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ABSTRACT We propose a machine learning framework for parameter estimation of single mode
Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior
distributions from measured data. For phase-space displacement and squeezing parameter estimation, this
is achieved by introducing Expectation-Maximization (EM) based algorithms, while for phase parameter
estimation an empirical Bayes method is applied. The estimated prior distribution parameters along with
the observed data are used for finding the optimal Bayesian estimate of the unknown displacement,
squeezing and phase parameters. Our simulation results show that the proposed algorithms have estimation
performance that is very close to that of ‘Genie Aided’ Bayesian estimators, that assume perfect knowledge
of the prior parameters. In practical scenarios, when numerical values of the prior distribution parameters
are not known beforehand, our proposed methods can be used to find optimal Bayesian estimates from the
observed measurement data.

INDEX TERMS Quantum metrology, quantum parameter estimation, machine learning, Gaussian coherent
states, Bayesian estimation

I. INTRODUCTION

QUANTUM metrology is one of the important quantum
technologies that uses quantum mechanics to study

the ultimate limits with which physical quantities can be
estimated [1], [2]. Quantum estimation has been well studied
over the past few decades to understand the ultimate limits of
parameter estimation achievable by quantum measurements
[3]–[6]. In quantum parameter estimation, first an initial
probe state ρ in is prepared which undergoes a transformation
Eθ(·), that encodes the unknown parameter θ to the state
ρθ = Eθ(ρ in) [6]–[8]. This encoded quantum state ρθ is
then measured to estimate the unknown parameter θ. In order
to estimate the parameter, first the optimal positive operator
valued measure (POVM) operator is constructed that can
extract the maximum information about θ from the encoded
state. Then, classical processing of the measurement outcome
from the POVM is carried out to find the optimal estimate of
θ. The quantum Cramér Rao bound (QCRB), which provides
a lower bound on the variance of the estimate θ est, has
been well studied in the quantum estimation literature [3],

[9]–[12]. This bound arises due to quantum uncertainty and
it depends on the quantum Fisher information (QFI) [3].
Previous works have extensively studied the QCRB and de-
termined the QFI to theoretically lower bound the variance of
the estimated parameter for different quantum states, includ-
ing single mode and multimode Gaussian coherent states,
squeezed states, N00N states and single photon states [4],
[6], [13]–[15]. The QCRB can be achieved asymptotically
when a large number of measurements on independent probe
states are available. This requires a ‘frequentist’ estimation
approach such that the QCRB can be achieved asymptotically
[4], [6], [7], [16].

However, in practice it is desirable to estimate the pa-
rameter from a limited number of measurements. In the
limited observation scenario, the estimation accuracy can
be improved by incorporating prior information about the
unknown parameter. Bayesian estimation scheme uses the
prior belief about the parameter and updates its belief as
observations become available. In the frequentist approach
the unknown parameters are treated as fixed whereas in the
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Bayesian approach they are treated as random variables with
an associated prior distribution function. The application
of the Bayesian estimation scheme for various quantum
parameter estimation problems has previously been studied
in [5], [8], [17], [18]. The Bayesian estimation approach
utilizes knowledge of the prior distribution of the unknown
parameter θ and the likelihood of the observed data to find
the posterior distribution of θ. The optimal Bayesian estimate
of θ is given by the posterior mean, and the variance of
the estimate is given by the posterior variance. In order
to determine the Bayesian estimate, the prior distribution
parameters should be known accurately, which is difficult to
obtain in practice. Thus, efficient and practically realizable
methods are required for Bayesian parameter estimation of
quantum states.

In this work we propose a machine learning based method
to find the optimal Bayesian estimate of θ. Our proposed
method does not require knowledge of the prior distribution
parameters, as these are estimated from the measured data.
Machine learning has the ability to extract useful informa-
tion and patterns from data which has led to its successful
applications in computer vision, natural language process-
ing, classification, recommendation systems, etc. [19]. Re-
cently researchers have extensively investigated the applica-
tion of machine learning for quantum information processing
tasks like quantum channel estimation, Hamiltonian estima-
tion, quantum state discrimination and quantum many-body
physics [20]–[28]. Motivated by these studies, in this work
we propose a machine learning based quantum parameter
estimation scheme.

We consider the problem of parameter estimation for
continuous-variable (CV) single-mode Gaussian quantum
states. CV Gaussian quantum states play an important role
in quantum key distribution, quantum computation, quantum
metrology and quantum secure direct communications [29]–
[35]. Gaussian quantum states can be easily generated in
the laboratory and are easy to analyse since their Wigner
functions admit a Gaussian form [29]. We propose a ma-
chine learning based method for three important estimation
problems for Gaussian states: (i) phase-space displacement
estimation, (ii) single-mode squeezing parameter estimation,
and (iii) phase estimation. This problem has recently been
studied in [8], where authors have proposed Bayesian esti-
mation schemes. However, the method in [8] requires per-
fect knowledge of the prior distribution parameters, and no
method has been proposed to obtain these prior parameters
in practice. The Bayesian estimation scheme proposed in [8]
assumes that numerical values of mean and variance of the
prior distribution are known before the experiment. Under
this assumption, the maximum entropy method can be used
to assign the prior distribution. Since the performance of the
Bayesian estimate depends on the knowledge of the prior
distribution parameters [36], it is important to find a practical
estimation scheme that can estimate the prior parameters
along with the optimal Bayesian estimate of the quantum
parameter of interest. Our work addresses this problem.

We use the conjugate prior framework to fix the family of
prior distributions based on the likelihood function of the
measurement outcomes (determined by the laws of quantum
physics). Furthermore, in contrast to the previous work [8]
that used an uninformed prior for the phase parameter, we use
the physical property and symmetry of the phase parameter
for assigning a rational prior distribution to it [37], [38].
The parameters of the prior distribution are then estimated
from the measurement outcomes by utilizing the Bayesian
framework.

Moreover, in contrast to the previous work [8] that as-
sumed a single measurement scenario, here we consider a
scenario where multiple independent measurement outcomes
are jointly processed to find the optimum estimate of the
unknown parameter. This multiple measurement scenario has
also been considered by recent works on data driven quan-
tum information processing, where authors have proposed
machine learning based Hamiltonian estimation [27], single
electron Rabi frequency estimation [23], single qubit rotation
estimation [24], and machine learning based quantum inter-
ferometry [26]. In this regard, our proposed machine learning
based method is a hybrid method combining both Bayesian
and frequentist approaches for estimating the unknown pa-
rameters. We first find the optimal Bayesian estimate under
a multiple measurement scenario, and then use a frequentist
algorithm to estimate the prior parameters.

Here, we focus on single mode Gaussian quantum states
and propose a machine learning based method to estimate the
prior distribution parameters from the observed measurement
data. The estimated prior parameters are used to find the
optimal Bayesian estimate of the parameters. We assume a
conjugate prior for the displacement, squeezing and phase
parameters which permits analytical characterization of the
posterior distribution of the parameter. The prior parame-
ters are estimated by maximizing the log-likelihood of the
observed data. We propose an Expectation-Maximization
(EM) algorithm for estimating the prior parameters of the
displacement and squeezing parameters, along with an em-
pirical Bayes method for estimating the prior for the phase
parameter. The choice of the EM algorithm or the empir-
ical Bayes method depends on the constraints on the prior
distribution parameters. Furthermore, the iterative EM algo-
rithm achieves a quick convergence only when closed form
expressions can be found for the intermediate updates. This
leads to the choice of the EM algorithm for displacement and
squeezing estimation, and the empirical Bayes method for
phase estimation. The estimated prior parameters are used
to find the optimal Bayesian estimate of the displacement,
squeezing and phase parameter. Our simulation results show
that the proposed algorithms have estimation performance
that is very close to that of ‘Genie Aided’ Bayesian estima-
tors, that assume perfect knowledge of the prior parameters.
Therefore, in practice, when numerical values of prior mean
and variance are unknown, the proposed methods can be used
to find the optimum Bayesian estimate of the parameters by
using only the observed measurement outcomes. We note that
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the proposed machine learning based method approximates
the optimal ‘Genie Aided’ Bayesian estimate (which assumes
perfect knowledge of the prior mean and variance), and it is
not possible to beat the ‘Genie Aided’ Bayesian method using
our machine learning based method.

The paper is organized as follows. In Section II, we briefly
review some important concepts related to continuous vari-
able Gaussian quantum states. In Section III, we present the
machine learning based displacement estimation for coherent
Gaussian states. Machine-learning-based squeezing estima-
tion and phase estimation of Gaussian quantum states are
presented respectively in Sections IV and V. Finally some
concluding remarks are made in Section VI.

II. FORMULATION
A. CONTINUOUS VARIABLE STATES
In this section we briefly present the formalism of CV
Gaussian quantum states used in this paper. For a detailed
introduction to Gaussian quantum information, readers are
referred to prior comprehensive survey papers [29], [39],
[40].

Multi-mode optical fields can be represented as a collec-
tion of bosonic modes. CV systems consist of N bosonic
modes, i.e., N harmonic oscillators. We index each mode by
k, and âk, â

†
k denote the annihilation and creation operators

of the k-th mode respectively. These modes allow us to
construct the quadrature operators for each mode, q̂k =
(â†k + âk)/

√
2 and p̂k = i(â†k − âk)/

√
2 (e.g., see [29]).

These operators provide position and momentum observables
and have continuous spectra and eigenstates, {|q⟩}q∈R and
{|p⟩}p∈R. Below, we write the quadrature operators as a sin-
gle vector x̂ = (q̂1, p̂1, . . . , q̂N , p̂N )T . The N bosonic modes
are associated with a tensor product Hilbert space H⊗N =
⊗N

k=1Hk, where Hk is the infinite dimensional Hilbert space
corresponding to the k-th mode. Letting D(H⊗N ) denote the
space of density operators, any state of a N -mode bosonic
system is represented by a density operator ρ ∈ D(H⊗N ),
which is a unit trace and positive semi-definite operator [29].
In CV systems, the quantum state can also be represented
by a Wigner function W (x) [41]. The transformation from
the density matrix to the Wigner function is performed as
follows: the characteristic function is defined by χ(x) =
Tr[ρD(x)], where D(x) = exp

(
i
√
2xTΩx

)
is the Weyl

displacement operator and Ω is the symplectic matrix [42],
and then the Wigner function W (x) is given by the Fourier
transform of the characteristic function χ(x).

B. GAUSSIAN STATES
CV states for which the Wigner function W (x) admits a
multivariate Gaussian form

W (x) =
exp
[
− 1

2 (x− x̄)TV−1(x− x̄)
]

(2π)N
√

det (V)
(1)

are called Gaussian states. These states are analytically
tractable since they are characterized only with the mean

vector x̄ = Tr (x̂ρ) and the covariance matrix V, which is a
2N × 2N real symmetric matrix with entries

Vi,j =
1

2
⟨{x̂i − ⟨x̂i⟩ , x̂j − ⟨x̂j⟩}⟩ , (2)

where ⟨·⟩ is the expectation operator and {, } is the anti-
commutator operator. This property of Gaussian states en-
ables one to compactly treat the states which expand in an
infinite-dimensional Hilbert space with a finite number of
degrees of freedom. A large class of quantum states including
vacuum states, thermal states of black-body radiation, coher-
ent states of laser radiation, and squeezed light fall into the
category of Gaussian quantum states [29].

In this paper, we focus only on single-mode Gaussian
quantum states since they are quintessential building blocks
for quantum information processing tasks like CV quantum
cryptography [29], and can be easily generated and manipu-
lated in the laboratory. Any of such states are generated by
displacing, squeezing, and rotating states. We introduce each
of these operations below. First, displacement is performed
by

D̂(α) := exp
[
αâ† − α∗â

]
(3)

with α ∈ C being the complex amplitude. A coherent
state is created by displacing the vacuum state |0⟩, i.e.,
|α⟩ = D̂(α) |0⟩. The mean vector of such a state is de-
termined by the displacement parameter and given by x̄ =√
2 [ Re(α), Im(α)]

T .
Squeezed states are a wider class of quantum states that

allow for different variances for the two quadratures. The
squeezing operation reduces the variance of either quadra-
ture, while the variance of the other quadrature increases
such that the Heisenberg uncertainty principle holds. The
squeezing operator is defined as

Ŝ(r) := exp
[r
2

(
â2 − â†2

)]
, (4)

where r ∈ R is the squeezing parameter. Positive (negative)
values of r perform squeezing along the q (p) axis.

Lastly, we use the rotation operator defined as

R̂(θ) := exp
[
−iθâ†â

]
, (5)

where θ ∈ [−π, π) is the rotation parameter. These three
operators can produce any pure single-mode Gaussian state
which is formulated as |α, θ, r⟩ = D̂(α)R̂(θ)Ŝ(r) |0⟩. The
mean vector is given by x̄ =

√
2 [ Re(α), Im(α)]

T , and the
covariance matrix by

V =
1

2

[
cosh 2r − cos 2θ sinh 2r sin 2θ sinh 2r

sin 2θ sinh 2r cosh 2r + cos 2θ sinh 2r

]
.

(6)
Note that the order of the operators matters. If they are
switched, the mean vector and the covariance matrix have
different parameter dependencies.
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C. GAUSSIAN MEASUREMENTS
Any measurement of a quantum state can be represented
by a POVM, i.e., a set of positive operators {Em} which
sum to the identity. As we consider CV systems, we use
continuous POVMs which gives a continuous set of operators
and of measurement outcomes. Particularly, such operators
whose measurement outcomes follow a Gaussian distribu-
tion on application to Gaussian quantum states are called
Gaussian measurement operators. For instance, heterodyne
and homodyne detection are the two most common Gaussian
measurements. In heterodyne detection, both of the field
quadratures are measured simultaneously, and the POVM is
given by

{
1
π |β⟩ ⟨β|

}
β∈C and composed of coherent states.

In homodyne detection, only one of the mode quadratures,
for example q̂, is measured, and the POVM is given by the
quadrature basis {|q⟩ ⟨q|}q∈R and represented as projectors
of the quadrature.

In order to use the Gaussian quantum states as a resource
in quantum information processing tasks, it is important
to know the parameters of the Gaussian quantum state.
Therefore, we now present different parameter estimation
schemes for Gaussian quantum states which can be used by
experimental physicists to estimate the parameters based on
the measurement outcomes of the experiments.

III. DISPLACEMENT ESTIMATION
We explore Bayesian estimation scenarios for the displace-
ment by using Gaussian probe states and measurement. We
consider that a displacement operator D̂(α) is applied to the
probe state described as a Gaussian state, and to estimate
the displacement α we perform Gaussian measurements,
which are repeated multiple times. We set our probe state as
|ξ⟩ = Ŝ(ξ) |0⟩ with ξ ≥ 0 instead of the general Gaussian
state D̂(α′)R̂(θ)Ŝ(ξ) |0⟩, because Gaussian measurements
are covariant under the action of displacement [43]. The
unknown displacement parameter α can be complex, α =
Re[α]+i Im[α]. The Gaussian prior is the conjugate prior for
a Gaussian likelihood of the data, which helps to analytically
characterize the posterior distribution. We assume a Gaussian
prior for both the real and imaginary part of α, i.e.,

p(αR) =
1√

2πσ2
0,R

exp

(
− (αR − α0,R)

2

2σ2
0,R

)
,

p(αI) =
1√

2πσ2
0,I

exp

(
− (αI − α0,I)

2

2σ2
0,I

)
. (7)

The prior distribution parameters α0,R, σ
2
0,R, α0,I, σ

2
0,I are

estimated from the observed data.

A. HETERODYNE MEASUREMENT
We employ the EM algorithm for displacement estima-
tion using the heterodyne measurement scheme. The op-
timal POVM for heterodyne measurement is given by
{ 1
π |β⟩ ⟨β|}β∈C, where the measurement outcome is Gaus-

sian distributed. We consider a multiple measurement sce-

nario where M measurements are made and the outcomes
are independent and identically distributed (i.i.d) with the
probability to observe βi ∈ C for the i-th measurement given
by [8, Eq. 18-19]

p(βi
R|αR) =

√
2 exp

[
− 2(βi

R−αR)2

1+e−2r

]
√
π(1 + e−2r)

(8)

p(βi
I |αI) =

√
2 exp

[
− 2(βi

I−αI)
2

1+e2r

]
√
π(1 + e2r)

(9)

where r is the squeezing parameter and βi
R (βi

I) repre-
sents the real (imaginary) part of the i−th measurement
outcome βi. Let βR = [β1

R, β
2
R, . . . , β

M
R ]T and βI =

[β1
I , β

2
I , . . . , β

M
I ]T , then the conditional likelihood of the

observed data is given by

p(βR|αR) = N
(
αR1M , σ2

RIM
)

p(βI |αI) = N
(
αI1M , σ2

IIM
)

(10)

where N (µ,Σ) is the probability distribution function (pdf)
of a Gaussian random vector with mean µ and covariance
matrix Σ, and 1M = [1, 1, . . . , 1]T . Further, the variance
parameters σ2

R, σ
2
I are given by

σ2
R =

1 + e−2r

4
, σ2

I =
1 + e2r

4
. (11)

For displacement parameter estimation, it is generally as-
sumed that the squeezing parameter (r) of the initial probe
state is known [8], [44]. In the simplistic setup, the probe state
does not undergo any squeezing which corresponds to r = 0,
while if one is interested to increase the estimation accuracy
of one of the quadratures then that particular quadrature of
the probe state can be squeezed by pumping a degenerate
optical parametric amplifier (of known gain) with the probe
state [29], [44].

We focus our attention on estimating the prior parameters
α0,R, σ

2
0,R and αR from the observed data. Note that similar

analysis can be mirrored for the imaginary part α0,I , σ
2
0,I , αI .

Optimal Bayesian estimation of an unknown parameter with
Gaussian prior and Gaussian likelihood function is detailed
in Appendix VII-A. Using (43)-(45) from Appendix VII-A,
the posterior distribution of αR is Gaussian with mean and
variance given by

µαR
=

(
1

σ2
0,R

+
M

σ2
R

)−1(∑M
i=1 β

i
R

σ2
R

+
α0,R

σ2
0,R

)
, (12)

σ2
α,R =

(
1

σ2
0,R

+
M

σ2
R

)−1

. (13)

Therefore, the optimal Bayesian estimate of αR is given by
the posterior mean, i.e., α̂R = µαR

. Note that for M = 1, the
result given by (12) agrees with the result of [8, Eq. 20]. The
prior parameters α0,R, σ

2
0,R required in (12) can be estimated

by using the EM algorithm which is detailed in Appendix
VII-A, and summarized in Algorithm 1. The estimated values
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α̂0,R, σ̂
2
0,R obtained from Algorithm 1 can be substituted in

(12) to obtain the estimate of the real part of the displacement
parameter αR.

Algorithm 1: EM Algorithm for Heterodyne Mea-
surement.
Input: βR, σ

2
R,M

Output: α̂0,R, σ̂
2
0,R

1 Set t = 0
2 Initialize with σ2

0,R,t ∼ U [0, 1] and α0,R,t ∼ N (0, 1)

3 repeat
4 σ2

0,R,t+1 =
σ2
Rσ2

0,R,t

σ2
R+Mσ2

0,R,t

5 α0,R,t+1 = σ2
0,R,t+1

(∑M
i=1 βi

R

σ2
R

+
α0,R,t

σ2
0,R,t

)
6 Set t = t+ 1
7 until convergence

A similar method can be used for estimating the prior pa-
rameters of the imaginary part α̂0,I , σ̂

2
0,I by replacing σ2

R,βR

with σ2
I ,βI respectively in Algorithm 1. Subsequently, these

estimated values can be substituted in (12) to obtain α̂I .
We show the performance of the proposed EM algorithm

for estimating αR by considering a simulation scenario with
α0,R = α0,I = 2, σ2

0,R = σ2
0,I = 1 and two different

squeezing scenarios with r = 0 and r = 1. We also com-
pare the performance with the previously proposed ‘Genie
Aided’ Bayesian method [8], that requires perfect knowledge
of the prior distribution parameters. As a key difference,
our proposed algorithm estimates these parameters from the
measured data only. We use the mean squared error (MSE) as
the metric for comparing the performance of the algorithms.
The MSE metric is defined as

MSE (αR) = E
[
|αR − α̂R|2

]
,

MSE (αI) = E
[
|αI − α̂I |2

]
. (14)

Fig. 1 shows the MSE comparison for our proposed EM
algorithm and the ‘Genie Aided’ method that has perfect
knowledge of prior distribution parameters, as the number
of observations M increases. The ‘Genie Aided’ method is
similar to the Bayesian estimation method proposed in [8],
however here we consider the multiple measurement case.
It can be observed that as M increases the performance of
our proposed EM algorithm converges to that of the Bayesian
method of [8], which requires perfect knowledge of the prior
distribution parameters. Thus, our proposed EM algorithm is
able to estimate the prior distribution parameters from the ob-
served data only and can efficiently estimate the displacement
parameter α without any knowledge of the prior distribution
parameters. Further, it can be observed that as the squeezing
parameter r increases the MSE of αR decreases while the
MSE of αI increases. This observation is consistent with the
theory of Gaussian quantum states, since from (11), it can
be observed that for r > 0, σ2

R decreases and consequently
the posterior variance of αR in (13) decreases. Similarly,
σ2
I in (11) decreases with increasing r, and consequently

the posterior variance of αI increases. Further, we note that
for r > 0, the variance of the observed data βI increases,
hence the EM algorithm requires more data (larger M ) for the
convergence of its performance to the ‘Genie Aided’ bound.

0 5 10 15 20 25 30 35 40

10
-2

10
-1

(a) αR

0 5 10 15 20 25 30 35 40
10

-2

10
-1

10
0

(b) αI

FIGURE 1: The plots show the MSE of αR and αI as
the number of measurements M increases for two different
squeezing parameters r = 0, 1 with heterodyne measure-
ment. Results are shown for the proposed EM algorithm and
the ‘Genie Aided’ Bayesian estimation method proposed in
[8] that required perfect knowledge of the prior distribution
parameters. The other simulation parameters are α0,R =
α0,I = 2, σ2

0,R = σ2
0,I = 1.

B. HOMODYNE MEASUREMENT
In this section we present the optimal Bayesian estima-
tion of the displacement parameter, assuming a homodyne
measurement. In homodyne measurement for measuring the
quadrature q̂, the POVM is given by {|q⟩ ⟨q|}q∈R. Although
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the displacement α can be complex α = Re[α]+ i Im[α], the
measurement outcome from homodyne measurement with
POVM {|q⟩ ⟨q|}q∈R helps to estimate only the real part, i.e.,
αR = Re[α]. A similar procedure can be used to estimate the
imaginary part αI = Im[α] by introducing a π/2 phase shift
to the local oscillator of the homodyne detector such that the
orthogonal quadrature p̂ of the probe state is measured. As
before, we consider a multiple measurement scenario, where
M measurements are made and the outcomes are i.i.d with
the probability to observe qi, given a displacement αR, for
the i-th measurement given by

p(qi|αR) =
exp

[
− (qi−

√
2αR)2

cosh 2r−sinh 2r

]
√
π(cosh 2r − sinh 2r)

(15)

where r is the squeezing parameter. Letting q =
[q1, q2, . . . , qM ]T be the vector containing all the measure-
ments, the conditional likelihood is given by

p(q|αR) = N
(√

2αR1M , σ2
qIM

)
(16)

where the variance parameter σ2
q is given by

σ2
q =

cosh 2r − sinh 2r

2
. (17)

Using (43)-(45) from Appendix VII-A, the posterior distribu-
tion of αR is Gaussian with mean and variance given by

µαR
=

(
1

σ2
0,R

+
2M

σ2
q

)−1(√
2
∑M

i=1 qi
σ2
q

+
α0,R

σ2
0,R

)
,

(18)
and

σ2
αR

=

(
1

σ2
0,R

+
2M

σ2
q

)−1

. (19)

Thus, the optimal Bayesian estimate of αR is given by
α̂R = µαR

. As before, the prior distribution parameters α0,R

and σ2
0,R can be estimated by using a similar EM algorithm

as explained in Appendix VII-A, and is summarized in Al-
gorithm 2. The estimated values α̂0,R, σ̂

2
0,R obtained from

Algorithm 2 can be substituted in (18) to obtain the estimate
of the real part of the displacement parameter αR.

Algorithm 2: EM Algorithm for estimating
α0,R, σ

2
0,R

Input: q, σ2
q ,M

Output: α̂0,R, σ̂
2
0,R

1 Set t = 0
2 Initialize with σ2

0,R,t ∼ U [0, 1] and α0,R,t ∼ N (0, 1)

3 repeat
4 σ2

0,R,t+1 =
σ2
qσ

2
0,R,t

σ2
q+2Mσ2

0,R,t

5 α0,R,t+1 = σ2
0,R,t+1

(√
2
∑M

i=1 qi
σ2
q

+
α0,R,t

σ2
0,R,t

)
6 Set t = t+ 1
7 until convergence

0 5 10 15 20 25 30 35 40

10
-2

10
-1

(a) r = 0

0 5 10 15 20 25 30 35 40

10
-3

10
-2

(b) r = 1

FIGURE 2: The plots show the MSE of αR as the number
of measurements M increases for two different squeezing
parameters (a) r = 0, and (b) r > 0 with homodyne
measurement. Results are shown for the proposed EM al-
gorithm and the ‘Genie Aided’ Bayesian estimation method
proposed in [8] that required perfect knowledge of the prior
distribution parameters. The other simulation parameters are
α0,R = 2, σ2

0,R = 1.

We compare the performance of the proposed EM algo-
rithm for estimating αR by considering a simulation scenario
similar to the heterodyne case. Fig. 2 shows the MSE com-
parison of the proposed EM algorithm and the previous algo-
rithm of [8] for two different squeezing parameters r = 0, 1.
The simulation results reveal that the MSE performance of
the proposed EM algorithm is very close to that of ‘Ge-
nie Aided’ Bayesian estimator of [8], that assumes perfect
knowledge of the prior parameters. Further, we observe that
for r > 0, the EM algorithm achieves a faster convergence
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to the ‘Genie Aided’ lower bound since the variance of the
measurements in (15) decreases for r > 0.

IV. SQUEEZING ESTIMATION
We now turn to the problem of squeezing parameter estima-
tion of Gaussian quantum states. We consider the problem of
estimating the squeezing strength r ∈ R of the operator Ŝ(r)
defined in (4), that acts on the coherent probe state |α⟩. In
practical experiments, the problem of squeezing parameter
estimation is very relevant where a degenerate parametric
amplifier is pumped by a strong coherent field, and one is
interested to find the optimal amplifier gain [45]. We note that
for squeezing parameter estimation, it is generally assumed
that the displacement of the probe state is known which
is related to the average number of photons (energy of the
coherent field), and this is a practically feasible assumption
[8], [45], [46].

Neither the heterodyne nor the homodyne measurement
schemes are the optimal covariant measurement strategies for
estimating the squeezing parameter [45], [47]. The authors
of the prior work [8] considered the sub-optimal homodyne
measurement strategy and proposed a numerical integration
approach for Bayesian estimation of squeezing. In this work,
we first consider the optimal POVM scheme proposed in [45]
along with multiple measurements, and propose a machine
learning based method for estimating r. In contrast to [45],
that proposed a maximum likelihood (ML) estimate, we
propose a Bayesian estimation scheme using the optimal
POVM measurement outcomes. As compared to the compli-
cated numerical integration approach of [8], here we present
simplified closed form expressions for the optimal Bayesian
estimate of the squeezing parameter. We also consider the
case of suboptimal homodyne measurements, that have a
practical advantage of easier implementation in laboratory.
In this case, we present an ML estimate of r, since it is
challenging to analytically characterize the corresponding
Bayesian estimate.

A. OPTIMAL POVM
We consider a Gaussian prior for the squeezing parameter r,

p(r) =
1√
2πσ2

0

exp

(
− (r − r0)

2

σ2
0

)
(20)

with prior mean r0 and variance σ2
0 . We consider a multiple

measurement scenario where M independent measurements
are made for estimating r. The optimal POVM for estimating
r is given by [45, Eq. 12]. The likelihood to observe ξi in the
i-th measurement is then given by [45, Eq. 19]

p(ξi|r) =
√

2|α|2
π

e−2|α|2(ξi−r)2 . (21)

Letting ξ = [ξ1, ξ2, . . . , ξM ] be the vector containing all
the observations obtained from the POVM, the conditional
likelihood of the observed data is given by

p(ξ|r) = N
(
r1M , σ2IM

)
, (22)

where σ2 = 1
4|α|2 . Similar to displacement estimation, we

estimate the prior distribution parameters r0, σ
2
0 and then

find r̂ from the observed data only. Using (43)-(45) from
Appendix VII-A, the posterior distribution of r is Gaussian
with mean and variance

µr =

(
1

σ2
0

+
M

σ2

)−1
(∑M

i=1 ξi
σ2

+
r0
σ2
0

)
(23)

and

σ2
r =

(
1

σ2
0

+
M

σ2

)−1

. (24)

The point estimate of r is given by the posterior mean, i.e.,
r̂ = µr. The prior parameters r0, σ2

0 required for evaluating
µr can be estimated from the observed measurement ξ by
using the EM algorithm presented in Appendix VII-A. The
estimated values r̂0, σ̂2

0 obtained from the EM algorithm can
be substituted in (23) to obtain the estimate of the squeezing
parameter r.

We show the performance of our proposed EM algorithm
with POVM measurement for estimating r. We consider a
simulation scenario with r0 = 1 and σ2

0 = 0.5. Fig.
3 shows the MSE of r as the number of observations M
increases for two different values of α. Results are shown for
the optimal POVM measurement scheme with the proposed
EM algorithm, along with the ‘Genie Aided’ algorithm that
uses perfect knowledge of the prior distribution parameters
r0, σ

2
0 . It can be observed that the MSE performance of the

proposed EM algorithm is very close to that of the ‘Genie
Aided’ bound. Further, we observe that the MSE decreases
as the displacement of the initial probe state |α| increases
since the variance of the observed data in (21) is inversely
proportional to |α|2.

B. HOMODYNE MEASUREMENT
Next we consider the sub-optimal homodyne measurement
scheme proposed in [8] for squeezing parameter estimation.
The authors of [8] considered a single measurement sce-
nario and numerically evaluated the posterior variance of
the squeezing parameter without giving an explicit estimate
of the squeezing parameter. The authors only presented an
efficient estimate of the squeezing parameter for the case
of vacuum probe state. Here, we present an efficient ML
estimation scheme for the multiple measurement case with
homodyne measurement for general coherent probe states.
Note that here we do not use a heterodyne measurement
scheme since the variance of the measurement outcome is
higher for the heterodyne scheme, limiting the accuracy
of squeezing estimation. Homodyne measurement is not a
covariant measurement for squeezing estimation, but it is
a Gaussian measurement which can be easily realized in
practice. The likelihood to observe qi during in the i-th
measurement is Gaussian [8, Eq. 51]

p(qi|r) =
exp

[
−e2r(qi −

√
2αRe

−r)2
]

e−r
√
π

. (25)
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Therefore, the likelihood of the observed data q =
[q1, q2, . . . , qM ] is given by

p(q|r) = N
(√

2αRe
−r1M ,

e−2r

2
IM

)
. (26)

We note that the unknown parameter r is embedded in both
the mean and variance of the likelihood function through
the exp function. Thus, it is difficult to find the posterior
distribution of r. Further, the multiple measurement data
makes it complicated to numerically evaluate the posterior
mean and variance as done in [8] for the single measurement
case. Therefore, here we find the ML estimate of r. The ML
estimate of r is given by

r̂ ML = argmax
r

log p(q|r) , (27)

where the log-likelihood function log p(q|r) admits

log p(q|r) = −M

2
log π +Mr − e2r

M∑
i=1

(qi −
√
2αRe

−r)2 .

(28)

The ML estimate can be obtained by solving f ′(r) = 0,
where f(r) is defined as

f(r) = Mr − e2r
M∑
i=1

(
q2i + 2α2

Re
−2r − 2

√
2αRe

−rqi

)
.

(29)

After some algebra, we obtain the following equation

2q′′e2r − 2
√
2αRq

′er −M = 0 , (30)

where q′ =
∑M

i=1 qi and q′′ =
∑M

i=1 q
2
i . The above non-

linear equation in r can be solved by a change of variable
t = er, and then solving the resultant quadratic equation for
t. Finally, after some algebraic manipulations we obtain

r̂ ML = log

(
2
√
2αRq

′ +
√
8α2

Rq
′2 + 8Mq′′

4q′′

)
. (31)

Fig. 3 compares the MSE performance of the proposed ML
estimate (with homodyne measurement) of r against the cor-
responding EM-based estimate (with POVM measurement)
derived previously. It is observed that the optimal POVM
measurement scheme has a lower MSE than the homodyne
measurement scheme. Similar to the POVM case, the MSE
of the ML estimate with homodyne measurement decreases
as the displacement of the initial probe state |α| increases.
Moreover, the performance gap between the optimal POVM
measurement and homodyne measurement increases as |α|
increases.

In terms of computational complexity, the ML estimate has
a lower complexity since it has a closed form expression,
whereas the complexity of the optimal POVM is higher due
to the iterative EM algorithm. Fig. 4 compares the runtime
of the two estimation algorithms for squeezing estimation.
As expected, we observe that the EM algorithm has a higher

0 20 40 60 80 100 120 140 160 180 200

10-3

10-2

Optimal POVM - Genie Aided
Optimal POVM - EM
Homodyne - ML

(a) α = 1 + 1i

0 20 40 60 80 100 120 140 160 180 200

10
-3

10
-2

(b) α = 2 + 2i

FIGURE 3: The plots show the MSE of the squeezing pa-
rameter r as the number of measurements M increases for
two different values of displacement parameter α. Results
are shown for the proposed EM based estimate obtained
from the optimal POVM measurement [45], and the ML
estimate obtained from the suboptimal Gaussian homodyne
measurement scheme proposed in [8]. The ‘Genie Aided’
lower bound corresponds to the case when the prior distri-
bution parameters r0, σ2

0 are perfectly known.

runtime that can be around two orders of magnitude higher
than that of the ML estimate.

In a practical setting, the choice of the optimal POVM or
the homodyne measurement scheme depends on the avail-
ability of specific equipment in the laboratory. In general,
homodyne measurement is easier to implement, making it
a popular choice among experimentalists [8]. However, if a
higher accuracy is desired then the optimal POVM need to
be implemented, requiring additional equipment with higher
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FIGURE 4: The plots compare the runtime of two estimation
algorithms for squeezing estimation. Results are shown for
the proposed EM based estimate obtained from the optimal
POVM measurement and the suboptimal ML estimate with
homodyne measurement.

costs [45].

V. PHASE ESTIMATION
In this section we study the problem of phase estimation
for Gaussian quantum states. We consider the problem of
estimating the parameter of an unknown phase rotation op-
erator acting on a coherent Gaussian probe state. Similar
to the displacement estimation scenario, we assume that
multiple independent measurements are obtained and then
our proposed machine learning based method is used on
the observed data to obtain the phase estimate. Unlike the
previous work [8] that considered a uniform prior for the
phase parameter, in this work we consider a von Mises
prior that is widely used for modelling directional parameters
[48]–[53]. Under a uniform prior assumption on the phase,
the Bayesian estimate proposed in [8] is the same as the max-
imum likelihood estimate since the prior is an uninformed
prior with uniform distribution of θ in [−π, π]. We assume
a coherent probe state |α⟩, and, without loss of generality,
that the displacement is positive and real, i.e., α = |α| > 0.
This probe state is acted upon by the rotation operator R̂(θ)
given by (5). The action of the rotation operator R̂(θ) on the
probe state |α⟩ gives the encoded state

∣∣e−iθα
〉
. Similar to

the squeezing estimation problem, it is generally assumed
that the displacement parameter of the initial probe state is
known, and the problem is to estimate the unknown phase
parameter θ [8], [46].

Since heterodyne detection measures both the quadratures
it can estimate the phase in the entire interval θ ∈ [−π, π).
On the other hand, the homodyne measurement can only
estimate the phase in the interval θ ∈ [0, π], since it cannot
distinguish between phases θ and −θ owing to its ability to
measure only one of the quadratures. Therefore, in this paper

we focus only on the heterodyne measurement scheme for
phase estimation. We propose an empirical Bayes method
to estimate the prior distribution parameters as well as the
optimal Bayes estimate of θ using the observed data from
heterodyne measurement.

As before, we consider a multiple measurement scenario
where M independent measurements are made. The out-
comes are i.i.d with the likelihood to observe βi ∈ C, given
that the phase shift is θ, given by [8, Eq. 33]

p(βi|θ) =
1

π
|
〈
βi

∣∣e−iθα
〉
|2 =

1

π
e−|eiθβi−α|2 . (32)

Letting β = [β1, β2, . . . , βM ]T be the vector containing the
measurement outcomes, the likelihood of the observed data
is given by

p (β|θ) = CN
(
e−iθα1M , IM

)
. (33)

We assume a von Mises prior on θ, which is a circular
distribution that has been widely used in classical signal pro-
cessing applications to model directional parameters [48]–
[53]. In quantum phase estimation, a recent work assumed a
wrapped Gaussian prior for qubit phase estimation [54]. The
wrapped Gaussian distribution is closely approximated by the
von Mises distribution, but is less analytically tractable [55],
[56]. Moreover, the choice of von Mises prior is supported
by the fact that it is a conjugate prior for a Gaussian mea-
surement data model [48], which is the case considered in
this work for phase estimation with heterodyne measurement.
The von Mises distribution is parameterized by a shaping
parameter κ0 ∈ C, and has pdf [48]

p(θ|κ0) =
1

2πI0 (|κ0|)
exp

[
Re
(
κ0e

−iθ
)]

(34)

where I0(·) is the zeroth order modified Bessel function of
the first kind. The mean of this distribution is E[θ] = ∠κ0.
Apart from appropriately modeling the phase parameter, it
has also been previously shown that von Mises is a conjugate
prior for a wide class of Gaussian observation models [48].
The following proposition summarizes the conjugate prior
result for a von Mises prior with Gaussian measurement
model.

Proposition 1: Let the prior distribution of the unknown
phase parameter θ be a von Mises distribution with parameter
κ0, such that the pdf is given by (34). If the likelihood of
the observed data y ∈ CM×1 is Gaussian, i.e., p(y|θ) =
CN

(
e−iθx, σ2IM

)
, then the posterior distribution of θ is

also von Mises with parameter κp = κ0 +
2
σ2y

Hx [48].
Proof: Follows directly from [48, Eq. (7)-(9)].

Using Proposition 1 along with (33),(34), the posterior
distribution of θ is given by [48]

p(θ|β) = 1

2πI0 (|κp|)
exp

[
Re
(
κpe

−iθ
)]

(35)

where
κp = κ0 + 2αβ̃∗ , (36)
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with β̃∗ =
∑M

i=1 β
∗
i . Therefore, the optimal Bayes estimate

of the phase parameter is given by

θ̂ = ∠κp . (37)

We estimate the prior distribution parameter κ0 from the
observed data by using an empirical Bayes method. The
empirical Bayes estimate of κ0 is given by [19]

κ̂0 = argmax
κ0

log p(β|κ0)

= argmax
κ0

log
p(β|θ;κ0)p(θ|κ0)

p(θ|β;κ0)
(38)

where the second equality follows from Bayes theorem,

p(θ|β;κ0) =
p(β|θ;κ0)p(θ|κ0)

p(β|κ0)
. (39)

Using (33)-(35) in (38), and after some simplifications we
obtain

κ̂0 = argmax
κ0

log
I0(|κ0 + 2αβ̃∗|)

I0 (|κ0|)
. (40)

The optimization problem in (40) can be solved numerically
to find κ̂0 which can then be used in (36), (37) to obtain θ̂.
The overall algorithm for phase estimation is summarized in
Algorithm 3.

Algorithm 3: Empirical Bayes Algorithm for Phase
Estimation

Input: β, α,M
Output: θ̂

1 Evaluate β̃∗ =
∑M

i=1 β
∗
i

2 Numerically solve: κ̂0 = argmax
κ0

log I0(|κ0+2αβ̃∗|)
I0(|κ0|)

3 Set κp = κ̂0 + 2αβ̃∗

4 Return θ̂ = ∠κp

We evaluate the performance of the proposed empirical
Bayes solution for phase estimation. Since the phase shifts
are invariant under shifts by 2π, we consider E[sin2(θ−θ̂)] as
the performance metric instead of the MSE metric considered
before for displacement and squeezing estimation. Fig. 5
shows the performance of our proposed empirical Bayes
method and the ‘Genie Aided’ Bayes estimation scheme as
M increases for different values of the initial probe state
displacement α. The ‘Genie Aided’ estimation scheme re-
quires perfect knowledge of the prior parameter κ0, whereas
the empirical Bayes method learns the prior parameter from
the observed data. It is observed that the proposed empirical
Bayes method converges to that of the ‘Genie Aided’ bound
as M increases. Further, we observe that the estimation per-
formance improves and the empirical Bayes method achieves
a faster convergence to the ‘Genie Aided’ bound as the
displacement of the initial probe state α increases.

0 20 40 60 80 100 120 140 160 180 200

10
-3

10
-2

10
-1

FIGURE 5: The plot shows the performance of the pro-
posed empirical Bayes method and the ‘Genie Aided’ Bayes
estimation scheme for phase estimation using heterodyne
measurement as the number of measurements M increases.
Results are shown for |κ0| = 4,∠κ0 = 0.5 and different
values of α = {1, 2, 3}.

VI. CONCLUSION

We have proposed machine learning based methods for pa-
rameter estimation of continuous variable Gaussian quantum
states. We focused on Bayesian estimation of the phase-space
displacement, squeezing, and phase parameter of a single
mode Gaussian quantum state. We considered a multiple
measurement scenario and assumed a Gaussian prior on the
displacement and squeezing parameter, and proposed an EM
algorithm to estimate the prior distribution parameters from
the measured data. For the phase estimation, we assumed a
von Mises prior on the phase parameter and by considering a
heterodyne measurement scheme we proposed an empirical
Bayes method to estimate the prior distribution parameters
from the observed data. The estimated prior parameters
along with the observed data were used to find the optimum
Bayesian estimate of the displacement, squeezing, and phase
parameter. Our simulation results show that the proposed
algorithms have estimation performance that is very close to
that of ‘Genie Aided’ Bayesian estimators, that assume per-
fect knowledge of the prior parameters. In practical scenarios,
when numerical values of the prior distribution parameters
are not known, our proposed methods can be used to find op-
timal Bayesian estimate of the parameters from the observed
measurement data.

In this work we focused on machine learning based sin-
gle parameter estimation of single-mode Gaussian quantum
states only. An interesting future work would be to extend
the machine learning framework presented here for multi-
parameter estimation of single and multi-mode Gaussian
quantum states. This could include for example joint dis-
placement and phase estimation, and joint squeezing and
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displacement estimation of single and multi-mode Gaussian
quantum states. Furthermore, the future extensions of this
work could consider a hierarchical prior for the unknown
parameters where one can introduce yet another prior for the
unknown parameters of the original prior.

VII. APPENDIX
A. EXPECTATION MAXIMIZATION (EM) ALGORITHM
FOR ESTIMATING PRIOR DISTRIBUTION PARAMETERS
In this section we present the general EM algorithm for
estimating the prior distribution parameters for a Gaussian
observation model with Gaussian prior. Let the prior distribu-
tion of the unknown parameter u be a Gaussian distribution
with mean µ0 and variance σ2

0 , i.e.,

p(u) =
1√
2πσ2

0

exp

(
− (u− µ0)

2

2σ2
0

)
. (41)

Further, the likelihood of the observed data y ∈ RM×1 is
Gaussian with

p(y|u) = N
(
ug, σ2

nIM
)
. (42)

Using properties of the Gaussian distribution, the posterior
distribution of u is given by [19, Eq. 2.113-2.117]

p(u|y) = N
(
µp, σ

2
p

)
(43)

where

σ2
p =

(
1

σ2
0

+
gTg

σ2
n

)−1

, (44)

and

µp =

(
1

σ2
0

+
gTg

σ2
n

)−1(
gTy

σ2
n

+
µ0

σ2
0

)
. (45)

The prior distribution parameters θ = [µ0, σ
2
0 ] can be esti-

mated by maximizing the log-likelihood of the observed data,
i.e., by solving the following optimization problem(

µ̂0, σ̂
2
0

)
= argmax log p (y|θ) . (46)

It is difficult to find the prior distribution parameters θ by
directly maximizing the log-likelihood of the observed mea-
surements due to the constraint σ̂2

0 > 0 and the complexity
of the objective function. Hence, we use the EM algorithm
that maximizes a lower bound of the log-likelihood function.
Note that u is the latent variable that is not directly observed.
The EM algorithm is an iterative algorithm that has two
main steps. In the first step (E-step) of the t-th iterate, the
expectation of the complete log-likelihood with respect to
the posterior distribution of the latent variable is evaluated,
and is denoted by Q(θ,θt). In the second step (M-step), the
parameters are updated (θt+1) by maximizing Q(θ,θt). Let
L(θ) = log p (y|θ) be the log-likelihood of the observed
data, then L(θ) is lower bounded as [57], [58]

L(θ) ≥ Q(θ,θt) (47)

where

Q(θ,θt) = Ep(u|y,θt) [log p (y, u|θ)] . (48)

From (41),(42) we obtain

log p (y, u|θ) = −1

2

(
M log 2πσ2

n +
M∑
i=1

(yi − ugi)
2

σ2
n

+ log 2πσ2
0 +

(u− µ0)
2

σ2
0

)
. (49)

The posterior distribution of u is given by (43). For the E-
step, using (43) in (48) we obtain

Q(θ,θt) = −1

2

(
M log 2πσ2

n +
M∑
i=1

(yi − giµp)
2 + g2i σ

2
p

σ2
n

+ log 2πσ2
0 +

(µ0 − µp)
2 + σ2

p

σ2
0

)
, (50)

where we have used

Ep(u|y,θt) [u] = µp ,

Ep(u|y,θt)

[
u2
]
= µ2

p + σ2
p . (51)

For the M-step, we need to solve

∂Q(θ,θt)

∂µ0
= 0 ,

∂Q(θ,θt)

∂σ2
0

= 0 (52)

which give the updates

µ0,t+1 = µp , σ2
0,t+1 = σ2

p . (53)

The overall EM algorithm is summarized in Algorithm 4.
Note that the loop in Algorithm 4 terminates when the
difference of Q(θ,θt) in two consecutive iterations drops
below a certain threshold, say ϵ = 10−3. The estimated
values µ̂0, σ̂

2
0 obtained from Algorithm 4 can be substituted

in (45) to obtain the optimal Bayesian estimate of u.

Algorithm 4: EM Algorithm for solving (46)

Input: y, σ2
n,M

Output: µ̂0, σ̂
2
0

1 Set t = 0
2 Initialize with σ2

0,t ∼ U [0, 1] and µ0,t ∼ N (0, 1)
3 repeat
4 σ2

0,t+1 =
σ2
nσ

2
0,t

σ2
n+gT gσ2

0,R,t

5 µ0,t+1 = σ2
0,t+1

(
gTy
σ2
n

+
µ0,t

σ2
0,t

)
6 Set t = t+ 1
7 until convergence

ACKNOWLEDGMENT
The authors thank Ayaka Usui for the insightful comments on
the initial version of the draft that helped to further improve
the content of the paper.

VOLUME xx, 2021 11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TQE.2021.3137559,
IEEE Transactions on Quantum Engineering

Kundu et al.: Machine Learning Based Parameter Estimation of Gaussian Quantum States

REFERENCES
[1] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical

Review Letters, vol. 96, no. 1, p. 010401, 2006.
[2] ——, “Advances in quantum metrology,” Nature Photonics, vol. 5, no. 4,

p. 222, 2011.
[3] M. G. Paris, “Quantum estimation for quantum technology,” International

Journal of Quantum Information, vol. 7, no. supp01, pp. 125–137, 2009.
[4] D. Šafránek, “Estimation of Gaussian quantum states,” Journal of Physics

A: Mathematical and Theoretical, vol. 52, no. 3, p. 035304, 2018.
[5] E. Martínez-Vargas, C. Pineda, F. Leyvraz, and P. Barberis-Blostein,

“Quantum estimation of unknown parameters,” Physical Review A,
vol. 95, no. 1, p. 012136, 2017.

[6] O. Pinel, P. Jian, N. Treps, C. Fabre, and D. Braun, “Quantum parameter
estimation using general single-mode Gaussian states,” Physical Review
A, vol. 88, no. 4, p. 040102, 2013.

[7] Z. Jiang, “Quantum Fisher information for states in exponential form,”
Physical Review A, vol. 89, no. 3, p. 032128, 2014.

[8] S. Morelli, A. Usui, E. Agudelo, and N. Friis, “Bayesian parameter
estimation using Gaussian states and measurements,” Quantum Science
and Technology, 2021.

[9] C. W. Helstrom, “Quantum detection and estimation theory,” Journal of
Statistical Physics, vol. 1, no. 2, pp. 231–252, 1969.

[10] A. S. Holevo, Probabilistic and statistical aspects of quantum theory.
Springer Science & Business Media, 2011, vol. 1.
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