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1. Introduction

While self-report pain intensity ratings are the gold standard in clinical pain assessment, 

they are highly variable, inherently subjective in nature, and significantly influenced by 

multidimensional factors. The lack of objective biomarkers for pain has contributed to 

suboptimal chronic pain management (e.g., opioid public health crisis) [26]. Thus, research 

focused on the development of quantitative, objective biomarkers/predictors alongside self-

report to aid diagnosis, estimate prognosis, and predict treatment efficacy is of increasing 

importance to combat chronic pain [24,30,32].

Growing consensus has suggested that altered central nervous system processing can support 

and maintain abnormal pain perception in chronic pain, implicating aberrant activity and 

connectivity of multiple functional brain networks, including default mode, salience, and 

2Corresponding author: Vitaly Napadow, Address: Martinos Center for Biomedical Imaging, Building 149, suite 2301, Charlestown, 
MA 02129. Phone: +1 617-724-3402. Fax: +1-617-726-7422. vitaly@mgh.harvard.edu.
Author contributions: V.N., B.R.R., R.L.G., T.J.K., J.Kong, C.B., A.D.W., M.L.L., V.J.S., R.R.E., and J.Kim designed study. J.L., 
I.M., A.O., C.J., J.G., and S.T.C. performed research (acquisition of data). J.L., I.M., J.Kim, and V.N. analyzed data. J.L., I.M., and 
V.N. wrote the paper. Critical revision: All authors discussed the results and contributed to the final manuscript.

Competing interests: No conflict with respect to financial interests.

HHS Public Access
Author manuscript
Pain. Author manuscript; available in PMC 2020 March 01.

Published in final edited form as:
Pain. 2019 March ; 160(3): 550–560. doi:10.1097/j.pain.0000000000001417.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sensorimotor networks [3,20,21,43], as well as amplification of sensory input to the brain 

[28]. In addition, altered processing extends to the autonomic nervous system; a recent meta-

analysis found that high frequency heart rate variability (HFHRV) is reduced in chronic pain 

patients, suggesting that diminished parasympathetic modulation is also associated with 

chronic pain [35].

As brain imaging and autonomic data could potentially capture objective measures of the 

pain experience, multivariate machine-learning techniques have been gaining attention. Such 

techniques use “features” extracted from a set of clinically relevant data, allowing computer 

algorithms to “learn” from those features and form a predictive model. This model can then 

be applied to new datasets or individuals to diagnostically predict disease states or/and 

treatment efficacy [13]. Towards this goal, multivariate machine-learning techniques have 

used neuroimaging data to propose a brain signature for evoked experimental pain [39]. 

Neuroimaging-based pain prediction, however, has been in a discovery phase and mostly 

limited to discrimination of brain activity patterns contrasting noxious stimulus-evoked 

painful versus non-painful states in healthy, pain-free individuals [8,9,37] and estimation of 

experimental pain ratings [11,37,39]. A few prediction studies attempted to discriminate 

chronic pain patients from healthy controls [23,38], however, patients and controls can differ 

on much more than pain experience (e.g., mood, drug levels, etc.).To our knowledge, no 

study has attempted to classify clinical pain states (i.e. higher vs. lower clinical pain within 

an individual) or predict clinical pain ratings at the time of data acquisiton, which could 

provide greater clinical relevance. Moreover, previous studies have reported only modest 

accuracy and to our knowledge, no studies have tried to combine multimodal (e.g., central 

and autonomic) parameters to boost prediction of clinically relevant pain states using 

machine-learning techniques.

We built a multivariate machine-learning model that learns from central and autonomic 

features, and then classifies clinical pain states and predicts pain intensity. Importantly, in 

order to control clinical pain states, our approach modulated pain in chronic low back pain 

(cLBP) patients through physical maneuvers aimed to exacerbate their low back pain 

[21,43], thereby creating experimentally controlled lower and higher clinical pain states. 

Multimodal features included resting-state functional connectivity of the back representation 

in primary somatosensory cortex [17], whole-brain regional cerebral blood flow (rCBF) 

[21,27,43], and HFHRV [35]. Our novel multimodal combinatorial machine-learning 

approach was then applied to classify and predict clinical pain intensity.

2. Methods

2.1. Patients

We enrolled 71 patients suffering from cLBP meeting Quebec Task Force Classification 

System categories I-II (i.e., patients were unlikely to have significant nerve root 

involvement, stenosis, or mechanical instability [2,22]) as confirmed by the study physician 

and/or review of medical records. All patients were screened with the following inclusion 

criteria for eligibility: (a) age between 18 and 60 years old with a diagnosis of chronic low 

back pain (cLBP, duration > 6 months) by physician, (b) average low back pain intensity > 

4/10 during the past two weeks prior to consent (0: no pain, 10: most pain imaginable), (c) 

Lee et al. Page 2

Pain. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fluent English, (d) ability to provoke or exacerbate clinical back pain by performing physical 

maneuvers. Eligibility was also assessed with the following exclusion criteria: (a) specific 

causes of back pain (such as cancer, fractures, spinal stenosis, and infections), (b) radicular 

pain extending below the knee, (c) complicated back problems such as prior back surgery, 

intent to undergo surgery at time of the study, and unresolved medical legal/disability/

workers compensation claims in relation to cLBP, (d) major systemic or neuropsychiatric 

disease that might confound interpretation of results (e.g. severe fibromyalgia, rheumatoid 

arthritis, major psychiatric disorders, psychoses, seizure disorder, severe cardiorespiratory or 

nervous system diseases, etc.), (e) self-reported substance abuse disorder in the past two 

years, (f) contraindications to MRI scanning (e.g. cardiac pacemaker, metal implants, 

claustrophobia, and pregnancy), or (g) use of prescription opioids greater than 60 mg 

morphine equivalents per day or steroids for pain.

Successful maneuver-related pain increase and available data for all model parameters were 

limited to 53 patients, therefore we also limited classification, regression, and parameter 

evaluation and comparison to these 53 patients only (age = 37.37 ± 11.29 years old, mean ± 

SD, 33 female, pain duration=7.63 ± 7.42 years, range: 0.5 – 30). See Fig. S1 under 

Supplementary Materials for flowchart outlining data collected, excluded, and analyzed. All 

patients were informed of the entire experimental protocol and provided written informed 

consent. The IRB of Partners Human Research Committee approved this experimental 

protocol (2011P001364), and this study was performed in accordance with the principles of 

the Declaration of Helsinki (trial registration number at ClinicalTrials.gov: NCT01598974).

2.2. Study design and clinical pain exacerbation

In this study, back pain exacerbation maneuvers were implemented to increase the 

endogenous levels of clinical back pain in patients [18,21,43]. The maneuvers consisted of 

individualized dynamic physical procedures that exacerbated patient’s clinical LBP intensity 

and were implemented based on discussions between patients and a trained experimenter 

during an initial behavioral session. Patients first listed usual activities that most exacerbated 

their back pain and performed certain repetitions of one or more of these typical back pain 

exacerbating maneuvers (such as toe touches, back arches, and facet-joint loading twists). 

Meanwhile, the experimenter kept detailed records of the number of repetitions, distance, 

depth, angle, and other respective metrics to allow for reproducibility of the maneuvers 

during MRI scan session. The experimenter also recorded pain ratings before and after 

maneuvers; based on our previous publications [18,21,43], the protocol aimed for at least 

30% increase in subjective pain ratings without exceeding an intolerable pain level. The 

most common maneuvers employed by patients were toe touches (performed by 57% of 

patients), back arches (19%), and facet-joint loading twists (19%). A few patients could not 

exacerbate their back pain with typical maneuvers, hence we chose to have them perform a 

painful movement from their daily lives (e.g., one patient experienced intense pain while 

wearing socks, hence this set of actions were used repeatedly in a controlled manner to 

exacerbate back pain). The sole goal of this manipulation was to temporarily exacerbate 

clinical low back pain.
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During the MRI scan session, all patients were scanned twice, once before and once after 

patients performed the low back pain exacerbation maneuvers (pre- and post-maneuver, 

respectively), to collect multimodal data associated with different (i.e., relatively lower and 

higher) clinical pain states. Neuroimaging data included resting-state functional magnetic 

resonance imaging (fMRI) with two approaches: (a) regional cerebral blood flow (rCBF) 

using Pseudo-Continuous Arterial Spin Labeling (PCASL) imaging and (b) functional 

connectivity of the primary somatosensory cortical representation of the back (S1CONN) 

using Blood Oxygenation-Level Dependent (BOLD) imaging. PCASL is a noninvasive 

perfusion imaging method that provides absolute quantification of regional cerebral blood 

flow across the brain, and is ideal for capturing brain activity related to ongoing, slowly 

fluctuating clinical pain [43]. Additionally, a different functional imaging modality, BOLD, 

was used to investigate functional connectivity between the back representation in primary 

somatosensory cortex (S1) and the rest of the brain. Since physical maneuvers cause direct 

nociceptive processing in S1 and several studies have now implicated S1 in chronic pain 

[17,18,45], we evaluated whole-brain connectivity for this seed region, which was identified 

with a functional localizer using a separate BOLD fMRI scan (see Supplementary Materials, 

Section S1). Autonomic data included heart rate variability in the high-frequency range 

(HFHRV), a marker for cardiovagal modulation. Thus, each of rCBF, S1CONN, and HFHRV 

measures a unique dimension of central and autonomic processing for different clinical pain 

intensity states.

Patients rated clinical back pain intensity (0–100, 0: no pain, 100: most pain imaginable) 

before and following each fMRI scan run and maneuvers. An omnibus F-test was conducted 

on all post-maneuver clinical pain ratings, demonstrating no significant differences (P = 

0.19), suggesting that maneuver-related clinical pain elevation was maintained throughout 

the post-maneuver period, until the end of the scanning session. Additionally, a separate 

omnibus F-test on all pre-maneuver clinical pain ratings showed no significant differences (P 
= 0.43), suggesting stability in ratings during the pre-maneuver period. Hence, average 

ratings of respective pre-maneuver and post-maneuver rating periods were used for 

subsequent analyses.

2.3. Acquisition of multimodal neuroimaging and autonomic parameters

All MRI data were collected at the Athinoula A. Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital, using a 3.0T Siemens Skyra scanner (Siemens Medical, 

Germany) equipped with 32-channel head coil. Patients were asked to rest in a supine 

position inside the MRI scanner with their eyes open and head still during the data 

collection. A T1-weighted MP-RAGE pulse sequence (TR/TE = 2530/1.64 ms, flip angle = 

7°, FOV = 256 × 256 mm, 176 axial slices, voxel size = 1 × 1 × 1 mm) was used to collect 

structural MRI data. Resting-state BOLD fMRI data were collected using a T2*-weighed 

gradient-echo BOLD EPI pulse sequence (TR/TE = 3000/30 ms, flip angle = 90°, FOV = 

220 × 220 mm, 44 axial slices, voxel size = 2.62 × 2.62 × 3.12 mm, total acquisition time = 

6 minutes). A Pseudo-Continuous Arterial Spin Labeling pulse sequence (PCASL, TR/TE = 

3800/15 ms, labeling duration = 1500 ms, post-labeling delay = 1200 ms, flip angle = 90°, 

FOV = 256 × 256 mm, 25 axial slices, voxel size = 4 × 4 × 5 mm, total acquisition time = 6 

minutes) was used to measure rCBF during ASL runs.
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During the resting BOLD fMRI and ASL scan runs, physiological data including finger 

pulse and respiration were collected to calibrate artifacts from cardiovascular and respiratory 

movement from the fMRI data and to estimate autonomic, cardiovagal modulation during 

MRI scans associated with different pain states. Finger pulse was collected from the 

patient’s left index finger using a piezoelectric pulse transducer (MLT1010 Non-Ferrous 

Transducer, ADInstruments, CO, USA), while respiration was measured using a custom-

built MR-compatible pneumatic belt [6,17,19]. These physiological (cardiac pulse and 

respiration) signals were recorded at 500 Hz sampling frequency during the fMRI runs using 

a MRI-compatible system (MP150, Biopac Systems Inc.).

2.4. Preprocessing and assessment of multimodal neuroimaging and autonomic 
parameters

FMRI data were preprocessed using tools from SPM (Statistical Parametric Mapping, 

https://www.fil.ion.ucl.ac.uk/spm), FSL (FMRIB’s Software Library, https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/), AFNI (Analysis of Functional NeuroImages, https://

afni.nimh.nih.gov), and FreeSurfer (https://surfer.nmr.mgh.harvard.edu) software packages.

Resting-state BOLD fMRI data were preprocessed with physiological artifact correction 

(3dretroicor, AFNI) [15], head motion correction (mcflirt, FSL), susceptibility-induced 

distortion correction (topup, FSL), and skull-stripping (bet, FSL). Additional artifacts were 

then removed using a GLM, modeling nuisance regressors for (a) heart rate and respiratory 

volume per time convolved with respective cardiorespiratory response functions [7,12], (b) 

white matter and cerebrospinal fluid data identified with the top five principal components 

using the COMPCOR algorithm [5,44] with FAST (FSL) tissue segmentation, (c) head 

motion correction parameters, and (d) a censoring confound matrix of head motion outliers 

(fsl_motion_outliers, FSL). The corrected data were co-registered to MNI space (bbregister, 

FreeSurfer), spatially smoothed (FWHM = 6 mm, fslmaths, FSL), and temporally high-pass 

filtered (cutoff frequency = 0.006 Hz, 3dBandpass, AFNI). For resting-state seed 

connectivity analysis, we used the S1 low back representation (see Supplementary Materials, 

Section S1), which was identified by a separate event-related functional localizer fMRI scan 

and evoked nociceptive stimulus. The S1 seed was created with a 4-mm radius sphere 

centered on the peak activation voxel within contralateral S1 (peak X/Y/Z location in MNI 

space = ±18/−38/72 mm). We created a bilateral seed (S1back) by mirroring this sphere to the 

ipsilateral hemisphere, as for clinical pain, patients varied in low back pain laterality. 

Averaged fMRI signal from this S1back seed was used for seed connectivity analysis, and the 

parameter estimates from each patient were used for further analyses (i.e., S1CONN) [17].

The PCASL data were used to estimate an rCBF map for each patient. Data were processed 

as follows: First, affine tag–control weighted motion correction was performed 

(batch_realign, ASLtbx, https://cfn.upenn.edu/~zewang/ASLtbx.php) [41,42], and these 

head motion realignment parameters were regressed out of the difference maps (rigid-body 

transformation-based MoCo, SPM) [41]. After high-pass filtering (cutoff frequency = 0.01 

Hz), non-brain voxels were removed from the data (BET, FSL) [31]. Additionally, 

physiological noise (driven by cardiovascular fluctuation) was regressed out using a GLM 

with 6 principal components from anatomically defined cerebrospinal fluid (CSF) and white 
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matter (WM) regions using the COMPCOR algorithm [5,44]. Tag and control images were 

then subtracted, and the average of subtracted pairs was divided by the average of control 

images to obtain a percent change in rCBF. The percent change maps were converted to 

absolute values (mm/100 g of tissue/min) [42]. These rCBF maps were co-registered to 

individual structural images (bbregister, FreeSurfer) [16], followed by non-linear 

transformation into MNI152 common space (FNIRT, FSL). Finally, whole brain rCBF 

normalization and spatial smoothing (FWHM = 8 mm) were performed [40].

Cardiac pulse pressure data collected during ASL scan runs, were used for HRV analysis to 

estimate cardiovagal modulation associated with different (i.e., low and high) clinical pain 

states. In-house scripts (MATLAB 8.3, MathWorks) were used to annotate the finger pulse 

signal. Commonly available HRV analysis software (HRV standard, Kubios) was used to 

calculate HRV parameters including high frequency (HF) power (i.e., HFHRV), which is a 

well-known marker for cardiovagal modulation [1,35].

2.5. Classification of clinical pain states using a support vector machine algorithm

For classification of clinical pain states (i.e., between relatively lower and higher clinical 

pain), a supervised support vector machine (SVM, scikit-learn 0.18.1, https://scikit-

learn.org/stable/) with linear kernel was used, as this algorithm is known to have high 

accuracy and easy interpretability [25]. Briefly, the SVM algorithm segregates two classes 

(relatively lower pain vs. higher pain, in this case) of data in feature space by finding an 

optimal hyperplane/decision boundary that maximally separates them. As our multimodal 

data were collected at two time points for each patient (i.e., before and after physical 

maneuvers), and variability existed in baseline clinical pain level for each patient, we used a 

paired-SVM approach wherein within-patient differences in the pre- and post-maneuver data 

(i.e., change in pain) were emphasized, and baseline pain levels across patients were 

accounted for (Fig. 1A). The paired-SVM classifier discriminated ‘pre – post’ versus ‘post – 

pre’ parameter differences (Fig. 1B), a procedure that has been utilized in past brain imaging 

research to discriminate state differences between two time points [33]. Paired-SVM 

classification was applied for each parameter (i.e., S1CONN, rCBF, and HFHRV) 

independently, yielding SVM classification weights (i.e., contribution of each feature/voxel 

to the classification) and decision responses (i.e., the dot product between SVM weights and 

feature/voxel values for each modality in each patient, where the classification is determined 

by the sign of these response values) (Fig. 1C) [39]. Results of classification for each 

modality (i.e., decision responses) were then used for a combined multimodal parameter 

classification in an attempt to bolster prediction compared to single-modality prediction 

models [23].

2.6. Prediction of clinical pain intensity using a support vector regression algorithm

Next, we sought to predict clinical pain intensity obtained at the time of data acquisition in a 

between-patients manner using a linear support vector regression (SVR) algorithm. Briefly, 

linear SVR tries to find a linear function that fits all continuous data points (clinical pain 

intensity ratings, in this case), with minimized error. SVR is appropriate for predicting 

continuous variables, as opposed to SVM, which has the goal of separating classes of data.
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In order to prepare the data for SVR analysis, each clinical pain rating was considered an 

independent sample; in other words, data belonging to an individual patient were used 

independently in an unpaired manner. This procedure was done to obtain an effective N = 

106 for clinical pain ratings and corresponding multimodal features, allowing us to break-up 

and allocate the samples into separate training (N = 53) and testing (N = 53) datasets. The 

training dataset allowed for creation of the SVR model and the testing dataset allowed for 

validation of the model.

The allocation of clinical pain ratings into training and testing datasets was done through 

randomization of these 106 clinical pain ratings (as illustrated in Fig. 2A). After 

randomization, the distribution of clinical pain intensity was equalized and the dynamic 

range was no longer discrepant (see Results, section 3.3). Furthermore, we posited that the 

randomization potentially mitigated any bias of experimental design, i.e. for the SVM, the 

lower pain state (timepoint 1) always occurred prior to the higher pain state (timepoint 2) 

(pre-maneuver always occurred before post-maneuver). Randomization allowed for the 

training dataset to include an equal number of cases from both timepoint 1 and timepoint 2 

(same for the testing dataset), hence accounting for any potential order effects between a 

training and testing dataset.

After allocation into training and testing, each clinical pain intensity rating and the 

corresponding multimodal features (rCBF, S1CONN, and HFHRV) for each patient were used 

to calculate decision responses (Fig. 2B), representing the degree to which features 

corresponding to each clinical pain intensity loads on to the clinical pain state SVM model. 

In other words, the decision response links the SVM model’s confidence of discriminating 

lower versus higher pain states with raw features corresponding to a range of clinical pain 

ratings (see footnote†).

The decision responses and their corresponding clinical pain intensity ratings in the training 

dataset were then used to train/build the SVR model (Fig. 2C, left panel). Next, the trained 

SVR model was evaluated for consistency using independent multimodal SVM decision 

responses in the testing dataset with corresponding pain ratings, and the predicted pain 

ratings were compared with true pain ratings reported by the patients (Fig. 2C, right panel).

2.7. Statistical analysis

After the within-patient classification of pain intensity states using paired-SVM, leave-one-

patient-out cross-validation was performed to evaluate classification performance (i.e., 

accuracy, sensitivity, specificity, precision and area under the curve, AUC). For the paired-

SVM approach, sensitivity, specificity, and precision are identical to the accuracy due to the 

paired characteristics (i.e., number of True Positives (TP) = True Negatives (TN), False 

Positives (FP) = False Negatives (FN)). Permutation analysis was also performed (N = 5000, 

†To elaborate this further, let’s say that a particular voxel in S1CONN SVM map shows a high positive weight (i.e. highly confident 
and robust discrimination of post – pre >> pre – post); the dot product of this SVM weight with S1CONN voxel intensity 
corresponding to a particular clinical pain intensity will produce a positive decision response with a high magnitude. Similar 
procedures have been used in past research [23], where weights from a previously created model of experimental heat pain [39] was 
applied (as a dot product) to brain features from assessment of experimental mechanical pain in fibromyalgia patients. The outcome of 
the computation was the degree to which brain activity to mechanical pain in fibromyalgia loaded on to the generalizable experimental 
heat pain model, allowing for inferences of hypersensitivity to be made [23].
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P < 0.01) to identify the significant features contributing to the classification of different 

pain intensity states, and to calculate significance of classification measures by comparison 

with those from a random classifier.

For the between-patients SVR analysis, the correlation coefficient (i.e., Pearson’s r) and root 

mean square error (RMSE) between true pain ratings provided by patients (i.e., true LBP) 

and predicted pain ratings provided by the algorithm (i.e., predicted LBP) was calculated to 

assess prediction model performance, and significance was tested with permutation analysis 

(N = 5000, P < 0.01). For a case of perfect prediction (i.e., predicted pain = true pain), the 

Pearson’s r value would be 1 and RMSE would be 0.

3. Results

3.1. Higher clinical pain elicited by physical maneuvers

Patients suffering from chronic low back pain (cLBP, N = 53 used in final analyses, Table 1 

and Supplementary Materials, Fig. S1) were recruited to perform physical maneuvers that 

exacerbated back pain intensity during an fMRI session. Both brain and autonomic data 

were collected at two different clinical pain states for each patient (i.e., pre- and post-

physical maneuvers). Patients reported increased average LBP intensity following physical 

maneuvers (change in LBP: +23.6 ± 12.3/100, mean ± SD, P < 0.00001, pre-maneuver LBP: 

31.6 ± 19.0, post-maneuver LBP: 55.2 ± 18.9, 0–100 numerical rating scale, where 0 was 

“no pain” and 100 was “most pain imaginable”) (Fig. 3A). Variability in baseline clinical 

pain level (i.e., pre-maneuvers) was considerable and ranged from 0 to 72.5 out of 100 (Fig. 

3B), supporting our paired-SVM approach for within-subject evaluation.

3.2. Within-patient classification of low and high clinical pain states

Multivariate machine learning-based classification was applied to predict clinical pain 

intensity states (i.e., relatively higher versus lower clinical pain states, as modulated by 

physical maneuvers in cLBP patients), using combinations of multimodal neuroimaging 

(brain) and autonomic outflow parameters. Patients responded to maneuvers with significant 

decrease in HFHRV (change: −0.29 ± 0.47 log(ms2), paired t-test P < 0.001, pre: 6.02 ± 1.15, 

post: 5.73 ± 1.21).

A supervised paired-SVM algorithm was used to learn from the aforementioned parameters 

(rCBF, S1CONN, HFHRV) (Fig. 1) and to classify relatively lower and higher pain states. 

Paired-SVM classification found that, independently, all three parameters significantly 

contributed to the within-patient classification between pain intensity states (rCBF: accuracy 

= 81.13%, AUC = 0.90, TP/TN/FP/FN = 43/10/10/43; S1CONN: 79.24%, 0.85, 42/11/11/42; 

HFHRV: 67.92%, 0.81, 36/17/17/36). The voxelwise paired-SVM weight map for rCBF 

classified higher vs. lower clinical pain states through increased cerebral blood flow to 

several subcortical and cortical structures including thalamus, and prefrontal and posterior 

cingulate cortices, and decreased flow to non-back representation subregions of S1 (i.e., 

outside the putative location of the somatotopic representation of the back) (Fig. 4A, and 

Supplementary Materials, Table S1). For S1CONN, the paired-SVM weight map classified 

higher vs. lower clinical pain through increased S1back connectivity to frontoinsular cortex, 
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and decreased connectivity to medial prefrontal cortex and other non-back representation 

subregions of S1/M1 cortices (Fig. 4B, and Supplementary Materials, Table S2).

Moreover, combining multimodal parameters (rCBF + S1CONN + HFHRV) (Fig. 1) produced 

the best classification performance (accuracy = 92.45%, AUC = 0.97, TP/FP/FN/TN = 

49/4/4/49) compared to the classification with individual parameters as noted above (Fig. 5). 

For this combined model, all three multimodal parameters significantly contributed (S1CONN 

and rCBF: P < 0.001, and HFHRV: P = 0.007) to the classification.

As head motion may confound neuroimaging findings, we explored the relationship between 

head motion and within-patient pain state classification. Head motion showed no significant 

contribution to discriminate relatively lower versus higher clinical pain intensity states (P = 

0.31) (Supplementary Materials, Section S2).

3.3. Between-patient prediction of clinical pain intensity ratings

Another goal of our analysis was to form a model that can directly predict clinical pain 

intensity ratings across patients through the introduction of independent training and testing 

datasets using multimodal parameters. Hence, we conducted a linear SVR analysis, which is 

optimized for the prediction of continuous variables such as clinical pain ratings (Fig. 2). 

Data from different patients and different time points, including corresponding clinical pain 

intensity ratings, were randomized into separate training (N = 53) and testing (N = 53) 

datasets, allowing for the range of clinical pain intensity values to be equalized (Fig. 2A). 

After randomization, the distribution of clinical pain intensity was equalized (clinical pain 

intensity range: training set = 0–92.8/100, testing set = 0–86.7; clinical pain intensity: 

training set = 43.38 ± 23.76/100, testing set = 43.45 ± 20.90, P = 0.98).

Combining all three multimodal parameters (i.e., decision responses of S1CONN, rCBF, and 

HFHRV) for prediction of pain intensity ratings demonstrated significant performance in 

terms of predicted versus true clinical pain intensity ratings for both the independent training 

(Pearson’s r = 0.52, RMSE = 20.51) and testing (r = 0.63, P = 0.02, RMSE = 16.69, P < 

0.001, Fig. 6) datasets. For this combined model, only the S1CONN parameter significantly 

contributed (S1CONN: P = 0.002, rCBF: P = 0.31, HFHRV: P = 0.41) for the prediction.

Head motion did not significantly predict clinical pain intensity ratings (P = 0.30). In fact, 

when head motion was included in the prediction model as a fourth parameter, the 

correlation between true LBP and predicted LBP did not show much change (r = 0.63) 

compared to our three-parameter model where head motion was not included (r = 0.63) 

(Supplementary Materials, Section S2).

In order to explore the degree to which SVR accuracy was driven by maneuver-induced 

changes, we examined two other, new SVR models which did not randomize or reallocate 

data (i.e. would not be driven by a maneuver effect wherein datasets contained some patients 

at pre-maneuver and some at post-maneuver): (a) SVR with pre-maneuver data only, (b) 

SVR with post-maneuver data only. Thus, these SVR models allowed us to test if SVM 

weights (built from maneuver-induced changes) can be used to predict between-subject pain 

ratings in a dataset with consistent timing relative to physical maneuver performance. 
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Results showed that while the SVR performed with pre-maneuver data only yielded a poor 

correlation (r = −0.07, P =0.63) between actual and predicted pain ratings, the SVR 

performed with post-maneuver data only yielded a much better correlation between actual 

and predicted pain ratings (r = 0.42, P = 0.002).

4. Discussion

While pain is inherently a subjective self-reported experience, there is growing need for 

objective biomarkers for pain. We address a significant gap in the clinical pain research field 

by introducing and evaluating candidate predictive, combinatorial biomarkers for clinical 

pain intensity. Multimodal brain and autonomic physiology data were evaluated with 

machine learning-based prediction modeling in cLBP patients. Individualized physical 

maneuvers were successfully implemented to exacerbate clinical back pain for post-

maneuver brain imaging scan runs in the majority of cLBP patients (87%, 62 out of 71 

patients). For these patients, maneuvers produced an average increase of 74.8% in clinical 

pain, allowing us to evaluate patients in a relatively lower versus higher clinical pain state. 

When combined, multimodal parameters (S1CONN, rCBF and HFHRV) produced a 

synergistic effect, resulting in successful within-patient classification between relatively 

lower and higher clinical pain intensity states with high accuracy. Moreover, this model was 

successfully applied to predict between-patient clinical pain ratings with minimal prediction 

model overfitting and with independent training and testing datasets [24].

Each putative biomarker targeted a unique physiological dimension of central and autonomic 

processing supporting pain. For instance, rCBF is obtained from ASL fMRI, and captures 

slowly varying state changes in activity across the brain that may be linked to pain 

exacerbation. S1CONN was obtained from BOLD fMRI data and captured the temporal 

coherence (whole-brain connectivity) of the S1 representation of the low back, which is the 

primary encoding node for afferent nociceptive information from the involved body region. 

For these brain imaging data, we used a whole-brain predictive model, which bolstered our 

predictive capacity [45]. Finally, HFHRV captures the altered autonomic outflow associated 

with change in clinical pain perception. Importantly, combining these multimodal putative 

biomarkers produced a synergistic effect for clinical pain prediction, both within and 

between cLBP patients.

Classification was strongly influenced by the brain imaging features, and the SVM 

weighting maps inform the brain circuitry that directly supports higher clinical pain 

intensity. For instance, the rCBF parameter weighting map encompassed positive predictive 

weights in subcortical regions such as the thalamus, and cortical pain-processing regions 

such as the prefrontal cortex and ventral posterior cingulate cortex. Regions such as 

thalamus are known to process nociception and pain salience [14], while prefrontal cortex 

has been strongly linked to clinical pain perception [4], and posterior cingulate has been 

recently implicated in pain catastrophizing [19]. For S1CONN, increased communication 

between the low back representation of S1 and frontoinsular cortex (a key hub for salience/

affect processing [17]) is a significant feature for classification. In turn, negative predictive 

weighting was evident for non-back S1 representation in the rCBF map, and both non-back 

S1 subregions and medial prefrontal cortex in the S1CONN map. Interestingly, our prior 
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analyses have also demonstrated reduced connectivity between S1 subregions in chronic 

pain patients [17]. Collectively, these positive and negative predictive weighting regions are 

key nodes of known brain networks implicated in the affective, cognitive, and sensory 

multidimensional experience of pain – i.e. salience, default mode, and sensorimotor 

networks.

While our results showed less robust classification accuracy for the autonomic HFHRV 

metric, decreased cardiovagal modulation did significantly contribute to prediction of 

relatively higher versus lower clinical pain states. The primary reason behind low accuracy 

for the HFHRV metric could be due to the single-feature nature of this metric, leading to a fit 

of the decision boundary in a unidimensional feature space (as shown in Fig. 1B). In 

contrast, the brain imaging metrics contained thousands of features/voxels. Indeed, future 

research should incorporate several autonomic metrics (both time-domain and frequency-

domain cardiac information, galvanic skin response, pupilometry) to allow for a 

multidimensional feature space and better model performance.

To our knowledge, the analyses in this current study represents the first use of multimodal 

central and autonomic data to directly predict clinical pain states. One recent promising 

study used multimodal task-evoked brain imaging data to discriminate between fibromyalgia 

patients and healthy controls [23]. However, fibromyalgia patients and healthy adults differ 

on much more than just the pain experience (e.g., mood, cognitive task performance, etc.), 

and this study linked model prediction to pain intensity assessed at a different time point (an 

hour prior to brain imaging acquisiton). Our study significantly extends such previous work 

by building a multimodal predictive model that provides diagnostic and clinical utility by 

directly predicting concurrent clinical pain states.

The use of a within-patient model in our study through pain exacerbation maneuvers 

mitigates inter-individual differences in how different patients interpret and use a numerical 

pain rating scale. Furthermore, extension of these multimodal data to a between-patient 

analysis using training and testing datasets allow prediction of clinical pain intensity across 

different patients. The between-patient SVR was conducted through randomized 50–50% 

allocation of pre- and post-maneuver data into respective training and testing datasets, which 

mitigates effects such as passage of time, as the lower-pain state always occurred prior to the 

higher-pain state. When the SVR was performed without this randomized allocation, i.e. 

SVR performed with pre-maneuver data only and a separate SVR performed with post-

maneuver data only, the pre-maneuver data SVR demonstrated poor performance (r = 

−0.07), whereas the post-maneuver data SVR demonstrated significant actual-to-predicted 

pain correlation (r = 0.42). Our interpretation is that pre-maneuver ratings may have been 

influenced by a broad array of factors leading to substantial differences in how individuals 

use the 0–100 pain scale we presented to them. On the other hand, after completing the 

maneuvers, which increased their pain, all cLBP patients had a consistent anchor as 

reference for how to rate their back pain – an explicit, physical maneuver-exacerbated back 

pain. This effectively normalized how patients used the 0–100 pain scale post-maneuvers, 

leading to better prediction of clinical pain ratings by our SVR model, which was created 

using a maneuver-evoked SVM design. Further testing on future, independent samples 

would of course be needed to assess generalizability of this SVR model, but providing this 
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anchor for ratings seems to be beneficial for prediction, and is in line with previous studies 

suggesting that clinical pain rating fidelity can be enhanced with training in how to 

consistently use pain scales, for example by applying evoked pain stimuli as anchors [36].

Data fusion techniques for multimodal brain imaging data take advantage of combining 

unique aspects of each data modality’s contribution to enhance prediction. However, the use 

of such multimodal combinatorial prediction techniques has remained limited [10]. We 

demonstrated synergistic performance when parameters from different modalities were 

combined. Our multimodal approach could be further extended to include other brain 

imaging (e.g., structural MRI, diffusion tensor imaging, positron emission tomography, 

chemical shift imaging, magnetoencephalography, and electroencephalography), 

physiological/autonomic activity (including time-domain and other frequency-domain 

metrics of HRV, galvanic skin response, pupilometry), behavioral (e.g., facial expression and 

body gesture), mood/affect parameters (e.g., state-based pain catastrophizing and anxiety), 

and quantitative sensory testing (QST) measures, as well as experimental tasks related to 

different (e.g., sensory, affective, cognitive) aspects of pain.

Our research is in line with increased interest in predictive modeling with brain-based 

biomarkers [45]. The clinical pain classification and prediction model created in this study 

could eventually lead to applications in clinical practice, and could help predict pain 

intensity for clinical settings without the presence of patient-reported ratings (e.g., non-

communicative patients). Furthermore, combining several non-neuroimaging parameters for 

prediction could lead to a more cost-effective and quicker approach to pain prediction in 

clinical practice. However, this field is still nascent – the current consensus around such 

multivariate predictive models is that they should not be used in lieu of subjective clinical 

pain ratings, but rather in conjunction with and supporting clinical pain ratings. Such 

neuroimaging approaches can be used to understand the underlying mechanisms of clinical 

pain [13]. We hope that the model presented in this study will lead to future research to 

create well-validated predictive models from larger samples and multimodal features, 

eventually working towards clinical application.

Limitations to our study should also be noted. For instance, since successful maneuver-

related pain increase and available data for all model parameters were limited to 53 patients, 

we also limited classification, regression, and parameter evaluation and comparison to these 

53 patients only. Future applications should extend our predictive model to multiple 

sampling visits within a longitudinal trial framework. In addition, we did not include any 

control conditions (e.g., healthy controls performing maneuvers). However, our previous 

study [43] found that only chronic back pain patients (and not healthy controls performing 

the same maneuvers) showed any changes in rCBF maps between the pre- and post-

maneuver periods. Hence we wanted to allocate resources toward larger sample size for this 

current study. A further limitation is that we used pulse signal from subjects’ fingers instead 

of ECG to compute HFHRV. This finger pulse signal was used as it was not contaminated by 

MRI scanner noise. Finger pulse-based HFHRV is not as commonly used or evidence-

supported as ECG, however, our group has successfully used pulse-based frequency-domain 

metrics in several recently published studies [29].
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In conclusion, our machine-learning approach with a clinical pain exacerbation model found 

synergistic effects of using multimodal brain and autonomic markers in classification of 

clinical pain states and prediction of pain intensity. If the model is generalized across 

different chronic pain populations and different contexts, this pain signature could have great 

promise for pain assessment in non-communicative patients, and identification of objective 

pain endophenotypes [34] that can be used in future longitudinal research aimed at discovery 

of new approaches to combat chronic pain [13].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Classification of within-patient clinical pain states using a support vector machine 
(SVM).
(A) Each patient provided rCBF voxels, S1CONN voxels, and HFHRV values as multimodal 

input features to the SVM algorithm. (B) The paired classifier discriminated between POST-

PRE and PRE-POST in feature space by fitting a decision boundary that maximally 

separates them, for each modality. This SVM procedure produces (C) decision responses 

and weights for each modality. The decision responses for each modality were combined for 

a synergistic classifier of clinical pain states. The weights for each modality were used in the 

SVR analysis (see Figure 2). N.b. rCBF: regional cerebral blood flow, S1CONN: S1back-

connectivity, HFHRV: high frequency heart rate variability power, PRE: pre-maneuver, 

POST: post-maneuver.
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Figure 2. Prediction of between-subject clinical pain intensity using support vector regression 
(SVR).
(A) Clinical pain ratings for each patient (N=53) were randomized, and equally allocated 

into TRAIN and TEST datasets (providing total effective N=106). This randomization into 

TRAIN and TEST equalized the range of pain ratings, previously found to be discrepant 

between PRE and POST. Corresponding multimodal features for each clinical pain intensity 

timepoint were taken, and (B) decision responses were calculated using a dot product 

between multimodal features and corresponding SVM classification group weights, resulting 

in decision responses for each modality. (C) The decision responses for TRAIN and 
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corresponding clinical pain ratings were used to build an SVR model. The trained SVR 

model was then applied to decision responses from TEST, to produce an output of predicted 

pain ratings. The true (TEST) and predicted pain ratings were plotted and a Pearson’s 

correlation coefficient was computed to evaluate model performance. N.b. rCBF: regional 

cerebral blood flow, S1CONN: S1back-connectivity, HFHRV: high frequency heart rate 

variability power, PRE: pre-maneuver, POST: post-maneuver.
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Figure 3. 
Clinical pain intensity changes due to physical maneuvers. (A) Individually customized 

physical maneuvers significantly exacerbated low back pain levels in cLBP patients (N=53). 

(B) Patients reported a wide range of baseline low back pain levels (pre-maneuvers) and 

after maneuvers, all included patients reported increased pain levels (post-maneuvers), 

which were maintained throughout the duration of the post-maneuver scans. N.b. Bar plots 

in (A) show mean±SD. Each data point in (B) represents an individual patient.
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Figure 4. 
Brain features significantly contributing to within-patient classification of lower- and higher-

clinical pain intensity states. Paired-SVM classification weight maps for rCBF (A) and 

S1CONN (B) were thresholded (permutation analysis with N=5000, P<0.01) for visualization. 

N.b. rCBF: regional cerebral blood flow, S1CONN: S1-connectivity, SMA: supplementary 

motor area, vPCC: ventral posterior cingulate cortex, dlPFC: dorsolateral prefrontal cortex, 

S1: primary somatosensory cortex, M1: primary motor cortex, mPFC: medial prefrontal 

cortex, FIC: frontoinsular cortex, R: right hemisphere, L: left hemisphere.
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Figure 5. 
Receiver operating characteristic (ROC) curves demonstrated superiority of combined 

parameter classification of relatively higher versus lower clinical pain intensity states. 

Comparison of individual-parameter versus combined-parameter classification performance 

using paired-SVM demonstrated most improved performance for the combined 3-parameter 

model. N.b. for a paired-SVM approach, sensitivity, specificity, and precision are identical to 

accuracy. rCBF: regional cerebral blood flow, S1CONN: S1-connectivity, HFHRV: high 

frequency power of heart rate variability, AUC: area under the curve.
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Figure 6. 
Prediction of clinical low back pain ratings across cLBP patients using all multimodal 

parameters. True LBP plotted against Predicted LBP from SVR results demonstrated that 

our model was successfully able to predict between-subject clinical pain intensity ratings for 

both a training (TRAIN, N=53, r=0.52) and independent testing dataset (TEST, N=53, 

r=0.63, shown above).
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Table 1.

Demographic and clinical characteristics of cLBP patients.

Measures (cLBP, N=53) Values/scores

Age (years old) 37.4 ± 11.3

Sex (male/female) 20/33

Pain duration (years) 7.6 ± 7.4

% using opioids 5.70%

BDI 5.6 ± 6.3

BPSD 8.3 ± 4.1

PROMIS-Physical function (T-score) 42.5 ± 4.0

PROMIS-Pain interference (T-score) 58.1 ± 5.5

PCS 11.7 ± 8.4

Back pain bothersomeness 5.0 ± 1.6

cLBP: chronic low back pain, BDI: Beck Depression Inventory II (0–63 scale), BPSD: Back Pain Specific Disability (0–10 scale), PROMIS: 
Patient-Reported Outcomes Measurement Information System, PCS: Pain Catastrophizing Scale. Back Pain Bothersomeness was collected on a 
VAS scale (0: “not at all bothersome”, 10: “extremely bothersome”). Data are shown as mean±SD.
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