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Abstract 

Background:  Conventional modality requires several days observation by Holter monitor to differentiate atrial fibril‑
lation (AF) between Paroxysmal atrial fibrillation (PAF) and Non-paroxysmal atrial fibrillation (Non-PAF). Rapid and 
practical differentiating approach is needed.

Objective:  To develop a machine learning model that observes 10-s of standard 12-lead electrocardiograph (ECG) for 
real-time classification of AF between PAF versus Non-PAF.

Methods:  In this multicenter, retrospective cohort study, the model training and cross-validation was performed on 
a dataset consisting of 741 patients enrolled from Severance Hospital, South Korea. For cross-institutional validation, 
the trained model was applied to an independent data set of 600 patients enrolled from Ewha University Hospital, 
South Korea. Lasso regression was applied to develop the model.

Results:  In the primary analysis, the Area Under the Receiver Operating Characteristic Curve (AUC) on the test set for 
the model that predicted AF subtype only using ECG was 0.72 (95% CI 0.65–0.80). In the secondary analysis, AUC only 
using baseline characteristics was 0.53 (95% CI 0.45–0.61), while the model that employed both baseline characteris‑
tics and ECG parameters was 0.72 (95% CI 0.65–0.80). Moreover, the model that incorporated baseline characteristics, 
ECG, and Echocardiographic parameters achieved an AUC of 0.76 (95% CI 0.678–0.855) on the test set.

Conclusions:  Our machine learning model using ECG has potential for automatic differentiation of AF between PAF 
versus Non-PAF achieving high accuracy. The inclusion of  Echocardiographic parameters further increases model per‑
formance. Further studies are needed to clarify the next steps towards clinical translation of the proposed algorithm.
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Introduction
Atrial fibrillation (AF) is the most common cardiac 
arrhythmia and is associated with increased risk of 
stroke, heart failure, and mortality [1–3]. With an aging 
population, AF is estimated to effect over 17.9 mil-
lion patients in Europe by 2060 and 6–12 million in 
the USA by 2050 [1]. This increased incidence of AF 
results in soaring health care costs [1]. AF is classified 
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into Paroxysmal (PAF) and Non-paroxysmal atrial 
fibrillation (Non-PAF) subtypes based on the duration 
of episodes [4]. Non-PAF is further classified into per-
sistent and long-standing atrial fibrillation. The classi-
fication of subtypes of AF is critical to determine the 
proper management of patients with AF. For exam-
ple, according to the 2017 HRS/EHRA/ECAS/APHRS 
report [4], catheter ablation in symptomatic PAF is 
strongly supported by the evidence (i.e., class I indica-
tion), but catheter ablation is of questionable value for 
Non-PAF patients (i.e., class IIa/IIb indication). The 
outcome of catheter ablation is also significantly supe-
rior to patients with PAF than to those with non-PAF. 
Therefore, earlier diagnosis of symptomatic PAF could 
enable more prompt identification of those patients 
most likely to benefit from catheter ablation. Further-
more, the incidence rate of stroke varies significantly by 
AF subtype [4]. Patients with Non-PAF have a higher 
incidence of stroke and increased mortality compared 
to those with PAF. Thus, patients with different AF sub-
types require different plans for managing their com-
plications. Current guidelines state that distinguishing 
between PAF and Non-PAF requires continuous 24  h 
Holter ECG monitoring for 7  days [4]. However, in 
practice it is not plausible to perform cardiac rhythm 
monitoring over such a long time period for most 
patients. Therefore, the development of a rapid and 
practical classification method may provide benefits 
in making decisions regarding different management 
plans according to the patient’s subtype of AF. Recent 
advances in machine learning for ECG analysis suggest 
that an algorithm might be able to automatically iden-
tify AF subtypes without prolonged monitoring. An AI 
model was developed to analyze ECG recorded by sin-
gle-lead monitoring that appeared to have better per-
formance than cardiologists when classifying 15 types 
of arrhythmia including AF [5]. A promising algorithm 
further predicted patients who currently do not exhibit 
AF on ECG and will later develop AF [6]. However, 
it should be noted that most prior work on machine 
learning for ECG analysis has relied on techniques such 
as neural networks that do not provide enough inter-
pretability to elucidate pathophysiologic correlations 
between clinical features and the disease. Furthermore, 
the studies using a machine learning model to classify 
AF subtypes into PAF and Non-PAF are limited.

Therefore, we proposed a machine learning model 
that uses 12-lead surface ECG for real-time classifica-
tion of subtypes with AF into PAF versus Non-PAF. We 
hypothesized that pathophysiologic differences between 
PAF and Non-PAF can be captured by different patterns 
of fibrillatory waves within 10 s of 12-lead surface ECG, 
which can enable more rapid differentiation of PAF from 

Non-PAF. We applied interpretable computational algo-
rithms to identify pathophysiologic characteristics of 
subtypes of atrial fibrillation in ECG data.

Methods
Participants
We retrospectively selected a total 1341 patients with 
AF from two University Hospitals: 741 from Severance 
Hospital, Seoul, South Korea and 600 from Ewha Univer-
sity Hospital, Seoul, South Korea from January 2008 to 
December 2017 (eFigure 1, Supplement). This study was 
approved by the Institutional Review Boards of Sever-
ance Hospital (IRB number: 2017–2301-002) and Ewha 
University (IRB number: 2017–10-010–002). At the 
enrollment stage, all patient demonstrated atrial fibrilla-
tion on ECG.

Training/validation cohort
We included 741 patients with AF at Severance Hospital, 
Seoul, South Korea. We collected 10 seconds of surface 
12-lead ECGs, which was recorded digitally before any 
treatments of AF including cardioversion or catheter 
ablation. Patients had no history of anti-arrhythmic med-
ication within 14 days before ECG. The exclusion crite-
ria include patients with past medical history of (1) valve 
disease or valve surgery, (2) coronary bypass surgery, or 
(3) structural heart disease. No technical exclusion cri-
teria were included in order to guarantee stability of our 
algorithm.

Test cohort
We validated the predictive value of our model with an 
independent test cohort. The test cohort consisted of 600 
patients with AF at Ewha University school of Medicine, 
Seoul, South Korea. The ECG acquisition process and 
exclusion criteria were identical to those of the training/
validation cohort.

Definition of Atrial Fibrillation classification
AF was diagnosed if AF was detected on ECG obtained 
from outpatient’s clinic or Holter reports according to 
guidelines [4]. Then, AF is classified into Paroxysmal, per-
sistent, or long-standing atrial fibrillation by the ACC/
AHA/ESC guideline [4]. Persistent or long-standing atrial 
fibrillation is defined as Non-PAF.

Baseline characteristics and echocardiographic parameters
Baseline characteristics and echocardiographic param-
eters were extracted electronically from each patients’ 
EMR (electrical medical record). The baseline character-
istics were: CHA2DS2-VASc Score [4], age, sex assigned 
at birth, and history of congestive heart failure, hyperten-
sion, diabetes mellitus, stroke or TIA, and/or vascular 
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disease. At the point of AF diagnosis, each patient was 
assessed by echocardiogram to assess the heart anatomy 
including Left atrium (LA) volume, Left Ventricle ante-
rior–posterior (AP) diameter, and Left Ventricle Ejection 
fraction.

Electrocardiogram (ECG)
In contrast to previous research using 24 hours Holter 
ECG [7–9], our analysis relies on only 10 seconds of 
routine 12-lead surface ECG. Temporal analysis [7, 8, 
10, 11], frequency analysis [8, 9, 12, 13] or both [14–20] 
were considered to quantify AF global organization of 
ECG (eMtehod, Supplement). It was analyzed using con-
ventional ECG parameters including Fibrillatory Wave 
Amplitude (FWA) [7, 14, 18, 20], Sample Entropy [8, 
10, 11, 14, 17, 19, 21], Dominant Frequency [8, 9, 14, 18, 
20], Spectral Entropy [16, 17, 19, 20] and Organization 
Index [13, 20]. Here, we propose the Spectral Power Ratio 
(SPR), the ratio of the power distribution in a lower fre-
quency range versus a higher frequency range, calculated 
as

where fi is the cut-off value to divide the power into a 
lower frequency range versus a higher frequency range 
for the i-th lead (eFigure 2, Supplement). An initial value 
of fi was set as 10  Hz and updated during the training 
process.

Obtaining raw ECG data
Surface 12-Lead ECGs were recorded digitally with a 250 
or 500 Hz sampling frequency using an electrophysiology 
recording system (GE Healthcare, Marquette, MAC5500, 
Waukesha, WI). ECG recording was composed of 10  s 
ECG data. The data were exported from the recording 
system to XML format and converted into CSV data file 
through a custom Python program.

ECG preprocessing
ECG recordings were preprocessed to reduce noise 
and interference for analysis of fibrillatory wave. All 
signal was upsampled to 1000  Hz for enhancing time 
alignment accuracy for later QRST complex subtrac-
tion [22]. Pan Tompkins algorithm was applied for 
automatic QRS detection using Butterworth bandpass 
filter (order: 3) [23, 24]. To avoid baseline wandering 
[25], high frequency noise [26] and possible powerline 
interference [27], ECG signal was filtered by band-pass 
filter between 1 and 50 Hz (6 order Chebyshev, type 2, 
20-dB stop-band attenuation). Ventricular signal was 
cancelled by adaptive singular value QRST cancellation 

SPRi =

∫
∞

f p(f )df
∫ f
0
p(f )df

[28, 29]. This method forms a matrix having multiple 
columns composed of QRST signal, and applies Singu-
lar Value Decomposition [30] to extract an eigen-vector 
of the matrix for QRST templates. Then, the template 
is multiplied by an adaptive coefficient, and subtracted. 
After QRST cancellation, the signal was filtered by an 
additional 3 Hz high-pass filter to suppress interference 
caused by possible residual T wave [31].

Statistical analysis and prediction model based on machine 
learning
Continuous variables were reported as the mean ± the 
standard deviation, whereas categorical variables 
were reported as frequencies (percentages). Pearson 
Chi-square tests were applied for categorical vari-
ables, while Wilcoxon tests were used for continuous 
variables.

The machine learning algorithm was trained on the 
training/validation cohort. As the primary analysis, 
the  ML model was trained on  only ECG parameters 
from 12 lead. As the secondary analysis, the ML model 
was trained on (1) ECG parameters from 12 leads, (2) 
baseline characteristics, and (3) echocardiographic 
parameters.

Least absolute shrinkage and selection operator 
(LASSO) regression was applied to fit the β coefficients 
of the predictive models [32]. Ten-fold cross-validation 
was performed on the training/validation cohort. The 
maximum number of nonzero coefficients of the lasso 
coefficients was 25; the maximum number of iterations 
was 1000; and the convergence threshold of the coordi-
nate descent algorithm was 0.0001. Each numeric varia-
ble was standardized with zero mean and unit standard 
deviation.

The predictive model was evaluated in terms of the 
Area Under Curve (AUC) of the Receiver Operat-
ing Characteristic (ROC) curve using an independent 
test cohort. In addition, the calibration curve and its 
c-index were evaluated. For univariate and multivari-
ate analysis, logistic regression was performed by using 
a limited number of variables selected by the Lasso 
regression for the predictive model. For univariate and 
multivariate analysis, all continuous variables were 
dichomatized into binary values (low vs. high) using the 
median as the cut-off value. All hypothesis tests were 
2-sided, and a 2-sided p < 0.05 indicated statistical sig-
nificance. Calculations were performed using MATLAB 
2019 (Mathworks, CA) and SAS version 9.3. Figure  1 
provides an overview of our machine learning model 
that was built using ECG parameters from 12-lead 
surface ECG, baseline characteristics, and echocardio-
graphic parameters.
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Results
Table  1 provides the baseline characteristics and 
echocardiologic parameters for patients in the train-
ing/validation cohort and the test cohort. The training/

validation cohort consisted of 437 patients with Non-
PAF and 334 patients with PAF. There was no sta-
tistically significant difference between the baseline 
characteristics of the two groups, except for history 

Fig. 1  Machine learning model using 10 s, standard 12 lead ECG, baseline characteristics, and echocardiographic parameters. Electrocardiography, 
ECG; non-paroxysmal atrial fibrillation, non-PAF; paroxysmal atrial fibrillation, PAF

Table 1  Baseline characteristics for patients with PAF and non-PAF in a training/validation cohort and a test cohort

Non-paroxysmal atrial fibrillation, non-PAF; paroxysmal atrial fibrillation, PAF

Feature Training and validation set
(Hospital A)

Test set
(Hospital B)

PAF
(n = 334)

Non-PAF (n = 437) p value PAF
(n = 103)

Non-PAF (n = 497) p value

Baseline characteristics

Age, year 58 (12.1) 58 (10.8) 0.75 69 (10.1) 68 (11.4) 0.42

Female gender, n (%) 91 (27%) 95 (21%) 0.09 51 (49%) 241 (48%) 0.91

Chronic Heart Failure, n (%) 21 (6%) 70 (16%)  < 0.001 20 (20%) 97 (19%) 0.99

Hypertension, n (%) 164 (49%) 205 (46%) 0.56 59 (57%) 281 (56%) 0.91

Diabetes, n (%) 49 (15%) 79 (18%) 0.2 24 (23%) 121 (24%) 0.89

Cerebrovascular accident (incl. TIA), n (%) 39 (6%) 54 (6%) 0.71 21 (20%) 112 (22%) 0.69

Vascular disease, n (%) 41 (12%) 55 (13%) 0.91 5 (4%) 10 (2%) 0.15

CHA2DS2Vasc Score 1.7 (1.5) 1.73 (1.6) 0.94 2.74 (1.5) 2.75 (1.5) 0.91

Echocardiographic factors

Left Atrium size, mm 40.8 (5.8) 44.4 (5.8)  < 0.001 45.7 (8.1) 53.4 (9.5)  < 0.001

Left Atrium volume, mm3 35.1 (12.6) 43.3 (13.9)  < 0.001 42.8 (20.2) 62.6 (37.9)  < 0.001

Left Ventricular Ejection Fraction, % 65.8 (39.6) 60.8 (8.8) 0.01 56.8 (13.6) 58.8 (24.6) 0.41
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of congestive heart failure. 70 (16%) of Patients with 
Non-PAF had a history of congestive heart failure while 
only 21 (6%) of patients with PAF did (p < 0.001). For 
the echocardiographic parameters, the mean [SD] of 
the left atrium anterior–posterior diameter was larger 
in patients with Non-PAF (44.4 [5.8] mm) than in 
those with PAF (40.8 [5.8] mm) (p < 0.001). Similarly, 
left atrium volume was larger in patients with Non-
PAF (43.3 [13.9] mm3) than in those with PAF (35.1 
[12.6] mm3; p < 0.001). The left ventricle ejection frac-
tion was lower in patients with Non-PAF (60.8 [8.8] %) 
than in those with PAF (65.8 [39.6] %; p = 0.01). The 
test cohort consisted of 103 patients with PAF and 497 
patients with Non-PAF. None of the baseline character-
istics were statistically significantly different between 
PAF and Non-PAF. Analysis of the echocardiographic 
parameters demonstrated that patients with Non-PAF 
had larger left atrium diameter (p < 0.001) and larger 
left atrium volume (p < 0.001) than did patients with 
PAF, which is consistent with what we observed for 
the training/validation cohort. However, no significant 

difference was observed for left ventricular ejection 
fraction.

Table 2 demonstrates a mean (SD) of ECG parameters 
from Lead I, II, and III among 12-leads. In the training/
validation cohort, a mean [± SD] of SPR of the lead I was 
higher in patients with Non-PAF (2.78 [0.50] mm) than 
those with PAF (2.63 [0.45]) (p < 0.001). FWA of the lead 
II was lower in patients with Non-PAF (26.4 [12.9] mm) 
than those with PAF (35.2 [15.8]) mm (p < 0.001). DF of 
the lead III was higher in patients with Non-PAF (6.4 
[2.1] Hz) than those with PAF (6.0 [1.8] Hz; p < 0.001). 
OI of the lead I was lower in patients with Non-PAF 
(0.43 [0.09]) than those with PAF (0.46 [0.10]; p < 0.001). 
Spectral entropy of the lead I was higher in patients with 
Non-PAF (5.45 [6.0]) than those with PAF (5.28 [0.60]; 
p < 0.001). RR interval of the lead I was longer in patients 
with Non-PAF (865.5 [203.6] micro-sec) than those with 
PAF (766.2 [190.5] msec; p < 0.001). In the test cohort, all 
selected ECG parameters demonstrated similar trends 
from the training/validation cohort.dd.

In the primary analysis, the performance of ML model 
using only ECG to differentiate PAF from non-PAF was 

Table 2  ECG parameters for patients with PAF or non-PAF in a training/validation cohort or a test cohort

A mean, a standard deviation, and p value were demonstrated. For clarity, only Lead I, II, and III are presented out of 12-leads. p value is tested by t-test

Non-paroxysmal atrial fibrillation, non-PAF; paroxysmal atrial fibrillation, PAF

ECG parameters Lead Training and validation set
(Hospital A)

Test set
(Hospital B)

PAF
(n = 334)

Non-PAF
(n = 437)

p value PAF
(n = 103)

Non-PAF
(n = 497)

p value

Fibrillatory wave amplitude, uV I 24.6 (11.6) 19.2 (9.2)  < .001 22.7 (12.5) 18.3 (11.1)  < .001

Sample entropy I −.01 (1.00) −.02 (.96) .850 .02 (1.00) −.02 (1.02) .775

Dominant frequency, Hz I 5.61 (1.62) 6.05 (3.20) .024 5.34 (1.32) 5.83 (1.84) .011

Organization index I .46 (.10) .43 (.09)  < .001 .45 (.08) .42 (.09) .027

Spectral entropy I 5.28 (.60) 5.45 (.60)  < .001 5.35 (.50) 5.49 (.54) .020

RR interval, mm I 766.0 (190.7) 866.4 (203.8)  < .001 647.6 (184.8) 750.9 (188.8)  < .001

Spectral power ratio I 2.63 (.45) 2.78 (.50)  < .001 2.61 (.34) 2.73 (.46) .008

Fibrillatory wave amplitude, uV II 35.2 (15.8) 26.4 (12.9)  < .001 36.2 (21.9) 25.2 (16.2)  < .001

Sample entropy II .04 (1.07) .04 (.95) .912 −.01 (.94) .06 (1.00) .546

Dominant frequency, Hz II 5.75 (1.19) 5.95 (1.54) .052 5.50 (1.42) 5.94 (1.16)  < .001

Organization index II .49 (.09) .47 (.09) .001 .48 (.09) .45 (.08) .007

Spectral entropy II 4.91 (.62) 4.98 (.58) .098 5.04 (.63) 5.20 (.56) .010

RR interval, mm II 766.2 (190.7) 866.0 (203.3)  < .001 647.3 (185.1) 750.6 (189.5)  < .001

Spectral power ratio II 2.58 (.47) 2.66 (.48) .033 2.59 (.41) 2.75 (.43)  < .001

Fibrillatory wave amplitude, uV III 40.3 (19.6) 30.1 (16.3)  < .001 40.4 (29.6) 30.4 (26.1)  < .001

Sample entropy III .03 (.98) −.01 (1.03) .600 − .08 (.97) .06 (1.01) .199

Dominant frequency, Hz III 5.98 (1.84) 6.37 (2.08) .006 5.82 (1.76) 6.17 (1.34) .021

Organization index III .45 (.10) .44 (.09) .119 .45 (.09) .42 (.08) .005

Spectral entropy III 5.17 (.68) 5.21 (.62) .476 5.23 (.59) 5.35 (.59) .046

RR interval, mm III 766.1 (190.4) 866.2 (203.2)  < .001 644.5 (185.4) 750.9 (192.5)  < .001

Spectral power ratio III 3.17 (.64) 3.30 (.62) .006 3.04 (.50) 3.21 (.51) .002
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analyzed  (ECG-only model). The model was trained 
using by  ECG data only from the  training/validation 
cohort. In the performance evaluation using the second-
ary cohort (Test cohort), the model achieved AUC of 0.72 
(95% CI, 0.65–0.80).

As the secondary analysis, Fig.  2 illustrates the 
cross-institutional discrimination properties of three 

different prediction models. Only baseline character-
istics were applied to build the Model 1. Both base-
line characteristics and ECG parameters were applied 
to build Model 2. The baseline characteristics, ECG 
parameters, and echocardiographic parameters were 
applied to build Model 3. The performance of ROC 
curves increased in the order of Model 1 (0.53; 95% CI, 
0.45–0.61; p < 0.001) Model 2 (0.72; 95% CI, 0.65–0.80; 
p = 0.01), and Model 3 (AUC = 0.76; 95% CI, 0.678–
0.855 reference). The Model 3 achieves 0.756 of sensi-
tivity and 0.603 of specificity (eTable 1, Supplement) in 
the cross-institutional validation. A generalized logistic 
regression with lasso regularization was used to select 
the highly predictive variables out of the 95 variables 
and to build a prediction model on the training/vali-
dation cohort (eFigure  3, Supplement). The prediction 
model was built with the 8 selected variables by lasso. 
The 8 selected variables were composed of left atrium 
AP diameter, left ventricle volume, FWA of Lead I, III, 
and aVR, a RR interval of V4, and SPR of Lead 1 and 
V2 (eTable 2, Supplement). The beta coefficients of left 
atrium AP diameter, left ventricle volume, a RR interval 
of V4, and SPR of Lead 1 and V2 had a positive ampli-
tude in the prediction model. The beta coefficient for 
FWA of Lead I, III, and aVR had a negative amplitude. 
Baseline characteristics were not selected for the pre-
diction model. The prediction model achieved ROC of 
0.763 (95% CI 0.678–0.855) with a sensitivity of 0.756 
and a specificity of 0.603 on the test cohort. A calibra-
tion curve of the prediction model demonstrated the 
c-index of 0.7622 on the test cohort (eFigure  4, Sup-
plement). In this analysis, the baseline characteristic 
does not have any discriminating power to differentiate 
PAF from non-PAF: there is no statistically difference 
(p > 0.05) of AUC between “ECG-only model” vs. Model 
2 (baseline characteristic + ECG).

Fig. 2  AUC of predictive model to classify PAF and non-PAF using 
test cohort. Models are classified by predictors included for training/
validation cohort. Model 1 was trained using baseline characteristics. 
Model 2 was trained using baseline characteristics and ECG 
parameters. Model 3 was trained using baseline characteristics, ECG 
parameters, and echocardiographic parameters. Area under the 
receiver operating characteristic Curve, AUC; electrocardiography, 
ECG; non-paroxysmal atrial fibrillation, non-PAF; paroxysmal atrial 
fibrillation, PAF

Table 3  Beta-coefficients, OR (95% CI), and p values of multivariate logistic regression for non-PAF compared to PAF. Eight variables 
listed above were selected by Lasso regression

Area under the receiver operating characteristic Curve, AUC; confident interval, CI; electrocardiography, ECG; non-paroxysmal atrial fibrillation, non-PAF; paroxysmal 
atrial fibrillation, PAF

Univariate analysis** Multivariate analysis**

Variables* β-coefficient OR (95% CI) p value β-coefficient OR (95% CI) p value

Left Atrium Anterior–Posterior diameter 1.20 3.31 (2.45–4.49)  < .001 0.74 2.11 (1.46–3.05)  < .001

Left Atrium volume 1.29 3.63 (2.68–4.90)  < .001 0.83 2.28 (1.59–3.29)  < .001

Fibrillatory wave amplitude (Lead II) − 1.11 0.33 (0.24–0.44)  < .001 − 0.33 0.72 (0.48–1.08) .110

Fibrillatory wave amplitude (Lead III) − 1.42 0.24 (0.18–0.33)  < .001 − 0.94 0.39 (0.27–0.58)  < .001

Fibrillatory wave amplitude (aVR) − 0.95 0.39 (0.29–0.52)  < .001 − 0.37 0.69 (0.48–0.98) .040

RR interval (V4) 0.79 2.20 (1.64–2.94)  < .001 0.27 1.31 (0.92–1.86) .131

Spectral Power Ratio (Lead 1) 0.55 1.73 (1.30–2.31)  < .001 0.33 1.39 (1.00–1.93) .054

Spectral Power Ratio (V2) 0.51 1.66 (1.24–2.21)  < .001 0.40 1.50 (1.08–2.08) .016
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Table  3 demonstrates the estimated beta coefficients, 
ORs (95% CI), and p value by univariate and multivariate 
logistic regression analysis for the prediction model with 
8 selected variables out of all parameters including base-
line characteristics, ECG, and echocardiographic param-
eters. The multivariate OR for Non-PAF was 2.11 (95% CI 
1.46–3.05) for LA diameter, 2.28 (95% CI 1.59–3.29) for 
LA volume, 1.50 (95% CI 1.08–2.08) for SPR of V2, 0.39 
(95% CI 0.27–0.58) for FWA of Lead III, 0.69 (95% CI 
0.48–0.98) for FWA of aVR, and 0.72 (95% CI 0.48–1.08) 
for FWA of Lead II.

Discussion
ECG is a key clinical modality for managing patients with 
atrial fibrillation [4]. This study is the first to develop a 
predictive model based on machine learning using 10  s 
of standard 12 lead ECG to classify subtypes of AF into 
PAF and Non-PAF. A fast, low cost method for classify-
ing subtypes of atrial fibrillation would enable clinicians 
to decide among different treatment plans to manage 
patients according to their atrial fibrillation subtype. The 
successful cross-institutional validation of our predictive 
model supports the general relevance of the model for 
differentiating between PAF and Non-PAF.

This study showed that Non-PAF has a lower FWA, 
a higher DF, a lower OI, higher Spectral entropy, and 
longer RR interval as compared to PAF. These differences 
between Non-PAF and PAF can be interpreted in terms 
of their pathophysiologic implications. Atrial fibrilla-
tion leads to atrial remodeling and fibrosis [33, 34]. This 
abnormality can result in a higher number of waves and 
breakthroughs [35]. This structural heterogeneity may be 
associated with increased cancellation of electric signals 
causing low FWA with a complex AF and prolonged RR 
interval [35]. In addition, electrophysiological changes of 
myocytes are accompanied by structural remodeling [36]. 
This electrophysiological change results in shortening of 
atrial refractory periods causing increased left atrial rate 
[37], circle reentry [38], and multiple atrial sites gener-
ating electrical activities [39]. These changes may result 
in a lower frequency of fibrillatory wave, higher DF [18], 
lower OI [31], and lower Spectral Entropy [16].

In our study, SPR was the sole frequency domain 
parameter selected by Lasso regression in the predic-
tive model. Among the frequency domain parameters, 
DF only considers a single frequency having maxi-
mum power in Power Spectral Density (PSD). To over-
come this limitation of DF, OI considers several peaks 
in PSD with its neighbor frequency [20]. In contrast 
to DF or OI, SPR extracts a ratio of the power in the 
high frequency range to the power in the low frequency 
range in order to differentiate AF subtypes. From our 

analysis, in Non-PAF power tends to shift from the 
lower frequency range to the higher frequency range, 
as compared to PAF. This power shift can be explained 
by the structural and electrophysiologic remodeling of 
atriums in Non-PAF compared to PAF [37, 38]. Using 
those ECG parameters, the ML model only using ECG 
achieved a fair performance to differentiate PAF from 
non-PAF.

In this study, we further observed that the per-
formance of predictive models on ECG parameters 
improved with the addition of echocardiographic 
parameters. Although it has been reported that echo-
cardiographic parameters are different between 
patients with Non-PAF and those with PAF50,51, prior 
work has not investigated the independent discrimi-
nating power of echocardiographic parameter for clas-
sifying Non-PAF vs. PAF when combined with ECG 
parameters. Noticeably, our predictive model selected 
ECG parameters from different surface ECG leads. This 
suggests the importance of incorporating a diversity of 
leads to improve the performance of predictive models.

There are strengths to be noted. First, we developed 
a machine learning model for rapid and practical dif-
ferentiating between PAF and Non-PAF. Notably, our 
machine learning model needs only 10  s monitoring 
by electrocardiograms to differentiate AF subtypes, 
whereas the traditional modality requires several days 
monitoring by Holter monitor. Second, our machine 
learning model is interpretable, our model therefore 
enables us to explain the structural and electrophysi-
ologic remodeling of atriums in AF patients. Third, the 
predictive model incorporated information from both 
ECG and Echocardiography, the two most common 
cardiac assessment modalities, to build a single predic-
tion model that demonstrated a synergic improvement 
in performance. Lastly, the cross-institutional valida-
tion supports the reliability of the predictive model.

The limitation of our study was known differences 
between the training/validation cohort and the test 
cohort. The baseline characteristics and echocardio-
graphic parameters were statistically different (p < 0.05). 
However, noticeably, ECG parameters demonstrated 
similar statistical characteristics between the training/
validation cohort and the test cohort. 49 (58%) of ECG 
parameters out of 84 demonstrated no significant dif-
ference (> 0.05) between patients with PAF in a train-
ing/validation cohort and patients with PAF in a test 
cohort. This guarantees reliability of ECG parameters 
to classify subtypes of atrial fibrillation into PAF and 
Non-PAF. In addition, our cohort is only consisted of 
Asian people. Additional validation with other racial 
groups is needed to determine if the model perfor-
mance generalizes. In addition, even though different 
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levels of burden or different subtype of atrial fibrillation 
has  been studied in prior research [4], this study does 
not demonstrate that the AF subtype which classifica-
tion by ML algorithm is associated with different AF 
burden such as a risk of stroke. Furthermore, given the 
possible progressive nature of AF within  paroxysmal, 
persistent, and long-standing, it may be difficult to esti-
mate the clinical burden or risk based on the subtype 
of AF classified by an  ML-based algorithm. Therefore, 
a long-term follow-up study using a prospective cohort 
is warranted.

Conclusion
The reported predictive model based on machine learn-
ing using 12 lead surface ECG can effectively classify 
subtypes of atrial fibrillation into Non-PAF and PAF. 
Furthermore, the predictive model achieved the high-
est performance when the available clinically relevant 
information including ECG, echocardiogram, and 
baseline characteristics, were incorporated. This study 
suggests the potential for predictive models based on 
machine learning to combine different clinical modali-
ties, including ECG and echocardiogram. Furthermore, 
the predictive model enables interpretation in terms of 
pathophysiological differences between PAF and Non-
PAF. These results may have important implications 
for the management of patients with atrial fibrillation 
according to their subtypes of atrial fibrillation.
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