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Abstract—Enhanced AutoNav (ENav), the baseline surface nav-
igation software for NASA’s Perseverance rover, sorts a list
of candidate paths for the rover to traverse, then uses the
Approximate Clearance Evaluation (ACE) algorithm to evaluate
whether the most highly ranked paths are safe. ACE is crucial
for maintaining the safety of the rover, but is computationally
expensive. If the most promising candidates in the list of paths
are all found to be infeasible, ENav must continue to search the
list and run time-consuming ACE evaluations until a feasible
path is found. In this paper, we present two heuristics that,
given a terrain heightmap around the rover, produce cost es-
timates that more effectively rank the candidate paths before
ACE evaluation. The first heuristic uses Sobel operators and
convolution to incorporate the cost of traversing high-gradient
terrain. The second heuristic uses a machine learning (ML)
model to predict areas that will be deemed untraversable by
ACE. We used physics simulations to collect training data for the
ML model and to run Monte Carlo trials to quantify navigation
performance across a variety of terrains with various slopes and
rock distributions. Compared to ENav’s baseline performance,
integrating the heuristics can lead to a significant reduction in
ACE evaluations and average computation time per planning
cycle, increase path efficiency, and maintain or improve the
rate of successful traverses. This strategy of targeting specific
bottlenecks with ML while maintaining the original ACE safety
checks provides an example of how ML can be infused into
planetary science missions and other safety-critical software.
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Figure 1: A view of the ENav simulation environment.
The green-yellow terrain shows how the Gradient Convo-
lution heuristic, developed in this work, has assessed the
cost of traversing the terrain (yellow regions are higher
cost) and steers the rover toward safer regions.

1. INTRODUCTION

The communications latency between Mars and Earth has
driven Mars rover missions to develop significant surface au-
tonomy. On-board planning [1] generates schedules and mod-
els resource usage over time. Autonomous target selection [2]
is used to opportunistically gather science data on desirable
specimens. Autonomous rover navigation [3] allows rovers
to traverse unknown terrain of increasing complexity and at
greater rates without human drivers in the loop.

Future missions will demand even more capable autonomous
mobility. The proposed Mars Sample Return mission’s fetch
rover will be more focused on fast and reliable mobility than
gathering its own science data [4]. The stated goals of the
Mars Exploration Program Analysis Group (MEPAG) call for
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a greater spatial coverage of the Martian surface [5]; this
would necessitate a greater number of rovers and landers,
which could not be operated without either a vastly increased
amount of ground operators or more significant on-board
autonomy. Missions to ocean worlds in the outer solar system
are of great interest, but the increased communication delays
may require rovers to operate autonomously for several earth
days without human input[6].

The Mars 2020 mission [7] and its Perseverance Rover will
use the Enhanced Navigation (ENav) library [8] to plan
paths on the Martian surface. ENav takes as input stereo
imagery, maintains a 2.5D heightmap describing the terrain,
and chooses the best maneuver to safely move the rover to-
ward the global goal. ENav uses the Approximate Clearance
Evaluation (ACE) algorithm [9] to evaluate a sorted list of
paths for safe traversal. Running the ACE algorithm on
dozens of rover poses along hundreds of candidate rover paths
represents a significant computational burden, especially if
the list is sorted poorly and many paths fail the ACE check,
which is more likely in complex and challenging terrain.

In this paper, we describe ENav and its baseline performance
(Section 2). We introduce two heuristics, one hand-designed
and one machine-learned, that can be used to more effectively
sort the list of candidate paths. Because the heightmap
is represented as a two-dimensional array, a multitude of
efficient techniques from computer vision can be used for
analysis. We designed the Gradient Convolution heuristic
to use convolution and Sobel operators [10] to estimate the
cost of terrain traversal (Section 3). We also used a data
set of heightmaps and corresponding ACE evaluations to
train a machine learning (ML) classifier to infer ACE values
(Section 4). These two heuristics were integrated into ENav
(Figure 1) and used to more effectively sort the rover paths
before the ACE evaluation step. By incorporating the ML
classifier into the ranking process, but still checking paths for
safety with ACE, we show how ML can be integrated into
ENav without sacrificing safety requirements. We present
our results for various experiments and describe how each
heuristic affected the performance of ENav in Monte Carlo
simulations across multiple terrains (Section 5). We show that
integrating the heuristics improved path efficiency, greatly
reduced ACE evaluations, computation time, and the likeli-
hood of ”overthinking” each planning cycle, and maintained
or improved success rates compared to the baseline perfor-
mance. Finally we discuss the implications and limitations of
our results (Section 6).

2. BASELINE NAVIGATION

The ENav library is the core of the Mars 2020 autonomous
rover navigation and constitutes the starting point and base-
line performance level for this work.

At a high level, the ENav planning cycle involves following
steps:

Process Disparity

As the rover drives, stereo cameras acquire images. Stereo
correlation is used to generate a disparity image, which is then
converted into a 3D point cloud. The point cloud is passed to
ENav, which updates an internal 2.5D heightmap centered on
the rover’s position. Each point is added to the appropriate
X-Y cell, and each cell with new points is assigned a height
equal to the average height of the enclosed 3D points.

Analyze Terrain

Once the heightmap is updated, the terrain is analyzed and the
results are saved in a costmap. Compared to the heightmap,
the costmap is lower resolution, but covers a larger area. If
a cell in the costmap corresponds to an area that was just
imaged, the tilt angle and roughness (the average squared
distance between a fitted plane and the points in the plane)
are updated. The cost of the cell may be a weighted sum
of the tilt, the roughness, and a minimum time needed to
traverse a cell. The cell will be given an infinite cost if
the tilt is extreme, plane-fitting fails, or if designated keep-
in or keep-out zones (an area set by rover operators) are
violated. Costmap cells representing areas that have not
yet been imaged are given a finite cost value that is greater
than that of known flat terrain, but more than that of known
obstacles.

Select Path

With an updated costmap, ENav can select the next path for
the rover to take to make progress towards the goal:

Candidate Paths—ENav considers a parameterized tree of
candidate paths the rover can drive. The hardware of the
Perseverance rover and its progenitors does not allow steering
while driving. Thus the rover can move in fixed-curvature
arcs (i.e. constant turning radius). Special cases of arcs
include driving straight (zero curvature) and turning in place
(infinite curvature). The first branch in the tree of paths
generally consists of various turns (or no turning at all) and
subsequent branches consist of fixed-length arcs of various
curvatures. The default tree of paths for our experiments
is composed of 14 candidate turns-in-place (including the
option of not turning), followed by 11 3-meter arcs of various
curvatures, followed by another set of 11 3-meter arcs. This
means the rover is planning about 6 meters ahead of its
current position, and considering 1694 potential paths.

Initial Path Ranking—Each path in the tree is analyzed and
assigned a total cost, which is a weighted sum of various
cost factors. Firstly, each maneuver takes a certain amount of
time to actuate; paths with less steering changes or no initial
turn have a smaller cost. Secondly, the costmap (which was
updated during the Analyze Terrain step) is sampled at regular
intervals along the maneuvers in each path. Finally, Dijkstra’s
algorithm [11] is used to estimate the minimum cost to travel
from the endpoint of the considered path to the goal. After all
paths have been assessed, the list of paths is sorted by cost.

ACE on Paths—Starting with the lowest-cost path, the ACE
algorithm is applied at regular intervals along the path. Given
the rover pose and heightmap, ACE finds the min and max
heights within the potential footprint of each wheel, com-
putes bounds on the rover attitude, suspension angles, and
clearance between the rover belly pan and the terrain. If
the bounds violate parameterized limits, ACE can return
an infinite cost, rendering that path infeasible. Otherwise,
a finite cost is returned based on proximity to the limits,
which accumulates over the length of the path. Once a path
with finite cost is found, ENav continues to analyze other
candidate paths until reaching a threshold, and returns the
lowest-cost ACE-validated path found.

Actuation

Given the lowest-cost path, only the first maneuver (either
the first meter of an arc or the first 30 degrees of a turn in
place) of that path is actuated, stereo imagery is acquired and
integrated, and the planning cycle repeats.
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(a) Height Map (b) Gradient Map

(c) Rover Kernel (d) Cost Map

Figure 2: Given a height map (a), Sobel operators can be
used to create a gradient or gradient squared map (b).
The gradient map can be convolved with a kernel repre-
senting the orientation-agnostic footprint of the rover (c)
to form the gradient cost map (d), which estimates the cost
to traverse a location within the map.

Performance

This planning cycle starts when a disparity image is available
for ENav, and ends when the solution is found. If the new
maneuver is found before the rover finishes driving its current
maneuver, the rover can immediately transition to the new
maneuver. Otherwise, the rover must stop driving until a
solution is found. Failing to find a solution before the rover
stops is called ”overthinking”. Overthinking is undesirable,
as it reduces the average traverse rate of the rover, increases
wear and tear on the wheels and brakes, and increases mission
risk overall.

Overthinking is most likely to occur due to a poor ranking
of candidate paths and excessive ACE evaluations taking
significant computation time. In our experiments, we track
ENav’s overthink rate, defined as the percentage of planning
cycles where the number of ACE evaluations exceeds 275.
Each instance of ACE is estimated to take between 10 and 20
ms on the RAD750 computer used in the Perseverance rover,
so this represents around 3 to 4 seconds of computation.
In the theoretical scenario where the entire baseline tree of
1694 candidate paths were to be evaluated by ACE at 25
cm intervals, ACE would be called over 22 thousand times,
taking over 3 minutes of computation time.

In benign terrain (terrain with little slope or few rocks, fully
defined in section 5), the computational budget is rarely
exceeded, but in complex terrain where unsafe obstacles are
likely to occur between the rover and the goal, simulations
predict an overthink rate of 20%. The goal of this work is to
reduce the planning computation time and increase the suc-
cess rate and path efficiency in complex terrain. To achieve
this, we added heuristics rank the potential rover paths more
effectively with regards to the likelihood of passing ACE,
reducing computation time and the overthink rate.

3. GRADIENT CONVOLUTION HEURISTIC

In order to more effectively sort ENav’s list of candidate
rover paths such that the most highly ranked paths are more
likely to pass ACE, we designed the Gradient Convolution
heuristic to estimate costs that would be correlated with ACE
evaluations, but with a lower computation time.

The ACE algorithm considers how uneven the terrain is under
the rover wheels. The Gradient Convolution heuristic was
designed to assess terrain roughness at the points where the
rover wheels might be. Given a heightmap, the heuristic is
computed as follows:

1. Convolve the heightmap (Figure 2a) with normalized 3x3
Sobel operators to find the local x and y gradient:

Gx =
1

2r

1

4

[

+1 0 −1

+2 0 −2

+1 0 −1

]

∗A (1)

Gy =
1

2r

1

4

[

+1 +2 +1

0 0 0

−1 −2 −1

]

∗A (2)

where A is the heightmap, r is the width of one square cell in
the heightmap, and ∗ is the convolution operator.
2. Find the squared gradient magnitude map (Figure 2b) as:

Gsq = Gx ◦Gx +Gy ◦Gy (3)

where ◦ is element-wise multiplication. Using the squared
gradient magnitude is less computationally expensive (as no
square root is required) and creates a quadratic cost, penaliz-
ing extreme values.
3. Convolve the squared gradient map with a kernel repre-
senting the heading-agnostic footprint of the rover (Figure
2c). The footprint is an annulus, with an outer radius cor-
responding to the furthest extent of any wheel and an inner
radius corresponding the closest any wheel gets to the pivot
point. If elements of the kernel are within the annulus, they
have a value of 1, otherwise 0. Normalize by dividing by
the sum of the non-zero elements in the footprint kernel, and
multiply by a parameterized cost factor.

Gc =
k

∑

Ri

R ∗Gsq (4)

where R is the rover kernel, and k is the cost factor. This
provides the gradient convolution cost map (Figure 2d).

Convolution and the Sobel operators are very commonly used
in computer vision contexts. As computer vision becomes
increasingly important for rover navigation, and dedicated
vision-processing computers are added to Mars missions [3],
the likelihood of these methods being computed quickly and
efficiently is high.

Integration

During the Analyze Terrain step of the ENav planning cycle
(discussed in Section 2), the gradient convolution cost is
calculated for each cell in the costmap and included in the
overall cost of the cell. This causes the heuristic to contribute
not only to the cost of terrain traversal along each path, but
also to the Dijkstra-based estimate of cost from the end of
each path to the overall goal.
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Figure 3: An example of a Learned Heuristic. Sets of terrain heightmaps (left) and maps generated by the ACE
algorithm (center) were used to train a neural network to generate an inferred ACE probability map (right).

4. LEARNED HEURISTIC

In order to find a more accurate heuristic for ACE cost, we
trained a model to predict ACE values based on heightmap
data (Figure 3). In contrast to the Gradient Convolution
heuristic, which was hand-coded by domain experts, the
learned heuristic is automatically encoded using a data-driven
framework. More specifically, we developed a deep convolu-
tional neural network (DCNN) based model that can directly
predict the outcome of the ACE algorithm for a given terrain
heightmap. Using this prediction, ENav can more optimally
sort its initial list of potential paths and hence reduce the
average number of ACE evaluations required until finding a
safe path.

Model Architecture and Training

We formulate this problem as a supervised-learning based
classification. Our DCNN model is based on a modified
encoder-decoder style U-Net architecture [12], and imple-
mented using the Tensorflow framework [13]. The encoder
consists of a series of convolutional layers that down-samples
the input to a low-dimensional feature map, and a decoder
that consists of up-sampling layers with convolutions that
then take this feature map and increase their resolution to
that of the original input. U-Net also has a series of residual
connections from the encoder to the decoder feature maps
that helps restore the high-resolution details lost during down-
sampling and also prevents vanishing gradients during train-
ing.

The input to our model is a heightmap and the output is an
ACE map, such that the value for each pixel in the ACE map
corresponds to the expected ACE cost for the corresponding
terrain parameters. However, ACE cost depends not only
on the terrain but also on the rover heading. We encode
the rover heading as part of the learning problem itself by
extending the output to have a multi-channel representation
such that each channel represents a cardinal heading angle for
the rover. In our experiments, we have found a discretization
of 8 heading angles (at 45 degree intervals) to be sufficient.
Sigmoid activation is applied to each channel to give a value
in the range [0, 1] corresponding to the probability of a cell
being infinite ACE cost or not.

Training data was gathered by running a Monte Carlo sim-
ulation of the baseline ENav algorithm on 1500 terrains,
randomly sampling 8 heightmaps from each trial. For each
cell in each sampled heightmap, the ACE algorithm was run
with the eight fixed rover heading values, resulting in an
“ACEmap” where each cell has eight heading-specific values.

Of the 12000 total heightmap, ACE map pairs, 9500 were
used as a training set, and 2500 were used as the validation
set. The learned heuristic model achieved 97.8% training
accuracy and 95.3% validation accuracy.

Note the result of this prediction is a probability of ACE
returning a safety violation, which is different from the
output of the ACE algorithm itself. ACE can return finite
or infinite costs, where finite costs represent how close the
rover is to safety violations, and infinite costs represent safety
violations. Predicting the actual ACE costs is a dual problem
of classification and regression, and is more difficult that
segmentation alone. Efforts to predict these values have not
yet yielded results.

Integration

To integrate the model inference into the ENav algorithm,
the heightmaps are passed to a TensorFlow process, which
returns an ACE prediction map to ENav. When ENav does
the Initial Path Ranking step, the ACE map is sampled at
regular intervals along the paths, proportionately weighting
the predictions for the two fixed headings closest to the
current heading. The ACE predction is multiplied by a cost
factor, and adds to the accumulated cost of each path. The
average ACE map value also contributes to the costmap and
is used for the Dijkstra-based estimate of cost from the end of
each oath to the overall goal.

Importantly, the sorted list of paths is still evaluated by the
“true” ACE algorithm. This approach allows us to leverage
the benefits of ML while maintaining the same safety guaran-
tees.

5. EXPERIMENTS

Described at length in [8], a Monte Carlo simulation environ-
ment was built for testing ENav and Mars 2020 navigation
(Figure 4). The Robotics Operating System (ROS) [14]
was used for inter-process communication. One ROS node
wraps ENav, and another wraps the HyperDrive Simulator
(HDSim), which simulates rover motion, terrain settling and
slipping, and disparity images for JPL rover missions. Simu-
lated terrains, representing various slopes and rock densities,
are loaded into HDSim. Rock densities are classified by the
cumulative fractional area covered by rocks (CFA) [15].

The rover starts at one side of the map and ENav is given a
global goal 80m away at the other end of the map. The trial
is run until the rover either successfully reaches the goal, or
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Figure 4: ROS software architecture for testing ENav
against the HDSim physics simulator

until a failure condition is found, such as when no feasible
path can be found, when the safety limits of the rover are
violated, or when the duration of the trial exceeds a time limit.

We leverage this existing simulation setup to run our exper-
iments. In the case of simulations employing the machine
learning model, we use an additional ROS node running
TensorFlow, which receives heightmaps and publishes ACE
estimates. Because HDSim currently only runs on 32-bit
systems, and TensorFlow only runs on 64-bit systems, we
use a ROS multi-master system to communicate between two
computers.

The discussion of the experiments notes potential gains in
computation time. These gains are theoretical and predicated
on the notion that each call of the ACE algorithm takes 10 to
20 ms on the RAD750 flight processor, these calls make up a
very large portion of ENav’s computation time, and reduction
of these calls translates to a gain in computation time. The
use of non-flight-like computers, the need for multi-master
ROS, and lack of optimization in the added algorithms for
this research prevent meaningful comparisons of wall clock
time.

The results of the following experiments are summarized in
Figure 5. Each simulation tracks results on two subsets of
terrains: Benign terrains have a CFA value of 7% or less, and
a slope of 15◦ or less. Complex terrains have greater slope
or CFA. Each performance metric is calculated as a weighted
average across each subset of terrains (Benign or Complex),
with terrains of greater complexity being less likely to occur
on Mars, and accordingly given less weight. We are more
concerned with tracking performance on complex terrain.
Within each Monte Carlo simulation, 780 trials are run on
complex terrain, so n = 780 will be used when calculating
95% confidence margins of error (MOE).

The following performance metrics are tracked:

• Success Rate is the percentage of trials for each terrain that
result in the rover reaching the global goal without timing out,
reaching a point with no feasible paths, or violating safety
constraints. Higher values are better.
• Average Path Inefficiency is defined as the average length
of the path taken by the rover divided by the Euclidean
distance from the start to the goal, minus 1, expressed as a
percentage. For example, if the rover goal was 100 m away,
and the rover needed to travel a circuitous route with a length
of 125 m to avoid obstacles and reach the goal, the path
inefficiency was 25%. Lower values are better.

• Average ACE Evaluations is the average number of ACE
evaluations conducted per planning cycle. Lower values are
better. Each evaluation takes an estimated 10 to 20 ms on a
RAD750 processor like that on Perseverance, so a conversion
to average cycle time can easily be made.
• Overthink Rate is the average percent of ENav planning
cycles that required more ACE evaluations than a threshold
value (275 by default), which indicates that the highest-
ranked candidate paths were all deemed unsafe by ACE, and
therefore the initial ranking of paths was unsuitable. When
the number of ACE evaluations exceeds the threshold, it
indicates that ENav is ”overthinking” and the rover may need
to stop driving until a solution is found. Lower values are
better.

Experiment 1: The effects of heuristics

The first experiment tested whether adding the designed
and learned heuristics to the baseline ENav software yields
gains in the tracked performance metrics. Monte Carlo
simulations were run with the same terrains and parameters
as the baseline simulation. Note that the terrains used for
these experiments are a separate set from the set of terrains
used to train the learned model, to prevent unrepresentative
performance due to over-fitting.

The simulation with the gradient convolution heuristic
showed mixed results (Figure 5). Benign terrain performance
was fairly similar to the baseline. Success rate dropped
slightly, but the overthink rate decreased. Complex perfor-
mance showed more obvious changes. Success rate slightly
worsened, from 69.9% to 67.1%, but other metrics were
promising. There were significant decreases in path ineffi-
ciency, from 25.4% to 19.9% (MOE: 2.8%). In other words,
given a goal 100 m away, the new method would be expected
to drive a 120 m path, compared to 125 m for the baseline,
saving time and energy. The ACE metrics also improved,
with the overthink rate reducing significantly, from 20.0% to
14.2% (MOE: 2.5%). In summary, the designed heuristic did
show promise for improving ENav performance in complex
terrains.

More impressively, the simulation with the learned heuristic
showed improvements across almost every metric. Complex
success rate improved slightly, from 69.9% to 72.5% (within
the MOE). Path inefficiency significantly improved, espe-
cially for complex terrains, going from 25.4% to 20.4%. The
number of ACE evaluations also reduced, especially in terms
of the overthink rate, which plummeted to 7.1% compared to
20.0% for the baseline. This would result in far fewer cases
of the rover needing to stop driving before the next path can
be found.

We asserted that ML could be added without sacrificing the
safety guarantee of the ACE algorithm, and this assertion
holds. No trial failures were caused by violated safety
constraints; all failures are due to either timeouts or failures
to find paths to the goal. This was true for all experiments.

This experiment answers the most fundamental question of
this work: can heuristics, designed or learned, improve the
performance of the baseline rover navigation algorithm? The
answer is yes. Heuristics can more effectively rank the
set of candidate paths, reduce the average computation time
needed to find a safe path, choose maneuvers that increase
path efficiency, and increase the likelihood of successfully
reaching the goal, while maintaining rover safety.
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Figure 5: A summary of key rover path planning performance metrics across various experiments. Incorporating
heuristics produced more efficient paths, reduced the number of costly ACE evaluations, and maintained or slightly
increased the rate of successfully reaching the goal.

Experiment 2: No minimum evaluations if solution found

As discussed in Section 2, by default when a path that passes
ACE is found, ENav will continue to evaluate paths up to a
parameterized limit. This helps if the first safe path has a poor
(but finite) ACE cost; a path with a lower cost relative to ACE
evaluations can be found.

But if these heuristics rank candidate paths more effectively,
then this continued evaluation may no longer be necessary
and computational resources might be better used elsewhere.
This second experiment quantifies how much computation
time can be saved, and a what cost to other metrics. We
repeated the simulation with each heuristic, this time setting
up ENav parameters such that the first ACE-feasible path
from the sorted list is chosen for the next maneuver.

The simulation with the designed heuristic showed similar
results to Experiment 1, but with a vast reduction in the
number of ACE evaluations. The average number of ACE
evaluations in complex terrain was only 156, compared to

377 for the baseline. On the Perseverance RAD750 processor,
this would translate to an average ACE computation time of
around 1.9 seconds, rather than 4.5 seconds for the baseline.
However the complex success rate reduced to 63.1%.

The simulation with the ML heuristic showed promising
results. Success rates remained similar to the baseline,
but the complex success rate of 69.3% does represent a
small decrease from learned heuristic success rate (72.5%)
in Experiment 1. Path efficiencies improved even more
than Experiment 1, but the biggest improvement was in the
average number of ACE evaluations. In benign terrain, the
average number of ACE evaluations went from 275 to 39. In
Complex terrain, ACE Evaluations went from 377 to 90. For
a RAD750 processor, this would represent an improvement
from about 4.5 seconds to 1.1 seconds, saving 3.4 seconds of
computation time per planning cycle.

This experiment showed that the inclusion of learned heuris-
tics needed less than one fourth the number of ACE evalu-
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ations, and therefore significantly reduced time, to achieve
similar success rates as the baseline software.

Experiment 3: Using a broader tree of paths

Experiment 2 showed that using the ML heuristic could
significantly reduce computation time in the ENav planning
cycle. Reduction of computation time is only useful if that
freed computational budget is used for methods that might
increase the success rate. One potential approach is to
increase the number of candidate paths, which can increase
the probability of finding a safe path, or provide a wider
range from which to choose a more efficient path through the
terrain.

As discussed in Section 2, the baseline tree of paths has
14 potential tuns-in-place (including no turn) at depth 1,
followed by two levels of 11 potential arcs, for a total of 1694
paths. For Experiment 3, the possible choices at each level
of the tree was increased by 4, giving 4050 possible paths,
more densely covering the terrain. This means that analyzing
all paths could take around 2-3 times as much time, if not
effectively sorted by the heuristics.

Experiment 3 was conducted with the machine learning
model in the loop, no minimum number of ACE evaluations,
and the broader tree. The experiment showed the best success
rates and path efficiencies so far, improving complex success
rate from 69.9% to 73.9% (MOE: 3.1%) and inefficiency
from 25.4% to 17.6%. While timing results showed more
average ACE evaluations and a higher chance of overthinking
than Experiment 2, these metrics were still significantly supe-
rior to the baseline. However, there would be an increased
amount of time required to perform the initial ranking of
the larger set of paths, which is not captured by our current
experimental setup.

Because prior experiments showed that the learned heuristic
was superior to the designed heuristic, further experiments
with the designed heuristic were not conducted.

Experiment 4: Using a deeper tree of paths

Experiment 3 showed how assessment of a broader tree of
paths becomes viable and shows high performance with the
addition of the learned heuristic. The next experiment tests
whether a deeper tree can also yield promising results. We
add an additional set of 11 arcs to the previous leaf nodes in
the tree, extending the planning horizon of the rover to nine
meters ahead.

Merely adding another depth of 11 arcs to the baseline tree
(14 turns× 11 arcs× 11 arcs = 1694 paths), would cause the
time required to analyze the tree to multiply by 11. Instead,
we evaluate the tree up to the depth of two arcs, prune away
all but the lowest cost paths within each set of 11 depth-3 arcs,
making a tree of (14 turns×11 arcs×1 arc =) 154 paths, then
extending and evaluating 11 arcs from the remaining paths.
This combats the branching factor, keeping the number of
possible paths the same and roughly doubling the amount of
computation required to analyze the paths, in line with the
twice-as-large tree from Experiment 3.

The results from this approach were poor. The success rate
in complex terrain tumbled to 59.9%, and no other success
metrics improved relative to Experiments 2 or 3. Additional
complexity may have caused trial timeouts to be more likely.
These losses were not offset by gains in planning; stereo
estimation of terrain nine meters away may be too inaccurate

or extending the paths to nine meters may not be useful
when slip is accumulated over that distance. Better pruning
strategies may yield better results in future experiments.

6. CONCLUSIONS

Our experiments show that heuristics for terrain safety can
improve the performance of the baseline ENav software.

All the heuristic experiments showed significantly increased
path efficiency in complex terrain. This may be because
the ACE algorithm is likely to find narrow safe paths that
disappear once slip occurs, causing backtracking or tight
turns. In contrast, the heuristics form a smoother estimate
and steer the rover away from such problematic areas.

The experiments with no minimum number of evaluations per
planning cycle showed that the computation time associated
with ACE evaluations can be greatly reduced with only small
decreases in success rate. The success rate can be increased
by using the freed computation time to evaluate a broader
set of paths, yielding results superior to the baseline in
every performance metric. Other methods might leverage the
computation for even better results.

We found that the ML model outperformed the hand-designed
heuristic in most of the performance metrics in most of
the experiments, but the designed heuristic showed potential
improvements compared to the baseline ENav performance.
The designed heuristic could be considered for further testing
in representative hardware and for architectures where ML
inference can not be deployed.

An important caveat to our claims of improved performance
is that gains in computation time are measured purely in
terms of reduced ACE evaluations. If the time savings are
completely consumed by increased time used to calculate the
heuristics, these claims are no longer valid. We hope for
opportunities to more accurately test the performance in a
flight-like computing environment.

More broadly, these results offer an example of how ML can
be used to improve the performance of a safety-critical flight
system without sacrificing safety guarantees. While the ACE-
estimating model is a black box, the result is used only for
ranking, not for safety-critical decisions. Any path returned
from ENav has passed a safety evaluation by the true ACE
algorithm. This method could be applied to various critical
robotic or spaceflight tasks, such as scheduling or kinematics,
where the range of possible solutions is vast and calls for
an inference-based approach, but the result can be evaluated
by a known traditional algorithm that can be verified and
validated.
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