nimajo nekaterih lastnosti stopenj značilnosti.

A.3.3 Verjetnostni modeli za zvezne atribute

Interakcije lahko obravnavamo tudi za zvezne atribute. Kot vedno, pa je rezultat odvisen
od tega, kakšen model si izberemo. Najprej si poglejmo koncept diferenčne entropije h, ki
jo tudi merimo v bitih (Cover and Thomas, 1991):

h(X|p) , −
∫

ℜX

p(x) log2 p(x)dx = Ep{− log2 p(x)} (A.25)

Lastnosti diferenčne entropije se včasih razlikujejo od lastnosti navadne entropije (Shan-
non, 1948). Na primer, diferenčna entropija je lahko negativna ali nič:

σ ≤ 1/
√

2πe : h(X|X ∼ Normal(µ, σ)) ≤ 0 (A.26)

Kullback-Leiblerjeva divergenca pa se pri zveznih atributih ne obnaša bistveno drugače:

D(p‖q) ,

∫

ℜX

p(x) log2

p(x)

q(x)
dx (A.27)

Ker je analitični izračun entropije za marsikateri model problematičen, pride prav koncept
empirične entropije (empirical entropy) ĥ pri vzorcu D:

ĥ(X|p,D) , − 1

|D|
∑

x∈D
log2 p(x). (A.28)

Oglejmo si naše informacijske količine na primeru večrazsežne normalne porazdelitve.
Imejmo d-razsežni slučajni vektor X ∼ Normal(µ,Σ):

p(X = x|µ,Σ) =
1

√

(2π)d|Σ|
exp

{

−1

2
(x− µ)TΣ−1(x− µ)

}

(A.29)

µ je vektor srednjih vrednosti, Σ pa kovariančna matrika. Če je d = 1, lahko zapǐsemo
diferenčno entropijo v zaključeni obliki kot (Cover and Thomas, 1991):

h(X|µ, σ) =
1

2
log2(2πeσ

2) (A.30)

V splošnem pa (Billinger, 2004):

h(X|µ,Σ) =
1

2
log2(|2πeΣ|) (A.31)

Tu | · | označuje determinanto.
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d-razsežni naključni vektor X = [X1, . . . , Xd] lahko opǐsemo skupaj v obliki večrazsežne
normalne porazdelitve (in dovoljujemo linearno interakcijo) v modelu p. Po drugi strani
pa ga lahko opǐsemo kot produkt neodvisnih enorazsežnih normalnih porazdelitev q:

p : x ∼ Normal(µ,Σ) (A.32)

q : x ∼
d∏

i

Normal(µi, σi) (A.33)

V primeru d = 2 je q brez-interakcijski model. KL-divergenca v tem primeru in Pearsonov
koeficient korelacije ρ sta lepo povezana v zaključeni obliki (Billinger, 2004):

D(p‖q) = I(X1;X2|p) = −1

2
log2(1− ρ2) = −1

2
log2

( |Σ|
σX1σX2

)

(A.34)

Seveda pa so izračuni z bolj naprednimi modeli, kot so recimo mešanice (mixture models),
tudi bolj zapleteni.

A.4 Vizualizacija

A.4.1 Interakcijska analiza

Splošni postopek interakcijske analize na učnem problemu, ki ga upisujemo z atributi
X = {A1, A2, . . . , Am} ima naslednjo obliko:

1. Ustvari eno-atributne projekcije S1 = {{A1}, {A2}, . . . , {Am}}, dvo-atributne pro-
jekcije S2 = {{A1, A2}, {A1, A3}, . . . , {Am−1, Am}} in tako naprej.

2. Če obstaja razredni atribut Y , ga dodaj vsaki projekciji S ∈ S1 ∪ S2 ∪ · · · .

3. Nauči se verjetnostnega modela za vsak S.

4. Izračunaj interakcijski prispevek za vsak S.

5. Prikaži rezultate:

• Povzami vzorec interakcij v razumljivi obliki (interakcijska matrika, interakci-
jski dendrogram, večrazsežno lestvičenje).

• Izloči najbolj očitne interakcije in jih prikaži v obliki grafa.

• Osredotoči se na posamezno interakcijo in jo razloži z drugimi postopki, kot so
recimo pravila ali skupine..

Zaradi učinkovitosti izvajamo interakcijsko analizo le do neke maksimalnega reda interakcij
k. Ponavadi je k = 2. Kompleksnost v takem primeru je kvadratična, saj je

(
m
k

)
načinov

izbire k atributov izmed m. Označimo lahko več atributov, da bi določili kontekst za
interakcijsko analizo, pri čemer je potem vseh preučevanih interakcij manj.
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Slika A.5: Povezava med parom atributov pri domeni ‘Boston housing’ je močna, ko je
ustrezni kvadratek med obema atributoma temen, in šibka, ko je svetel. Vidimo, da so
močne povezave med avtocestami in davki ter med oddaljenostjo od centra ter onesnaženostjo.
Razredni atribut vrednost spada v tretjo skupino.
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Slika A.6: Na tej ilustraciji prikazujemo pomembnost posamičnih atributov ter pomembnost
interakcij med njimi. Razred pri tej domeni je kvaliteta kolka po operaciji. Rdeča barva
označuje pozitivne interakcije, modra pa negativne. Šibke interakcije so neobarvane, bele.
Po diagonali so prikazane interakcije reda 2 med razredom in enim atributom, drugje pa
reda 3 med dvema atributoma in razredom. Najpomembneǰsi atribut označuje, ali bolnik
ima pljučno bolezen. Najpomembneǰsa interakcija je povezava med tipom endoproteze in
trajanjem operacije.
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A.4.2 Interakcije med atributi

Najlažje lahko interakcije med atributi in razredom prikažemo v matriki, kjer barva
označuje tip in moč interakcije. Slika A.5 prikazuje 2-interakcijski prispevek med vsakim
atributom, slika A.6 pa 3-interakcijski prispevek med vsakim parom atributov na domeni
HHS.

Če bi radi tako interakcijsko matriko povzeli, se pojavi težava kompleksnosti atributov:
pri atributih z več vrednostmi bo v povprečju obseg interakcije večji kot pri atributih z
manj vrednostmi, kar spominja na nekatere težave pri ocenjevanju pomembnosti atributov
(Kononenko, 1997, Robnik-Šikonja, 2001): Quinlan (1986) je predlagal razmerje informa-
cijskega prispevka (gain ratio), López de Màntaras (1991) pa mero razdalje. Izkaže se,
da sta obe rešitvi le posebna primera koeficientov Rajskega. Uporabljali bomo nasled-
njo definicijo razdalje med atributoma A in B, razdaljo Rajskega (Rajski, 1961), ki tudi
izpolnjuje trikotnǐsko neenakost:

〈A,B〉R , 1− I(A;B)

H(A,B)
(A.35)

Razdalja Rajskega je vedno med 0 in 1. Ko je 1, sta atributa popolnoma neodvisna,
zato daleč. Ko je 0, sta atributa popolnoma odvisna, zato zelo blizu. Ta definicija je
uporabna tudi za oceno pomembnosti atributa, če je razredni atribut eden od A in B. Ko
pa imamo eksplicitno naveden razred Y , lahko uporabimo kot razdaljo izraz, ki temelji na
interakcijskem prispevku:

〈A,B, Y 〉R , 1− |I(A;B;Y )|
H(A,B, Y )

(A.36)

Čeprav ni formalne podlage za to razdaljo, v praksi daje smiselne rezultate. Bistveno je
opažanje, da razdalja Rajskega temelji na konceptu funkcije koristnosti ter neke družine
modelov. Torej, statistični model in funkcija koristnosti zadoščata, da ustvarimo metrični
prostor modelov. S pomočjo razdalje Rajskega lahko iz matrike informacijskih ali interakci-
jskih prispevkov ustvarimo matriko različnosti ter jo povzamemo s postopki hierarhičnega
razvrščanja (Kaufman and Rousseeuw, 1990), kar prikazujeta sliki A.7 in A.8.

V preǰsnjem razdelku smo eksplicitno navajali posamične interakcije, ki so izstopale.
Lahko pa jih tudi predstavimo v obliki grafa. Pri nadzorovanem učenju si lahko po-
magamo z dejstvom, da je medsebojna informacija atributa kvečjemu enaka negotovosti
glede razreda, I(A;Y ) ≤ H(Y ). To velja tudi za večje število atributov, na primer
I(A,B;Y ) ≤ H(Y ). Zato lahko izrazimo medsebojno informacijo, pa tudi interakcijski
prispevek kot delež negotovosti glede razreda H(Y ). Pri tem lahko upoštevamo še znano
lastnost, I(A,B;Y ) = I(A;Y ) + I(B;Y ) + I(A;B;Y ).

Na sliki A.9 je prikazan interakcijski graf domene ‘Titanic’. Kot vidimo, obstaja kar
nekaj statistično značilnih interakcij: očitno so konkretna pravila določala, kdo se je lahko
rešil. Vidimo, da je bil najpomembneǰsi kriterij spol, ki je bil odgovoren za 15.6% ne-
gotovosti glede preživetja (ženske so imele prednost pri vstopu v rešilne čolne). Pomem-
ben atribut je bil tudi potnǐski razred, saj so imeli plačniki dražjih vozovnic prednost.
Je sicer negativna interakcija med spolom in razredom, vendar ta odpravi le majhen
delež negotovosti; če upoštevamo znano lastnost I(A;Y |B) = I(A;Y ) + I(A;B;Y ), je
prispevek razreda k negotovosti potem, ko smo že kontrolirali za spol, še vedno velika:
6.53− 0.34 = 6.19%. Po drugi strani pa vidimo, da že spol razloži velik del večjega števila
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Slika A.7: Medsebojno informacijo med posamičnimi pari atributov lahko z razdaljo Ra-
jskega pretvorimo v različnosti in jih povzamemo s hierarhičnih razvrščanjem (metoda agnes).
Vidimo, da v tej domeni obstajajo tri skupine atributov. Rdeča barva označuje pozitivne it-
erakcije, zelena pa je nevtralna.
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Slika A.8: Če napoved klasifikatorja interpretiramo kot atribut, lahko z interakcijskim den-
drogramom prikažemo nekakšno taksonomijo algoritmov strojnega učenja. Za ta dendrogram
smo uporabili 10-kratno prečno preverjanje na domeni ‘CMC’ ter okolje Orange (Demšar and
Zupan, 2004). Črne črte označujejo pomembnost atributa, v tem primeru to, kako dobre
so napovedi posamičnega klasifikatorja. Logistična regresija se je najbolǰse obnesla, vendar
razlike niso velike. Modre črte označujejo obseg negativne interakcije med dvema sosednima
klasifikatorjema.
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starost

0.70% P<0.000

spol

15.6% P<0.000

0.09%
P<0.001
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6.53% P<0.000

-1.74%
P<0.000
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-0.34%
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Slika A.9: To je interakcijski graf domene ‘Titanic’. Razred pri tej domeni je preživetje
posamičnega potnika. Vsako vozlǐsče označuje posamičen atribut, in za vsak atribut vidimo,
kolikšen delež entropije razreda odpravi, ter kakšna je njegova stopnja značilnosti. Pozitivne
interakcije so označene z rdečimi dvosmernimi puščicami, negativne pa z modrimi črtami.

ponesrečencev med posadko, 1.74 − 1.60 = 0.14%. Očitna je negativna interakcija med
razredom in posadko: atribut razred nam pove tudi to, ali gre za člana posadke ali za
potnika, zato nam atribut posadka ne pove nič novega, ko že poznamo vrednost atributa
razred.

Med pozitivnimi interakcijami je najmočneǰsa tista med starostjo in razredom. Razlaga
je žalostna a enostavna: vsi otroci iz prvega in drugega razreda so preživeli, skoraj dve
tretjini otrok iz tretjega razreda pa je umrlo. Druga pozitivna interakcija je podobno
žalostna: med otroci tretjega razreda se je rešilo nadpovprečno veliko dečkov, manj pa
deklic. Primerov teh pozitivnih interakcij v filmu Titanic nismo videli, kot tudi ne tega,
da je umrlo zelo malo ženskih članov posadke. Razvidno je tudi, da so vse te interakcije
statistično značilne.

A.4.3 Notranjost interakcije

Pravila

Že pri preǰsnjem primeru smo videli, da je mogoče razložiti vzroke interakcije pri
posamičnih vrednostih atributov. Za take naloge ponavadi uporabimo t.i. mozaične dia-
grame. Lahko pa tudi ustvarimo matriko hkratnih vrednosti dveh atributov, z velikostjo
označimo število primerov, z barvo pa napako brez-interakcijskega modela. Primer na
sliki A.10 prikazuje interakcijo med atributoma barva oči in barva las. Da zmanǰsali vpliv
naključja, barvo napake določimo na podlagi Pearsonovih standardnih ostankov, ki so za
n učnih primerov porazdeljeni po standardizirani normalni porazdelitvi Normal(0, 1):

d(a, b) ,
√
n

P (a, b)− P (a)P (b)
√

P (a)P (b)(1− P (a))(1− P (b))
(A.37)

Čeprav bi lahko model, ki dopušča interakcijo, opisali kar s celotnim kartezičnim pro-
duktom, obstaja kraǰsa pot s pravili. Seveda moramo pravila obravnavati v kontekstu
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Slika A.10: Prikazana je interakcija med barvo las in barvo oči. Velikost črnega kvadratka iz
črt je proporcionalna verjetnosti tega izida. Velikost barvnega kvadrata označuje napovedano
verjetnost, barva pa napako. Rdeča barva pomeni premajhno napoved, modra pa preveliko.
Prvi model (levo) je brez interakcij, pri čemer sta najbolj izraziti napaki premajhne napovedi
sopojavitve modrih oči in svetlih las ter previsoke napovedi sopojavitve rjavih oči in svetlih
las. Če uvedemo pravilo R, KL-divergenca interakcije pade iz 0.178 na 0.045. Naslednji dve
dobri pravili bi lahko povezovali rjave oči in črne lase ter zelene oči in rdeče lase.

verjetnostnih porazdelitev. Možna rešitev je tvorjenje konjunkcij med vrednostmi atrib-
utov (Kononenko, 1991). Tule pa bomo tvorili nov atribut, R, ki je definiran na podlagi
atributov O (barva oči) in L (barva las) kot:

R(O,L) ,

{

1; (O = modre ∨O = zelene) ∧ (L = svetli),

0; sicer.
(A.38)

Dopustimo le interakcijo med R in O ter med R in L. S tem atributom, ki ustreza pravilu
“Modre in zelene oči so povezane s svetlimi lasmi.” smo tako rekoč odpravili interakcijo.
Če bi bilo prekrivajočih se pravil več, bi jih lahko obravnavali kot omejitve pri uporabi
postopka GIS (Darroch and Ratcliff, 1972). Povrh tega se kompleksnost indukcije pravil
zmanǰsa, saj je iskanje pravil potrebno le znotraj najdenih interakcij.

Taksonomije

Možno je definirati razdaljo med dvema vrednostma atributa. Osnovna ideja leži v
vprašanju, ali bomo kaj izgubili pri sposobnosti napovedovanja razreda in drugih atrib-
utov, če ti dve vrednosti združimo. Recimo, da imamo atribut A, ki bi ga radi preučili.
Najprej moramo ustvariti pomožni atribut Ȧi,j za vsak par vrednosti ai in aj v ℜA:

ȧi,j ,

{

1 ; A = ai ∨ A = aj

0 ; sicer.
(A.39)
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Vrednostna razdalja spominja na razdaljo Rajskega in je definirana v nekem kontekstu
množice atributov V:

〈ai, aj〉V , 1− I(A;V|Ȧi,j = 1)

H(A,V|Ȧi,j = 1)
(A.40)

Če nas zanima le uporabnost razlikovanja med parom vrednosti pri napovedovanju razreda
Y , lahko rečemo V = {Y }. Ker je pri velikem V težavno oceniti model, na podlagi katerega
bi potem izračunali medsebojno informacijo, lahko uporabimo Bethejev približek (Yedidia
et al., 2004):

〈ai, aj〉V = 1−
∑

X∈V I(A;X|Ȧi,j = 1)

(1− |V|)H(A|Ȧi,j = 1) +
∑

X∈V H(A,X|Ȧi,j = 1)
(A.41)

S pomočjo tega približka in hierarhičnega razvrščanja smo izračunali smiselno taksonomijo
držav rojstva prebivalcev ZDA na podlagi njihovih atributov, kot so opisani v domeni
‘adult/census’ (slika A.11). Tako taksonomijo je mogoče s pridom uporabiti tudi pri
strojnem učenju.

A.5 Interakcije pri razvrščanju

Preǰsnji razdelek je pokazal uporabnost interakcij pri prikazu širših odnosov med atributi,
izločanja pomembnih interakcij ter tvorjenja novih atributov oziroma struktur znotraj
atributov. Nemogoče bi bilo temeljito obravnavati vse možne uporabe, lahko pa se os-
redotočimo na dve: izbiro atributov v kontekstu naivnega Bayesovega klasifikatorja, ter
posplošitev naivnega Bayesovega klasifikatorja, kjer je model definiran z množico interakcij
na atributih.

A.5.1 Izbira atributov z interakcijskim prispevkom

Pri naivnem Bayesovem klasifikatorju sta dva običajna postopka izbire atributov: uporaba
internega prečnega preverjanja pri vodenju pohlepnega iskanja (Langley and Sage, 1994),
ter uporaba ocen pomembnosti atributov pri rangiranju. V tem razdelku si bomo ogledali
dva nova algoritma: prvi izvaja pohlepno iskanje kar na učni množici, saj se problemi
povezani s kršenjem predpostavke o pogojni neodvisnosti pri razredu opazijo že tam;
drugi algoritem uporablja interakcijsko informacijo kot hevristiko.

Recimo, da imamo na razpolago množico atributov X za napovedovanje razreda Y .
Na neki točki iskanja smo nekaj atributov A že vključili v naš model, nekaj pa jih še
lahko Ā. Pohlepni način izbire atributov se odloči za tisti atribut, ki bo napako naivnega
Bayesovega klasifikatorja čimbolj zmanǰsal. Če uporabimo funkcijo napake D(P‖Q), kjer
je P resnica, Q pa približek, lahko pohlepni algoritem surove sile opǐsemo z naslednjo
izbiro:

X̂ = arg min
X∈Ā

D

(

P (Y |A, Ā)

∥
∥
∥
∥
∥

1

Z
P (Y )P (X|Y )

∏

A∈A
P (A|Y )

)

(A.42)

V praksi seveda ne poznamo resnice, lahko pa računamo logaritemsko napako verjetnostnih
napovedi, minimizacija katere je precej podobna zgornji enačbi. Algoritem se ustavi, ko
vsak od atributov v Ā kvečjemu poslabša napako na učni množici. Algoritem surove sile
je lahko hiter, če imamo kvalitetno implementacijo naivnega Bayesovega klasifikatorja, je
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United−States (43832)

Holand−Netherlands (1)

? (857)

Germany (206)

Canada (182)

England (127)

Poland (87)

Peru (46)

Ecuador (45)

Columbia (85)

Cuba (138)

Scotland (21)

Ireland (37)

Greece (49)

Italy (105)

Yugoslavia (23)

Portugal (67)

Japan (92)

France (38)

Iran (59)

Hungary (19)

Puerto−Rico (184)

Honduras (20)

Dominican−Republic (103)

Mexico (951)

Guatemala (88)

El−Salvador (155)

Nicaragua (49)

Outlying−US(Guam−USVI−etc) (23)

Jamaica (106)

Haiti (75)

Trinadad&Tobago (27)

Cambodia (28)

Philippines (295)

Laos (23)

Vietnam (86)

South (115)

Thailand (30)

India (151)

Taiwan (65)

China (122)

Hong Kong (30)

Slika A.11: V tem dendrogramu lepo vidimo, da lahko z nekaj izjemami ločimo tri skupine
izvora prebivalcev ZDA: Azija, Južna in Srednja Amerika ter Evropa in Severna Amerika. V
oklepajih je navedeno število prebivalcev v posamični skupini.
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pa vseeno približno kvadratičen s številom atributov. Vsako preverjanje seveda zahteva
pregled vseh učnih primerov.

Malce hitreǰsi pristop temelji na neki oceni koristnosti atributa za napovedovanje
razreda, I(X;Y ):

X̂ = arg max
X∈Ā

I(X;Y ) (A.43)

Seveda pa je ta postopek kratkoviden in ne upošteva tega, da nam lahko en atribut pove
isto kot drugi. Zato je Fleuret (2004) predlagal naslednji postopek:

X̂ = arg max
X∈Ā

(

min
A∈A

I(X;Y |A)

)

(A.44)

Izberemo torej najbolǰsi atribut, ki v njemu najmanj ugodnem kontekstu atributa A vseeno
doprinese čimveč. Ta postopek je še vedno kvadratičen s številom atributov, vendar pa je
preverjanje takorekoč takoǰsnje. Slabost postopka je, da je nerobusten, saj upošteva le en
atribut za oceno kvalitete. Druga slabost je, da ne loči med pozitivnimi in negativnimi
interakcijami. Zato predlagamo naslednji postopek:

X̂ = arg max
X∈Ā

(

I(X;Y ) +
∑

A∈A
min{0, I(X;Y ;A)}

)

(A.45)

Tu seštejemo negativne interakcije vseh atributov, ki so že vključeni v model, poleg tega pa
preprečujemo upoštevanje pozitivnih interakcij. Vsi trije hevristični postopki se ustavijo,
ko ni več izbolǰsanja na učni množici.

Slika A.12 prikazuje delovanje teh treh hevristik na domeni ‘Spam’. Uporabili smo
logaritemsko funkcijo napake, kjer klasifikator kaznujemo z − log2 p. Tu je p verjetnost, ki
jo je klasifikator pripisal pravilnemu razredu. Obširneǰsi preskus je prikazan v tabeli A.1.
Očitno je najbolǰsi postopek surove sile, sledi mu pa hevristika, ki temelji na interakcijskem
prispevku. Sicer med Fleuretovo in našo hevristiko ni spektakularnih razlik, je pa naša
precej bolj robustna. Najbolj očitno pa je izredno slabo delovanje kratkovidne ocene, ki
je le malenkost bolǰsa od popolne odsotnosti izbire atributov. Manǰsa učinkovitost infor-
macijskega prispevka pri naivnem Bayesovem klasifikatorju se sklada tudi z ugotovitvami
drugih (Mladenić, 1998).

A.5.2 Kikuči-Bayesov klasifikator

Že Demšar (2002) je opazil, da je interakcijski prispevek dobra hevristika za združevanje
atributov, kar je sestavni del konstruktivne indukcije (Zupan, 1997). Že v preǰsnjem
razdelku je postalo jasno, da moramo za konkurenčne rezultate pri gradnji modela uporabl-
jati postopke surove sile, kar pa je z uporabo noveǰsih programskih tehnik lahko dokaj
učinkovito (Caruana et al., 2004). Poleg tega bomo uporabili metode Bayesove statistike
za sestavljanje modelov in preprečevanje pretiranega prilagajanja podatkom.

Najprej definirajmo pojem interakcijskega modela. Interakcijski model na atribu-
tih V = {X1, X2, . . . , Xm} določa neka množica interakcij M = {P (S|θS); S ⊆ V}.
Vsako interakcijo na atributih S opǐsemo s podmodelom P (VS), s skupno verjetnostno
porazdelitvijo atributov, ki so udeleženi v interakciji. Tu ne povemo, kako točno ta pod-
model izgleda. Čeprav sami uporabljamo multinomski model na diskretnih atributih, bi
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Slika A.12: Primerjava kontekstno-odvisne izbire atributov pri naivnem Bayesovem klasi-
fikatorju pokaže, da sicer najbolǰse deluje Fleuretova hevristika. Po drugi strani pa je interak-
cijski prispevek, ki kaznuje atribute, udeležene v veliko število negativnih interakcij z drugimi
atributi, veliko bolj gladko krivuljo, saj je bolj robustna.

lahko uporabili karkšnegakoli (drevesa, pravila, mešanice, ipd.). Ravno tako lahko enos-
tavno predpostavimo tudi to, da nobena od podmnožic atributov S ni vsebovana v kaki
drugi S ′ ⊇ S: v takem primeru bi bilo trivialno marginalizirati P (V′

S). Ravno tako
lahko za probleme klasifikacije enostavno predpostavimo, da vsaka podmožica S vsebuje
razredni atribut: sicer ta interakcija ne bi nič prispevala h kvaliteti napovedi. Končno,
lahko si zaželimo konsistentnosti med podmodeli: načeloma naj bi obstajal nek skupni
(joint) model P (V), tako da je vsak posamičen podmodel marginalizacija le-tega.

Kikučijev približek

Osnovna problema, ki sta povezana z interakcijskimi modeli sta dva: kako na podlagi
takih posamičnih interakcij napovedujemo razred in kako se iz podatkov naučimo strukture
interakcij ter podmodelov. Prej smo že omenili Boltzmannovo porazdelitev, ki ima lepe
lastnosti. Uporabili bi jo lahko tako, da bi vsaki interakciji pripisali potencial, potem
pa poskušali najti take parametre potencialom, da bi se celotna porazdelitev ujemala s
podmodeli. Razen v posebnih primerih bi to bilo precej počasno.

Po drugi strani smo na primeru približka Kirkwooda videli, da lahko pridemo tudi do
enostavneǰsih struktur, ki ne delujejo slabo, moramo jih le normalizirati pred uporabo.
Kikučijev približek (Kikuchi, 1951, Yedidia et al., 2004), ki je bil zamǐsljen kot približek
pri računanju entropije, lahko obravnavamo kot posplošitev verižnega pravila (chain rule).
Bistvo približka je v tem, da območje prekrivanja med dvema interakcijama odštejemo iz
vpliva. Pri tem uporabimo postopek na sliki A.13, da dobimo graf regij. Na podlagi grafa
regij GR lahko izračunamo skupno verjetnostno porazdelitev:

P̂ ′(v|M) ∝
∏

〈R,cR〉∈GR

P (vR)cR (A.46)
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Brierjeva napaka
vsi atributi surova sila medsebojna inf. Fleuret interakcijski p.

lung 0.575 ± 0.085
√

0.562 ± 0.079 0.581 ± 0.085
√

0.567 ± 0.088
√

0.634 ± 0.069
√

soy-small 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zoo 0.125 ± 0.047

√
0.133 ± 0.046

√
0.106 ± 0.038 0.123 ± 0.046

√
0.125 ± 0.047

√

lymph 0.537 ± 0.056 0.326 ± 0.033 0.360 ± 0.027 0.368 ± 0.028 0.330 ± 0.018
√

wine 0.013 ± 0.008 0.008 ± 0.006
√

0.020 ± 0.011 0.017 ± 0.010 0.006 ± 0.003
glass 0.618 ± 0.047 0.630 ± 0.051

√
0.618 ± 0.047 0.618 ± 0.047 0.635 ± 0.053

√

breast 0.208 ± 0.016 0.198 ± 0.011
√

0.192 ± 0.010 0.194 ± 0.010
√

0.194 ± 0.010
√

ecoli 1.070 ± 0.056 0.916 ± 0.042 1.056 ± 0.054 1.070 ± 0.056 1.044 ± 0.049
horse-colic 1.013 ± 0.074 0.423 ± 0.016 0.426 ± 0.012

√
0.431 ± 0.012

√
0.431 ± 0.012

√

voting 0.091 ± 0.010 0.037 ± 0.008 0.044 ± 0.010
√

0.037 ± 0.009
√

0.040 ± 0.010
√

monk3 0.043 ± 0.004
√

0.043 ± 0.004 0.043 ± 0.004
√

0.043 ± 0.004
√

0.043 ± 0.004
√

monk1 0.174 ± 0.008
√

0.175 ± 0.008
√

0.174 ± 0.008 0.174 ± 0.008 0.174 ± 0.008
monk2 0.229 ± 0.006 0.229 ± 0.006

√
0.229 ± 0.006

√
0.229 ± 0.006

√
0.229 ± 0.006

√

soy-large 0.832 ± 0.095 0.696 ± 0.088 1.566 ± 0.103 1.039 ± 0.087 0.803 ± 0.082
wisc-cancer 0.023 ± 0.004 0.028 ± 0.005 0.031 ± 0.005 0.027 ± 0.005 0.026 ± 0.005

√

australian 0.112 ± 0.008
√

0.104 ± 0.008
√

0.111 ± 0.010
√

0.104 ± 0.008
√

0.103 ± 0.010
credit 0.111 ± 0.007 0.104 ± 0.007

√
0.110 ± 0.007 0.100 ± 0.007 0.102 ± 0.007

√

pima 0.160 ± 0.006 0.154 ± 0.005
√

0.154 ± 0.005
√

0.155 ± 0.005
√

0.151 ± 0.005
vehicle 0.589 ± 0.021 0.446 ± 0.020 0.584 ± 0.013 0.494 ± 0.019 0.487 ± 0.021
heart 0.713 ± 0.024 0.664 ± 0.019 0.696 ± 0.021 0.691 ± 0.021 0.670 ± 0.019

√

german 0.174 ± 0.007
√

0.172 ± 0.005 0.172 ± 0.007
√

0.174 ± 0.008
√

0.176 ± 0.008
√

cmc 0.445 ± 0.010 0.417 ± 0.006
√

0.416 ± 0.006 0.416 ± 0.006 0.416 ± 0.006
segment 0.262 ± 0.015 0.150 ± 0.008 0.287 ± 0.018 0.161 ± 0.009 0.200 ± 0.014

krkp 0.092 ± 0.004 0.074 ± 0.002 0.085 ± 0.003 0.078 ± 0.003 0.081 ± 0.002
mushroom 0.034 ± 0.003 0.005 ± 0.001 0.008 ± 0.000 0.008 ± 0.000 0.008 ± 0.001

adult 0.120 ± 0.002 0.098 ± 0.001 0.117 ± 0.002 0.101 ± 0.001 0.101 ± 0.001

domen NB B MI F I

najbolǰsa 3 15 5 4 5
dobra

√
6 10 8 10 13

slaba 17 1 13 12 8

Tabela A.1: Najslabši postopek je odsotnost izbire atributov, najbolǰsi pa uporaba surove
sile. Med hevristikami je najslabša kratkovidna ocena z informacijskim prispevkom, najbolǰsa
pa uporaba interakcijskega prispevka, saj je ta največkrat med zmagovalci (

√
pomeni, da je

rezultat znotraj standardne napake najbolǰsega za domeno).

Približek Kirkwooda je posebni primer Kikučijevega približka za običajni izbor interakcij,
ki definirajo brez-interakcijski model nekega vǐsjega reda. P̂ ′ v splošnem ni normaliziran
in v splošnem je računanje particijske funkcije Z eden od najzoprneǰsih problemov pri
delu z Boltzmannovo porazdelitvijo. Pri klasifikaciji pa to ni težava, saj normalizacijo
izvedemo le pri dani vrednosti atributov x za razredni atribut Y :

P̂ (y|x,M) ,
P̂ ′(y,x|M)

∑

y′∈ℜY
P̂ ′(y′,x|M)

(A.47)

Učenje strukture interakcij

Naš algoritem učenja strukture izvaja iskanje po principu surove sile, pri čemer najprej
preveri vse 2-interakcije. Ko s temi ne more več doseči izbolǰsanja, se loti 3-interakcij. Ko
tu ne more več doseči izbolǰsanja, gre na 4-interakcije in tako naprej. Algoritem pa ima
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R0 ← {∅} {Začetne regije.}
for all S ∈ M do {za vsako začetno regijo}

if ∀S ′ ∈ R0 : S * S ′ then
R0 ← R0 ∪ {S} {S ni odvečna}

end if
end for
R ← {〈S, 1〉; S ∈ R0}
k ← 1
while |Rk−1| > 2 do {možne podmnožice}
Rk ← {∅}
for all I = S† ∩ S‡ : S†,S‡ ∈ Rk−1, I /∈ Rk do {možni preseki}
c← 1 {števnost preseka}
for all 〈S ′, c′〉 ∈ R, I ⊆ S ′ do
c← c− c′ {upoštevaj števnost vseh regij, ki vsebujejo presek}

end for
if c 6= 0 then
R ← R∪ {〈I, c〉}

end if
Rk ← Rk ∪ {I}

end for
end while
return {〈R, c〉 ∈ R; c 6= 0} {Graf regij s števnostmi.}

Slika A.13: Na podlagi množice interakcij interakcijskega modela M = {S1,S2, . . . ,Sℓ} ta
algoritem izdela graf regij Kikučijevega približka.

še dve lastnosti. Enostavneǰse strukture imajo večjo apriorno gotovost, s tem omejimo
globino iskanja ter preprečujemo preveliko prileganje podatkom. Druga lastnost pa je
uporaba Bayesovskega povprečenja modelov: namesto, da bi uporabljali le eno strukturo
za napovedovanje, združimo več struktur glede na njihovo aposteriorno gotovost.

Najprej moramo ovrednotiti kompleksnost modela. Uporabili smo naslednjo definicijo
prostostnih stopenj, ki temelji na prilagoditvi kompleksnosti loglinearnih modelov (Krip-
pendorff, 1986) za namene klasifikacije:

dfMY
,

∑

〈S,c〉∈R
c

(
∏

X∈S
|ℜX | −

∏

X∈S
X /∈Y

|ℜX |
)

(A.48)

Kompleksnost torej izhaja iz produkta kardinalnosti zalog vrednosti atributov, udeleženih
v vsako interakcijo, pri čemer pa upoštevamo, da je pri vsaki vrednosti samih atributov x
napoved vrejetnosti razrednega atributa P (Y |x) normalizirana, kar zmanǰsa število pros-
tostnih stopenj za ena. To kompleksnost potem vstavimo v naslednji izraz za varčno apri-
orno gotovost (parsimonious prior), ki ustreza informacijskemu kriteriju Akaikeja (AIC) s
korekcijo za majhne vzorce (Burnham and Anderson, 2002).

P (M)
△∝ exp

{

− m dfM
m− dfM − 1

}

(A.49)
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Slika A.14: Negativni logaritem varčne apriorne gotovost se dobro ujema s pričakovano
logaritmično napako na neodvisnem vzorcu pri prevzorčenju (left) in z logaritmično napako
na testni množici pri 3-kratnem prečnem preverjanju.

Slika A.14 dokazuje, da se ta varčna apriorna gotovost zelo dobro ujema z empiričnimi
meritvami pričakovane napake. Seveda bi za drugačno funkcijo napake morali prilagoditi
tudi izraz za apriorno gotovost.

Posamični podmodel ocenimo z naslednjim izrazom za apriorno gotovost, ki zagotavlja
konsistentnost vseh podmodelov, če je le ϑ za vse enak:

P (θS |ϑ) = Dirichlet(α, . . . , α), α =
ϑ

∏k
i=1 |Xi|

(A.50)

V praksi to pomeni, da vsako verjetnost sopojavitve konjunkcije vrednosti atributov
izračunamo kot (α + n)/(N + ϑ), kjer je n število pojavitev konjunkcije, N pa število
vseh primerov. Gre torej za varianto m-ocene (Cestnik, 1990), le da ocenjujemo skupne
verjetnosti in ne pogojnih.

Potem, ko smo s postopkom preiskovanja prǐsli do točke, ko se je kvaliteta mod-
ela na učni množici začela slabšati, z naslednjim izrazom za vsakega od korakov pri
iskanju izračunamo aposteriorno gotovost modela pri tistem koraku na učni množici
D = {〈x(1), y(1)〉, . . . , 〈x(m), y(m)〉}:

P̂ (v(1)...(m)|MY) ,

m∏

i=1

P̂ (y(i)|x(i),MY) (A.51)

Če smo pri vsakem od skupno ℓ korakov dodali neko novo interakcijo Si in dobili model
z aposteriorno gotovostjo pi, napovedi združimo z naslednjim izrazom za Bayesovsko
povprečenje modelov (Hoeting et al., 1999):

P̂ (y|x) =

∑ℓ
i=1 piP̂ (y|x, CV A(S1,S2, . . . ,Si))

∑ℓ
i=1 pi

(A.52)

S tem smo pa tudi definirali osnovno idejo Kikuči-Bayesovega klasifikatorja. Četudi se zdi
opis zaradi poskusa zaokroženosti tega opisa zapleten, gre v resnici za zaporedje popol-
noma standarnih korakov Bayesove statistike.
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Slika A.15: Plošča pri igrici križcev in krožcev ima 9 polj. Vsako polje opǐsemo s 3-
vrednostnim atributom, ki ima zalogo vrednosti {×, ◦, }. Razred označuje, ali je z atributi
opisan položaj zmagovalen za × ali ne: to je dvovrednostni atribut. Izbrane interakcije so:
2-interakcije (5 zelenih krogov), 3-interakcije (4 modre črte s črtico), in 4-interakcije (6 rdečih
črtkanih črt). Vsaka interakcija vsebuje razredni atribut.

Algoritem na sliki A.13 daje točne (exact) rezultate v primerjavi z verižnim pravilom
takrat, ko preseki presekov in nadaljne korekcije niso potrebne (Yedidia et al., 2001).
Poleg Kikučijevega obstaja tudi Bethejev približek, ki smo ga uporabili že prej in ki
temelji na tem, da korekcijo prekrivanja opravimo kar na posamičnih atributih. Podobne
približke v malo drugačnem kontekstu omenja tudi Kononenko (1990), kjer so števnosti
kar realna števila. V splošnem pa moramo včasih neugodne ciklične strukture interakcij
poenostaviti tako, da cikel združimo v eno samo veliko interakcijo. Nesmiselno pa je to
početi vnaprej, če tudi neugodne prinesejo včasih korist. Če obstaja korist v združitvi,
bo to opravil že algoritem učenja strukture sam s tem, da bo ustvaril večjo interakcijo.
Pomen odpravljanja neugodnih topologij je zato smiselno le takrat, ko želimo zmanǰsati
kompleksnost preiskovanja.

Eksperimentalni rezultati

Kikuči-Bayesov klasifikator daje presenetljivo dobre rezultate na velikem številu domen in
deluje precej hitro. Rezultati na 46 domenah s petkrat ponovljenim 5-kratnim prečnim
preverjanjem so prikazani v tabeli A.2. Aposteriorno najbolj gotov model na domeni
‘Tic-Tac-Toe’ je prikazan na sliki A.15 in lepo prikazuje to, da je algoritem popolnoma
avtomatsko našel smiselne strukture: center in kote igralne plošče, povezave med koti
in centrom, ter dve diagonali in štiri robove. Četudi doseže logistična regresija bolǰso
klasifikacijsko točnost z obteženo vsoto na podlagi 2-interakcij med posamičnimi atributi
in razredom, se zdi človeku interakcijski model intuitivno veliko bližje.

V dodatnih eksperimentih, ki v tem povzetku niso omenjeni, se je izkazalo, da je varčna
apriorna gotovost konservativna glede na 5-kratno ali 10-kratno prečno preverjanje. To
pomeni, da lahko postopek učenja izbolǰsamo, če vemo, kakšno prečno preverjanje bo
uporabljeno. Ugotovili smo, da varčna apriorna gotovost dokaj učinkovito preprečuje
preveliko prileganje podatkom: v povprečju so se rezultati z dovoljevanjem večje velikosti
interakcij izbolǰsali. Kikuči-Bayes premaga tudi postopke indukcije odločitvenih dreves
(C4.5) in se uspešno kosa tudi s postopki podpornih vektorjev.
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logaritmična napaka na primer klasifikacijska napaka
domain tK n df NB TAN LR kMAP kBMA NB TAN LR kMAP kBMA
horse-colic 1.89 369 228 1.67 ·5.97 1.81

√
0.83 0.83 25.7 ·67.3 √

35.0
√

30.1
√

30.6
hepatitis 0.47 155 48 0.78 ·1.31 √

0.77
√

0.48 0.43
√

15.6
√

17.5 ·19.1 14.5
√

15.0
ionosphere 3.71 351 129

√
0.64 ·0.74 0.69

√
0.39 0.33 7.4

√
8.2 ·13.6 √

9.6
√

9.6
vehicle 0.42 846 205 ·1.78 1.14 0.93

√
0.69 0.66 ·39.6 29.7

√
33.4

√
31.4

√
31.3

voting 0.23 435 48 ·0.60 0.53 0.37
√

0.21 0.15 ·9.3 √
7.9

√
6.7

√
4.6 4.6

monk2 0.01 601 17 0.65 0.63 ·0.65 √
0.45 0.45 38.2 36.2 ·39.6 √

27.6 26.8
p-tumor* 0.39 339 552

√
3.17 ·4.76 √

2.76 2.65 2.61 54.7
√

61.5
√

63.6 ·71.3 ·71.3
heart 0.15 920 167 1.25 ·1.53 1.24

√
1.11 1.10 42.8

√
44.1 ·46.2 √

44.8
√

44.8
post-op 0.01 88 19

√
0.93 ·1.78 √

0.81
√

0.79 0.67
√

33.4
√

32.7 ·34.5 28.4
√

28.6
wdbc 0.57 569 61 0.26 0.29 ·0.42 √

0.15 0.13
√

4.2
√

4.4 ·7.8 4.0
√

4.1
promoters* 37.5 106 227

√
0.60 ·3.14 √

0.70
√

0.59 0.54
√

13.4 30.4 ·57.4 10.4
√

10.6
lymph 0.39 148 94

√
1.10 ·1.25 √

0.91
√

0.98 0.86
√

20.1 16.1
√

23.1 ·26.5 √
25.7

cmc 0.04 1473 55 1.00 ·1.03 0.97
√

0.93 0.92 47.8
√

45.8 ·49.7 √
43.6 43.4

adult 1.11 32561 134 ·0.42 0.33 0.35 0.30 0.30 ·16.4 14.3 13.6
√

13.9
√

13.9
crx 0.19 690 58

√
0.49 ·0.93 √

0.39
√

0.37 0.36
√

14.1 ·17.1 √
14.1 13.3

√
13.8

krkp 6.52 3196 69 ·0.29 0.19 0.08
√

0.06 0.05 ·12.4 7.8
√

2.5 1.6
√

1.7
glass 0.03 214 90

√
1.25 ·1.76 √

1.07 1.12 1.05 28.3
√

29.2
√

32.0 ·32.1 √
31.4

australian 0.16 690 49
√

0.46 ·0.94 √
0.39

√
0.41 0.38

√
14.3 ·17.6 √

15.4
√

14.3 14.3
titanic 0.01 2201 8 ·0.52 √

0.48 0.50
√

0.48 0.48 ·22.3 21.1
√

22.2 21.1
√

21.1
segment 0.74 2310 617 0.38 ·1.06 0.45 0.17 0.17

√
6.5 ·14.2 √

7.7 5.4 5.4
lenses 0.00 24 14

√
2.44 ·2.99 √

0.89 0.34 0.39
√

28.3 ·35.8 √
26.7 12.5

√
15.0

monk1 0.01 556 16 0.50 0.09 ·0.50 0.01
√

0.02 25.4 0.0 ·25.5 0.0 0.0
breast-LJ 0.03 286 24

√
0.62 ·0.89 0.58

√
0.67

√
0.58 27.8

√
28.4

√
28.3 ·29.0 √

28.7
monk3 0.01 554 17 ·0.20 √

0.11 0.10
√

0.11
√

0.11 ·3.6 √
1.6

√
1.7

√
1.1 1.1

bupa 0.01 345 12 ·0.62 √
0.60 0.60

√
0.62

√
0.61

√
33.9

√
32.8 ·34.5 √

33.2 32.8
tic-tac-toe 0.03 958 27 ·0.55 0.49 0.06

√
0.08

√
0.07 ·29.8 23.8 2.0

√
3.1

√
2.9

pima 0.02 768 19
√

0.50
√

0.49 0.46 ·0.51 √
0.48

√
22.1

√
22.1 21.8 ·22.4 √

22.0
iris 0.00 150 15

√
0.27 ·0.32 0.21

√
0.27

√
0.23 ·6.3 √

6.0
√

5.6 5.2 5.2
spam 39.9 4601 156 ·0.53 0.32 0.16 0.19

√
0.19 ·9.7 √

6.9 5.9
√

6.2
√

6.2
breast-wisc 0.03 683 28

√
0.21 ·0.23 0.13

√
0.21

√
0.18 2.6

√
3.4

√
3.9

√
3.9 ·4.0

german 0.64 1000 68
√

0.54 ·1.04 0.52 0.65
√

0.59
√

24.5 ·27.3 24.4
√

26.3
√

26.3
anneal 6.16 898 204

√
0.07 ·0.17 0.02 0.11 0.11

√
1.3 ·2.9 0.3 2.4 2.5

ecoli 0.01 336 92
√

0.89 ·0.94 0.68
√

0.85
√

0.83 15.3
√

15.4 ·16.8 √
16.4

√
16.2

hayes-roth 0.00 160 24 0.46 ·1.18 0.26 0.45 0.45
√

14.9 ·29.9 √
17.0 13.5 13.5

balance-scale 0.00 625 40 0.51 ·1.13 0.28 0.51 0.51
√

9.3 ·15.0 8.5
√

9.3
√

9.3
soy-large* 5.95 683 822

√
0.57

√
0.47 0.37 ·0.68 0.68

√
9.0

√
8.4 7.7 ·27.0 27.0

o-ring 0.00 23 7
√

0.83
√

0.76 0.66 ·1.41 √
1.00 13.0 ·22.6 √

17.4
√

22.6
√

19.1
lung-cancer* 35.0 32 233 5.41 ·6.92 1.24

√
2.37

√
1.62 51.9

√
63.8 ·70.6 √

60.6
√

61.9
audiology* 81.2 226 1783 3.55 ·5.56 1.40 2.24 2.23

√
40.8 62.7 26.0 ·68.6 ·68.6

soy-small* 5.29 47 115
√

0.00 0.00 ·0.15 0.00 0.00 0.0 0.0 ·2.1 0.0 0.0
mushroom 1.33 8124 72 ·0.01 0.00 0.00 0.00 0.00 ·0.4 0.0 0.0

√
0.0

√
0.0

shuttle 0.01 253 15 ·0.16 0.06
√

0.10
√

0.07
√

0.07 ·6.7 √
2.8 2.5

√
3.6

√
2.9

car 0.02 1728 48 0.32 0.18 ·0.33 0.19 0.19 14.6 5.9 ·16.7 √
6.5

√
6.5

zoo* 0.23 101 124 0.38 ·0.46 √
0.38

√
0.40

√
0.40 3.6

√
6.3

√
7.5 ·12.9 √

12.1
wine 0.10 178 50 0.06 ·0.29 √

0.09
√

0.19
√

0.14 0.9
√

3.1
√

2.2 ·4.3 √
3.6

yeast-class* 138 186 376 0.01
√

0.03 ·0.90 0.25 0.23 0.1
√

0.3 ·34.9 √
2.9

√
2.9

pov.mesto 3.68 ·3.99
√

2.54 2.84 1.95 2.98 3.20 ·3.34
√

2.87 2.62

Tabela A.2: Primerjava Kikuči-Bayesovega klasifikatorja z najverjetneǰso aposteriorno
strukturo (kMAP) ter z Bayesovskim povprečenjem modelov (kBMA), logistično regresijo
(LR), naivnim Bayesovim klasifikatorjem (NB) in drevesnim Bayesovim klasifikatorjem (TAN,
(Friedman et al., 1997)). Najbolǰsi rezultat je v mastnem tisku, rezultati metod, ki so v vsaj
dveh od 25 eksperimentov na domeni bili bolǰsi od v povprečju najbolǰsega pa so označeni z√

. tK označuje čas učenja Kikuči-Bayesovega klasifikatorja v sekundah za strukture s stopnjo
interakcije do vključno 4. Razvidno je predvsem to, da sta NB in TAN potisnjena na rob: zelo
težko konkurirata postopkoma Kikuči-Bayesa s sposobnostjo obravnave kompleksnih struktur,
ter logistične regresije s sposobnostjo pravilnega obravnavanja negativnih interakcij. Kikuči-
Bayes z istim modelom zmaga po obeh kriterijih, za druge klasifikatorje to ne velja: NB je
slab glede na logaritmično napako in soliden pri klasifikacijski točnosti, LR pa je solidna glede
na logaritmično napako in najslabša pri klasifikacijski točnosti. Nasploh pa je uspešnosti pri
logaritmčni napaki slabo korelirana z uspešnostjo pri klasifikacijski točnosti.
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A.6 Zaključek in prispevki

Disertacija se je ukvarjala s splošnim problemom interakcij v strojnem učenju. Koncept
interakcije smo definirali v splošnem kot potrebo po hkratnem poznavanju vrednosti več
atributov. Predlagali smo nove preizkuse značilnosti interakcije. Predstavili smo načine
razumevanja podatkov s pomočjo interakcij. Pokazali smo, kako lahko interakcije koris-
tijo obstoječim postopkom strojnega učenja in kako lahko zgradimo učinkovite postopke
strojnega učenja na podlagi interakcij. V splošnem se naučeni modeli in vizualizacije zelo
dobro ujemajo s človeško intuicijo o podatkih.

Utrdili smo pogled na strojno učenje v kontekstu funkcije koristnosti, algoritma, pros-
tora hipotez in podatkov. Ta kontekst velja tako za hevristike kot tudi za postopek učenja.
V nadaljevanju se odpirajo nove priložnosti pri povezovanju postopkov strojnega učenja:
bolǰse kombiniranje interakcij, bolǰse iskanje interakcij in bolǰsa obravnava posamične in-
terakcije. V preteklosti je vsak algoritem počel vse hkrati.

Prispevki k znanosti

• Posplošili smo koncepte povezanosti in korelacije v en sam pojem interakcije na k
atributih, ki ga lahko prilagodimo specifičnemu modelu ter specifični funkciji korist-
nosti.

• Predstavili smo množico novih postopkov vizualizacije, ki dokazujejo, da se pojem
interakcije zelo dobro ujema s človeško intuicijo in pogosto nudi nepričakovana a
razumljiva spoznanja.

• Predstavili smo več novih preskusov statistične značilnosti, ki omogočajo, da se
statistično ovrednoti smiselnost zaključka o interakciji na podlagi omejene količine
podatkov.

• Predstavili smo nov in učinkovit postopek strojnega učenja, Kikuči-Bayes, katerega
model se sestoji iz množice potencialno prekrivajočih se interakcij. Postopek se
uspešno kosa z najbolǰsimi na področju strojnega učenja, posplošuje Bayesovske
mreže in omogoča nedisjunktno dekompozicijo atributov.

• Uporaba varčnih apriornih gotovosti, ki avtomatsko poskrbijo za kaznovanje v skladu
s povečanjem kompleksnosti danega modela. Ugotovitev, da lahko algoritem učenja
prilagodimo lastnostim prečnega preverjanja.

• Predstavili smo novo hevristiko za izbiro atributov, ki temelji na interakcijskem
prispevku.

• V splošnem smo problem strojnega učenja razbili na problem iskanja strukture in-
terakcij ter na problem obravnave posamične interakcije.

• V temeljitem pregledu literature smo odkrili več neodvisnih odkritij in poimenovanj
interakcijskega prispevka, kar nakazuje vsestranskost tega pojma.

• Pokazali smo obvladljivost problema iskanja interakcij na domenah z zelo veliko
atributi ter nelinearne obravnave interakcij med zveznimi atributi.
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• V slovenskem prostoru smo predstavili nekatere pojme moderne Bayesove statis-
tike in med prvimi uporabili elemente statistične mehanike (približka Kikučija in
Kirkwooda) v strojnem učenju.

Nadaljnje delo

• Kikuči-Bayesova obravnava interakcij izključno s kartezičnim produktom je dokaj
primitivna. Eksperimenti dokazujejo uporabnost pravil, skupin in taksonomij za
opisovanje interakcije. Ti elementi pa še niso integrirani kot del učenja. Te rešitve
ponujajo novo perspektivo problema konstruktivne indukcije v strojnem učenju.

• Navkljub pomenu strukture se iz rezultatov vidi pomembnost numeričnih postopkov,
ki učinkovito obravnavajo veliko število manj kompleksnih negativnih interakcij:
metoda podpornih vektorjev z linearnim jedrom deluje bolǰse od Kikuči-Bayesovega
klasifikatorja. V zadnjem času se je postavilo nekaj izhodǐsč, kjer lahko na podlagi
strukture interakcij definiramo jedro, s katerim potem dobimo napovedni model.
Obetavno se zdi uporabiti algoritme Kikuči-Bayesa za avtomatsko izgradnjo jeder.

• Obstajajo tudi drugi približki za združevanje interakcij, zelo malo pa je znanega o
njihovi kvaliteti. Vsekakor je treba upoštevati, da je Kikučijev približek mǐsljen za
združevanje podmodelov v skupni (joint) model in ne za združevanje v napovedni
(class-predictive) model. Tu bi se s primernim pristopom lahko še kaj pridobilo.

• Čeprav smo opravili začetne preizkuse obravnave interakcij pri domenah z zelo veliko
atributi, je težko ovrednotiti kvaliteto obstoječega postopka.

• Naše vizualizacije ne upoštevajo negotovosti pri stopnji interakcije in je ne prikažejo
učinkovito.

• Zanimivo bi bilo omogočiti človeku interaktiven vpogled v gradnjo modela in
mu omogočiti aktivno vlogo pri učenju. To omogoča in poenostavlja intuitivna
razumljivost interakcij.



A.6. Zaključek in prispevki 221

Izjava

Izjavljam, da sem doktorsko disertacijo izdelal samostojno pod mentorstvom akad. prof.
dr. Ivana Bratka. Ostale sodelavce, ki so mi pri nalogi pomagali, sem navedel v razdelku
Acknowledgments na strani vii.
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