
Machine Learning Based Online Performance Prediction
for Runtime Parallelization and Task Scheduling

Jiangtian Li∗, Xiaosong Ma∗†, Karan Singh‡, Martin Schulz§, Bronis R. de Supinski§ and Sally A. McKee¶
∗Dept. of Computer Science, North Carolina State University, Raleigh, NC 27606

Email: jli3@ncsu.edu, ma@csc.ncsu.edu
†Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

‡Computer Systems Laboratory, Cornell University, Ithaca, NY 14850
Email: karan@csl.cornell.edu

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94550
Email: {schulzm, bronis}@llnl.gov

¶Department of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden
Email: mckee@chalmers.se

Abstract—With the emerging many-core paradigm, parallel
programming must extend beyond its traditional realm of scien-
tific applications. Converting existing sequential applications as
well as developing next-generation software requires assistance
from hardware, compilers and runtime systems to exploit par-
allelism transparently within applications. These systems must
decompose applications into tasks that can be executed in parallel
and then schedule those tasks to minimize load imbalance.
However, many systems lack a priori knowledge about the
execution time of all tasks to perform effective load balancing
with low scheduling overhead.

In this paper, we approach this fundamental problem using
machine learning techniques first to generate performance mod-
els for all tasks and then applying those models to perform
automatic performance prediction across program executions.
We also extend an existing scheduling algorithm to use generated
task cost estimates for online task partitioning and scheduling.
We implement the above techniques in the pR framework, which
transparently parallelizes scripts in the popular R language,
and evaluate their performance and overhead with both a real-
world application and a large number of synthetic representative
test scripts. Our experimental results show that our proposed
approach significantly improves task partitioning and scheduling,
with maximum improvements of 21.8%, 40.3% and 22.1% and
average improvements of 15.9%, 16.9% and 4.2% for LMM (a
real R application) and synthetic test cases with independent and
dependent tasks, respectively.

Index Terms—Performance Prediction, Artificial Neural Net-
works, Automatic Task Scheduling, Scripting Languages

I. INTRODUCTION

Parallelization of all application types is critical with the
trend towards an exponentially increasing number of cores
per chip. Although active research on new programming
models [1], [2] may simplify explicit parallelization of many
applications, transparent or semi-transparent parallelization
assisted by hardware, compilers, or runtime systems would
significantly improve the applicability of many-core systems
to existing sequential programs and better enable parallel
commercial applications [3], [4]. However, automatic par-
allelization remains an elusive goal, despite much work to
parallelize general-purpose programming languages transpar-

ently [4], [5], [6]. Alternatively, automatic parallelization of
scripting languages [7], [8] would alleviate the application
developers’ parallel programming burden while avoiding many
of the difficulties of parallelizing compilers. This approach,
which covers not only scientific applications but also those
traditionally run on commercial servers, personal computers
or even cell phones, must transparently exploit both task
parallelism and data parallelism.

To give a concrete example, interactive scientific data
navigation and analysis is frequently performed sequentially
on desktop computers despite possessing significant task and
data parallelism. Common task parallelization opportunities
include the computation of the eigenvalues of a matrix while
also generating a histogram of its values. Data parallelization
opportunities for scripting languages, such as a loop that
processes the output files from a series of time-steps or the
elements of a large array, are even more common. Figure
1(a) shows a target scenario, a data processing script written
in R [9], a popular statistical computing package. Lines 1-3
initialize a list and two matrices. The tasks, T1 and T2, on
lines 4 and 5 perform a Friedman rank sum and a sample
Wilcoxon test. The loop L in lines 6-8 performs vector-matrix
multiplications and calculates mean values. Since L, T1, and
T2 are mutually independent, they can be executed in parallel.
Further, there are no dependences between the iterations of L
so they can also be parallelized. However, a straightforward
loop decomposition and task distribution will not produce
an efficient parallel execution schedule, as demonstrated by
the example schedules that use lengths proportional to the
execution times for L, T1 and T2 on an eight core system.
Figure 1(b) shows a naive schedule that divides L iterations
evenly by the number of processors. Since the functions and
the loop blocks execute whenever a processor is available,
two loop blocks use the same processors as T1 and T2.
Thus, this schedule leaves six processors idle while those loop
blocks complete. In contrast, Figure 1(c) shows a much more
desirable schedule that optimizes the loop decomposition in
light of the tasks to provide perfect load balance, but requires

89978-1-4244-4184-6/09/$25.00 ©2009 IEEE

a <- array(rnorm(1200*1200), dim=c(1200, 1200)) 1
b <- list() 2
c <- array(rnorm(1200*1200), dim=c(1200, 1200)) 3
f <- friedman.test(a) 4
w <- wilcox.test(c) 5
for (i in 1 : 1200) { 6

b[[i]] = mean(c %% a[i,]) 7
} 8

L:

T1:
T2:

(a) A sample R script

T1 T2 L7L6L5L4L3

L2L1

L8

Processor

0 1 2 3 4 5 6 7

T
im

e

(b) Imbalanced schedule

T1 T2 L3 L4 L6 L7 L8

L2
L1

L5

0 1 2 3 4 5 6 7

Processor

T
im

e

(c) Balanced schedule

Figure 1. A motivating example with sample schedules

an accurate prediction of all tasks’ execution times before
scheduling L.

We could apply many existing static task scheduling tech-
niques [10] to our target scenario – if we knew the cost
of the tasks and loop iterations in advance. Since our goal
is an implicit parallelization mechanism, we use transparent
performance models to predict those costs. Our models use
performance observations to predict later executions, which
particularly suits programs written in scripting languages. Al-
though such languages provide a large number of functions and
utilities, on a given system programs typically utilize a small
set of functions (often with relatively stable parameter ranges).
This limited set of functions are used repeatedly both within
a single job and across jobs, typically by one or several users.
Thus, by enabling “personal” or “per-system” performance
data collection and modeling, we can archive enough samples
for accurate predictions given fairly predictable user behaviors.

This paper presents our novel runtime parallelization tool
that performs intelligent loop decomposition and task schedul-
ing, based on performance models derived from past perfor-
mance data collected on the local platform. We use artificial
neural networks (ANNs), which are application-independent
and self-learning black box models, as required for implicit
parallelization. We integrate these techniques into the existing
pR framework [8], which performs runtime, automatic par-
allelization of R scripts. The result is an adaptive scheduling
framework for the parallel execution of R, which we call ASpR
(Adaptively Scheduled parallel R – pronounced “aspire”).

For the example in Figure 1(a), ASpR estimates the costs
of T1 and T2 based on past calls to those functions. Further,
it can infer the cost of the individual iterations of L based
on feedback collected by “test driving” the same loop. We
then use these cost estimates as inputs for our scheduling
algorithm, which is an extension of the Modified Critical Path
(MCP) scheduling algorithm [11], to generate an informed
loop partitioning and scheduling plan that is close to the one
shown in Figure 1(c). The major contributions of this paper
are:

• Lightweight online profiling and performance prediction
techniques for a widely used scripting language;

• A fully transparent self-adaptive, platform- and
application-independent parallelization mechanism
for R;

• An extension of the MCP algorithm [11] to use cost
estimates from our models for loop partitioning and task
scheduling, and runtime heuristics for more effective
processor allocation and scheduling;

• The first study (to the best of our knowledge) to apply
machine learning to online task partitioning and schedul-
ing, especially with a priori unknown parameter spaces;

• A detailed evaluation of our implicit parallelization ap-
proach, in terms of the overall performance of auto-
matically parallelized scripts, using both a real-world
R application and synthetic benchmarks composed of
popular functions sampled from the R internal library and
the BioConductor project [12].

Our results using up to 32 processors demonstrate that
machine learning based performance prediction can produce
schedules that run up to 40.3% faster than the baseline
schedule. Accumulating more performance observations im-
proves prediction accuracy and, thus, the resulting schedules.
Further, our results demonstrate that the overall overhead of
the profiling and prediction is small.

The paper is organized as follows. Section II presents the
ASpR architecture. Sections III-V present our proposed ap-
proaches for ASpR: online function performance modeling and
prediction, loop cost prediction test driving, and online task
decomposition/scheduling using the predictions. Section VI
discusses our experimental results.

II. SYSTEM ARCHITECTURE OVERVIEW

Although we propose a general purpose approach, we
present our new Adaptively Scheduled parallel R (ASpR)
framework within the context of our test platform, the pR
framework [8] for transparent R script execution [9]. pR takes
a sequential R script as input and transparently executes it in
parallel using a master-worker model. The master parses the
input script, conducts dependence analysis, and schedules non-
trivial tasks (function calls and loop blocks) to the workers,
where they are computed in parallel. The workers are assigned
these tasks and carry out communication to exchange task
information with the master, as well as data communication
among themselves. Currently pR does not further parallelize
the content of function calls or loops, and with nested loops
only the outermost loop is parallelized. Only the underlying
framework imposes these restrictions. Our concepts introduced

90

DAG
Scheduler

Analyzer

.

.

.

Master

DAG Task
Precedence

Graph

R Scripts

Worker 2

Worker 1

Worker n

Performance
Modeler

ANN Model

...
...

...

Performance
Data Repository

sliding window buffer

… …Training

Q
uery

P
redictions

Loop
Test Driving Performance

Figure 2. Adaptively Scheduled parallel R (ASpR) architecture

in this work do not require them and can be applied to systems
with hierarchical parallelization without major modifications.

ASpR extends the pR master to include three new modules,
as Figure 2 illustrates: (1) the analyzer, which performs
dependence analysis, parses the R scripts and generates a Task
Precedence Graph (TPG); (2) the performance modeler, which
predicts task computation and data communication costs for
the TPG; and (3) the DAG scheduler, a static algorithm that
uses the cost predictions to determine an appropriate schedule.

ASpR predicts the performance of the two task types,
function calls and blocks of independent loop iterations,
differently. Generally, each user repeatedly invokes a limited
set of functions, standard or user-defined. We can identify
the functions by their names, although the calls to the same
function may use different input parameters. Loops, on the
other hand, are harder to identify, but often have stable per-
iteration cost in data processing scripts. Thus, the performance
modeler uses a lightweight performance repository and adopts
machine-learning methods to model and to predict function
costs. As we detail in Section IV, ASpR “test-drives” the first
iteration of a loop to give the per-iteration loop execution cost
based on actual measurement.

We collect the local script execution history into a file-
based repository for function cost prediction. We retrain the
performance model as we obtain new data. To reduce modeling
overhead, we allocate a sliding window buffer to only store
the most recent data. When applied to the master-worker
paradigm, such as pR, the system overlaps retraining with
script execution on the workers resulting in low overhead.

Many machine learning techniques can be used for per-
formance prediction in a framework like ASpR. In our work
we chose Artificial Neural Networks (ANNs) [13] since they
do not require language- or application-specific knowledge
and they can learn automatically from periodically updated
examples. Further, they provide reliable predictions across
a wide variety of problems including pattern recognition,
nonlinear system modeling, forecasting and prediction, and
automated control. More precisely, we use SNNS, the Stuttgart
Neural Network Simulator [14], to construct neural networks
and perform training and prediction.

Typical ANNs have a connected, feed-forward network

architecture with an input layer, one or more hidden layers,
and an output layer. Each layer consists of a set of neurons
that are each connected to all neurons in the previous layer.
Input values are fed into the input layer, with computation
passing through the hidden layer(s) and finally predictions
are extracted from the output layer. Each neuron computes
its output by applying an activation function to a weighted
sum of its inputs. During training, an error-correction learning
rule updates the weights based on the comparison between
calculated, i.e., predicted, and observed values for all input
samples, gradually minimizing the error between training
examples and predictions.

III. FUNCTION PERFORMANCE PROFILING AND MODEL

CONSTRUCTION

The ASpR system continuously collects cost information
from function executions at runtime. Each function execution
generates a training data point, which includes the function
name, input parameter sizes, measured execution time, and
output parameter sizes. We then use these data points to train
separate ANNs for each R function. The ANN input is the
data sizes of function input parameters and its outputs are
the predicted function execution time and the predicted output
data sizes. We include the latter since the output data size
determines the data communication cost as well as the input
data size for subsequent tasks depending on the predicted task.

Our implementation uses a three-layer ANN with two
hidden neurons, using the sigmoid function as the activation
function. The edge weights are updated via back-propagation
with a momentum term to improve stability in gradient de-
scent. Based on our previous experience with neural networks,
we chose a learning rate of 0.1, a momentum of 0.9 and initial
weights uniformly distributed between -0.01 and 0.01.

A self-learning runtime parallelization system transparent to
script users should not require explicit training prior to use or
between runs. We achieve this goal by reusing the query data
points (the function calls whose costs are to be predicted) as
training points after the corresponding tasks complete. When
such new training points become available, the relevant ANNs
must be re-trained. Since the training overhead corresponds to
the volume of training data, we maintain a desired size of

91

training data by adopting a reasonable sliding window size,
which is chosen according to our experimental results (see
Section VI-D). Initially, with no training data available, the
window grows up to the maximum sliding window size and
training is performed incrementally on all data points.

We employ a simple linear model [15] to compute the
communication cost between tasks. With l as the latency
and b as the size-dependent cost, the communication cost is
calculated as l + b × data size. ASpR uses MPI for inter-
processor communication and we verify the above model by
measuring the point-to-point MPI communication costs using
a pingpong test in our testbed. Our calibration experiments
show that the communication cost fits the model well and it
yields an estimate l = 0.69 ms and b = 2.6−6 ms/byte with
less than 1% standard error.

SNNS requires normalized training data to achieve good
accuracy, which creates a challenge since we do not know the
range of all parameters in advance. Using too wide of a range
hurts prediction accuracy but it can also drop dramatically
for data outside the range. Therefore, we employ a dynamic
normalization scheme. When we receive data points outside
of the current range, we save the new performance data and
re-normalize the values in the sliding window so that the next
online training uses the wider range. Thus, we adapt to the
performance data stream, to provide accurate predictions for
a wider range and lower the exposure to outliers.

However, a problem arises if the outlier data is spatially too
far away in the parameter space since re-normalization can
make the range too large. Fortunately, data tend to aggregate
spatially in the parameter space and our sliding-window-based
online training gradually shifts parameter ranges by tracking
minimum and maximum parameter values and periodically
examining the sliding window to ensure that those values
reflect the current range of interest. Through our experience
on scientific data processing, we observed that users tend to
focus on a certain range of problem sizes during a certain time
period, for example, when analyzing output data generated by
a group of simulation runs. The range moves to another area
as users move to new simulation codes, input problems, or
simulation approaches. The sliding window allows ASpR to
keep recent training data in the model, which are likely to
reflect the current parameter range of interest.

IV. LOOP COST PREDICTION THROUGH TEST DRIVING

The costs of loop iterations are less well defined than
function tasks and are not easily identified across different
executions and different scripts. Therefore, we use a novel loop
“test drive” approach to predict loop execution costs. In this
measurement-based approach, the master executes the initial
iteration and extrapolates the performance observation to the
rest of the loop. This approach works well in practice since
most loops that we have seen in real-world data processing
scripts have relatively stable per-iteration costs.

Unlike ANN-based prediction, the loop test drive may
not be easily overlapped with concurrent task processing
due to data dependences (without them, our master-worker

framework performs the test drive concurrently with other
task processing). With data dependences on previous tasks,
we cannot execute the initial iteration until the entire loop can
be dispatched. Thus, the loop test drive approach may create
a loss of concurrency that introduces a bubble into the script’s
processing schedule.

Alternatively, we could engage the workers in a parallel
test drive that computes additional initial results. However,
fine grain loop distribution and data communication (for
subsequent tasks working on the output data) can be costly,
especially with environments such as R. As we will show in
Section VI, the high overhead of fine grain loop distribution
makes dynamic scheduling an expensive option, even with a
set of independent tasks. Therefore, a parallel test drive is
unlikely to outperform our sequential test drive due to the
extra cost of distributing the input and collecting the output
from these small tasks.

Overall, our results demonstrate that our sequential test drive
approach works well for loops with large iteration counts.
However, we are unlikely to compensate for the overhead of
the test drive and the possible loss of concurrency with a small
number of iterations. We therefore disable the test drive in such
cases. Specifically, we simply decompose the loop evenly if the
number of iterations is smaller than the number of processors p
times M . M is a tunable parameter that is set to 8 in our tests.
Once their dependent tasks have completed, we schedule these
loop tasks as soon as a processor is available (the baseline
scheduling described in Section VI-C).

V. TASK PARTITIONING AND SCHEDULING

We extend the existing Directed Acyclic Graph (DAG)
scheduling algorithm MCP (Modified Critical Path) [11] to
include task and loop iteration cost predictions. Given a set of
homogeneous processors and a a weighted DAG representing
a group of tasks (where each node denotes one task and each
edge denotes the dependence between a pair of tasks), the
MCP algorithm schedules the tasks to the processors by as
late as possible (ALAP) start time of a node to minimize the
overall makespan. A list of nodes is constructed according
to this scheduling priority and each node is scheduled to a
processor that allows the earliest start time. The intuition is
to find holes in the schedule and to fill them with tasks. The
MCP has complexity O(v2 log v), where v is the number of
nodes in the task DAG. We choose this algorithm because
it matches our problem well, where arbitrary computation
and communication costs may be specified. Also, MCP is an
effective and efficient task graph scheduling algorithm [16].

MCP only accommodates non-malleable tasks, i.e., tasks
that are not divisible and must be assigned as one unit. Thus,
it does not handle task partitioning as part of the scheduling.
In our target problem, however, loops with no inter-iteration
dependence must be transparently decomposed and scheduled.
Further, the decision of how to decompose a loop interacts
with the DAG scheduling algorithm. To map our problem to
MCP’s standard input, one intuitive approach would break up
the loop so that each iteration is a task, run MCP to decide

92

Algorithm 1 Extended MCP
Input: DAG of tasks (G)
Output: Schedule of tasks to p processors

/* Phase 1: Determine granularity and update DAG*/
avg func time← average time of functions in G.
for each node v in G do

if v is a loop with no dependence then
num iters← number of iterations of the loop.
iter time← per-iteration time from test drive.
loop time← iter time× num iters.
if (loop time > avg func time× (p×M)) then

/* if G has no functions or the loop dominates */
partition v into p nodes in G and update edges.

else if avg func time < loop time×M then
/* if function and loop costs are comparable */
block size = ceiling((avg func time/M)/

iter time)
partition v into ceiling(num iters/block size)
nodes in G and update edges.

else
/* function dominates, do not partition */

end if
end if

end for
/* Phase 2: Schedule */
calculate MCP on G.
/* Phase 3: Merge fine grain loop blocks */
for each assignment at processors do

if nodes belong to the same loop then
merge those nodes into one node;
repartition the loop iterations for the loop tasks;

end if
end for

the task mapping to processors, and then merge the loop tasks
back to contiguous blocks of loop iterations in the actual task
scheduling. However, this approach could lead to very large
task graphs and significantly increase scheduling overhead.
Including many iterations in each loop task, on the other hand,
risks producing a few large tasks that cannot effectively fill
available schedule holes.

To address this problem, we designed a new algorithm that
extends the MCP approach by employing a cut-and-merge
scheme and list scheduling. The main heuristic adopted in
the algorithm dynamically determines the desired level of
granularity in loop tasks fed into MCP, according to the
predicted costs of non-loop tasks, loop iteration test drive
results, and the number of iterations.

Algorithm 1 describes our extended MCP algorithm, which
consists of three phases. In the first phase, the estimated
execution times of divisible tasks and those of indivisible tasks
are compared to determine the granularity of loop partitioning.
In ASpR, the divisible tasks are the loops that can be par-
titioned, while the indivisible ones are function calls. Recall
that, as described in Section IV, when the number of iterations

in a loop is considered small (compared to the number of
processors p times a tunable factor M), we evenly partition it
into p loop tasks without performing a loop test drive. In this
case, we then update the input task DAG accordingly.

We perform test drives for independent loops and the loop
decompositions depend on their results. If we expect a loop to
dominate the total computation time (i.e., we estimate the loop
computation time as at least p×M times of the average func-
tion computation time, with p the number of worker processors
and M the tunable parameter from above), we distribute the
loop evenly. If functions dominate the execution, then we treat
the loop as a single task. Otherwise, we partition the loop into
grains that will possibly fit into holes in the schedule, with
the granularity again controlled by the M parameter. Thus, the
algorithm selects a loop task granularity that corresponds to
the function lengths. The average function execution time may
not reflect the size of holes in a schedule, as large functions
may still be arranged into well-aligned execution timelines.
However, the potential performance benefit of using loop tasks
to fill the holes would be small in this case.

The second phase applies the original MCP algorithm to
the newly generated DAG, which outputs the task-to-processor
assignment and execution schedule. The third phase then
merges the fine-grained loop blocks from the MCP output
into a condensed assignment and schedule. Basically, we re-
decompose the loop into contiguous chunks consistent with
the iteration distribution determined by the MCP algorithm.

ASpR’s M parameter also bounds the number of tasks into
which we will decompose the original DAG. In the worst case,
a loop node can be replaced with pM2 nodes. By adjusting M ,
we can control the overhead of running MCP if necessary. As
the code region to run MCP scheduling is often limited by the
granularity of automatic parallelization, in environments like
ASpR we do not expect large task DAGs. In our experiments,
we find that MCP scheduling, even on the modified DAGs
with decomposed loops, incurs very little overhead compared
to other costs such as online training.

We use the sample code in Figure 1 to illustrate the
algorithm. We perform a test drive since the number of loop
iterations is 1200, which is greater than pM = 56 with
p = 7 worker processors. From the test drive, we predict
that the loop will take about 185 seconds, while functions
friedman.test and wilcox.test will take 14.4 and
13.3 seconds respectively and 13.9 seconds on average. Since
13.9 < 185 < 13.9× 56, neither the loop nor the tasks domi-
nate. Therefore, we cut the loop into tasks with a granularity of
�13.9/(8× (185/1200))� = 12. MCP generates a schedule for
the expanded graph with 9, 9, 16, 16, 16, 17, and 17 loop tasks
(each of 12 iterations) on the processors. Thus, processor 1,
for example, is assigned a contiguous chunk of 108 iterations.

VI. EXPERIMENTAL RESULTS

We evaluate the ASpR’s prediction-assisted task partitioning
and scheduling performance through experiments on the opt64

cluster located at NCSU, which has 16 2-way SMP nodes

93

connected using Gigabit Ethernet. Each node has two dual-
core AMD Opteron 265 processors, 2GB memory and runs
Red Hat’s Fedora Core 5. A single NFS server manages
750GB of shared RAID storage.

A. Sample Results of Prediction-Assisted Task Partitioning
and Scheduling

We illustrate the benefits of our proposed task parallelization
assisted with online performance prediction through results for
the sample R code given in Section I. Figure 3 portrays the
schedules generated for eight processors by three approaches:
(a) baseline, the original pR approach, which partitions loops
across processors and assigns functions in their original order
to available worker processors; (b) ASpR (ANN+MCP), our
proposed approach, which uses the extended MCP algorithm
for loop partitioning and task scheduling, based on our on-
line cost predictions; and (c) MCP-ideal, which supplies the
extended MCP algorithm with accurate task costs measured
offline. The boxes again illustrate function calls and loop par-
titions, with their vertical lengths corresponding to measured
execution times. Loop blocks (shaded boxes) are marked with
a number in parentheses showing the number of iterations. The
number at the top of each box shows the corresponding task’s
execution time in seconds. Since pR employs a master-worker
paradigm and exports loops and function calls to workers, the
schedules show 7 processors rather than 8.

The ASpR schedule, although not matching the schedule
generated with perfect performance predictions, generates a
much more balanced execution plan compared to the baseline
schedule. Based on the online prediction results with 20
data points trained, the extended MCP algorithm decomposes
the loop unevenly, smoothing out the workload to all the
processors. It assigns the same number of iterations to worker
processors 1 and 2 because the predicted execution time of
friedman.test and wilcox.test is almost the same
(14.4 seconds and 13.3 seconds respectively). Processors 3-5
and processors 6-7, on the other hand, receive different itera-
tion counts due to the scheduling granularity of 12 iterations.
Overall, ASpR improves the total execution time over the
baseline case by 21.1% (from 46.4 seconds to 36.6 seconds).
Compared to MCP-ideal, though, the scheduling granularity
introduces a performance gap of 15.1%.

B. Comparison with Dynamic Scheduling

Although dynamic scheduling works well on independent
tasks, such as a do-all loop, static scheduling uses prior
knowledge to consider task dependences, data locality and
global load information [17]. Thus, it better suits transparently
parallelized tasks and loops, especially with a mixture of loops
and function calls and possible dependences.

However, with independent tasks, one may suspect that dy-
namic scheduling approaches may work more efficiently. Our
study indicates challenges in fine-tuning dynamic scheduling
parameters to balance between the tradeoff of load balance
and communication overhead for parallel scripts. Thus, static
scheduling remains a sound choice even for independent tasks.

TABLE I
MCP OVERHEAD

Graph size Running time
41 0.001243
81 0.003279

161 0.004021
321 0.009392
640 0.024071
1279 0.073890
2553 0.213416
5104 0.751423

10206 3.701525
20410 14.927635

To illustrate the advantage of performance prediction based
scheduling, we continue to use the sample code from Fig-
ure 1(a) to compare ASpR with a simple dynamic scheduling
scheme. This approach partitions loops into smaller chunks
and schedules them as independent tasks, with the master
assigning, tasks to idle workers from a ready queue on request
in order to fill the holes created by the function calls.

Figure 4 portrays the results with different loop partitioning
granularities, again collected from 8 processors. Although
dynamic scheduling balances the load, it dramatically in-
creases communication overhead since it uses many more loop
tasks than pR or ASpR. This overhead largely arises from
serialization, in which the system packs and unpacks R objects
for interprocess communication. Although the iterations are
independent, their parallel execution requires distribution of
the corresponding data with the loop tasks. Thus, the overall
execution time is still longer than the baseline schedule even
with a relatively large partitioning granularity (80 iterations).

Since the serialization cost is script-dependent, we repeated
the experiment with a different workload, as shown in Fig-
ure 5. The processing of this script is primarily a computation-
intensive loop that has a very limited communication footprint.
Thus, this test limits the impact of serialization from the
increase in messages required for dynamic scheduling. Still,
dynamic scheduling performs considerably worse than the
baseline scheduling, although the gap is much smaller for
small iteration counts.

Meanwhile, using a static scheduling algorithm like MCP
to make more globally optimized scheduling decisions comes
with the cost of running the scheduling algorithm. As men-
tioned in Section V, the complexity of the MCP algorithm
is O(v2 log v), where v is the number of nodes in the task
DAG. Table I gives the MCP execution time measured in
ASpR, for different DAG sizes. With small and moderately
sized DAGs (<2000 nodes), the MCP scheduling overhead
is negligible. Even for a DAG size of 5000, the overhead
of less than one second is small compared to the runtime of
typical sets of tasks in data processing codes that we target.
The scheduling overhead does grow fast due to MCP’s super-
quadratic complexity. However, we can limit the size of the
DAG by adjusting the parameter M to increase the minimum
iteration count.

94

Worker Processor
1 2 3 4 5 6 7

T
im

e

T
1 T

2

L
(1

71
)

L
(1

71
)

L
(1

71
)

L
(1

71
) L

(1
72

)

L
(1

72
)

L
(1

72
)

46
.4

19.9

26.5

26.5

10.5 26.5 26.5 26.5 26.5 26.5

(a) Baseline

1 2 3 4 5 6 7
Worker Processor

T
im

e

L
(2

04
)

L
(2

04
)

L
(1

92
)

L
(1

92
)

L
(1

92
)

L
(1

08
)

L
(1

08
)

T
2

T
1

36
.6

31.5 31.529.729.729.7

16.7

10.5

16.7

19.9

(b) ASpR (ANN+MCP)

1 2 3 4 5 6 7
Worker Processor

T
im

e

L
(7

7)

L
(1

94
)

L
(1

29
) L
(1

94
)

L
(1

94
)

L
(2

06
)

L
(2

06
)

T
1 T

2

31
.8

31.8 31.830.030.030.010.5

19.9

11.9

19.9

(c) MCP-ideal

Figure 3. Schedules for the sample code shown in Figure 1

0
10

0
20

0
30

0
40

0
50

0

Number of Iterations/Block

E
xe

cu
tio

n
T

im
e

10 20 40 80

Dynamic
Baseline

Figure 4. Data intensive script

0
50

10
0

15
0

20
0

25
0

Number of Iterations/Block

E
xe

cu
tio

n
T

im
e

10 20 40 80

Dynamic
Baseline

Figure 5. Computation intensive script

8 16 32
Number of Processors

N
or

m
al

iz
ed

 Im
pr

ov
em

en
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

11
21
31
41

8 16 32
Number of Processors

N
or

m
al

iz
ed

 Im
pr

ov
em

en
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

11
21
31
41

Figure 6. “Top 10” independent microbenchmarks

C. Benchmark Generation

To evaluate the effectiveness of online task cost prediction
using neural networks, and to examine the impact of such
prediction on parallel task and loop scheduling further, we
need a reasonable number of R scripts with various sizes of
input data as test cases. Meanwhile, to study the effect of
adjusting prediction parameters, to observe the self-learning
capability of our online prediction method, and to evalu-
ate the scheduling performance with different system sizes,
and finally, to assess the potential benefit of our prediction-
assisted scheduling fairly, our test codes must have diverse task
compositions. Therefore, we automatically generated synthetic
micro-benchmarks with task and parameter ranges selected
randomly, and discuss their performance in Section VI-D and
Section VI-E.

We composed synthetic microbenchmarks from function
calls and loops. In particular, we used function calls with
non-trivial costs. To select functions from the large pool of R
standard and extended functions, we performed an exhaustive
study on function call frequencies in the R internal library and
the well-known BioConductor project [12]. Among all 3412 R
functions, the function call frequency ranges from 1 to 5943,
with a median of 2. We then selected the 7 most frequently
used functions for statistical tests and matrix computation, as
listed in Table II. The call frequency of these functions ranges
from 3 to 63 in the code base we examined. In addition,
we included functions friedman.test, ks.test, and
mood.test, which are not called in the R internal library
or BioConductor, but are commonly used by statisticians [18],
[19], [20]. Table II lists these 10 functions, each with a short

description. For each function, we also list its arguments,
which in these cases include one or two n×n matrices (A
and B), with their sizes in double-precision numbers denoted
as NA and NB . The corresponding parameters used in the
ANN for performance modeling are the sizes of these matrices,
whose ranges are given in the table, as well as the ranges of
the function execution time, shown in the last column.

To synthesize loops, we choose one expensive loop from
Boost, a real-world application written in R from the Statistics
Department at NCSU. This loop evaluates an in-house boost-
ing algorithm for the nonlinear transformation model with
censored survival data. Due to resource and time constraints,
we reduced the number of iterations to 640 so that it runs
for about 6 minutes sequentially. In addition, we create a
synthetic loop test case, which computes the standard matrix-
vector multiplication C = A×B[i] in each iteration i, where
A, B, and C are n×n matrices and i ranges from 1 to n. With
this loop, the number of iterations is n.

We then generated two classes of test scripts: with inde-
pendent and inter-dependent tasks. The first class contains
100 random microbenchmarks generated from our pool of
functions and loops, with no inter-task dependency. In creating
these microbenchmarks, we first randomly select one to ten
functions and one loop. We then generate a benchmark script
composed of these tasks. As these tasks are mutually indepen-
dent, their relative ordering is not important. The script begins
by creating random data to populate input matrices following
the normal distribution. We randomly select the matrix sizes
from the range of 950 to 1150.

The second class of 200 microbenchmarks are created using

95

TABLE II
OVERVIEW OF EXPERIMENTAL SELECTED R FUNCTIONS AND PARAMETER SPACES

Functions Description Arguments Parameters Range Running time
eigen computes eigenvalues and eigenvectors A NA 122 − 24002 < 1 − 342

prcomp performs a principal components analysis A NA 122 − 24002 < 1 − 305
qr computes the QR decomposition A NA 252 − 40002 < 1 − 191

svd computes the singular-value decomposition A NA 122 − 24002 < 1 − 243
hclust hierarchical cluster analysis A NA 82 − 16002 < 1 − 180

kmeans performs k-means clustering A NA 202 − 32002 < 1 − 223
friedman.test performs a Friedman rank sum test A NA 162 − 20002 < 1 − 74

ks.test performs one or two sample Kolmogorov-Smirnov tests A, B NA, NB 162 − 32002 < 1 − 93
mood.test performs Mood’s two-sample test A, B NA, NB 202 − 40002 < 1 − 144
wilcox.test performs one and two sample Wilcoxon tests A NA 162 − 32002 < 1 − 112

TABLE III
OVERVIEW OF EXPERIMENTAL SELECTED R LOOPS AND NUMBER OF ITERATIONS
Loops Description Number of iterations Running time
loop 1 implements boosting algorithm 640 340
loop 2 performs matrix-vector multiplication 950 − 1150 95 − 160

a similar script composition method, but with data dependency.
Each benchmark includes 20 function tasks randomly sampled
from a task pool, whose inter-dependency is determined by a
randomly generated DAG with a given expected number of
edges (5 for half of the benchmarks and 20 for the rest). To
ensure one function task’s input type and size match those
of another task’s output, while the two task have different
execution costs, the function task pool used here contains ten
functions that perform various iterations of matrix inversion. In
half of the microbenchmarks, we also include one of the loops
described above, selected at random, with no dependences on
the functions.

D. Accuracy and Overhead of Online Prediction

We evaluate the effectiveness and efficiency of ASpR’s
online prediction using our independent microbenchmarks in
this section. Given a microbenchmark, we collected training
data and queries for the 10 selected functions. For training,
we uniformly select 200 data points in the pre-defined function
parameter range shown in Table II. As we observed significant
deviations in predictions but little impact on the overall
schedule for small matrices, we focus instead on the queries
with larger matrices. Thus, we sampled 100 random query data
points within the range beyond the bottom 5% for the query
data set. The execution time of these sample tasks ranges from
less than 0.1 seconds to 342 seconds. The training and query
sample pools do not overlap.

We perform incremental online training by inserting training
points one at a time for each function in our experiments. We
perform five queries at different intervals during the training:
after inserting one new data point into the model; and after
after the insertion of every 10 data points. We report the
average results, as well as the 95% confidence level over the
average results (from 5 queries) for the 10 functions.

Our experiments demonstrate that ASpR’s ANN-based per-
formance prediction is highly accurate even with a relatively
small training set (10-20 data points). Figure 7(a) demonstrates
the increasing prediction accuracy as more training data are
accumulated. The prediction error starts from around 80%, but
quickly declines as more training points are included: with just

10 data points, the error is 4.9%. Figure 7(b) provides focused
details of the error rate for queries executed after 10 or more
training points. Using more training points steadily decreases
the average error rate down to 1.9% at 90 points. Though
this improvement in accuracy appears small, our experiments
found that it did significantly improve scheduling performance.
Meanwhile, online re-training overhead grows as we increase
the training data size, as shown in Figure 7(c): the overhead
increases 48% from 10 data points to 90 (0.43 seconds to
0.64). Based on these results, we currently choose a sliding
window size of 40 for ASpR, which balances the accuracies
and overheads seen in Figure 7.

The ANN query time is independent of the training data size
and fairly constant, measured as 0.07 seconds on average in
our tests. Thus, the overall overhead of our online prediction
approach is small, as the training and query overheads are
trivial compared to task execution time in computation- or
data-intensive scripts. The worst case for online prediction
would be a long-running script with a long series of short
function calls. However, scripts that use many short function
calls normally embed them in loops and, thus, ASpR will
parallelize the loops instead of the function tasks. Further,
individual users tend to use a limited pool of functions so we
can quickly populate the performance repository with training
points. We can easily reduce ASpR online training frequency
in that case. For example, ASpR could retrain the model for a
function only if feedback from the workers indicates that the
predictions deviate significantly from the actual runtimes.

E. Impact on Transparently Parallelized R Code Execution

We now assess the benefit of ASpR in task decomposition
and scheduling on our microbenchmarks. First we evaluate
ASpR using the class of scripts with independent tasks. As
in Section VI-A, we compare the baseline scheduling used
in pR with the prediction-assisted scheduling in ASpR, and
in some cases, with the “ideal” performance of MCP using
perfect predictions. Table IV summarizes the improvement in
overall execution time on 8, 16 and 32 processors for the
100 R microbenchmarks with independent tasks, where we
measure ASpR’s performance (“ANN+MCP”) by running the

96

0
20

40
60

80
10

0

Training Set Size

P
er

ce
nt

ag
e

E
rr

or

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90
(a) Accuracy across training set size

0
2

4
6

8

Training Set Size

P
er

ce
nt

ag
e

E
rr

or

10 20 30 40 50 60 70 80 90

(b) Focus on larger training set sizes

0.
0

0.
2

0.
4

0.
6

0.
8

Training Set Size

T
im

e
(s

ec
on

ds
)

10 20 30 40 50 60 70 80 90

(c) On-line training overhead

Figure 7. Online training accuracy and overhead for various training data sizes

TABLE IV
ASPR AND INDEPENDENT MICROBENCHMARKS
Number of processors 8 16 32

Best improvement 40.3% 39.8% 29.4%
Worst improvement -9.9% -1.5% -12.3%

Average improvement 16.7% 21.2% 12.9%
No. of enhanced cases 96 99 99

microbenchmarks after training the system with 40 data points
(as allowed by the sliding window size). This performance
includes the online training, query and scheduling overhead
of ASpR, which we choose not to hide with ASpR’s master-
worker scheme to assess the cost of our approach without
making software architecture assumptions. Again the function
parameters used in the microbenchmarks do not overlap with
the samples in the training data. Performance improves for
96 of the 100 microbenchmarks with 8 processors, with an
average improvement of 16.7%, and a maximum improvement
of 40.3%. The worst case performs about 10% worse than the
baseline approach. With 16 and 32 processors, only one case
out of the 100 shows a degradation. The average improvement
over all cases is 21.2% and 12.9% for 16 and 32 processors and
the maximum improvement is 39.8% and 29.4% respectively.

To reduce the test space for the rest of our experiments, we
select the ten microbenchmarks (of the 100 total) where ASpR
achieves the most significant improvement over the baseline
approach with 8 processors. Figure 6 illustrates the self-
learning property of ASpR, by repeating the microbenchmark
runs after 10-data-point training intervals. We use the “normal-
ized improvement” to examine ASpR’s performance relative
to both the baseline and the MCP-ideal performance. If the
execution time of a microbenchmark is tbaseline , tANN+MCP ,
and tMCP−ideal, for the baseline, ANN+MCP, and MCP-ideal
scheduling schemes, respectively, then we calculate normal-
ized improvement as:

(tbaseline − tANN+MCP)/(tbaseline − tMCP−ideal)
This quantity is the fraction of the maximum possible improve-
ment with MCP as captured by tMCP−ideal. We also repeat
these experiments on 16 and 32 processors. The y error bar
shows the 95% confidence intervals.

Figure 6 shows that ASpR’s performance generally im-
proves as we collect more training points but the gain is

1 2 3 4 5 6 7 8 9 10
Micro−benchmarks

E
xe

cu
tio

n
tim

e
0

20
40

60
80

10
0

12
0

14
0 Baseline

ANN+MCP
MCP−ideal

1 2 3 4 5 6 7 8 9 10
Micro−benchmarks

E
xe

cu
tio

n
tim

e
0

20
40

60
80

10
0

12
0

14
0 Baseline

ANN+MCP
MCP−ideal

Figure 8. “Top 10” microbenchmarks (8 procs)

TABLE V
ASPR AND DEPENDENT MICROBENCHMARKS (8 PROCS)

Expected number of edges 5 20
Containing loop No Yes No Yes

Best improvement 15.5% 19.6% 15.3% 22.1%
Worst improvement -8.3% -7.6% -7.6% -5.5%

Average improvement 1.9% 5.7% 2.5% 6.8%
No. of enhanced cases out of 50 38 46 44 49

marginal after 20 training points. Even with just 10 training
points, ASpR realizes about 50% of the ideal MCP improve-
ment. After 20 data points, ASpR obtains 70-80% of that
ideal gain. Again, this performance is impressive considering
that ASpR’s execution time includes the online training and
prediction overhead that does not exist in the ideal MCP case.
To illustrate the relative performance of the three approaches
further, Figure 8 shows the parallel execution time of these top
ten microbenchmarks. Due to space constraints, we only show
the performance with 8 processors; we observed similar results
with 16 and 32 processors. Our microbenchmarks, for which
the baseline approach generates imbalanced task schedules,
clearly demonstrate the effectiveness of ASpR’s prediction-
assisted scheduling, which nearly achieves the ideal MCP
improvement.

We evaluate the effectiveness of ASpR for inter-dependent
tasks through our second class of 200 test scripts described in
Section VI-C, which we categorize by the expected number of

97

TABLE VI
OVERVIEW OF TASKS IN THE REAL R APPLICATION

Tasks Description
loop performs model simulation

matrix creates a matrix
rnorm generates the normal distribution

lm fits linear models
diag extracts the diagonal of a matrix

crossprod computes matrix cross-product

edges and whether they include one of our loops in Table V.
With these tests, the possible performance gain depends on the
specific task graph. The baseline pR tends to assign dependent
tasks to the same processor when it finishes a prerequisite
task, hence naturally exploiting data locality. Thus, for the
ten test cases ASpR has the worst improvement (where
the baseline approach generates efficient schedules), MCP-
ideal only improves the performance by 1.1% on average.
Nonetheless, MCP has two advantages over the baseline: 1)
it identifies the critical path and schedules those tasks early;
and 2) it partitions loops unevenly, as for independent task
scripts. Our results in Table V confirm that ASpR achieves
more significant improvement (up to around 20%) when a
loop is included in the script, and when there are more inter-
task dependencies (20 edges vs. 5), which results in more
paths including a longer critical path. Compared with our
independent task experiments, a relative performance decrease
is more likely with ASpR due to training overhead when the
baseline approach happens to work well for the task graph.
However, this effect will be less significant with longer runs
(we used short experiments to accommodate a large number
of test cases). Finally, although space precludes more details,
ASpR’s performance lags behind MCP-ideal by an amount
that closely reflects the training overhead.

F. Real-world Application Performance Results

We also assessed the ASpR’s effectiveness on a real-world
R application obtained from the NCSU Statistics Depart-
ment. This code implements a moment-based method for
automatically selecting the random effects in linear mixed-
effects models (LMMs). LMMs include a mixture of fixed and
random factors in a unified framework and are widely used
in modeling data with complex variance structures. Our test
LMM code enhances the model interpretation and improves
the outcome prediction in the long run. It first performs
multiple model simulation runs in a loop with no dependences
across iterations. The remainder of the code consists of 7
function calls for adaptive Lasso, a popular technique for
simultaneous estimation and variable selection. As listed in
Table VI, the functions take vectors and matrices as input
and dependences exist between the function calls. However,
the functions do not depend on the loop and therefore we
can execute them concurrently to the loop. We reduced the
input size to reduce the total execution time (the normal input
requires hours to process) but made no other changes to the
application. The loop consists of 1500 iterations with a total
runtime of 528 seconds, while the runtimes of the functions
range from 0.2 seconds to 9.7 seconds with our input.

8 16 32
Number of Processors

E
xe

cu
tio

n
tim

e
0

20
40

60
80

10
0

12
0

14
0

Baseline
ANN+MCP
MCP−ideal

8 16 32
Number of Processors

E
xe

cu
tio

n
tim

e
0

20
40

60
80

10
0

12
0

14
0

Baseline
ANN+MCP
MCP−ideal

Figure 9. Real R application

Figure 9 gives the result of running LMMs on 8, 16 and
32 processors. For ANN+MCP, we collect 30 runs of online
training data in advance. With more processors, the baseline
schedule becomes more imbalanced since each partition of the
loop is smaller and the cost of the function calls becomes a
greater percentage of their execution time. Thus, the difference
between the ideal MCP approach and the baseline performance
increases from 10.4% to 21.8%. Further, the performance of
ASpR, using ANN-based prediction, more closely approaches
the ideal result when we use more processors, resulting in
a 17.5% improvement compared to the baseline at a scale
of 32 processors. We conject that the improvement results
from decreased overall prediction error when each processor
receives fewer tasks.

VII. RELATED WORK

We have covered some of the most closely related work,
pR and ANNS, in Section II. In this section, we cover
other related work, specifically in performance profiling and
prediction, parallel job scheduling as well as self-learning
and self-configuring systems. Several tools trace or analyze
application performance, including Open|SpeedShop [21],
TAU/ParaProf [22], Paraver [23], svPablo [24] and Vam-
pirTrace [25]. These tools provide developers of compiled
language applications with data that guides optimization. In
contrast, we profile a scripting language to guide automated
parallelization and scheduling decisions.

Many projects, such as PerfDMF [26], PerfTrack [27] and
Prophesy [28], combine the use of a repository with perfor-
mance profiling and modeling to facilitate performance data
storage and management. However, these existing tools use
profile data in an offline manner for performance modeling and
debugging. We integrate a lightweight database in the form of
a file-based data repository for online performance prediction,
which supports runtime parallelization and scheduling even in
the same run in which the data is gathered.

Past research has adopted machine learning methods in
performance modeling and prediction, including automatic
performance modeling for parallel I/O systems [29], parallel
applications [30], [31] and architectural design space explo-
ration [32]. Lee et al. [33] used regression methods and
filter techniques to predict application execution times. The
MetaSim automated prediction framework convolves appli-
cation signatures and machine profiles to form application

98

predictions [34]. Other work estimated applications’ execution
times based on parametric code profiling and analytical bench-
marking techniques [35]. Perhaps most similar to our work,
previous work used ANNs to guide concurrency throttling at
runtime [36]. In contrast, our system adapts the ANNs, as well
as using their results, at runtime and we target a self-learning
system for unbounded parameter spaces.

Parallel job or task scheduling is another mature research
area; here we briefly summarize the most related topic,
scheduling a parallel program represented by a directed acyclic
graph (DAG) on multiprocessors [10]. DAG scheduling is
quite generic and applies to many systems and applications.
Since optimal DAG scheduling is an NP-complete prob-
lem [37], most research focuses on finding good heuristic
solutions. Our scheduling scheme is most related to scheduling
algorithms such as DLS [38] and MCP [11], which deal
with arbitrary computation and communication costs, on a
limited number of fully connected processors. However, these
algorithms do not readily handle loops that are partitioned
at runtime as a part of the scheduling task. In this paper, we
extended MCP to evaluate our ANN-based online performance
prediction, and conduct optimized loop partitioning.

Resource allocation and scheduling have been jointly inves-
tigated, often with the assistance of performance profiling. The
Paradigm compiler proposed a two step allocation and schedul-
ing approach [39], using convex programming to decide how
many processors to allocate to a task. Bansal et al. proposed
a two-step Modified Critical Path and Area-based (MCPA)
scheduling heuristic to balance processor allocation and task
assignment [40]. Another study employed performance model-
ing in workflow scheduling on Grid resources [41]. While we
share goals with these projects, we do not requires in-advance
application profiling or hardware configurations.

Other research has investigated scheduling with mixed task
and data parallelism, presenting approximation algorithms,
both online [42] and offline [43]. Target problems of these
algorithms make efficiency assumptions on task speedup func-
tions. Chakrabarti et al. conducted an empirical study on the
performance of mixed task and data parallelism utilizing an ef-
ficiency profile [44]. Currently, we perform online prediction-
assisted scheduling based only on cost estimations. However,
we could generalize our approach to consider efficiency in
decomposing tasks.

Self-configuring, self-managing and self-learning systems
have received increasing interest. Wildstrom et al. proposed a
self-configuring system that adapts to the current workload in
distributed computer systems [45]. They focus on varying CPU
and memory resources and do not require any instrumentation
of the middleware or operating system. Neural-network-based
self learning was applied in dynamic resource allocation on a
chip multiprocessor [46]. The learning, which targets the intra-
chip level, serves to assign cache banks to processing cores.
We take this approach one step further by adaptively paral-
lelizing the applications according to runtime performance
observations, without user-supplied a priori knowledge on
tasks or parameters.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed, designed and evaluated a novel
online task decomposition and scheduling approach for trans-
parent parallelization. Our approach collects runtime task costs
transparently and performs online static scheduling, using
cost estimates generated by ANN-based performance models
and loop iteration test runs. Our self-learning system, ASpR,
conducts end-to-end transparent parallelization and prediction-
assisted task decomposition/scheduling of the popular R lan-
guage. Through our study using both a real-world application
and automatically generated micro-benchmarks, we verified
that our approach achieves high prediction accuracy with
few training data points and low runtime overhead, and that
ASpR uses these prediction results to improve performance
significantly for transparently parallelized R scripts. Overall,
the combination of online performance prediction and runtime
parallelization/scheduling is promising for developing trans-
parent parallel computing systems for emerging many-core
processors.

We plan to extend this work. For example, we will use
feedback to examine runtime prediction errors and to adjust
window sizes. We will also investigate using multiple ANN
models for disjoint parameter spaces. Further, we will extend
our approach to functions that exhibit data dependent runtimes
by categorizing data across sessions.

ACKNOWLEDGMENTS

We greatly appreciate the anonymous reviewers for their
valuable comments and feedback. We are thankful to Hao (He-
len) Zhang and Mihye Ahn from Department of Statistics at
NCSU for providing the LMM application for our evaluation.
We appreciate discussions with colleagues Nagiza Samatova,
Frank Mueller, and Xiaohui Gu. We also thank Tyler Bletsch
for his help and technical support with the opt64 cluster setup.

The research at NCSU was sponsored in part by a
DOE ECPI Award (DE-FG02-05ER25685), an NSF CAREER
Award (CNS-0546301), and Xiaosong Ma’s joint appointment
between NCSU and ORNL. Also this work was performed in
part under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344 (LLNL-CONF-407723) and under NSF
CPA award E70-8321.

REFERENCES

[1] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum, “Streamware:
Programming General-purpose Multicore Processors Using Streams,”
in Architectural Support for Programming Languages and Operating
Systems (ASPLOS XIII), 2008.

[2] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge: A
Programming Model for Heterogeneous Multi-core Systems,” in Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS XIII), 2008.

[3] D. August, “Automatic Parallelization is Key for Manycore Success,”
in Manycore Computing Workshop, 2007.

[4] W. Hwu, S. Ryoo, S. Ueng, J. H. Kelm, I. Gelado, S. S. Stone, R. E.
Kidd, S. S. Baghsorkhi, A. A. Mahesri, S. C. Tsao, N. Navarro, S. S.
Lumetta, M. I. Frank, and S. J. Patel, “Implicitly Parallel Programming
Models for Thousand-core Microprocessors,” in Design and Automation
Conference (DAC ’07), 2007.

99

[5] F. Putze, P. Sanders, and J. Singler, “MCSTL: The Multi-core Standard
Template Library,” in Principles and Practice of Parallel Programming
(PPoPP), 2007.

[6] S. Rus, M. Pennings, and L. Rauchwerger, “Sensitivity Analysis for
Automatic Parallelization on Multi-cores,” in ICS ’07: Proceedings of
the 21st annual international conference on Supercomputing, 2007.

[7] R. Choy and A. Edelman, “Parallel MATLAB: Doing It Right,” Pro-
ceedings of the IEEE, vol. 93, no. 2, 2005.

[8] X. Ma, J. Li, and N. F. Samatova, “Automatic Parallelization of Scripting
Languages: Toward Transparent Desktop Parallel Computing,” in Pro-
ceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2007.

[9] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2005, ISBN 3-900051-07-0. [Online]. Available: http://www.R-
project.org

[10] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors,” ACM Comput. Surv., 1999.

[11] M. Y. Wu and D. D. Gajski, “Hypertool: A Programming Aid for
Message-Passing Systems,” IEEE Trans. Parallel Distrib. Syst., vol. 1,
no. 3, pp. 330–343, 1990.

[12] Bioconductor Core, An Overview of Projects in Computing for Genomic
Analysis, 2002. [Online]. Available: http://www.bioconductor.org/

[13] T. Mitchell, Machine Learning. Boston, MA: WCB/McGraw Hill, 1997.
[14] A. Zell and et. al., SNNS: Stuttgart Neural Network Simulator., Univer-

sity of Stuttgart, User Manual, Version 4.2.
[15] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken, “LogP: Towards a Realistic Model
of Parallel Computation,” SIGPLAN Not., 1993.

[16] Y. Kwok and I. Ahmad, “Benchmarking and Comparison of the Task
Graph Scheduling Algorithms,” J. Parallel Distrib. Comput., 1999.

[17] M. Y. Wu, W. Shu, and Y. Chen, “Runtime Parallel Incremental
Scheduling of DAGs,” in ICPP ’00: Proceedings of the Proceedings
of the 2000 International Conference on Parallel Processing, 2000.

[18] D. R. Barr and T. Davidson, “A Kolmogorov-Smirnov Test for Censored
Samples,” Technometrics, 1973.

[19] W. J. Conover and R. L. Iman, “Rank Transformations as a Bridge
Between Parametric and Nonparametric Statistics,” The American Statis-
tician, 1981.

[20] K. J. Levy, “Pairwise Comparisons Associated with the K Independent
Sample Median Test,” The American Statistician, 1979.

[21] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Monotya,
and S. Cranford, “Open|SpeedShop: An Open Source Infrastructure for
Parallel Performance Analysis,” Scientific Programming, Special Issue
on Large-Scale Programming Tools and Environments, vol. 16, no. 2,3,
pp. 105–121, 2008.

[22] R. Bell, A. Malony, and S. Shende, “ParaProf: A Portable, Extensible,
and Scalable Tool for Parallel Performance Profile Analysis,” in Pro-
ceedings of the International Conference on Parallel and Distributed
Computing (Euro-Par 2003), Aug. 2003, pp. 17–26.

[23] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A Tool
to Visualise and Analyze Parallel Code,” in Proceedings of WoTUG-
18: Transputer and Occam Developments, ser. Transputer and Occam
Engineering, vol. 44, Apr. 1995, pp. 17–31.

[24] L. DeRose and D. A. Reed, “SvPablo: A Multi-Language Architecture-
Independent Performance Analysis System,” in Proceedings of the
International Conference on Parallel Processing (ICPP’99), Sep. 1999.

[25] M. Müller, H. Brunst, M. Jurenz, A. Knüpfer, M. Lieber, H. Mix,
and W. Nagel, “Developing Scalable Applications with Vampir, Vam-
pirServer and VampirTrace,” in Proceedings of the Minisymposium on
Scalability and Usability of HPC Programming Tools at PARCO 2007,
Sep. 2007.

[26] K. A. Huck, A. D. Malony, and A. Morris, “Design and Implementation
of a Parallel Performance Data Management Framework,” in Interna-
tional Conference on Parallel Processing (ICPP ’05), 2005.

[27] K. L. Karavanic, J. May, K. Mohror, B. Miller, K. A. Huck, R. Knapp,
and B. Pugh, “Integrating Database Technology with Comparison-based
Parallel Performance Diagnosis: The PerfTrack Performance Experiment
Management Tool,” in Supercomputing ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing (CDROM), 2005.

[28] X. Wu, V. E. Taylor, J. Geisler, X. Li, Z. Lan, R. Stevens, M. Hereld,
and I. R. Judson, “Design and Development of Prophesy Performance
Database for Distributed Scientific Applications,” in Proc. the 10th SIAM
Conference on Parallel Processing for Scientific Computing, 2001.

[29] S. Yu, M. Winslett, J. Lee, and X. Ma, “Automatic and Portable
Performance Modeling for Parallel I/O: A Machine-Learning Approach,”
ACM SIGMETRICS Performance Evaluation Review, 2002.

[30] E. Ipek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An Approach
to Performance Prediction for Parallel Applications,” in Proceedings of
the International Conference on Parallel and Distributed Computing
(Euro-Par 2005), Aug 2005, pp. 196–205.

[31] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh, and
S. A. McKee, “Methods of Inference and Learning for Performance
Modeling of Parallel Applications,” in Principles and Practices of
Parallel Programming (PPOPP), 2007.

[32] E. Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently Exploring Architectural Design Spaces via Predictive Mod-
eling,” in Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS-XII), 2006.

[33] B. Lee and J. M. Schopf, “Run-Time Prediction of Parallel Applications
on Shared Environments,” in CLUSTER, 2003.

[34] L. Carrington, N. Wolter, A. Snavely, and C. B. Lee, “Applying an Au-
tomated Framework to Produce Accurate Blind Performance Predictions
of Full-scale HPC Applications,” in Proceedings of the 2004 Department
of Defense Users Group Conference, 2004.

[35] J. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor, “Estimating Execution
Time for Parallel Tasks in Heterogeneous Processing (HP) Environ-
ment,” in Proceedings of the Heterogeneous Computing Workshop, 1994.

[36] M. Curtis-Maury, K. Singh, S. A. McKee, F. Blagojevic, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz, “Identifying Energy-
Efficient Concurrency Levels Using Machine Learning,” in Proc. of the
International Workshop on Green Computing, Sep. 2007.

[37] J. K. Lenstra and A. H. G. R. Kan, “Complexity of Scheduling under
Precedence Constraints,” Operation Research, 1978.

[38] G. C. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic for
Interconnection-Constrained Heterogeneous Processor Architectures,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 2, pp. 175–187, 1993.

[39] S. Ramaswamy, S. S. Sapatnekar, and P. Banerjee, “A Framework for
Exploiting Task and Data Parallelism on Distributed Memory Multicom-
puters,” IEEE Trans. Parallel Distrib. Syst., 1997.

[40] S. Bansal, P. Kumar, and K. Singh, “An Improved Two-step Algorithm
for Task and Data Parallel Scheduling in Distributed Memory Machines,”
Parallel Computing, 2006.

[41] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey,
B. Liu, and L. Johnsson, “Scheduling Strategies for Mapping Ap-
plication Workflows onto the Grid,” in IEEE Symposium on High
Performance Distributed Computing (HPDC 2005), 2005.

[42] K. P. Belkhale and P. Banerjee, “An Approximate Algorithm for the
Partitionable Independent Task Scheduling Problem,” in International
Conference on Parallel Processing(ICPP), Vol. 1, 1990.

[43] J. Turek, J. L. Wolf, and P. S. Yu, “Approximate Algorithms Scheduling
Parallelizable Tasks,” in SPAA ’92: Proceedings of the Fourth Annual
ACM Symposium on Parallel Algorithms and Architectures, 1992.

[44] S. Chakrabarti, J. Demmel, and K. A. Yelick, “Models and Scheduling
Algorithms for Mixed Data and Task Parallel Programs,” J. Parallel
Distrib. Comput., 1997.

[45] J. Wildstrom, P. Stone, E. Witchel, R. J. Mooney, and M. Dahlin, “To-
wards Self-Configuring Hardware for Distributed Computer Systems,”
in ICAC ’05: Proceedings of the Second International Conference on
Automatic Computing, 2005.

[46] F. Gomez, D. Burger, and R. Miikkulainen, “A Neuroevolution Method
for Dynamic Resource Allocation on a Chip Multiprocessor,” in Pro-
ceedings of the International Joint Conference on Neural Networks
(IJCNN-01), 2001.

100

