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Abstract

The increasing popularity of genome resolved meta genomics - the binning of genomes
of potentially uncultured organisms direct from the environmental DNA - has resulted
in a deluge of draft genomes. There is a pressing need to develop methods to interpret
this data. Here, we used machine learning to predict functional and metabolic traits of
microbes from their genomes. We collated an extensive database of 84 phenotypic traits
associated with 9407 prokaryotic genomes and trained different machine learning models
on this data. We found that a lasso logistic regression based on the frequency of gene
orthologs had the best combination of functional prediction performance and
interpretability. This model was able to classify 65 phenotypic traits with greater than
90

Introduction

Predicting phenotype from genotype remains one of the major challenges in biology
[1,2]. Addressing this challenge is particularly relevant for understanding microbial
communities, the study of which had been boosted by an increased ability to extract
sequence data directly from communities. Technological improvements in DNA
sequencing have led to an explosion in the amount of such data generated. In the
context of microbial ecology, large-scale metagenomic studies such as the Human
Microbiome Project [3], the Earth Microbiome Project [4] and the Tara Oceans
Project [5] have systematically sequenced the microbial communities in a huge variety of
environments at great depth. Amplicon sequencing, such as of the 16S rRNA gene,
allows detailed study of the taxonomic makeup of these communities, while shotgun

metagenomic sequencing allows characterisation of all genes present in an environment.

Increasing depth of coverage and improvements in genome binning algorithms for
clustering contigs into genomes, in particular the use of differential coverage across
different samples [6}/7], are allowing more and more full and partial genomes to be
assembled from shotgun metagenomic studies. Many of these genomes are novel and
belong to uncultured organisms that are never studied in the laboratory. A recent
metagenomic study on aquifer systems [§8], for example, reconstructed 2540 separate
high-quality, near-complete genomes, and claimed to have discovered an astonishing 47
new phylum-level lineages among them.

Converting this exponentially growing sequence data into functional understanding
of microbial communities requires us to determine physiological functions from it [9].
This would allow the inference of key functions in microbial communities, and how these
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functions change over ecological conditions and with time [9]. In turn, this ability, could
allow us to discern ecological adaptations in environmental microbial communities, as
well as to achieve functional mechanistic models of stability and function [10].

Efforts to achieve phenotype-genotype mapping from environmental sequence data
has so far mostly focussed on phylogenetic assignments using the 16S rRNA gene. This
highly conserved gene can provide a phylogenetic assignment at the species (or higher)
level, which can then be used to infer general functional traits. While this approach has
been commonly used to study ecological distribution of microbial functions e.g. |[11H13],
its premise of a direct association of function with phylogenetic assignment (i.e.
‘functional coherence of microbial taxa’) is questionable (e.g. [14]). The level of
taxonomic coherence of function is not clear even for strains of the same species, where
functions can show high variability either due to a few genetic changes or even
regulatory changes [2]; [15] discusses this for E. coli. It is also a common problem that
when certain taxonomic groups in a microbial community are found to show direct
associations with certain ecological factors (or health state of an host), these groups are
so broad that assigning specific functions to them is hard or impossible |16]. Indeed, a
study of specific functional traits across microbial taxa has found that many of these
traits are dispersed across the phylogenetic tree [24|17]. Even where a specific functional
trait is taxonomically coherent, the phylogenetic approach is limited by our ability to
assign taxonomy based on the 16s rRNA gene. The extensive accumulation of
metagenomics data indicates that we have sampled only a fraction of microbial diversity,
and it is not uncommon for such data to result in many unassigned taxa, as for example
by the aquifer study described above which described dozens of apparently novel phyla.

While reconstruction of genomes from metagenomics data reveals the limitation of

taxonomic functional assignment, it also opens up a new route to functional assignments.

In particular, several methods and bioinformatics pipelines are now emerging that aim
to go from raw metagenomics sequence data to binned (i.e. predicted) genomes to
functions, e.g. |18|. The functional annotation steps in these tools usually considers
specific gene(s) that are known to associate with specific functions or metabolic
pathways [18], as identified for example in databases such as the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [19], the Pfam database of protein families [20] and the
NCBI COG database of orthologous genes [21]. This approach circumvents the problems
of taxonomic coherence and 16S rRNA gene based assignment to taxa, yet relies heavily
on existing categorization of genes into functions as done in the above databases. While
these functional gene groupings are mostly based on accumulated knowledge and
experimental data on metabolic pathways, they might miss the full set of genes
associated with a given function and do not consider functions that cannot be assigned
to a few genes or seemingly well-organised pathways. One route to overcome such
limitations is to develop extensive databases of phenotypic traits of microbes without
necessarily using a pathway-centric view. These functional assignments could then serve
as a source to apply statistical approaches to ‘learn’ genetic drivers of those functions
using genomes of associated microbes. Efforts in this direction have recently resulted in
the compilation of literature-based assignment of functions in microbes, either covering
a large selection of functions and organisms [22.[23] or specific ones such as
methanogenesis [24]. The FAPROTAX database [22], which we focus on here, is based
on an extensive survey of the scientific literature. The aim of creating this database was
to allow microbes found from 16S rRNA amplicon sequencing to be assigned into
functional and metabolic groups, so that functional variation across environemnts could
be studied and compared to taxonomic variation. The authors found that the
abundance of functional groups was strongly influenced by environmental conditions in
a variety of ocean environments [12]. The bulk of the classifications in the FAPROTAX
database come from Bergey’s Manual of Systematic Bacteriology |25], and it currently
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contains 84 phenotypic traits associated with 4600 microbial taxonomic groups.
Here, we use this accumulating data on function-organism associations to develop an

algorithmic approach to identify genetic markers, or classifiers, of phenotypic functions.

To do this, we combined the FAPROTAX database with genomes downloaded from the
NCBI and used machine learning to train statistical models able to infer an organism’s
traits from a vector of genes annotated to functional groups. Machine learning
techniques, such as logistic regression and support vector machines (SVMs) have
previously been used in bioinformatics to infer phenotypic information from gene
sequences, for example using SVMs on amino acid k-mer frequencies to predict protein
function [26-28]. A recent paper [29] achieved good results in this task with recurrent
neural networks, which can classify proteins directly from their sequences without the
need for feature extraction.

Here, we use the presence of known gene orthologs, for example from the KEGG
database, to train models of the phenotype of whole organisms. This work was inspired
by a recent software famework, Traitar [30], which uses SVMs to predict microbial traits
based on genomic information in the form of copy numbers of Pfam families. Our work
differs from Traitar in the use of the highly detailed FAPROTAX database. Traitar
utilised the Global Infectious Disease and Epidemiology Online Network (GIDEON) [31]
for its phenotypic annotations, and was therefore biased toward pathogenic traits; we
instead focus on traits associated with metabolism and environmental niche.
Additionally, we have a significantly larger training set— -genomes from all 9407 unique
species having a genome classified as ‘full’ in the NCBI database— -whereas Traitar used
234. The size of the training set is usually expected to have a significant impact on the
performance of a machine learning model.

We find that these classifiers perform better than simple taxonomic assignments of
function, and reveal both known and new genetic drivers of specific functions. Using
these resulting classifiers for over 80 functions, we then analyzed three recent,
large-scale metagenomics datasets from three diverse environments: anaerobic digesters,
ground water aquifers and the ocean. The classifier-based functional analysis of these
datasets revealed significant differences in functional properties between environments
and conditions.

Materials and methods

Databases and preparation of training data

To train our models, we utilized the combination of the recently-published FAPROTAX
database of microbial phenotypes and the NCBI genome database. We downloaded all
prokaryotic genomes classified as ‘full’ from the NCBI Genome database. We used the
taxonomic information available from NCBI to assign them phenotypes using the script
‘collapse_table.py’ which comes as part of the FAPROTAX database [22]. We then
called genes in these genomes using Prodigal [32]. We annotated the resulting inferred
coding DNA sequences (CDS) both by aligning against against the KEGG database
using Diamond BLASTP [33] and by searching with hmmer3 [34] against Pfam [20].
The result is a matrix of organisms and and their copy numbers of either KEGG
orthologs or Pfam domains. We have found that using gene copy number rather than
simple presence/absence significantly increases classifier performance. The scripts we
used to download and process the genomes are available at
https://github.com/chrisquince/ GenomeAnalysis.git.
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Statistical modelling

To model the link between genotype, in the form of KEGG ortholog copy numbers or
Pfam protein families, and phenotype as represented in the FAPROTAX database, we
used a variety of machine learning techniques. These are all different ways of learning
the relationship between the features (gene copy numbers) and targets (biological
functions) from the training data of 9407 NCBI genomes from unique species. To train
the algorithms, we first split this data into a training set (75% of the genomes) and a
test set (25%), by random sampling. The algorithms were then trained on the training
data, and their performance tested on the unseen test data genomes, to check that the
relationships learned are generalisable (i.e. that the algorithms have not ‘overfit’ the
training data). Below, we describe the algorithms used.

Logistic regression

We found logistic regression, a commonly used linear model for classification

problems, [35)/36] to be an effective approach in our case. We scaled all input features to
have mean zero and variance one before performing the regression. Since the number of
KEGG orthologs (features) was somewhat larger than the number of training examples,
overfitting, whereby the model classifies on features of the training set which are very
specific to it, was a serious problem. To alleviate this, we used logistic regression with
an /1 penalty term, also known as LASSO logistic regression [37], whereby large
parameters are penalized in such a way that only a few of the features have a nonzero
weight. In detail, the method involves adding a penalty term equal to the £1-norm of all
of the coefficients of the regressor, thereby penalising nonzero terms, so that the
optimization problem becomes:

min ||[w/]; + C ) log (exp(—yi(X]w)) + 1) (1)

i=1

where w is the vector of regression weights, X; are the feature vectors of each example,
y; the classification targets, and C' is a parameter defining the (inverse) strength of the
regularization. This method of regularization is often useful in cases where the number
of features is large (similar to or larger than the number of training examples), as most
of the features are not used in the classification task. For example, a recent study used
{1-regularized regression to predict complex human traits such as height and heel-bone
density from a large array of SNPs (around 100000), significantly improving on previous
estimates of heritability based on individual SNPs [38].

Random forests

We also used the random forest algorithm, a popular machine learning method which
can be applied to both regression and classification problems, which is simple to use,
fast and performs fairly well on a wide variety of problems [39]. The random forest is an
‘ensemble’ method, using a collection of slightly randomized classifiers, the results of
which are averaged to produce a prediction. This helps to avoid overfitting. A random
forest is an ensemble of so-called decision trees. A decision tree is a model which learns
to split up training examples into sets according to their feature values, with the aim of
separating the target classes. They have the advantage of being invariant under scaling
of features and adding of irrelevant features, this last feature being useful in our case
where the number of features is very large and many are irrelevant to the classification
task; they can also learn more complex relationships between variables than a linear
model such as logistic regression. However, an individual tree tends to overfit the
training data. A random forest trains a large number of such trees on random subsets of
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the features and combines these predictions by averaging, avoiding overfitting and much
improving performance.

Support vector machines

Finally, we used support vector machines (SVMs) [?]. An SVM essentially tries to find
surfaces in the high-dimensional feature space, which separate the different classes as
well as possible, and with as wide a margin as possible between the surface and the
examples. These surfaces can be either linear or non-linear (if a non-linear kernel is
used); SVMs are therefore capable of learning complex non-linear relationships between
features and targets. They can also include regularization terms as in logistic regression,
to reduce overfitting.

Metrics and classifier performance

Since many of the classes which we are attempting to predict are highly unbalanced (e.g.

of the 9407 unique species with full genomes in the NCBI database only 83 are
hydrogentotrophic methanogens), simple classification accuracy is not a very useful
measure of classifier performance. Predicting all labels as negative in the above example
would give an accuracy of 99.1% despite not being a useful classifier. We therefore need
a metric which can take into account class imbalance. We use the area under the ROC
(Receiver Operating Characteristic) curve (AUROC), which is a graph of true postive
rate against false positive rate as one varies the cutoff in probability for making a
positive prediction [40,41]. An AUROC score much greater than 0.5 (the score for
random predictions) indicates a good classifier. In particular, a score of 1 indicates that
all positive cases have been assigned a higher probability than all negative cases.

Prediction of MAG phenotypes

Once classifiers have been trained on the NCBI data, it is possible to use them to make
predictions about unseen genomes, such as MAGs generated from shotgun sequencing
studies. The MAGs must first be processed to give a matrix of the KEGG ortholog copy
numbers associated with them, using the same pipeline as applied above to the NCBI
genomes. These matrices are then used as input into the classifiers to produce a matrix
of MAGs and their predicted functions, which can be either presence/absence
predictions or probabilities.

MAG collections

We applied our classifier to three separate collections of MAGs from three different
studies:

e Tara Oceans MAG collection: This comprised a subset of 660 MAGs from the
collection of 957 non-redundant MAGs generated from the Tara Oceans
microbiome in Delmont et al. [42]. These 660 MAGs were those which had at least
75% of the 36 single-copy prokaryotic core genes identified in Alneberg et al. [6] in
a single-copy and can thus be considered reasonably complete and pure
prokaryotic genomes. The Tara Oceans microbiome survey generated 7.2 terabases
of metagenomic data from 243 samples across 68 locations from epipelagic and
mesopelagic waters around the globe [43], Delmont et al. extracted their MAGs
from a subset of 93 of these samples, 61 surface samples and 32 from the deep
chlorophyll maximum layer. Therefore these MAGs represent a substantial sample
of planktonic microbial life.
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e Anaerobic digester (AD) MAG collection: This comprised a collection of 153
MAGs that were constructed by co-assembly and binning of 95 metagenome
samples taken from three replicate laboratory anaerobic digestion (AD)
bioreactors converting distillery waste into biogas. They were assembled with Ray
using a kmer size of 41 and all 186,081 contig fragments greater than 2kbp in
length were clustered by CONCOCT [6] generating a total of 355 bins of which 153
were 75% pure and complete and used in this analysis.

e Candidate phyla radiation (CPR) MAG collection: This collection of 581 MAGs is
a subset of 797 MAGs provided by the authors of Brown et al. 2015 [44]. They
comprise members of the Candidate phyla radiation (CPR) assembled from
ground water enriched with acetate.

Results

To address functional prediction of meta genome assembled genomes (MAGs), we aimed
to develop here a machine learning approach based on known phenotypic functions and
genomes harbouring those. We collated a database of genomes and their known
functions (see Methods), and used this to train different machine learning approaches
for prediction (see Methods).

Classification accuracy

Figure [1] shows the performance of the different machine learning algorithms in the
classification task on the test set in terms of AUROC (area under the Receiver
Operating Characteristic, see Materials and Methods) score. The accuracies were
calculated using k-fold cross-validation with k£ = 5, i.e. the data was split into training
and testing sets 5 times, in such a way that each training example was in the test set
once, and the prediction for each data point when it was in the test set was used. The
results are shown for three classification algorithms, ¢1-regularized logistic regression
(LR), the random forest and a linear SVM. The regularized LR outperforms the random
forest for many, though not all, functions. The average score over all functions for LR is
90.1% (versus 84.5% for the random forest), and 65 functions have a score greater than
90%, with 45 higher than 95%. The perfmormance of the SVM and the LR are similar,
although they do differ significantly for some functions. The mean score of the SVM is
slightly better, at 90.8% vs. 90.1%. This difference is not statistically significant (paired
t test, p=0.71), and since LR is easier to interpret and much more computationally
efficient, we decided to focus on it for the rest of the paper.

Additionally, we can compare the results we obtain using different gene ortholog
schemes, that is KEGG orthologs vs. Pfam families. The results using the two schemes
are rather similar, though there are some functions where one approach outperforms the
other (Figure S1); this may reflect better coverage of the genes involved in the function
in a particular scheme. On average, KO performs better, with a mean score of 90.1%
versus 84.9% for Pfam (p < 0.001), and we therefore concentrate on the KO scheme for
the remainder of the paper.

Gene orthologs used by classifiers

Table [If shows the KEGG orthologs with non-zero coefficients used by the logistic
regression (LR) classifiers and their weights for some example functions. Due to the
{1-regularization, the number of non-zero coefficients is rather low. Three representative
functions, all having classifiers with AUROC scores greater than 95%, are shown. Many
of the KEGG orthologs picked out by the classifiers are genes known to be involved in
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Fig 1. Overall performance of classification algorithms. The AUROC score on
each classification task (each function) is shown for three classification algorithms:
¢1-regularized logistic regression (LR), the random forest and a linear support vector
machine (SVM). Functions are ordered by the LR score.

these functions, as we might hope. In particular, consider the prediction of
methanogens, a relatively easy task since it is known that methanogens must possess
the merA gene, this being a necessary and sufficient condition for methanogenesis .
Indeed, subunits of this gene have the highest weight, and a total of only 9 genes are
used by the classifier.
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Looking at some more complex traits, for example sulfate respiration (i.e.
disimmilatory sulfate reduction to HsS), the model assigns a lot of weight to subunits of
a quinone-modifying oxidoreductase, which is indeed associated with sulfur
metabolism [46]. Interestingly, however, none of the genes picked out by the classifier
are directly part of the metabolic pathway for this process as described in the KEGG
module for dissimilatory sulfate reduction, see Figure 2] The situation is similar with
hydrogenotrophic methanogenesis, with classification mostly determined by components
of energy-converting hydrogenases which are not directly part of the autotrophic
methanogenesis pathway, along with mcr genes indicating that the microbe is a
methanogen.

Figure [3[ shows a scatter plot of AUROC score (i.e. classifier performance) against
the number of orthologs used to make the prediction. It can be seen that there is a
correlation between these two variables, with some highly accurate classifiers built out
of a large number of genes. However, there is also a noticable cluster of functions with
high accuracy achieved with only a few genes (less than 100). These functions may be
particularly interesting, as it is more likely that these small groups of orthologs are
causally associated with the function, rather than just being genes which typically occur
in parts of the phylogenetic tree which have the function and may or may not have any
direct relation to it. This issue is explored further in the section on performance across
taxa, below. Also, note that most of the functions that perform poorly, which typically
use very few genes to classify, have very low support in the training data in terms of
number of positive examples.

Figure [S2] shows an ordination plot of all the species in the training and test sets
using their KEGG ortholog copy numbers. That is, a dimensionality reduction
algorithm, here stochastic neighbour embedding, has been applied to visualise variation
in all KO copy numbers in two dimensions. Points are colored by whether they are true
positive, true negative, false positive or false negatives under a particular classification
task, here for sulfate respiration. It can be seen that the species performing this
function do tend to cluster together into a few groups in the KO space, allowing our
algorithm to classify them mostly correctly.

Comparison to KEGG modules

It is instructive to compare the performance of our classifiers to the use of KEGG
modules, where an equivalent module exists for that function, i.e. compare the
performance to a ‘classifier’ where an organism is judged capable of a function if it has a
complete KEGG module for that function. Table [2] shows the results of this comparison
for three FAPROTAX functions with corresponding KEGG modules. Note that the
KEGG module method does not require training, so the metrics are over the entire
NCBI dataset, whereas for the classifier they are only for the held-out test set. Also, the
former method gives only presence/absence of a function rather than a probability, so
the AUROC score cannot be calculated, so we use alternative metrics based on
classification: the I score and the confusion matrix.

It can be seen that the LR classifier does significantly better than KEGG modules in
assigning these functions as they appear in the FAPROTAX database. This suggests
that having the enzymes or proteins described in the KEGG module for a function is
not in fact a necessary or sufficient condition for actually performing that function, and
that other genes are more predictive. However, it is possible that the discrepancy is due
instead to inaccuracy in the FAPROTAX database, e.g. species which do perform the
functions being missed from the database and therefore getting flagged as false positives
with the KEGG method. More work would be needed to fully exclude this possibility.
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Sulfate respiration

KO ‘Weight

Description

K03421 0.263

methyl-coenzyme M reductase subunit C

K14109 0.226

energy-converting hydrogenase A subunit R

K14094 0.156

energy-converting hydrogenase A subunit C

K00401 0.131

methyl-coenzyme M reductase beta subunit [EC:2.8.4.1]

K14097 | 0.093

energy-converting hydrogenase A subunit F

K00440 0.091

coenzyme F420 hydrogenase subunit alpha [EC:1.12.98.1]

K06862 0.045

energy-converting hydrogenase B subunit Q

K16204 0.038

seco-amyrin synthase [EC:5.4.99.52 5.4.99.54]

K11099 0.033

small nuclear ribonucleoprotein G

K14098 0.027

energy-converting hydrogenase A subunit G

K09613 0.026

COP9 signalosome complex subunit 5 [EC:3.4.-.-]

K14093 0.022

energy-converting hydrogenase A subunit B

K08074 0.013

ADP-dependent glucokinase [EC:2.7.1.147]

K05181 0.013

gamma-aminobutyric acid receptor subunit beta

K09493 | 0.013

T-complex protein 1 subunit alpha

K06612 0.013

alpha-N-acetyl-neuraminate alpha-2;8-sialyltransferase (sialyltransferase 8B) [EC:2.4.99.-]

K17278 0.011

membrane-associated progesterone receptor component

K02938 0.003

large subunit ribosomal protein L8e

K00442 0.003

coenzyme F420 hydrogenase subunit delta

K14096 0.003

energy-converting hydrogenase A subunit E

Methanogenesis

KO ‘Weight

Description

K03421 0.567

methyl-coenzyme M reductase subunit C

K00400 0.276

methyl coenzyme M reductase system; component A2

K00579 0.160

tetrahydromethanopterin S-methyltransferase subunit C [EC:2.1.1.86]

K00399 0.081

methyl-coenzyme M reductase alpha subunit [EC:2.8.4.1]

K07463 0.023

archaea-specific RecJ-like exonuclease

K17618 0.023

ubiquitin-like domain-containing CTD phosphatase 1 [EC:3.1.3.16]

K00401 0.022

methyl-coenzyme M reductase beta subunit [EC:2.8.4.1]

K09728 | 0.020

uncharacterized protein

K09613 0.002

COP9 signalosome complex subunit 5 [EC:3.4.-.-]

Hydrogenotrophic methanogenesis

KO | Weight

Description

K03421 0.231

methyl-coenzyme M reductase subunit C

K14109 0.201

energy-converting hydrogenase A subunit R

K00401 0.169

methyl-coenzyme M reductase beta subunit [EC:2.8.4.1]

K14098 0.136

energy-converting hydrogenase A subunit G

K14097 0.104

energy-converting hydrogenase A subunit F

K14093 0.058

energy-converting hydrogenase A subunit B

K06862 0.057

energy-converting hydrogenase B subunit Q

K14094 | 0.049

energy-converting hydrogenase A subunit C

K17278 0.043

membrane-associated progesterone receptor component

K08074 0.042

ADP-dependent glucokinase [EC:2.7.1.147]

K00442 0.032

coenzyme F420 hydrogenase subunit delta

K09613 0.031

COP9 signalosome complex subunit 5 [EC:3.4.-.-]

K09493 | 0.017

T-complex protein 1 subunit alpha

K14099 0.009

energy-converting hydrogenase A subunit H

K02938 0.005

large subunit ribosomal protein L&8e

K00399 0.001

methyl-coenzyme M reductase alpha subunit [EC:2.8.4.1]

Table 1. Details of classifiers for specific functions. Tables showing all the
nonzero weights in the logistic regression models trained on three functions from the
FAPROTAX database. Note that there are 9647 KEGG orthologs used in our models,
so the vast majority of weights are set to zero in these models.
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reduction

Hydrogenotrophic
methanogenesis

Fig 2. KEGG modules for some functions. Representations of the KEGG
modules corresponding to the FAPROTAX functions shown in Table [I] Modules are
organized into ‘blocks’ of orthologs, typically indicating a protein complex. Orthologs
positioned next to each other are ‘options’, i.e. that section of the module is present if
any of the adjacent blocks are present.
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Fig 3. Scatterplots showing the AUROC score of the different classifiers plotted
against the number of gene orthologs the classifier uses to make its predictions. Point
size is proportional to the number of positive examples in the training set. Left: in the
standard case. Right: in the cross-taxa case.
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KEGG modules Classifier
module F1 confusion matrix F1 confusion matrix
sulfate respiration 0.84 91697 15531 0.99 23113 308
nitrate respiration 0.14 (6282241 2210602> 0.622 (2327 592>
hydrogenotrophic methanogensis 0.756 (92681 ??) 0.923 (23331 108>

Table 2. Comparison of classifiers to KEGG modules. Table showing the
performance of using KEGG module presence/absence against LR classifiers for some
functions where equivalent KEGG modules exist. Since the KEGG module approach
does not give a probability, the AUROC score cannot be used, so the F1 score and
confusion matrices are compared.

Fig 4. Taxonomic distribution of metabolic traits. Taxonomic trees of all
prokaryotic NCBI species with full genomes. For training the cross-taxa verison of the
classifier, only the Proteobacteria (red section of the tree) were used, and the models
were tested on the rest of the tree. Species capable of a) sulfate respiration and b)
nitrate respiration are highlighted on the trees.

Performance across taxa "

As mentioned above, it is not clear how much the genes being used by the classifiers are a2
related to the functions being predicted or are reflecting taxonomic relations among 313
phylogenetically similar organisms that perform the same or similar functions. To assess s
this, we analysed how predicted functions are distributed across a taxonomic orders. We 15

found that this distribution varies with function, where some functions are 316
taxonomically clustered while others are not (Figure 4) Ié—_ll(as also seen in other a17
studies [2]). 318

To see if we can develop classifiers that are less affected by taxonomic signals, we 319
trained the models on organisms from a subset of taxa and tested its performance on 320
another, unrelated taxa. If a classifier can predict phenotype based on genes in a 321
distantly-related, unseen set of organisms, it is likely the genes it is using have a real 32
association with the function. In particular, we tried training our logistic regression 323

models on the Proteobacteria, a large phylum of bacteria, and testing on the rest of the s
taxonomy. Some functions did not have significant numbers of species in each of these s
sets; we used only functions with at least 5 species in the training set and 5 in the test, 3

leaving 59 functions out of 84. 327
As might be expected, the resulting classifiers from this approach performed 328
significantly worse in this case, compared to being trained on a random selection of 329
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species from throughout the prokaryotic part of the tree of life, see Figure [3p. However,
for a significant number of functions the performance of the classsifier is still fairly good,
indicating an ability to make predictions which are generalizable to significantly
different unseen groups of organisms. 19 functions have an AUROC score greater than
80%, and 9 greater than 90%.

Figure [3p shows a scatter plot of classifier complexity against performance, as in
Figure [Bh. Notable is that the group of classifiers achieving high accuracy while using a
lot of genes is gone: functions such as fermentation and nitrate reduction, which were in
this group of classifiers, are now much less accurate. Classifiers which work well in the
cross-taxa case all use a relatively small number of genes, less than 150 or so. This
suggests that the classifiers using a large number of genes to make predictions in the
randomized case may have been using a range of genes found in different closely-related
clusters of organisms which all have the target trait, but which may not have a causal
relationship with the function.

Prediction of MAG phenotypes

A possible major benefit of developing machine learning approaches to predicting
function from genomes is that the resulting classifiers can be applied to novel genomes
predicted from meta genomes. We therefore used the classifiers trained above to classify
metagenomically assembled genomes (MAGs) from a few different environments. These
were laboratory anaerobic digesters, the ocean (from the Tara oceans project [5]), and
MAGSs from a groundwater aquifer assigned to be members of the so-called ‘canditate
phyla radioation’ (CPR) [8]. The CPR is a set of bacterial lineages discovered from
metagenomic studies consisting of a very large number of proposed novel phyla. These
organisms have very small genomes, and may typically live in symbiosis with other
organisms [47].

To perform the functional assigments, we used the ¢1-regularized LR classifier
described above, with a random train-test splitting and the regularization parameter
C = 0.05, trained using KEGG orthologs on the full NCBI genomes. Figure [5[shows the
predicted functions by this classifier for the MAGs assembled from anaerobic digesters
and from the global oceans. There are noticeable differences, such as more AD MAGs
having fermentation and sulfate-metabolism-related functions and fewer having aerobic
chemoheterophy.

To make these differences clearer, Figure [S3|is a bar chart showing the proportion of
MAGs from the different environments having a function, for some of the most common
functions. For many functions, the differences are very significant.

These differences in function might well be expected between these environents. For
example, fermentation is very important in the AD process, and aerobic
chemoheterotrophy obviously is not as the environment is aerobic. This indicates that
the method is capable of producing useful information about MAGs. The results for the
CPR MAGs indicate that these organisms possess significantly fewer functions than
those from the other two environments, as would be expected from their very small
genome sizes. A few functions do however have significant incidence in this group.
Apart from ‘chemoheterotrophy’ and ‘aerobic chemoheterotrophy’, which are very broad
categories encompassing a large proportion of all organisms, a few functions associated
with nitrogen metabolism, especially nitrate reduction, are noticeably present in the
group. That the CPR are involved in nitrate reduction was recently proposed in
Danczak et al. [47].

Some of the functional assignments seem strange, for example organisms being
classified as acetoclastic or hydrogenotrophic methanogens but not as methanogens,
including a significant proportion of CPR organisms (about 3%). Looking at the gene
orthologs present in these organisms and their taxonomic assignments sheds some light
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Fig 5. Heatmap of presence/absence of fucntions in MAGs. Results of
running the set of LR classsifiers trained on NCBI genomes on MAGs assembled from
three environments: laboratory anaerobic digesters, the ocean and ‘candidate phyla
radiation’ (CPR) organisms from an aquifer system.

on what is going on here, see Table [3] For example, some of the acetoclastic
methanogens which are misclassified as not being methanogens are missing the merA
ortholog K00399, presumably because the MAGs are incomplete and this gene has been
missed. Another example is an organism classified as being a hydrogenotrophic
methanogen but not a methanogen. This MAG appears to be similar to the genome of
the bacterium Caldisericum exile, which is not a methanogen and does not possess
merA (it is an anaerobic, thermophilic bacterium which respires by thiosulfate
reduction ?7). However, it does possess genes for subunits of the energy-converting
hydrogenase A, which is indicative of hydrogenotrophic methanogenesis (see Table [1f).
Therefore, these discrepancies may be the result either of incomplete MAGs, or of
combinations of genes which are rare or unseen in the training set.

For the Tara dataset, metadata for different samples was available, including depth,
temperature and salinity, among other measurements. Combining the coverages of the
different MAGs across these samples with the functional assignments of the MAGs, we
can calculate the proportion of a given function in different sample groups. Figure [f]
shows the mean of this metric for all the functions for samples from different oceans.
The functional differences do not seem to be very significant between oceans, with a few
exceptions, notably an abundance of nitrate reduction in the Southern Ocean, and a
strong negative correlation between temperature and fermenter abundance (Pearson
correlation r = —0.43, p < 0.001). Figure Iﬂ

Discussion

We have demonstrated a machine learning method for inferring phenotypes from

genomes. This method uses gene orthology and copy numbers as its features and is
trained using over 9000 genomes and their known functional phenotypes. While the
accuracy of the predictions vary significantly over different phenotypes, a significant
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Species mcrA

)
=
>

methanogenesis

hydrogenotrophic

acetoclastic

Caldisericum exile 0
Methanomassiliicoccus luminyensis 1
Methanosaeta concilii 2
Methanosaeta concilii 0
Methanosaeta harundinacea 1
Methanoregula formicica 1
Methanoregula formicica 1
Methanolinea tarda 1

OO0 OO

e =)

1

OO R

COO0OORHOO

Table 3. Key genes and predicted functions for MAGs predicted to be
methanogens. Gene copy numbers for the merA methanogenesis gene and the
energy-converting hyrdogenase A, along with functional predictions, for AD MAGs
predicted to be methanogenic by our algorithm.
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Fig 6. Mean abundance of microbes performing functions by ocean. Average
of the proportion of total coverage associated with microbes performing a function over

samples from each of the oceans.
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proportion of the functions we tested achieved very good classification accuracy, with
AUROC scores greater than 90%. Of the machine learning algorithms we tested, we
found that £1-regularized logistic regression gave the best combination of accuracy,
computational efficiency and interpretability. The results did not depend very strongly
on whether KEGG orthologs or Pfam domains were used to characterise genes in the
genomes, although the KEGG scheme performed slightly better on average over the
functions we considered here. The logistic regression models we generate can be
inspected, and the genes most associated with a given phenotype in the model
enumerated, which allows for validation of the models by comparison to what is known
about the function of these genes. This raises the potential for this method to discover
new associations between orthologous groups and phenotypes. For example, we found
here that the presence of subunits of the energy-converting hydrogenase A are more
predictive of an organism’s performing hydrogenotrophic methanogensis than the genes
directly involved in the process as described in the KEGG functional module for it. For
nitrate reduction, in addition to expected genes such as nitrate reductase, there are
multiple KEGG orthologs listed as ‘uncharacterised protein’ which are highly predictive
of this function.

To check the robustness of the models we generated, we tried training the models on
one section of the microbial taxonomic groups, the Proteobacteria, and testing its
accuracy on organisms from the rest of the tree, which it had not encountered at all in
training. This did significantly reduce model accuracy for many phenotypes. This is to
be expected, as the training and test sets in this case are so different. However, some of
the functions still achieved good accuracy. This would suggest that the logistic
regression model is identifying genes functionally involved with the phenotype in the
training stage, such that their presence even in distantly related organisms is indicative
of the presence of the phenotype. Phenotype predictions that had good accuracy under
this scheme tended to produce models involving only a few genes (i.e. only a few genes
had nonzero weights in the logistic regression model), less than 100, supporting the idea
that these models are picking out genes directly involved with the phenotype.

As with any machine learning approach, the presented study is limited by the
accuracy and availability of the data on which models can be trained. We consider this
to be the key bottleneck in the genotype-phenotype prediction problem and expect
future improvements to come from better data curation and collection (on existing
organsisms), rather than development of new improved classification algorithms. To this
end, extended versions of databases such as FAPROTAX, and listing detailed
phenotypic features of cultured organisms would provide a highly valuable resource for
machine learning approaches. Such data would allow development of finer grained and
more accurate classifiers, which can then be applied to unknown genomes and MAGs.
The results of such applications will also be improved by better MAG assembly. In
particular, we note the key limitation of classifiers on MAGs being the accuracy of their
gene content assignments. Increasing this accuracy will also improve the accuracy of
their machine learning based functional assignment. As these limitations are addressed,
we expect classifiers to become a key tool in gaining insights into the functional
capabilities both of microbiomes as a whole and the individual species making up those
communitites, even when those species cannot be cultivated.
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Fig S1. Performance of classification algorithms using different ortholog
schemes. The AUROC score on each classification task (each function) is shown for
algorithms trained on two representations of genomes in terms of orthologous groups of
genes, the KEGG orthology (KO) and Pfam protein families.
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Fig S2. Stochastic neighbour embedding of all species in KEGG ortholog
space Ordination in two dimensions of all the species in our training dataset. By
coloring by classification group (true positive, true negative, false positive, false
negative) for a particular function, here sulfate respiration, we can graphically visualise
the behaviour of our classifier. Top: embedding performed over all KEGG orthologs.
Bottom: embedding performed only over KOs relevant to the function according to the
classifier.
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Fig S3. Overall comparison of AD, Tara and CPR MAGs. Proportions of

MAGS from the environments having a function, for some of the most common

functions.
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