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ABSTRACT Different from conventional wireless sensor networks (WSNs), ultra-reliable and low-latency

WSNs (uRLLWSNs), being an important application of 5G networks, must meet more stringent performance

requirements. In this paper, we propose a novel algorithm to improve uRLLWSNs’ performance by applying

machine learning techniques and genetic algorithms. Using the K -means clustering algorithm to construct

a 2-tier network topology, the proposed algorithm designs the fetal dataset, denoted by the population,

and develops a clustering method of energy conversion to prevent overloaded cluster heads. A multi-

objective optimization model is formulated to simultaneously satisfy multiple optimization objectives

including the longest network lifetime and the highest network connectivity and reliability. Under this model,

the principal component analysis algorithm is adopted to eliminate the various optimization objectives’

dependencies and rank their importance levels. Considering the NP-hardness of wireless network scheduling,

the genetic algorithm is used to identify the optimal chromosome for designing a near-optimal clustering

network topology. Moreover, we prove the convergence of the proposed algorithm both locally and globally.

Simulation results are presented to demonstrate the viability of the proposed algorithm compared to state-

of-the-art algorithms at an acceptable computational complexity.

INDEX TERMS Machine learning (ML), genetic algorithms (GAs), multi-objective optimization, near-

optimal clustering network topology, ultra-reliable and low-latency wireless sensor networks (uRLLWSNs).

I. INTRODUCTION

The number of networked entities is reaching unprecedented

levels, resulting in great challenges for ultra-reliable and low-

latency Internet of Things (uRLLIoT) applications. Integrat-

ing both enhanced mobile broadband (eMBB) and massive

machine-type communications (mMTC), ultra-reliable and

low-latency communications (uRLLC) has been identified

as a key 5G feature by the International Telecommunication

Union (ITU) [1]–[4]. Being a crucial part of uRLLIoT, ultra-

reliable and low-latency wireless sensor networks (uRLL-

WSNs) deserve special investigation. The uRLLWSNs evo-

lution is required not only to allow a near-optimal operation

in the monitoring environment, but also to conduct further

extensions and enhancements, especially for hazardous sce-

narios such as volcano monitoring. In such scenarios, it is

difficult to replace or recharge the sensor battery while being

subject to ultra-reliability and low-latency requirements.

Hence, further research on uRLLWSNs is indispensable for

simultaneously satisfying multiple optimization objectives

such as the longest network lifetime, the highest network con-

nectivity and reliability, and so forth. One effective approach

to enhance uRLLWSNs is to design efficient routing schemes

based on the clustering network topology [5]–[10].

Reviewing the literature, the LEACH (low-energy adaptive

clustering hierarchy) protocol in [11] optimizes the energy

consumption by dynamically creating clusters. Although
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TABLE 1. The key strengths and weaknesses of the various algorithms.

LEACH selects sensors as cluster headers (CHs) in the

autonomous and decentralized mode, it designs unevenly

distributed CHs [12]. The HEED (hybrid energy-efficient

distributed clustering) algorithm in [13] adjusts the trans-

mit power levels of a node to improve energy efficiency

by considering its residual energy and the number of its

neighbors. AlthoughHEED can improve the clustering speed,

it excludes some sensors from joining any clusters due to

the clustering competition [14]. The LELE (leader election

with load balancing energy) algorithm in [15] selects CHs

by considering the node residual energy and transmission

distance, but suffers from the issue of unevenly distributed

CHs [14]. DORAHP, the distributed joint optimization rout-

ing algorithm based on the analytic hierarchy process [16],

in [17] selects the next hop based on the key criteria of energy,

distance, and the number of neighbors. It is suitable for small-

scale WSNs and suffers from high network latency due to

multiple forwarding operations [18]. The EEUC (energy-

efficient unequal clustering) algorithm in [19] utilizes the

distance between sensors and the base station (BS) to select

CHs, but is similar to DORAHP in suffering from the network

latency problem. The GASONeC (genetic algorithm-based

self-organizing network clustering) method in [12] provides

a framework to optimize clusters. However, its computational

complexity is significantly high due to more evolutionary

generations [14]. The HHCA (hybrid hierarchical clustering

approach) in [20] optimizes network topology to balance the

communication load and to increase the network lifetime by

designing a three-layer hierarchy, but it lacks analysis of some

important networkmetrics such as network coverage and reli-

ability. To improve the ultra-dense WSN energy efficiency,

our prior work in [18] utilizes both unsupervised learning

and genetic algorithms, named ULGAT, to identify a near-

optimal network topology. However, it is a single-objective

optimization and only suitable for the WSN scenario with

the deterministic deployment of sensed objects, resulting in

over-textitasizing the importance of energy efficiency. The

key strengths and weaknesses of the various algorithms are

presented in TABLE 1.

To study uRLLWSNs with many stringent requirements,

we propose a multi-objective optimization algorithm by

applying machine learning techniques and genetic algo-

rithms to identify a near-optimal clustering network topology.

The algorithm satisfies multiple optimization objectives

including the longest network lifetime and the highest net-

work connectivity and reliability. The proposed algorithm,

called MLPGA, has the following main advantages

1) Formulating the plane network as a two-dimensional

(2D) graph, the proposed algorithm utilizes the popu-

lar K -means clustering algorithm of machine learning

to design the 2-tier network topology for encoding

sensors as the chromosome. Various chromosomes for

diverse network topologies construct the population,

from which the optimal chromosome is identified to

design a near-optimal network topology for routing

scheduling.

2) The proposed algorithm develops a clustering method

of energy conversion to transform the CH’s commu-

nication energy consumption into virtual CMs. Inte-

grating both virtual CMs and real CMs, a clustering

network topology without overloaded CHs is designed.

Based on the multiple investigated network objectives,

a fair optimization model is developed to identify

the optimal chromosome for designing a near-optimal

clustering network topology without overloaded CHs.

Using the principal component analysis (PCA) algo-

rithm of machine learning, the proposed algorithm

eliminates dependencies between the multiple opti-

mization objectives and ranks their importance levels

to construct the fitness function for evaluating different

chromosomes. The minimal schema is defined as the

convergence condition of identifying the optimal chro-

mosome in this optimization model. In addition, con-

sidering the NP-hardness of nonlinear multi-objective

optimization, a genetic algorithm is adopted to learn the

optimal chromosome by using selection, crossover, and

mutation procedures.

3) The convergence property of the proposed algorithm

is proved both locally and globally. Simulation results

demonstrate that the proposed algorithm has an accept-

able complexity while outperforming state-of-the-art

algorithms in terms of the network lifetime, the num-

ber of alive sensors, the energy consumption, and

the network connectivity and reliability. In addition,

we analyze the effect of PCA on improving the network

performance.
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The remainder of this paper is organized as follows.

Section II describes the network model and the proposed

algorithm. The convergence property of the proposed algo-

rithm is proved in Section III. Simulation results are presented

in Section IV and the paper is concluded in Sections V.

II. MODEL AND PROPOSED ALGORITHM

In this section, we encode sensors as the chromosome

of genetic algorithms and develop a clustering method of

energy conversion to prevent overloaded CHs. In addition,

a multi-objective optimization model satisfying the strin-

gent uRLLWSNs requirements is formulated to identify the

optimal chromosome for designing a near-optimal clustering

network topology by using the genetic algorithm. Based on

machine learning principles [21], the proposed MLPGA is

composed of the dataset, the cost function, and the opti-

mization model and procedures. In addition, MLPGA is a

centralized scheme using a static optimization mode that pre-

learns a near-optimal clustering network topology without

overloaded CHs.

A. NETWORK MODEL AND ENERGY MODEL

We formulate the plane network as a 2D graphG(V,E), where

V = {v0, v1, . . . , vn, . . . , vN } represents the set of sensors

and E represents the set of communication links between

sensors [22]. The routing scheme is defined as the process

of learning the optimum routing path from sensor vn, n =

1, . . . ,N , to the gateway or BS v0. We make the following

assumptions:

1) Communication links for neighbor sensors are set up

by the broadcast that includes the basic sensor infor-

mation such as the current energy and location of the

sensor [22];

2) Sensors can adjust the amount of transmission power

using power control according to the distance between

the transmitter and the receiver [23];

3) Sensors are equipped with the Global Position System

(GPS) to be location-aware, and are identical in terms

of hardware, software, and energy storage while the BS

can be manually maintained [17].

Sensors are denoted as s = [s1, . . . , sn, . . . , sN ]
T , termed a

chromosome, where sn represents the CHwhen sn = 1 and sn
represents the CM when sn = 0. Massive chromosomes can

establish the population that is the fetal dataset for the multi-

objective optimization model. We represent a population of

the m chromosomes as follows

S =




sT1
...

sTm
...

sTM




=




[
s1,1 . . . s1,n . . . s1,N

]
...[

sm,1 . . . sm,n . . . sm,N

]
...[

sM ,1 . . . sM ,n . . . sM ,N

]




.

(1)

The CH directly communicates with the BS whereas each

CM joins one cluster. In general, the CM joins the nearest

cluster, being prone to construct an unreasonable clustering

network topology due to some overloaded CHs. CHs close

to the BS consume less communication energy while those

distant from the BS consume more communication energy

leading to their premature death. To design the network

topology without overloaded CHs, a clustering method of

energy conversion is designed by considering both the CH’s

transmission energy consumption and the distance. In this

algorithm, each CH’s transmission energy consumption is

transformed into some virtual CMs. For the WSN energy

model, in addition to the fixed energy consumption asso-

ciated with data acquisition and processing, two key sys-

tem parameters are the distance and the message size for

WSN routing scheduling. According to these two parameters,

Heinzelman et al. [24] proposed a simplified energy loss

model, where the energy consumptions for transmitting and

receiving the l-bit message over a transmission distance d are,

respectively, given by

Etx (l, d) =

{
lEelec + lǫfsd

2, d < d0

lEelec + lǫmpd
4, d ≥ d0,

(2a)

Erx (l) = lEelec, (2b)

where Eelec is the energy consumption due to data acqui-

sition and processing, while the amplifier energy, given by

ǫfsd
2 or ǫmpd

4, depends on the distance d and the specified

bit-error rate, and d0 =

√
ǫfs
/
ǫmp is the threshold distance.

Typical values for these parameters are given in TABLE 3.

For example, the number of virtual CMs for CH vc,p is given

by

np = Etx(l, d(vc.p, v0))
/
Erx(l), (3)

where d(vc,p, v0) is the distance from CH vc,p to the BS

v0. According to the sum of the real CMs and virtual CMs,

the average number of CMs for each cluster is computed.

Each CM joins a nearer cluster whose number of CMs must

be not greater than the average number of CMs. The cluster-

ing method of energy conversion is presented in Algorithm 1.

B. MULTI-OBJECTIVE OPTIMIZATION MODEL

In general, the network coverage, the network connectiv-

ity and reliability, and the network latency are major per-

formance metrics of uRLLWSNs [25]–[27]. Furthermore,

the energy efficiency of sensors is equally important because

it is difficult to recharge or replace the sensor battery [28].

For some monitoring applications such as seismic wave,

sensors conduct the detection task periodically, for example

every hour. The network lifetime is defined as the number

of transmission rounds from the network birth until sensor

deaths lead to network coverage failure [18]. A sensed object

is covered by the minimum number of sensors, needed for

network coverage. Hence, it is denoted as the critical sensed

object [29]. Assume that sensed object oτ is the critical

sensed object and its collection of sensors is denoted by

Vτ =
{
vτ,1, . . . , vτ,k , . . . , vτ,K

}
. All sensors in collectionVτ
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Algorithm 1 The Clustering Method of Energy Conversion

Require: The collection of CHs V c =
{
vc,1, . . . , vc,P

}
, the

collection of real CMs Vm =
{
vm,1, . . . , vm,Q

}
.

Ensure: The clustering network topology of balanced load.

1: for p = 1 to P do

2: Compute the number of virtual CMs np.

3: end for

4: Compute the average number of CMs for each cluster:

n =
(
Q+ n1 + · · · + np + · · · nP

)/
P.

5: for q = 1 to Q do

6: Order CHs according to the distances between CM

vm,q and CHs in the ascend mode and compute their

respect number of CMs: n′
1, . . . , n

′
p, . . . n

′
P.

7: for p = 1 to P do

8: if n′
p < n then

9: CM vm,q joins the p
th cluster: Vp = Vp ∪

{
vm,q

}
.

10: end if

11: end for

12: end for

13: return The clustering network topology

V c =
⋃P

p=1 Vp,

Vp =
{
vp,1 . . . , vp,k , . . .

}
,

V s ∩ V t = ∅, s, t ∈ {1, . . . , p, . . .P} , s 6= t.

die due to energy exhaustion, resulting in network coverage

failure [25]. Hence, the network lifetime can be expressed as

Tnet ∝ max
vτ,k∈Vτ

ετ,k , (4)

where ετ,k is the residual energy of sensor vτ,k .

To capture the probability of not having a failure within

the time interval (0, tn), the sensor reliability is described by

the sensor tolerance that is modeled as a Poisson Distribution

[25], [30]. Hence, the network reliability is denoted as

R (V) =
∑N

n=1
R (vn) =

∑N

n=1
exp(−θ tn), (5)

where the failure rate of the sensor is a constant, denoted

by θ [31]. In typical routing protocols, the fault tolerance

is viewed as an ability to maintain the network operation

without any interruption [25]. When sensor vn is encoded as

a CH vc,p or CM vm,q based on Algorithm 1, the lifetime of

sensor vn is, respectively, approximated as

tn =
εn

Ebro(l ′) + Etx
(
l, d(vc,p, v0)

)
+ ηErx (l)

, (6)

tn =
εn

Ebro (l ′) + Etx
(
l, d(vm,q, vc,p)

) , (7)

where d(vc,p, v0) is the distance fromCH vc,p to the BS v0 and

parameter η is the number of received data messages, when

sensor vn is encoded as CH vc,p. d(vm,q, vc,p) is the distance

from sensor vm,q to its CH vc,p when sensor vn is encoded as

CM vm,q. In addition, Ebro(l
′) represents the broadcast energy

consumption and is given by

Ebro(l
′) = Etx(l

′,Rc,n) + γErx(l
′), (8)

where the sizes of the broadcast message and the data mes-

sage are l ′ and l, respectively. Parameter γ is the number

of received broadcast messages and is determined by the

communication range Rc,n. Based on the definition of Rc,n
in [23], the communication range is given by

Rc,n =

[
1 −

dmax − d (vn, v0)

µ (dmax − dmin)

]
Rmax, (9)

where dmax and dmin are, respectively, the maximum andmin-

imum distances between sensors and the BS while d(vn, v0)

represents the distance between sensor vn and the BS v0.

Parameter µ is a predefined constant that can be adjusted

according to the environment. Rmax is the maximum distance

from the BS to the monitoring field.

In uRLLWSNs, each sensor is within the communication

range of one or more sensors to form a connected network.

Hence, maintaining the network connectivity is important for

guaranteeing that the messages are indeed propagated to the

BS. Given that the network connectivity is closely related

to the network coverage [32], the network connectivity is

expressed as

H (V) =
∑N

n=1
(h (vn)), (10a)

h (vn) = 1 − exp
(
−
(
Rc,n − Rs,n

))
, (10b)

whereRc,n−Rs,n > 0must be satisfied to achieve the network

connectivity, and Rs,n is the sensing range of sensor vn. We set

Rc,n = 2Rs,n to achieve satisfactory performance based on the

analysis in [32].

In the monitoring field, each sensed object is observed

by at least one sensor. Given that the sensed objects are

deployed differently in diverseWSNs’ applications, we adopt

a general deployment scenario where massive sensed objects,

denoted by O = {o1, . . . , oj, . . . , oJ }, are distributed ran-

domly. Adopting the simple binary sensor coverage model

in [33], the network coverage is defined as [25]

C (O) =
1

J

∑J

j=1
c(oj), (11a)

c
(
oj
)

=

{
1, if ∃vn ∈ V, d

(
vn, oj

)
≤ Rs,n,

0, otherwise,
(11b)

where d(vn, oj) is the Euclidean distance between sensor vn
and sensed object oj.

For the transmission between sensor vn and the BS v0,

the network latency is defined as the time elapsed between

the departure of a sensed message from sensor vn to the BS

v0 [25] as follows

D (vn, v0) =
(
Tq + Tp + Td

)
× N (vn, v0)

= c× N (vn, v0)

∝ N (vn, v0), (12)

where Tq, Tp, and Td are the queue delay, the propagation

delay, and the transmission delay, respectively. The sum of

the various delays can be approximated as a constant, denoted

by c =
(
Tq + Tp + Td

)
.
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For theWSN optimization problem, it is common to define

a single network metric as the optimization objective and

treat the other network metrics as optimization constraints,

which artificially over-textitasizes the importance of onemet-

ric [25]. Hence, a fair optimization model is constructed

to simultaneously satisfy multiple optimization objectives

including the longest network lifetime and the highest net-

work reliability and connectivity, which is formulated as

max {Tnet , R (V) , H (V)} ; (13a)

s.t. εn ≥ En, ∀vn ∈ V; (13b)

C (O) = 1; (13c)

D (vi, v0) ∈ {1, 2}. (13d)

For this optimization model, Equation (13a) is an optimiza-

tion objective function, Equation (13b) is the least residual

energy limit for guaranteeing the sensor’s regular functions,

and Equation (13d) is the network latency condition. Most

importantly, Equation (13c) is the network coverage limit.

C. OPTIMIZATION PROCEDURE

References [29] and [34] prove that it is NP-hard to learn an

optimal routing scheduling inWSNs using classical gradient-

or Hessian-based algorithms, especially for the multi-

objective optimization model. However, the bio-mimetic

heuristics-based strategy, for example genetic algorithms, has

been widely used to solve NP-hard problems. The reason

is that it is capable of obtaining an optimal solution to the

optimization problem characterized by the non-differentiable

nonlinear objective function [12], [25], [29], [35].

In the genetic-based algorithm optimization procedures,

the fitness function, named the cost function in machine

learning, is an evaluation function for chromosomes. The

objective function in Equation (13a) is a preferred alternative

for designing the fitness function due to its efficient assess-

ment of chromosomes. However, the nonlinear dependencies

between the multiple optimization objectives may result in

ranking unreasonable importance levels of the optimization

objectives, which is insufficient for learning an optimal net-

work scheduling strategy. Fortunately, the PCA algorithm

based on the singular value decomposition (SVD) is capa-

ble of eliminating dependencies [21]. For chromosome sm,

denote the various optimization objectives’ values of Equa-

tion (13a) by xm =
[
xm,1 xm,2 xm,3

]T
. Hence, an evaluation

dataset for population S is given by

X =




xT1
...

xTm
...

xTM




=




[
x1,1 x1,2 x1,3

]
...[

xm,1 xm,2 xm,3

]
...[

xM ,1 xM ,2 xM ,3

]




, (14)

where dataset X is an M × 3 matrix of real-valued data with

rank equal to 3 according to Equations (1) and (13a).

When using the PCA algorithm, it is necessary to ensure

that samples of dataset X have zero means [21]. The sample

means vector of dataset X is approximated by

x =
1

M

[∑M

i
xi,1

∑M

i
xi,2

∑M

i
xi,3

]T
. (15)

Hence, an improved dataset for dataset X is given by

X =
[
(x1 − x) · · · (xm − x) · · · (xM − x)

]T
.

(16)

Dataset X is also an M × 3 matrix of real-valued data with

rank equal to 3 and is decomposed as X = U6VT . Accord-

ing to the SVD definition in [36], matrix U is (M × M )

orthonormalmatrix including the left-singular vectors, matrix

6 is (M × 3) diagonal matrix, and matrix V is (3 × 3)

orthonormal matrix including the right-singular vectors. The

mth sample of dataset X is projected to sample zm via the

linear transformation V as follows

zm = (xm − xm)
TV , (17)

resulting in a projection dataset denoted by Z = XV . Hence,

the covariance variance of dataset Z is given by

Cov [Z] =
1

M − 1
ZTZ

=
1

M − 1

(
XV

)T (
XV

)

=
1

M − 1
VTX

T
XV

=
1

M − 1
VT

(
U6VT

)T (
U6VT

)
V

=
1

M − 1
VTV6UTU6VTV

=
1

M − 1
6

2, (18)

where VTV = I and UTU = I . Using the linear trans-

formation V , dataset X is transformed into dataset Z with

the diagonal covariance matrix denoted by 6
2. According to

the PCA principle in [37], the diagonal elements of matrix

6 are eigenvalues of matrix Z and their respective ratios of∑3
j=1 6j,j are used to rank the importance levels of multiple

variances in sample zm. Hence, the fitness function can be

formulated as

fm = zTm

(
diag(6)
∑3

i=1 6i,i

)
=

1
∑3

i=1 6i,i

(
3∑

i=1

(
zm,i6i,i

)
)

. (19)

Therefore, a fitness vector is formed as follows

f =
[
f1 · · · fm · · · fM

]T
. (20)

Using the search mechanism of genetic algorithms,

MLPGA learns the optimal chromosome to design a near-

optimal clustering network topology. First, the selection pro-

cess is accomplished by using the roulette wheel selection,

in which each chromosome is given a probability of being

copied into the next generation. For example, chromosome

sm is selected with the following likelihood

ϕ (sm) =
fm∑M
i=1 fi

. (21)
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Algorithm 2 Roulette Wheel Selection

Require: f , S;

Ensure: The selection population Sc
1: Generate r =

[
r0 r1 · · · rm · · · rM

]
,

where r0 = 0, rm ∈ U (0, 1), q0=0;

2: for m = 1 to M do

3: Compute probability mass function:

qm =
∑m

k=1 ϕ(sk );

4: for j = 1 to M do

5: if qm−1 < rj ≤ qm then

6: Add the chromosome: Sc ∪ {sm} ⇒ Sc;

7: end if

8: end for

9: end for

10: return Sc

The roulette wheel selection process [38] is presented in

Algorithm 2, while TABLE 2 presents an example about

generating a population of the 10 chromosomes as follows

Sc = R(S | f ) = {s′i|i = 1, 2, . . . , 10}. (22)

In the population Sc, each chromosome is randomly

selected once for the crossover process. Two selected chro-

mosomes, for example s′i and s
′
j, generate two offsprings by

exchanging their corresponding genes based on the crossover

rate α [39], which is illustrated in Fig. 1 and denoted as

C(s′i, s
′
j | α) ⇒ {s′′i , s

′′
j }. (23)

Different from the crossover process, the mutation pro-

cess involves altering the values at several randomly selected

genes with a lower mutation rate β [39]. The crossover chro-

mosomes, denoted by s′′i and s′′j , evolve into the mutation

chromosomes as follows

M(s′′i | β) ⇒ s′′′i , M(s′′j | β) ⇒ s′′′j . (24)

To identify the optimal chromosome, the diversity of the

nth gene for population S is defined as

dn (S) =
∑M

i=1
si,n. (25)

FIGURE 1. Illustration for the chromosome crossover.

If satisfying dn (S) = M , the nth gene is certain and is added

into a minimal schema Ŵ (S), which is expressed as

Ŵ (S) ∪ {n} ⇒ Ŵ (S), (26a)

Ŵ (S) = {n | dn (S) = M}. (26b)

The minimal schema is developed according to the principles

of unsupervised learning of machine learning that classi-

fies the samples set into different groups by investigating

their similarity [22]. To identify the optimal chromosome,

the successive processes (given by selection, crossover, and

mutation) continue and repeat until the convergence condition

is satisfied, denoted by ‖Ŵ (S)‖ = C , which is described in

Algorithm 3.

III. PROOF OF MLPGA CONVERGENCE

In this section, MLPGA is proved to converge to the optimal

chromosome under the above-described optimization model.

Our proof is divided into the following two steps:

1) Based on the fitness values of chromosomes, the selec-

tion process converges to the locally optimal chromo-

some with the largest fitness value;

2) The crossover and mutation processes make it possible

to access arbitrary chromosomes, which helps to con-

verge to the globally optimal chromosome.

A. LOCAL CONVERGENCE FOR SELECTION

Theorem 1 (Convergence to the Locally Optimal Chromo-

some via the Selection Process):Denote the initial population

by S0 = [ s1 · · · sm · · · sM ]T and its probability distribution

by P0 = [ ϕ (s1) · · · ϕ(sm) · · · ϕ (sM ) ]T . After performing

k selections on S0, the selection population converges to the

population denoted by S′ = {sm|sm = arg max
sk∈S0

fk}, in which

TABLE 2. An example for selection population of 10 chromosomes.
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Algorithm 3 Machine-Learning-Based Parallel Genetic Algorithms for Multi-Objective Optimization (MLPGA)

Require: The model parameters, G(V,E), N , C , Eelec, ǫfs, ǫmp, l, l
′, α, β, τ = 0, S̃ = ∅, Ŵ(̃S) = ∅;

Ensure: The minimal schema Ŵ(S);

1: Generate a population of M chromosomes: S =
[
s1 · · · sm · · · sM

]T
;

2: for m = 1 to M do

3: ∀sm ∈ S, construct the sample (xm − x), establish dataset X ;

4: Translate dataset X into dataset Z using PCA, and compute the fitness vector f ;

5: end for

6: while τ < C do

7: Generate a selection population Sc of M chromosomes using Algorithm 2:

Sc = R(S|f ) = {s′i|i = 1, 2, . . . ,M};

8: for m = 1 to (M
2
) do

9: Randomly select chromosomes s′i and s
′
j from Sc once to perform crossover with the crossover rate α:

C(s′i, s
′
j | α) ⇒ s′′i , s

′′
j ;

10: Perform mutation on s′′i and s
′′
j with the mutation rate β:

M(s′′i | β) ⇒ s′′′i , M(s′′j | β) ⇒ s′′′j ;

11: Add s′′′i and s′′′j to the new population S̃: S̃ ∪ {s′′′i , s′′′j } ⇒ S̃;

12: end for

13: for n = 1 to N do

14: Evaluate the diversity of the nth gene of S̃ according to (25) and calculate dn (̃S);

15: if dn (̃S) == M then

16: Ŵ(̃S) ∪ {n} ⇒ Ŵ(̃S) and Ŵ
(̃
S
)

=
{
n | dn (̃S) = M

}
;

17: end if

18: end for

19: Evaluate the size of the minimal schema Ŵ(̃S): τ = ‖Ŵ(̃S)‖;

20: Prepare for the next iteration by assigning the population, S = S̃;

21: end while

22: return Ŵ(S);

the fitness values of chromosomes are much larger than those

of chromosomes outside selection population S′. The proba-

bility of local convergence is given by

ϕ̃(sm) = lim
k→∞

P{R(k)
(
S0|f 0

)
= sm|P0}

=





ϕ(sm)∑
si∈S0

ϕ (si)
, sm ∈ S′

0, sm /∈ S′,

(27)

and ∃1 > 0 that is subject to

∑

sm∈S′

∣∣∣P{R(k)(S0|f 0) = sm|P0} − ϕ̃(sm)

∣∣∣ ≤ (λ−k ∗ 1),

(28)

where λ = min{
max f 0
f (sm)

|ϕ (sm) > 0, sm /∈ S0}.

Proof: Define the basic functions δij =

{
1, i = j

0, i 6= j
and

Fij = δijfifj, then we obtain a matrix F0 =
(
Fij
)
(M×M)

.

When performing the first selection procedure based on the

fitness values, the transform is given by

F̂ (P0) = (F0P0)

/(
1
T (F0P0)

)
, (29)

where ∀sm ∈ S0 satisfies the following sub-transform

F̂ (P0)m = (fm ∗ ϕ (sm))

/∑

sk∈S0

(fkϕ (sk)). (30)

Assume that the selection process has been performed for k

times, then the transform can be described as follows

F̂
(k)

(P0)m = P{R(k)
(
S0|f 0

)
= s(k)m |P0}

= P{R
(
Sn−1|f n−1

)
= s(k)m |F̂

(n−1)
(P0)}

= F̂(F̂
(n−1)

(P0))m. (31)

Therefore, the transform for (k + 1) selections is given by

F̂
(k+1)

(P0)m

= F̂(F̂
(k)

(P0))m

=


fm

f km ∗ ϕ(sm)∑
si∈S0

(f ki ∗ ϕ(si))



/

∑

sj∈S0

(f kj

f kj ∗ ϕ(sj)
∑
si∈S0

(f ki ∗ ϕ(si))
)




=
(
f k+1
m ∗ ϕ(sm)

)/

∑

sj∈S0

(
f k+1
m ∗ ϕ(sj)

)

. (32)

Hence, by using mathematical induction, the transform for
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the selection procedure satisfies the following relation

F̂
(k)

(P0)m =
(
f km ∗ ϕ(sm)

)/∑

si∈S0

(
f ki ∗ ϕ (si)

)
. (33)

We obtain the transition probability for k selections as follows

lim
k→∞

P{R(k)
(
S0|f 0

)
= sm|P0}

= lim
k→∞


f km ∗ ϕ (sm)

/
(
∑

si∈S0

(f ki ∗ ϕ(si)))




= lim
k→∞


ϕ(sm)

/∑

si∈S0

(
f ki
f km

∗ ϕ(si)

)


= ϕ (sm)

/
∑

si∈S0

(
lim
k→∞

(
f ki
f km

∗ ϕ(si)

))
. (34)

When satisfying sm ∈ S′, lim
k→∞

(
f (si)
f (sm)

)k = 0 if and only if

si /∈ S′. When satisfying sm /∈ S′, lim
k→∞

(
f (si)
f (sm)

)k = ∞ if and

only if f (si) > f (sm). Hence, Equation (27) is proved. Next,

by using mathematical deduction, Equation (28) is proved as

follows

∑

sm∈S′

∣∣∣P{R(k)
(
S0|f 0

)
= sm|P0} − ϕ̃ (sm)

∣∣∣

=
∑

sm∈S′

∣∣∣∣∣∣∣

(
max f 0

)k
∗ ϕ (sm)

∑
si∈S0

(f ki ∗ ϕ (si))
−

ϕ (sm)∑
si∈S0

ϕ (si)

∣∣∣∣∣∣∣

=
∑

sm∈S′

∣∣∣∣∣∣∣∣

ϕ (sm)
∑
si∈S0

(
(

fi
max f 0

)k ∗ ϕ (si)
) −

ϕ (sm)∑
si∈S0

ϕ (si)

∣∣∣∣∣∣∣∣

≤
∑

sm∈S′




∣∣∣∣∣∣∣∣∣

∑
si /∈S0

((
fi

max f 0

)k
∗ ϕ (si)

)

∑
si∈S0

ϕ (si) +
∑
si /∈S0

((
fi

max f 0

)k
∗ ϕ (si)

)

∣∣∣∣∣∣∣∣∣

ϕ (sm)∑
si∈S0

ϕ (si)




≤
∑

sm∈S′




ϕ (sm)∑
si∈S0

ϕ (si)

∣∣∣∣∣∣∣

λ−k ∗
∑
si /∈S0

ϕ (si)

∑
si∈S0

ϕ (si)

∣∣∣∣∣∣∣




≤ λ−k ∗




∑
si /∈S0

ϕ (si)

∑
si∈S0

ϕ (si)


. (35)

Therefore, the convergence to the locally optimal chromo-

some based on the selection procedure is proved.

B. GLOBAL CONVERGENCE FOR CROSSOVER

AND MUTATION

Theorem 2 (Convergence to the Globally Optimal Chro-

mosome via Crossover and Mutation): Assume that the

whole chromosome space and its probability distribu-

tion are, respectively, denoted by S = {0, 1}N ={
sm|1 ≤ m ≤ 2N ,m ∈ N+

}
and P = {ϕ (sm) |sm ∈ S}. After

k iterations of crossover and mutation, convergence to the

global optimal chromosome s∗ is achieved with the following

probability

P{T(k)(S′|ζ ) = s∗|P}

=
∑

st∈S

[ϕ(st )

N∏

n=1

(0.5 + (δs∗,nst,n − 0.5)(1 − 2ζ )k )],

(36a)

P{T(k)(S′|ζ ) = s∗|P} > 0, (36b)

where the operatorT(S′|ζ ) = (C(S′|α)⊙M(S′|β)) is the com-

posed operation of crossover and mutation and its transition

probability is denoted by ζ = αβ.

Proof: The mathematical induction method is adopted to

prove the global convergence for crossover and mutation.

The nth gene si,n of si is obtained using one iteration of

crossover and mutation with the probability

P{T(S′|ζ ) = si,n} =

{
1 − ζ, st,n = si,n

ζ, st,n 6= si,n

= ζ + δst,nsi,n (1 − 2ζ ), (37)

where st ∈ S′. Then, chromosome si is obtained with the

following probability

P{T(S′|ζ ) = si|P}

=
∑

st∈S
′

(ϕ(st )

N∏

n=1

P{T(S′|ζ ) = si,n})

=
∑

st∈S
′

(ϕ (st)

N∏

n=1

(ζ + δst,nsi,n (1 − 2ζ )))

=
∑

st∈S
′

(ϕ (st)

N∏

n=1

(0.5 + (δst,nsi,n − 0.5) (1 − 2ζ ))). (38)

Hence, Equation (36a) is satisfied when k = 1. Assume that

Equation (36a) is true for k(k > 1) iterations of crossover and

mutation and its corresponding probability is expressed as

Pk = P{T(k)(S′|ζ ) = si|P}. (39)

Then, for (k + 1) iterations, we obtain

P{T(k+1)(S′|ζ ) = s∗|P}

=
∑

st∈S
k

[
P{T(Sk |ζ ) = s∗} ∗ Pk

]

=
∑

st∈S
k

(ϕ(st )

N∏

n=1

(ζ + δst,ns∗,n (1 − 2ζ )) ∗ Pk ), (40)
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∑
st,n

[
(ζ + δst,ns∗,n (1 − 2ζ )) ∗(0.5 + (δst,nsi,n − 0.5)(1 − 2ζ )k )

]

= δsi,ns∗,n

[
(1 − ζ )(0.5 + 0.5(1 − 2ζ )k ) +ζ (0.5 − 0.5(1 − 2ζ )k )

]

+ (1 − δsi,ns∗,n )
[
(1 − ζ )(0.5 − 0.5(1 − 2ζ )k ) +ζ (0.5 + 0.5(1 − 2ζ )k )

]

= δsi,ns∗,n ∗ (0.5 + 0.5(1 − 2ζ )k+1) + (1 − δsi,ns∗,n ) ∗ (0.5 − 0.5(1 − 2ζ )k+1)

= 0.5 + (δsi,ns∗,n − 0.5)(1 − 2ζ )k+1 > 0. (41)

where Sk is the selection population that is generated

after k iterations of crossover and mutation. We analyze

st,n, si,n, s∗,n under the two different conditions below

1) When satisfying si,n = s∗,n, there are two conditions,

denoted by si,n = st,n and si,n 6= st,n;

2) When satisfying si,n 6= s∗,n, there are two conditions,

denoted by s∗,n = st,n and s∗,n 6= st,n, si,n = st,n.

Then, Equation (41) is obtained.

Therefore, according to the above reasoning, Equa-

tion (36a) and Equation (36b) are proved, which, in turn,

proves the convergence of the globally optimal chromosome

via the crossover and mutation processes.

IV. PERFORMANCE EVALUATION

In this section, simulations are performed to demonstrate

the viability of the proposed algorithm compared to state-

of-the-art algorithms. We analyze many important network

metrics including the network lifetime, the number of alive

sensors, the energy consumption, and the network connectiv-

ity and reliability. Considering the stringent resource-limited

uRLLWSNs environment, the computational complexity is

also analyzed.

A. EXPERIMENT SETTING

In our experiments, the monitoring field is set as a square

and the BS is located outside the monitoring field. Fig. 2

shows an application instance with a random deployment

of 100 sensors and 64 sensed objects, where the symbols

‘‘◦’’ and ‘‘⋆’’ represent the sensor and the sensed object,

respectively. The network parameters are listed in TABLE 3

[13], [25], [40]. In addition, to achieve a high confidence

level, we perform 100 trials per simulation instance and plot

the figures by averaging simulation results.

TABLE 3. The network parameters.

FIGURE 2. A deployment instance with 100 sensors and 64 sensed
objects.

MLPGA is similar to HEED and HHCA in using the clus-

tering strategy, and is an improvement of ULGAT in using the

machine learning and genetic algorithms techniques. Hence,

the network performance of MLPGA is compared to those

of HEED, HHCA, and ULGAT. To verify the effect of the

PCA algorithm, MLPAG without PCA (denoted henceforth

by MLGANP) is also compared to MLPGA. The fitness

function of MLGANP is defined as follows

fm =
1

3
|xm − x| =

1

3

3∑

i=1

∣∣xm,i − x i
∣∣. (42)

B. NUMBER OF ALIVE SENSORS AND NETWORK LIFETIME

In this subsection, the number of alive sensors and the net-

work lifetime are evaluated when uRLLWSNs cannot fulfill

its mission due to network coverage failure. These two per-

formance metrics are affected by multiple critical parameters

including the number of sensors N , the communication range

parameter µ, and the number of sensed objects J . Parameter

N corresponds to the network scale, while parameters µ

and J have an effect on the amount of sensed messages

and energy consumption. More explicitly, Fig. 3 and Fig. 6

show the number of alive sensors and the network lifetime

versus the number of sensors N , respectively. It can be seen

that MLPGA can fulfill the network mission for a smaller

number of alive sensors than those of the other algorithms

and outperforms those algorithms in prolonging the network
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FIGURE 3. The number of alive sensors versus the number of sensors
deployed.

FIGURE 4. The number of alive sensors versus communication range
parameter.

lifetime. Fig. 4 and Fig. 7 present the number of alive sensors

and the network lifetime versus the communication range

parameter µ, respectively. MLPGA also demonstrates better

performance in terms of the number of alive sensors and

the network lifetime. Fig. 5 and Fig. 8 show the number of

alive sensors and the network lifetime versus the number

of sensed objects J , respectively. It can be seen that the

number of sensed objectives J has a slight impact on both the

number of alive sensors and the network lifetime. The reason

is that the network coverage is affected by the deployed

sensors and their sensing range, not the number of sensed

objects. Considering 100 trials’ simulations, it is necessary

to analyze the standard deviation of one or more network

metrics. The standard deviation of the network lifetime is

shown in TABLE 4. The standard deviations of MLGANP

and MLPGA are smaller than those of the other algorithms,

implying that MLPGA and MLGANP are more suitable for

the arbitrary deployment scenario.

Different from HEED, HHCA, and ULGAT, the proposed

algorithms, called MLPGA and MLGANP, design a near-

optimal clustering network topology, in which a clustering

method of energy conversion is developed to prevent over-

loaded CHs. The transmitting energy consumption of each

CH is transformed into virtual CMs to participate in the

network clustering process with real CMs, which balances

the sensors’ communication load and avoids premature death

of sensors due to energy exhaustion. In addition, the PCA

algorithm enhances assessment of the network topology by

eliminating dependencies between optimization objectives

FIGURE 5. The number of alive sensors versus the number of objects
deployed.

FIGURE 6. The network lifetime versus the number of sensors deployed.

FIGURE 7. The network lifetime versus the communication range
parameter.

FIGURE 8. The network lifetime versus the number of sensed objects
deployed.

and ranking their importance levels. Hence, the MLPGA

algorithm not only fulfills the network mission with a smaller

number of alive sensors, but also prolongs the network

lifetime.
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TABLE 4. Standard deviation of the network lifetime for 100 trials’ simulations.

FIGURE 9. The network lifetime versus the residual energy of sensors.

FIGURE 10. The network lifetime versus the network connectivity.

C. ENERGY CONSUMPTION, NETWORK CONNECTIVITY

AND RELIABILITY

In addition to the network lifetime, it is important to analyze

the other network metrics such as the energy consumption,

the network connectivity and reliability. Assuming the fol-

lowing typical values for the key parameters N = 100,

FIGURE 11. The network lifetime versus the network reliability.

µ = 2, and J = 64, the network performance versus the

transmission round are, respectively, shown in Fig. 9, Fig. 10,

and Fig. 11, where ‘‘•’’ is the inflection point (IP) whose

abscissa represents the network termination. The horizontal

line after IP indicates that the network performance remains

unchanged, because the network does not function properly.

Fig. 9 implies that MLPGA achieves better energy efficiency

due to its higher average residual energy. From Fig. 10 and

Fig. 11, it can be seen that MLPGA outperforms the other

algorithms on the network connectivity and reliability.

The MLPGA algorithm formulates the uRLLWSNs prob-

lem into a fair multi-objective optimizationmodel by defining

the network lifetime and the network connectivity and relia-

bility as optimization objectives, where the energy efficiency

is the foundation of these optimization objectives. In this

model, the PCA algorithm and the genetic algorithm are

used to identify a near-optimal clustering network topology.

Hence, MLPGA improves simultaneously the network life-

time and the network connectivity and reliability compared
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FIGURE 12. Iterations for various numbers of sensors.

FIGURE 13. Iterations for various numbers of objects.

to HEED, HHCA, ULGAT, and MLGANP.

D. DISCUSSION ON COMPUTATIONAL COMPLEXITY

The bio-mimetic algorithms including ULGAT, MLGANP,

and MLPGA involve optimization iterations due to using

genetic algorithms. For various numbers of sensors and

sensed objects with random deployments, optimization iter-

ations per transmission round are shown in Fig. 12 and

Fig. 13. It can be seen that MLPGA always performs a

smaller number of optimization iterations than ULGAT and

MLGANP and the PCA algorithm contributes to reducing the

number of optimization iterations. It is necessary to further

quantify the complexity with MATLAB˙2017b on a Core

I7-CPU@2.80GHz computer. Fig. 14 and Fig. 15 present the

average execution time per transmission round for various

numbers of sensors and sensed objects, respectively. These

figures demonstrate that the execution time almost linearly

increases with an increasing number of sensors except for

HHCA and HEED. However, the number of sensed objects

has a slight effect on the execution time, which implies that

the number of sensed objects is not the key factor in the execu-

tion time. The reason is that the sensed objects’ monitoring is

related to the network coverage while not affecting the pro-

cess of identifying a near-optimal clustering network topol-

ogy. HEED and HHCA are, respectively, the distributed and

semi-distributed algorithms, whose clustering operations for

FIGURE 14. The execution time for various numbers of sensors.

FIGURE 15. The execution time for various numbers of O.

all sensors can be performed in parallel. Hence, the execution

times of HEED and HHCA are lower compared to those of

MLPGA, MLGANP, and ULGAT. Different from HEED and

HHCA, the other algorithms need more execution time due to

both their centralized scheme and using the genetic algorithm.

The execution time of MLPGA is slightly larger than that of

ULGAT due to processing of themulti-objective optimization

model, while more optimization iterations for MLGANP cost

more execution time than MLPGA. However, the computa-

tional complexity of MLPGA is still acceptable for monitor-

ing applications such as volcano monitoring, because it is less

than 1s for small to medium scale uRLLWSNs.

V. CONCLUSION

In this paper, we utilize machine learning techniques and

genetic algorithms to develop the MLPGA algorithm, which

identifies the optimal chromosome to design a near-optimum

clustering network topology. This network topology provides

an efficient communication architecture for ultra-reliable

and low-latency wireless sensor networks, to simultaneously

satisfy the multiple network objectives including a longer

network lifetime and a higher network connectivity and reli-

ability. More explicitly, the proposed algorithm utilizes the

popular K -means clustering algorithm of machine learn-

ing to design a 2-tier network topology that is modeled

into a chromosome, and develops a clustering method of
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energy conversion to prevent overloaded CHs. To identify

the optimal chromosome, the proposed algorithm constructs

a multi-objective optimization model according to the crit-

ical network metrics and performs this optimization using

the genetic algorithm. In this model, the minimal schema

of the population is defined as the convergence condition,

and the principal component analysis algorithm is adopted

to transform the multi-objective function of the optimization

model into the fitness function by eliminating dependencies

between the multiple optimization objectives and ranking

importance levels of various optimization objectives. The

proposed algorithm is proved to converge to the optimal

chromosome both locally and globally. Simulation results

demonstrate that the principal component analysis algo-

rithm improves the network performance and the proposed

algorithm is superior to state-of-the-art algorithms including

HEED, HHCA, ULGAT, and MLGANP at a comparable

complexity.

Interesting future research topics include improving the

proposed MLPGA by investigating other performance met-

rics such as bit error rate and investigating multi-hop routing

scheduling under uRLLWSN’s stringent requirements.
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