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Background and Objectives: Using lasers instead of
mechanical tools for bone cutting holds many advantages,
including functional cuts, contactless interaction, and
faster wound healing. To fully exploit the benefits of la-
sers over conventional mechanical tools, a real‐time
feedback to classify tissue is proposed.
Study Design/Materials and Methods: In this paper,
we simultaneously classified five tissue types—hard and
soft bone, muscle, fat, and skin from five proximal and
distal fresh porcine femurs—based on the laser‐induced
acoustic shock waves (ASWs) generated. For laser abla-
tion, a nanosecond frequency‐doubled Nd:YAG laser
source at 532 nm and a microsecond Er:YAG laser source
at 2940 nm were used to create 10 craters on the surface
of each proximal and distal femur. Depending on the ap-
plication, the Nd:YAG or Er:YAG can be used for bone
cutting. For ASW recording, an air‐coupled transducer
was placed 5 cm away from the ablated spot. For tissue
classification, we analyzed the measured acoustics by
looking at the amplitude‐frequency band of 0.11–0.27 and
0.27–0.53MHz, which provided the least average classi-
fication error for Er:YAG and Nd:YAG, respectively. For
data reduction, we used the amplitude‐frequency band as
an input of the principal component analysis (PCA). On
the basis of PCA scores, we compared the performance of
the artificial neural network (ANN), the quadratic‐ and
Gaussian‐support vector machine (SVM) to classify tissue
types. A set of 14,400 data points, measured from
10 craters in four proximal and distal femurs, was used as
training data, while a set of 3,600 data points from
10 craters in the remaining proximal and distal femur
was considered as testing data, for each laser.
Results: The ANN performed best for both lasers, with an
average classification error for all tissues of 5.01± 5.06%
and 9.12± 3.39%, using the Nd:YAG and Er:YAG lasers,
respectively. Then, the Gaussian‐SVM performed better

than the quadratic SVM during the cutting with both
lasers. The Gaussian‐SVM yielded average classification
errors of 15.17± 13.12% and 16.85± 7.59%, using the
Nd:YAG and Er:YAG lasers, respectively. The worst per-
formance was achieved with the quadratic‐SVM with a
classification error of 50.34± 35.04% and 69.96± 25.49%,
using the Nd:YAG and Er:YAG lasers.
Conclusion: We foresee using the ANN to differentiate
tissues in real‐time during laser osteotomy. Lasers Surg.
Med. © 2020 Wiley Periodicals LLC
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INTRODUCTION

Conventional osteotomy relies on mechanical tools, such
as scalpels, saws, and burrs [1,2], which often result in
mechanical trauma, metal debris, bacterial contamination,
and collateral damage to soft tissues [1]. Major drawbacks of
mechanical tools are excessive force, fractures, vibrations,
and heat that can damage the surrounding tissue [3]. These
side effects lead to prolonged healing periods. In contrast to
conventional osteotomy, laser osteotomy (where a laser is
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used to cut the bone) has emerged and evolved in recent
years to achieve precision cutting, sterility, and reduced
trauma during surgery, followed by fast healing times [4].
Therefore, laser technologies appear to offer a sophisticated
solution to overcome the disadvantages of mechanical tools
[5,6]. The laser surgery process, which has been considered
most effective for bone tissue uses an erbium‐doped yttrium
aluminum garnet (Er:YAG) laser source operating at
2940 nm [7,8]. The reason being that the operation wave-
length of the Er:YAG laser corresponds to one of the highest
absorption peak of water and hydroxyapatite, the main
component of bone [9]. However, this operation wavelength
with microsecond pulse duration leads to ablation by photo‐
thermal vaporization [10,11]. To decrease the effects of
photo‐thermal vaporization, which may result in carbon-
ization and surface roughness during laser cutting, water
cooling, or spraying systems (wet environment) are widely
used [9,10]. With an appropriate water‐cooling system, the
Er:YAG laser can be used to achieve greater ablation depth
and better surface morphology [10,12,13]. This is because
water prevents pulpal heating and dehydration, which are
the primary causes of thermal damage and reduced tissue
ablation [10,14,15]. Such laser assisted and water‐cooled
systems showing efficient ablation rates while producing
early carbonization have been presented in the literature
[7,16,17].
In contrast to the microsecond Er:YAG laser, the nano-

second neodimium‐doped yttrium aluminum garnet
(Nd:YAG) laser source results in a plasma‐based ablation
[5,18,19]. Ablation with a nanosecond pulse duration is
characterized by a combination of nonlinear absorption
and Coulomb explosion without any significant temperature
increase to the surroundings in wet environment [19–21].
This is because a very high rate of pulse energy is trans-
formed into heat in the liquid‐containing tissue [22].
Therefore, the thermal confinement condition is fulfilled. In
other words, in a wet environment, a nanosecond pulse
heats tissue more rapidly than the time it requires for the
thermoelastic expansion of heated volume to occur [23].
These radiation conditions are known as confined‐thermal
conditions in which thermal heat does not spread out of the
irradiation volume during the time of heat production by the
laser pulse [24]. Furthermore, in contrast to the 2940 nm,
the wavelength of 532 nm is transparent in water and seems
to be well suited for tissue ablation with a substantial water
layer such as in knee arthroscopy [9,18]. However, at
a wavelength of 1064 nm, water has a higher absorption
coefficient providing less penetration depth compared with
the wavelength of 532 nm. In other words, in a wet envi-
ronment, energy absorption at a wavelength of 532 nm is
very low compared to that of 1064 nm or 2940 nm [9,18].
Acoustic shock waves (ASWs) are pressure waves pro-

duced due to the rapid release of energy when a material is
exposed to mechanical or thermal influences. Interaction
with laser light also produces ASWs during the ablation
process [20,25]. The ASW propagates as a spherical wave-
front, which is measured using acoustic emission sensors,
such as piezoelectric transducers (PZTs) and air‐coupled
transducers (ACTs) (microphones), which convert the

spherical wavefront into electrical signals [26–28]. PZTs
combined with a matching gel or water were used in direct
contact acoustic detection to avoid the impedance mismatch
with air. Furthermore, the high attenuation of shock waves
in the air of 1.6 dB/cm for 1MHz frequency components also
contributes to challenges in detecting ASW signals without
direct contact [29]. To improve the mismatch of non‐contact
ASW detection, ACTs were used. This is because the ACTs
have a fundamentally low mechanical impedance mismatch
with the air inducing broader bandwidth and good signal‐to‐
noise ratio. This better acoustic coupling abolished the need
for complex matching layers, which was generally used in
PZTs [30]. However, the signal‐to‐noise ratio that is pro-
vided by ACTs is still less than the PZTs in direct contact.

The features of the ASWs generated are governed by the
laser pulse's parameters such as the laser energy and the
focusing conditions. However, the ASW mainly depends on
the type of material (i.e., hard tissue or soft tissue) being cut
[31]. Hence, by analyzing the generated ASWs, tissue types
can be classified. Previously, ASWs measured were already
used for photothermal therapy such as temperature mon-
itoring during radiofrequency ablation; and forming lesion
control in real‐time [32–34]. Additionally, ASWs were also
investigated for incision depth controlled during laser
ablation [22,35]. But, only knowing the temperature and the
depth of the incision is not enough. We also want to know
which tissue type we are cutting. The method used to clas-
sify tissue types based on the ASW emitted can be per-
formed using intensive computational methods such as
machine learning. The main reason was, machine leaning
combined with acoustic emission sensors were already well
established in industry and pre‐clinical applications
[12,22,35–38]. Other studies demonstrated that acoustic
waves can be separated into multiple frequency bands for
optoacoustic segmentation and visualization using a trun-
cated k‐space [39]. On the basis of this method, the effi-
ciency of image artefacts was better than with zero‐padding.
We also considered the potential usage of such approaches
in classification workflow. Therefore, characterization of
frequency band of acoustic waves measured by ACTs were
combined with machine learning methods for optoacoustic
feedback in laser osteotomy.

Support vector machines (SVMs) represent a major de-
velopment in pattern recognition for classification [40,41].
SVMs can find a hyperplane that divides samples into two
classes with the widest margin between them. Additionally,
SVMs extend this concept to a higher dimensional setting
using a kernel function to illustrate a similarity measure in
the experimental setup [40]. Both innovations can be for-
mulated in a quadratic or Gaussian function framework,
whose optimum solution is obtained in the computation
time of a polynomial or a radial basis function kernel, re-
spectively [42]. Therefore, SVMs are effective and practical
solutions for biomedical signal recognition [40,41].

Another approach to classify tissue types is to use the
artificial neural network (ANN) [43]. The ANN is a ma-
chine learning that is composed of an input layer, hidden
layers that represent features, and an output layer [44].
ANN is a nonlinear model that is easy to use and
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understand compared with statistical methods. The reason
being that ANN is a nonparametric model, while most of
the statistical methods are parametric models that need a
higher background of statistics. ANN with the back prop-
agation learning algorithm is widely used in solving var-
ious classification and forecasting problems [45,46].
In this study, we ablated hard bone, soft bone, muscle,

fat, and skin tissues, using a nanosecond Nd:YAG laser
at 532 nm and a microsecond Er:YAG laser at 2940 nm.
We measured the emitted ASWs using a high‐efficiency
broad‐band air‐coupled piezoelectric ultrasonic trans-
ducer. To simultaneously classify tissue types, we used
and compared the performances of principal component
analysis (PCA) combined with either a quadratic/
Gaussian‐SVM or the ANN. Here, PCA was used for
data reduction to decrease the computational time
during tissue classification [47]. To the best of our
knowledge, our group was the first one to use these
machine learning methods to investigate optoacoustic
tissue classification.

MATERIAL AND METHOD

Sample Preparation

In the laser‐tissue ablation experiments, we used five
fresh porcine proximal and distal femurs. Each fresh
porcine proximal and distal femur was purchased at a
local butcher each day. With scalpels, the connective tis-
sues (Fig. 1) were carefully separated to extract hard and
soft bone, muscle, fat, and skin tissues from each proximal
and distal femur. The sample was then rinsed in distilled
water before the laser experiments. The dimensions of all
compact bone fragments, soft bone, muscle, fat, and skin
tissues were 10 × 50 × 5mm3.

Experimental Set‐Up

The laser ablation experiments were conducted with
different samples in wet conditions. A spray of distilled

water with a flow rate of 0.1ml/s was directed to the spot
of ablation, wetting the sample each time, before the laser
pulse hit the tissue. Ablation was performed using a
Q‐switched frequency‐doubled Nd:YAG laser (Q‐smart
850; Quantel, Paris, France) at 532 nm (producing
5 nanoseconds pulses) and an Er:YAG laser (litetouch
LI‐FG0001A; Syneron Candela, Syneron, Israel) at
2940 nm (producing 400microseconds pulses) (Fig. 2a
and b). The output pulse energy of the Nd:YAG laser and
the Er:YAG laser were 200 and 940mJ, respectively.

The triggering signal was collected directly from the
Nd:YAG laser. In the case of Er:YAG, a CaF2 window was
placed in front of the laser head to split the incident laser
beam into two parts—96% transmitted and 4% reflected
light—to allow for a triggering signal. The reflected light
was collected by a fast PbSe photodiode (PbSe Fixed Gain
Detector, PDA20H, 1500–4800 nm; Thorlabs, Munich,
Germany). For both systems, a data recording element
was embedded in a single opto‐acoustic system (Fig. 2a
and b). The trigger signal activates the capturing of the
signal received by the transducer. In the experiments,
data recording took place during a time window—also
known as the data acquisition window for each acoustic
wave—of 0.82milliseconds. This time window was de-
termined based on the measured acoustic signal where a
high signal‐to‐noise ratio was obtained. A corner mirror
placed in the beam path of the laser was used to reflect
the laser pulse at a 90° angle. The output beam of the
laser was then focused on the surface of the target
specimen by using a 30mm lens in each experiment.
Several craters were produced ex vivo on the specimens,
using the two lasers. For both lasers, each sample was
exposed to 180 laser pulses at a repetition rate of 2 Hz at a
single location. This procedure was repeated at 10 dif-
ferent ablation locations, spaced 4mm apart. Hence, the
number of craters done in each experiment was
500 craters—20 craters at the surface of the same tissue
type extracted from each proximal and distal femur.

Fig. 1. Tissue samples from one fresh porcine femur. Proximal femur: hard bone (a), soft bone (b),
muscle (c), fat (d), and skin (e); distal femur: hard bone (f), soft bone (g), muscle (h), fat (i), and
skin (j).
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The ASW is radiated from the ablation spot into the sur-
rounding media and is picked up by the transducer, where
the acoustic wave is converted into an electrical signal [20].

Detection and Analysis of the ASW Signal

This transducer was a self‐developed, custom‐made air‐
coupled PZT (manufactured in the ITEFI‐Instituto de
Technologias Fisicas y de la Information, CSIC, Madrid,
Spain), with a resonance frequency of 0.4MHz, an avail-
able frequency band of 0.1–0.8MHz, and a 15mm aper-
ture (Fig. 3). The calibration of the frequency band
(frequency response) of the transducer in reception mode
was obtained by using a calibrated source with flat fre-
quency response in the frequency range 0.1–1MHz. Being
in the low MHz range compared with conventional micro-
phones, the design and fabrication of air‐coupled PZTs is
complicated due to the enormous impedance mismatch be-
tween the piezoelectric element and air. For our application,
an optimized stack of detuned quarter wavelength
matching layers was used to optimize both transducer
bandwidth and sensitivity that are critical in this applica-
tion [48,49]. The temporal profile of ASW signals detected
by the transducer were amplified by 30 dB and digitized by
a PCI Express x8 (16‐bit resolution, four channels at 10MS/
s each, M4i.44xx‐x8; Spectrum Microelectronic GmbH,
Grosshansdorf, Germany). The transducer was placed at a
45° angle and 5 cm away from the ablated spot, to avoid
saturation of the ultrasonic sensor while recording the
laser‐induced acoustic wave during plasma formation or the
ablation process. Data were collected using LabVIEW
(version 2016a) and information was extracted from the
samples using MATLAB (version R2018b) software.

Statistical Analysis

Statistical analysis and calculations were performed in
MATLAB software. We suppressed the phase shift of
the measured ASW signal in the time domain by only
using the amplitude spectrum determined using the fast
Fourier transform at a sampling rate of 10MHz. The
average of two ASW spectra was calculated to improve

the signal‐to‐noise ratio between each measured ASW
amplitude spectrum. We split the amplitude spectrum
into three equal frequency bands (low‐, mid‐, and high‐
frequency). Each frequency band was used as an input for
the PCA. PCA was used to reduce the complexity of
high‐dimensional data by maintaining the same patterns
and trends of the ASW field [50]. To classify tissue, we
investigated the processed acoustics by looking at the
amplitude‐frequency band in which we achieved the best
average classification error for each tissue type.

We compared the performance of PCA combined with
either a quadratic and Gaussian SVMs or an ANN
method. To implement the architecture of the SVM
models, we used the fitcecoc function available in
MATLAB (version R2018b) with the polynomial based
kernel (with order of 4) and the gaussian kernel. For the
ANN, we used the pattern network function combined
with the Tan‐Sigmoid activation function for hidden
layers and Softmax activation function for the output
layer. This is because multilayer networks can use the
Tan‐Sigmoid function and the output neurons are often
used for pattern recognition problems. Furthermore, the
Softmax function which was also known as a normalized

Fig. 2. Schematic of the experimental set‐up for the laser‐induced acoustic shock wave
measurement using (a) the nanosecond Q‐switched Nd:YAG laser and (b) the microsecond
Er:YAG laser during tissue ablation. Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG,
neodimium‐doped yttrium aluminum garnet.

Fig. 3. Measured frequency response of the custom‐made air‐
coupled piezoelectric transducer in reception mode.
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exponential function was employed to the layer's output to
predict the label [51,52]. We evaluated the performance of
our models fairly on a single computer with specification
of 2.4 GHz Intel Core i7 processor, 16 GB 1867 MHz DDR3
memory.
During the training phase of the quadratic and Gaus-

sian SVM, we used scores from the set of training data
combined with a quadratic and Gaussian function kernel
to set the boundary of the trained SVM. Testing scores
within the boundary were considered as true positives or
correct positive prediction and false positives (FP) also
known as incorrect positive prediction otherwise. The
criterion used by the two types of SVMs is based on
margin maximization between the two data classes of
tissues. The margin is the distance between the hyper-
planes bounding in each class, wherein the hypothetical
perfectly separable case, no observation may lie [53]. For
the ANN method, we used one input layer, one hidden
layer, and one output layer to build the network. The
input layer was made of three neurons. The single hidden
layer and the output layer were made of 10 neurons and
one neuron, respectively. Then the Backpropagation al-
gorithm was used to train the 10 neurons of the hidden
layer using gradient descent. Similar to the SVM
methods, the first three PCA scores from the set of data
points were used as input sets of the ANN. A summary of
the signal processing pipeline for tissue classification is
given in Figure 4. For the SVMs, a set of 14,400 data
points (or 7,200 averages of two spectra), measured from
10 craters in four proximal and distal femurs, was used as
training data, while a set of 3,600 data points (or 1,800
averages of two spectra), measured from ten craters in the
remaining proximal and distal femur, was considered as
testing data for both lasers.

We, then, simultaneously classified classes of tissues,
using proximal and distal femur cross‐validation. In the
case of ANN, a set of 10,800 data points, measured from
10 craters in three proximal and distal femurs from the first
three porcine, was used as training data. Then, a set of
3,600 data points, measured from 10 craters in one distal
femur from the third porcine, was used as validation data.
During the testing phase, a set of 3,600 data points, meas-
ured from 10 craters in the remaining proximal and distal
femur from the fourth porcine, was considered as testing
data for both lasers. The ground truth was obtained by en-
suring that the tissue labels were correctly observed, and
each tissue was uniformed. During the classification phase,
the average error was calculated based on the mean error of
five cross validated results from five folds—five proximal
and distal femurs extracted from five different porcines.
From the confusion matrix, percentage errors rate in the
testing‐data‐based scores from each specimen were calcu-
lated as the number of all incorrect predictions divided by
the total number of the dataset. The worst error rate is 0 (or
0%), whereas the best is 1 (or 100%) (Equation 1)

%ER
FP FN

Total
100

dataset

=
+

× (1)

where FN is the false negative or incorrect negative
prediction and FP, false positive or incorrect positive
prediction.

RESULTS

The acoustic signals in the time domain were acquired
during laser ablation for hard bone, soft bone, muscle, fat,
and skin using (Fig. 2a) ns‐Nd:YAG and (Fig. 2b) μs‐
Er:YAG lasers. By comparing the ASWs generated by the
different tissues, we found that the peak‐to‐peak ampli-
tude of the ASWs generated by the hard bone specimen
and measured by the ACT were higher than those gen-
erated by the surrounding tissues (soft bone, muscle, fat,
and skin). The peak‐to‐peak value of the ASWs generated
for each tissue with the Nd:YAG laser was ~7 times higher
than those generated with the Er:YAG laser. In addition,
the acoustic signal duration (wt) generated by the
Nd:YAG laser (wt= 0.82milliseconds) was longer com-

pared with the one generated by the Er:YAG laser (wt=
0.70milliseconds). The corresponding frequency domain
of the ASWs for each tissue is depicted in Figure 5a and b.
The amplitude spectrum of hard bone is higher compared
with that of the surrounding tissues (Fig. 5a and b). We
split the spectrum into three equal frequency bands, as
shown in Figure 5a and b. The data suggest at low and
mid‐frequency between 0.115–0.27 and 0.27–0.53MHz,
the classification of hard bone from the surrounding tis-
sues was more accurate than in other bands when
ablating with Er:YAG and Nd:YAG, respectively (Table 2).
The classification of tissue types based on the analysis of
the measured ASWs is depicted in Figures 6. The features
that were chosen for PCA show 96.10% and 97.50% of the
total variance in the acoustic waves generated with the

Fig. 4. Flowchart of the signal processing methods for tissue
classification. ANN, artificial neural network; ASW, acoustic
shock wave; FFT, fast Fourier transform; SVM, support vector
machine.
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Nd:YAG laser and the Er:YAG laser, respectively. We ob-
served a better classification performance with the ANN
than with the quadratic and Gaussian SVM methods, for
both lasers—at low and mid‐frequency for Er:YAG and
Nd:YAG, respectively. Table 2 further shows that the ANN
performed the best, with an average classification error
for all tissues of 5.01± 5.06% and 9.12± 3.39%, using the
Nd:YAG and Er:YAG lasers, respectively. Then, the
Gaussian‐SVM performed better than the quadratic SVM
during the ablation with both lasers. The Gaussian‐SVM
yielded average classification errors of 15.17± 13.12% and
16.85± 7.59%, using the Nd:YAG and Er:YAG lasers, re-
spectively (Table 2). The worst performance was achieved
with the quadratic‐SVM with a classification error of
50.34± 35.04% and 69.96± 25.49%, using the Nd:YAG
and Er:YAG lasers. Average classification errors with
leave‐one‐out cross validation for ANN and SVMs are
detailed in Tables 3–5. The computational time for testing

the ANN and SVM based model is in the order of
11–20milliseconds. Summary of each computational time
is in Table 6.

DISCUSSION

We observed greater amplitudes for the ASWs gen-
erated with the Nd:YAG laser than the ones generated by
the Er:YAG laser (Fig. 5a and b). This amplitude value
suggests that the generation of acoustic waves is more
efficient with the nanosecond Nd:YAG laser. This is be-
cause the amplitude of the generated ASWs depends not
only energy but also pulse duration, focusing conditions,
and mainly tissue type being ablated. In fact, at the same
laser pulse duration and focusing conditions, the acoustic
amplitude increases with energy [54,55]. Therefore, if
both lasers have the same pulse duration, the acoustic
amplitude from the Er:YAG laser at 940mJ, should be

Fig. 5. (a) Measured shock wave using ns‐Nd:YAG laser with time (Top row) and frequency
domain (Bottom row): low‐frequency (LF), mid‐frequency (MF), high ‐frequency (HF). (b)
Measured acoustic wave using μs‐Er:YAG laser with time (Top row) and frequency domain
(Bottom row): LF, MF, HF. Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG,
neodimium‐doped yttrium aluminum garnet.
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higher than that of with the Nd:YAG laser at 200mJ.
However, in this experimental study, both lasers operate
at different pulse durations. Therefore, even though the
Nd:YAG has less pulse energy than the Er:YAG, we ob-
serve greater amplitudes for the ASWs generated with the
Nd:YAG laser than the ones generated by the Er:YAG
laser (Fig. 5a and b). The Nd:YAG generated acoustic
wave is much more effective, generating high frequencies,
while Er:YAG is not only less efficient (smaller amplitude)
but also more frequency selective, being more efficient in
the band 0.1–0.4MHz. This information could be used to
adapt and optimize receiver transducers for this purpose.
The higher values were theoretically expected, as the
ablation with the Nd:YAG is based on plasma mediation,
which increases the pressure energy measured by the
transducer. The Er:YAG laser source results in thermal

ablation, thus, most of the light energy is absorbed by the
exposed tissue and transformed into heat [12,20,56].

This is likely also the reason the acoustic signal dura-
tion generated by the Nd:YAG laser was longer as com-

pared to the one generated by the Er:YAG laser (Fig. 5a
and c). This behavior (acoustic signal duration) suggests a
more resonant ASW generation while using the Nd:YAG
laser. The bandwidth of the ASW's response is broad be-
cause the measured acoustic waves result from transient
signals. For Er:YAG, we used the low‐frequency band of
0.115–0.27MHz (Fig. 5d) to classify tissue types because
thermal ablation generates acoustic waves (not shock
wave and acoustic wave is always in the low‐frequency
range); and important parameters of acoustic waves lie in
this region. Moreover, the transducer is fully charac-
terized at 0.1–0.8MHz (Fig. 4), by focusing the analysis

Fig. 6. Seven thousand and two hundred scores from training data (a and c; using Nd:YAG laser
and Er:YAG laser, respectively) and classification of 1,800 scores from testing data (b and d; using
Nd:YAG laser and Er:YAG laser, respectively) based on margin maximization between the five
data classes of the training data for hard and soft bone, muscle, fat, and skin. Er:YAG, erbium‐

doped yttrium aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum garnet.

TABLE 1. A Summarizing Table of Both Laser's Parameters for all Five Tissues

Laser types
Pulse

energy (mJ)
Pulse

duration (µs)
Repetition
rate (Hz)

Laser
wavelength (nm)

Distance between
lens and tissue (mm)

Water flow
rate (ml/s)

Nd:YAG 200 5 × 10−3 2 532 30 0.1
Er:YAG 940 400 2 2940 30 0.1

Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum garnet.
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above 0.1MHz, we were always able to reduce this un-
wanted signal component, thereby improving the tissue
classification. Confusion matrices indicate that tissue
classification has the highest accuracy within this band as
highlighted in Table 1. In contrast to the Er:YAG, cutting
tissue with Nd:YAG is based on the plasma mediated
ablation and emits the shock waves in which spectra ex-
tend beyond 1MHz [57]. However, the −3 dB bandwidth of
our commercial microphones do not typically exceed
0.9MHz and the resonant frequency is at 0.4MHz.

Therefore, using the mid‐frequency band 0.27–0.53MHz
(Fig. 5b), the confusion matrices indicate that the tissue
classification has the highest accuracy within this band.
Another advantage of using this region is it overlaps with
the frequency band where the transducer has highest
sensitivity.

Hard bone specimens generated higher peak‐to‐peak
ASW values than the soft tissues did because soft tissues
contain 79% water, while hard bone is made up of 85–95%
carbonated hydroxyapatite [58]. Thus, we believe that the
carbonated hydroxyapatite resulted in a higher amplitude
due to its compact structure [10,58,59]. On the basis of
this compact structure (physical propriety) of hard bone, it
was possible to classify hard bone against soft tissues,
during both lasers (details are in Table 3 and 4). In gen-
eral soft tissues—except the classification error for muscle
tissue using the Nd:YAG—had the highest average clas-
sification errors compared with hard bone. This is prob-
ably due to the structure of the soft tissues, which consist
of fatty connecting tissue and contain more water than
bone, resulting in lower amplitude ASWs as compared
with bone.

The ANN method showed a superior classification per-
formance as compared to the quadratic‐ and Gaussian‐
SVM methods; the Gaussian‐SVM performed better than
the quadratic‐SVM method (Tables 2–5). One explanation
for this result is that we trained our classifier using a
large amount of data; with more data, the ANN and
Gaussian kernel perform generally better than the poly-
nomial kernels. Therefore, using the ANN and Gaussian
kernel, we can model more functions within its function
space than using the polynomial kernels. However, if we

TABLE 2. Average Error of All Tissues for Both Lasers

Using SVM and ANN at Low, Mid, and High‐Frequency

for Both Nd:YAG and the Er:YAG Ablation

Comparison of three methods

Laser types
Quadratic‐

SVM
Gaussian‐

SVM ANN

Low‐frequency: 0.115–0.27MHz
Nd:YAG 55.89% 18.37% 8.81%
Er:YAG 69.96% 16.85% 9.12%

Mid‐frequency: 0.27–0.53MHz
Nd:YAG 50.34% 15.17% 5.01%
Er:YAG 72.4% 30.82% 14.62%

High‐frequency: 0.53–0.80MHz
Nd:YAG 53.39% 20.04% 10.48%
Er:YAG 76.52% 26.66% 21.15%

ANN, artificial neural network; Er:YAG, erbium‐doped yttrium
aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum
garnet; SVM, support vector machine.

TABLE 3. Confusion Matrix for Hard Bone, Soft Bone, Fat, Skin, and Muscle Tissue at Low‐ and Mid‐Frequency

During Nd:YAG and the Er:YAG Ablation, Respectively

Quadratic SVM method

Classified as

Tissue Hard bone Soft bone Fat Muscle Skin
Average

classification error

Hard bone
Nd:YAG 1645 0 0 139 16 8.60%
Er:YAG 1464 16 63 175 82 18.70%

Soft bone
Nd:YAG 140 449 1209 1 1 75.10%
Er:YAG 637 265 137 278 483 85.30%

Fat
Nd:YAG 263 310 609 0 618 66.20%
Er:YAG 643 36 194 319 638 89.22%

Muscle
Nd:YAG 109 0 0 1667 24 7.40%
Er:YAG 717 132 63 429 459 76.17%

Skin
Nd:YAG 2 1342 356 0 100 94.40%
Er:YAG 1045 9 41 353 352 80.40%

Numbers in the table are testing‐data‐based scores from each specimen.
Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum garnet; SVM, support vector machine.
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TABLE 4. Confusion Matrix for Hard Bone, Soft Bone, Fat, Skin, and Muscle Tissue at Low‐ and Mid‐Frequency

During Nd:YAG and the Er:YAG Ablation, Respectively

Gaussian SVM method

Classified as

Tissue Hard bone Soft bone Fat Muscle Skin
Average

classification error

Hard bone
Nd:YAG 1682 0 0 118 0 6.55%
Er:YAG 1718 4 0 0 78 4.56%

Soft bone
Nd:YAG 0 1669 46 9 76 7.28%
Er:YAG 3 1579 3 30 185 12.30%

Fat
Nd:YAG 0 273 1322 29 176 26.60%
Er:YAG 0 25 1390 227 159 22.83%

Muscle
Nd:YAG 0 3 0 1797 0 0.17%
Er:YAG 0 63 194 1473 70 18.17%

Skin
Nd:YAG 0 171 249 215 1165 35.27%
Er:YAG 105 159 107 105 1324 26.4%

Numbers in the table are testing‐data‐based scores from each specimen.
Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum garnet; SVM, support vector
machine.

TABLE 5. Confusion Matrix for Hard Bone, Soft Bone, Fat, Skin, and Muscle Tissue at Low‐ and Mid‐Frequency

During Nd:YAG and the Er:YAG Ablation, Respectively

ANN method

Classified as

Tissue Hard bone Soft bone Fat Muscle Skin
Average classification

error

Hard bone
Nd:YAG 1800 0 0 0 0 0%
Er:YAG 1750 0 0 0 50 2.78%

Soft bone
Nd:YAG 0 1691 41 1 67 6.06%
Er:YAG 0 1653 8 59 80 8.17%

Fat
Nd:YAG 0 44 1722 0 33 4.28%
Er:YAG 0 109 1594 24 73 11.44%

Muscle
Nd:YAG 0 7 1 1792 0 0.44%
Er:YAG 0 51 64 1603 82 10.94%

Skin
Nd:YAG 0 49 208 0 1543 14.28%
Er:YAG 24 99 82 16 1579 12.28%

Numbers in the table are testing‐data‐based scores from each specimen.
Er:YAG, erbium‐doped yttrium aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum garnet; SVM, support vector ma-
chine.
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had used fewer data, then, a polynomial kernel would
have been a much better fit to the measured data than the
gradient and Gaussian. In fact, the ANN and Gaussian
SVM method are nonparametric methods, meaning that
the complexity of the model is potentially infinite; its
complexity can grow with the data [53,60]. More data will
be able to represent more andmore complex relationships—
however, this simple classification approach also hase limits
as it has a single hidden layer. In contrast, the quadratic‐
SVM methods have a fixed size (parametric model), so after
a certain point, the model will be saturated, and increasing
the data would not improve the classifier. In this case, we
had a large amount of data and very weak assumptions
about the challenge, thus a nonparametric method served
us better.
Furthermore, we used leave‐one‐out cross validation

because, in general, there is a tradeoff between accuracy
and generalization. The more accurate the classifier is
with the training data, the less likely it is to generalize
(though it depends on the training data). Furthermore, we
used PCA to reduce the data dimensionally at each fre-
quency range. This is because principal components (PCs)
consecutively maximize variance and can be obtained
from the eigenvalues/eigenvectors of a covariance matrix
[61]. When all variables are measured in the same units,
covariance‐based PCA may be suitable. In general, the
first PCs are dominated by high‐variance variables and
mostly represent the variance of each data. Therefore, by
confining the number of eigenvalues and eigenvectors to
the first three PCs, we aim to keep the most represent
variance of each data and improve the speed of online
classifier when transferring feedback sensor to other
systems for in vivo measurements.
In case that the online classifier produces more error,

more PCs can be used as a solution even if the computa-
tional time increases. In addition, the angle between the
transducer and the ablated spot must be adjusted to 45°.
Moreover, the transducer should be placed 5 cm away
from the ablated spot to maintain the same condition as in
this experimental setup. In case that the machine struc-
ture does not allow to fix the sensor position at the men-
tioned angle and distance, an alternative approach is to
fix an omnidirectional transducer at any angle and dis-
tance in the linear regime to collect the data. Then, the
data need to be normalized in the time domain to avoid
the negative impact of the distance between the trans-
ducer and the ablated spot (because the amplitude value

of the acoustic wave exponentially decays with the dis-
tance). To improve the machine learning approach, the
system must be trained with a lot of data using femurs
from different patients and body parts such as the skull.
This is because depending on age, nutrition, and body
parts of each patient, it is possible that the tissue re-
sponse varies slightly. By making the laser cut other body
parts such as skull or limb, the laser should be able to
rotate around them while cutting. This requires an XYZ
machine (controlled rotating holder). Laser combined with
a robotic arm or endoscope to be able to control the
movements is the next plan of MIRACLE project.

Furthermore, the feedback system must be also regu-
larly trained when transferring results to another system
or machine (new condition). This is because the sensor
system could have different transfer functions or irriga-
tion conditions, which can affect the raw data of acoustic
measured time. Additionally, during ablation by the
Er:YAG laser, carbonization can possibly appear at the
ablated spot if the water cooling system is not appropri-
ately set. To avoid this, automatic detection for early
carbonization (dry tissue vs. wet tissue) must also be in-
tegrated in the current feedback to classify the ablated
tissue and monitor early carbonization simultaneously in
real time. As soon as the feedback system detects early
carbonization, water flow rate of the cooling system will
be increased to prevent carbonization. Currently, we used
distilled water in ablation experiments to prevent earlier
carbonization, distilled water can be replaced by physio-
logical water which is more suitable for surgery. We have
tested physiological water in our previous experiments in
which we got a similar behavior to the distilled water. So,
we continued using distilled water because it is already in
our laboratory. When using the laser system in the clinic,
we will perform experiments with the physiological water.

Moreover, in our previous work, we investigated op-
timum laser parameters for a long‐pulsed high‐energy
laser to produce craters with minimal thermal damage
under wet condition using an optical coherence tomog-
raphy or confocal microscope, and a scanning electron
microscope (SEM) [12]. The pulse duration and pulse en-
ergies were 0.5–10milliseconds and 0.75–15 J, re-
spectively. The confocal microscope was used for calcu-
lating the ablation efficiency but SEM was needed for
analyzing craters of various morphologies to observe
random charring, thermal damage, and cracks of hard
and soft tissues. We planned to use the same method to
investigate the difference in ablation and burning depth of
hard tissue compared with soft tissue, using both lasers.
Future work will also include a histological study in a
cross‐section for each tissue after the laser ablation, to
fully evaluate the potential of the technique in terms of
the reduction of bone damage compared with other tech-
niques. For bone cutting, we applied fixed high energy
pulses to produce ablation. That is why in our case, the
light dose is always the same as the laser is used for bone
ablation application. Hence, it is not needed to perform a
classification with unseen data (at different laser en-
ergies) to conclude on the actual utility of the proposed

TABLE 6. Average Computational Time to the Test of

the SVM and ANN Models for Both Lasers

Laser
types

Quadratic‐
SVM (ms)

Gaussian‐
SVM (ms)

ANN
(ms)

Nd:YAG 20.02 13.08 11.09
Er:YAG 23.14 14.12 11.17

ANN, artificial neural network; Er:YAG, erbium‐doped yttrium
aluminum garnet; Nd:YAG, neodimium‐doped yttrium aluminum
garnet; SVM, support vector machine.
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scheme in realistic situations that might arise in the
clinic. In addition, the time for cutting a real bone with
laser is longer than when using standard mechanical tools
such as a saw; however, the laser has more advantages—
including functional cuts, contactless interaction, and
faster wound healing—which gives an overall better out-
come than mechanical surgery. The ablation rate at the
surface (∼1mm depth) is around 10 and 0.1mm/s for
Er:YAG and Nd:YAG, respectively. However, at deeper
ablation (∼10mm depth) is 0.2mm/s for Er:YAG; we have
not yet done with Nd:YAG for hole ablation. Additionally,
in terms of contamination, for all the debris, we use the
extraction system, or we just blow off all the debris using
pressurized air. In contrast to the standard mechanical
tools, laser ablation produces microparticles, and the bone
is completely disintegrated.
Currently, the error rate is less than 10%. This prom-

ising result led us to investigate advanced precision in
signal classification to further reduce the classification
error. To reach efficiency in processing, we plan to involve
a cutting‐edge deep learning technique such as a one‐
dimensional Convolutional Neural Network to classify
these ASWs. We also plan to filter out misclassified data
based on the temporal discrimination of tissue types—
that is, when doing a line cut on top of hard bone with
laser, we detect hard bone during the last ten shots and
suddenly, we detect skin in one shot followed by the de-
tection of hard bone again, the software will just filter out
this misclassified skin and considers it as outlier or hard
bone. Additionally, we are also investigating sensitive
sensors such as optical sensors to improve ASW meas-
urement. We believe that with better data measured,
classifiers will better detect tissues types compared to
when using the ACT.

CONCLUSION

Our aim was to simultaneously classify tissue types
during laser ablation by measuring the ASWs generated
with an ACT and by processing the information using
three different machine learning methods. The ANN,
quadratic or Gaussian‐SVM‐methods were combined with
PCA during classification. In the experiments, we used
two different lasers to ablate tissue types and to generate
ASWs. The peak‐to‐peak amplitudes of the ASW gen-
erated by the hard bone specimen and measured by the
ACT were consistently higher than those generated by the
surrounding tissues (soft bone, muscle, fat, and skin). On
the basis of the average error for all tissues using both
lasers, the ANN performed best in terms of classifying all
tissues during ablation. Thus, the measured ASWs can be
quantified and used to control the laser cutting process in
a feedback control loop. By classifying tissue type during
ablation, we avoid damaging an important tissue such as
bone marrow (or soft bone). As soon the signal of the
ASWs is classified as soft bone, the laser will stop ablating
(the stopping point).
Future work includes the development of optical sen-

sors to detect the ASW fields. Optical techniques are very

sensitive to sharp changes in pressure with wide band-
widths compared with commercially‐available trans-
ducers [57].
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