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Machine learning‑based prediction 
of microsatellite instability 
and high tumor mutation burden 
from contrast‑enhanced computed 
tomography in endometrial cancers
Harini Veeraraghavan1,14, Claire F. Friedman2,6,14, Deborah F. DeLair3,7, Josip Ninčević4,8, 
Yuki Himoto4,9, Silvio G. Bruni4,10, Giovanni Cappello4,11, Iva Petkovska4, 
Stephanie Nougaret4,12,13, Ines Nikolovski4, Ahmet Zehir3, Nadeem R. Abu‑Rustum5, 
Carol Aghajanian2,6, Dmitriy Zamarin2,6, Karen A. Cadoo2,6, Luis A. Diaz Jr.2,6, 
Mario M. Leitao Jr.5, Vicky Makker2,6, Robert A. Soslow3, Jennifer J. Mueller5, 
Britta Weigelt3,15 & Yulia Lakhman4,15*

To evaluate whether radiomic features from contrast‑enhanced computed tomography (CE‑CT) can 
identify DNA mismatch repair deficient (MMR‑D) and/or tumor mutational burden‑high (TMB‑H) 
endometrial cancers (ECs). Patients who underwent targeted massively parallel sequencing of primary 
ECs between 2014 and 2018 and preoperative CE‑CT were included (n = 150). Molecular subtypes of EC 
were assigned using DNA polymerase epsilon (POLE) hotspot mutations and immunohistochemistry‑
based p53 and MMR protein expression. TMB was derived from sequencing, with > 15.5 mutations‑
per‑megabase as a cut‑point to define TMB‑H tumors. After radiomic feature extraction and selection, 
radiomic features and clinical variables were processed with the recursive feature elimination random 
forest classifier. Classification models constructed using the training dataset (n = 105) were then 
validated on the holdout test dataset (n = 45). Integrated radiomic‑clinical classification distinguished 
MMR‑D from copy number (CN)‑low‑like and CN‑high‑like ECs with an area under the receiver 
operating characteristic curve (AUROC) of 0.78 (95% CI 0.58–0.91). The model further differentiated 
TMB‑H from TMB‑low (TMB‑L) tumors with an AUROC of 0.87 (95% CI 0.73–0.95). Peritumoral‑rim 
radiomic features were most relevant to both classifications (p ≤ 0.044). Radiomic analysis achieved 
moderate accuracy in identifying MMR‑D and TMB‑H ECs directly from CE‑CT. Radiomics may provide 
an adjunct tool to molecular profiling, especially given its potential advantage in the setting of 
intratumor heterogeneity.
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Medical imaging plays an essential role in oncology care during all stages of clinical management. Until recently, 
the practice of radiology was based largely on subjective image interpretation by human observers. Radiomics is 
a rapidly developing �eld that robustly processes and converts radiologic images into minable quantitative  data1. 
Radiomic approaches that implement machine learning algorithms have already successfully uncovered a number 
of associations between radiomic signatures and key genomic drivers across several cancer  types2–5. �is growing 
body of literature points to a latent opportunity to integrate imaging as a biomarker for new targeted  therapies6–9.

Endometrial cancer (EC) is the most frequent gynecologic cancer in the United  States10. Traditionally, tumor 
histology, grade, and International Federation of Gynecology and Obstetrics (FIGO) stage are the key prognostic 
 factors11,12. However, the FIGO system has limited prognostic relevance in uterine-con�ned  disease13, and there 
is interobserver-variability both in the pathologic assessment of tumor grade and in the diagnosis of high-grade 
 ECs14–17. Beyond this histologic classi�cation, �e Cancer Genome Atlas (TCGA) has de�ned four molecular 
subtypes of EC that correlate with prognosis: DNA polymerase epsilon (POLE) mutant [ultramutated], micros-
atellite instability-high (MSI-H)/mismatch-repair de�cient (MMR-D) [hypermutated], copy-number low (CN-
low) [endometrioid-like], and copy-number high (CN-high) [serous-like]18. �e above molecular classi�cation 
combined with traditional prognostic factors is now advocated as the preferred schema to risk-stratify EC, design 
prospective clinical trials, and potentially personalize patient  therapy19.

Accurate molecular classi�cation is essential given the Food and Drug Administration (FDA) approval of 
Pembrolizumab, an anti-programmed cell death 1 (anti-PD-1) antibody, for treatment of MMR-D/MSI-H solid 
 tumors20–23. Beyond MMR status, the determination of tumor mutational burden (TMB) is also potentially 
relevant given the reports of response to immune checkpoint blockade in patients with POLE-mutated  EC24, 
as well as the ongoing prospective clinical trials evaluating PD-1/PD-L1 monotherapy in TMB-high (TMB-H) 
solid tumors (Clinicaltrials.gov, NCT02091141, NCT03668119)25.

We hypothesize that medical imaging, processed with radiomics, can uncover the salient associations with 
the underlying tumor biology. If these associations are con�rmed, radiomic analysis may serve as a surrogate for 
molecular pro�ling in the settings when tissue is not available for immunohistochemical or mutational analysis, 
or if the results are ambiguous. Moreover, at present, therapeutic decisions are based largely on the analysis of 
primary tumors, and may miss MMR-D that is present only in the advanced/recurrent  setting26,27. Radiomic 
analysis has the potential to simultaneously and non-invasively assess both primary and metastatic lesions, 
potentially capturing inter-lesion molecular heterogeneity.

In this study, we aimed to evaluate whether radiomic analysis of contrast-enhanced computed tomography 
(CE-CT) obtained during initial staging of EC can identify MMR-D and TMB-H tumors. Two key considerations 
that motivated our focus on preoperative CE-CT were: (1) the recommendations by the National Comprehensive 
Cancer Network (NCCN) guidelines to obtain CE-CT for the initial staging of high-grade EC and restaging of 
suspected recurrence or  metastasis28 and (2) sequencing and immunohistochemical analysis were performed 
on primary tumors.

Methods
Overview. Machine learning classi�ers comprised of radiomic features and clinical variables (patient  
age, tumor histology, grade, and FIGO stage) were trained to (1) distinguish MMR-D from CN-low-like and 
CN-high-like ECs and (2) identify TMB-H tumors (Fig. 1). Classi�cation models were built using the training 
dataset and then validated on the holdout test dataset. �e Institutional Review Board (IRB) of Memorial Sloan 
Kettering Cancer Center (MSKCC) approved this retrospective Health Insurance Portability and Accountability 
Act-compliant study and waived the requirement for informed consent. All subjects included in this study had 
previously consented to an IRB-approved study of targeted massively parallel sequencing in patients with solid 
tumors (Memorial Sloan Kettering-Integrated Mutation Pro�ling of Actionable Cancer Targets, MSK-IMPACT; 
NCT01775072)29. All methods were carried out in accordance with relevant guidelines and regulations.

Eligibility criteria. Our institutional database was queried to identify all patients who met the  
following eligibility criteria: (1) molecular pro�ling of primary ECs with MSK-IMPACT sequencing and  
immunohistochemical analysis of p53 and MMR proteins between 2014 and 2018 and (2) preoperative CE-CT 
with de�nable endometrial tumor (Fig. 2). Patients with all histologic subtypes of EC and all FIGO stages were 
included if they otherwise met the eligibility criteria. �e �nal study population included 150 patients; this 
cohort was randomly split into the discovery (n = 105, 70%) and validation (n = 45, 30%) groups (Table 1, Fig. 2). 
Electronic medical records were reviewed for pertinent clinical information.

Molecular profiling and classification of ECs. Tumor and matched normal DNA were subjected to MSK- 
IMPACT sequencing, a Food and Drug Administration (FDA)-approved, Clinical Laboratory Improvement 
Amendments (CLIA)-certi�ed, massively parallel sequencing platform to identify somatic and germline genetic 
alterations in up to 468 cancer-related  genes29,30. A clinical algorithm was applied based on DNA polymerase 
epsilon (POLE) exonuclease domain mutations identi�ed by sequencing and immunohistochemistry (IHC) for 
p53 and MMR proteins to stratify ECs into POLE, MMR-de�cient (MMR-D), CN-low-like, and CN-high-like 
subtypes. �ese subtypes are analogous but not identical to the TCGA  subtypes14,31,32. IHC for p53 and DNA 
mismatch repair proteins (MSH2, MSH6, MLH1, and PMS2) was performed as previously  described33,34. �e 
MSK-IMPACT and IHC data for all study patients were reviewed by a board-certi�ed gynecologic pathologist 
(D.F.D.).

TMB was computed as the number of nonsynonymous somatic mutations-per-megabase (mut/Mb) using 
MSK-IMPACT sequencing, targeting exons and selected introns of up to 468 cancer-related  genes29,30. A uni-
versal, pan-solid tumor TMB cuto� to distinguish responders from non-responders to immune checkpoint 
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inhibitors is yet to be de�ned. We selected a cut-point of > 15.5 mutations/Mb (i.e. ≥ 16 mut/Mb when rounded 
up to the nearest whole number). �is is a clinically meaningful cut-point that mirrors the enrollment criteria 
of the MyPathway (NCT02091141), a study of Atezolizumab that is actively enrolling patients with TMB-H 
advanced solid tumors.

Segmentation and image preprocessing. Details of CE-CT acquisition are provided in the Supplement.  
Two radiologists (Y.L. and J.N.) with expertise and experience in gynecologic oncologic imaging manually 
contoured all tumors in consensus. �e radiologists used the Insight Segmentation and Registration Toolkit-
Segmentation platform (ITK-SNAP) version 3.6 (https ://itksn ap.org) to trace the outer margin of each lesion on 
every tumor-containing image, a process that resulted in radiologist-de�ned tumor volumes-of-interest (VOI)35. 
To ensure consistent extraction of texture features, all CT images and corresponding VOIs were resampled to 
the uniform voxel size of 1 × 1 × 1 mm3 using the in-house so�ware wrapper written in C++ around the Insight 
ToolKit so�ware  library36.

In addition to tumor VOI, the peritumoral-rim was generated for each lesion/patient to capture the invasive 
edge of the tumor and interrogate the environment surrounding the tumor. First, dilated VOI was produced via 
automated expansion of the tumor contour by 3 mm. �en, tumor VOI was subtracted from the dilated VOI, 
resulting in the peritumoral-rim (Fig. 1).

Radiomic feature extraction. Radiomic features were computed using the open-source Computational 
Environment for Radiological Research (CERR) so�ware (https ://githu b.com/cerr/CERR/) and according to the 
standards of the image biomarker standardization initiative (IBSI)37–39. For each patient, the radiomic features 
were extracted both from within the tumor and from the dilated VOI; peritumoral-rim features were then com-
puted as a di�erence in the values of features between the dilated VOI and the tumor VOI. Two hundred (100 
intra-tumoral and 100 peritumoral-rim) radiomic features were generated for each lesion/patient as detailed in 
the Supplement.

Radiomic feature selection. Dimensionality reduction was accomplished via a multi-step approach. 
First, the Kruskal–Wallis test was used to identify and remove all unstable radiomic features, i.e., features with 
signi�cant variations across CT scanner manufacturers. Next, the maximum relevance and minimum redun-
dancy (mRMR) method was used to select the top-80% most relevant and least redundant  features40.

Figure 1.  Schematic overview of the methods employed in this study. �e radiologist-de�ned tumor VOIs were 
used to extract intra-tumoral radiomic features. Peritumoral-rim was generated by automatically expanding the 
tumor contours by 3 mm and subtracting the dilated VOI from the tumor VOI. Peritumoral-rim features were 
computed as the di�erences in the values of radiomic features between the dilated VOI and the tumor VOI. �e 
features are later down-selected via a multi-step approach; the selected features were z-score standardized and 
used to construct the classi�ers. CT computed tomography, GLCM gray level co-occurrence matrix, GLRLM 
gray level run length matrix, GLSZM gray level size zone matrix, NGTDM neighborhood gray tone di�erence 
matrix, NGLDM neighborhood gray level dependence matrix, MMR-D DNA mismatch repair-de�cient, CN 
copy number, TMB-H tumor mutational burden-high, TMB-L tumor mutational burden-low, VOI volume of 
interest.

https://itksnap.org
https://github.com/cerr/CERR/


4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:17769  | https://doi.org/10.1038/s41598-020-72475-9

www.nature.com/scientificreports/

Lastly, mRMR selected features were passed through an additional pre-�ltering step using the generalized 
linear regression (GLMNet)41,42. GLMNet was trained with repeated �ve-fold cross validation, ten repetitions, 
and up-sampling to handle class imbalance. At the end, seventy features with the importance of > 0 were selected 
to build radiomic-clinical classi�cation models; all features were z-score standardized (scaled and centered to a 
mean of 0 and standard deviation of 1.0).

Integrated radiomic‑clinical classification models. Recursive feature elimination random forest  
classi�ers (RFE-RF) with 2000 decision trees and repeated (n = 10) �ve-fold nested internal cross-validation were  
built on the data from the training dataset (discovery cohort; n = 105)43,44. All features were ranked according 
to their importance in the classi�cation using Gini feature  importance44. Gini feature importance measures the 
overall probability of misclassi�cation when using a given feature in the individual trees of the RF  classi�er43. 
Features with Gini feature importance of > 25.0 (i.e., features selected > 10% of the time in the 250 analysis folds) 
were considered relevant to the classi�cation. Cross-validation accuracy was computed using the cases that 
were not included in the individual analysis folds. Integrated radiomic-clinical classi�cation models with the 
best performance among the cross-validation folds were selected for the validation on the holdout test dataset 
(validation cohort; n = 45).

Statistical analysis. �e models were evaluated with an area under the receiver operating characteristic 
curve (AUROC). Sensitivity, speci�city, positive predictive value (PPV), and negative predictive value (NPV) 
including 95% con�dence intervals (CI) were reported. �e models were compared with the deLong  test45.

�e univariate associations between the relevant features selected by the RFE-RF and outcomes (distinguish-
ing MMR-D from CN-low-like and CN-high-like ECs; identifying TMB-H tumors) were examined with the 
Mann–Whitney U-test. �e Benjamini–Hochberg method was used to correct for multiple  comparisons46. All 
statistical analyses were performed using R so�ware, version 3.3.347.

Figure 2.  Flow chart illustrating the patient selection criteria. EC endometrial cancer, CE-CT contrast-
enhanced computed tomography, NACT  neoadjuvant chemotherapy, POLE polymerase epsilon, MMR-D DNA 
mismatch repair-de�cient, CN copy number.
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Results
Patients. Patient characteristics are summarized in Table  1. Median patient age at EC diagnosis was  
64  years (inter-quartile range (IQR) 58–71  years). Endometrioid adenocarcinoma (62/150; 41.3%), serous  
carcinoma (31/150; 20.7%) and carcinosarcoma (26/150; 17.3%) were the most prevalent histologic subtypes. 
�e distribution of the molecular subtypes was as follows: 6/150 (4%) POLE, 44/150 (29.3%) MMR-D, 28/150 
(18.7%) CN-low-like, and 72/150 (48%) CN-high-like. All POLE and 41/44 (93%) MMR-D tumors were TMB-H 
(i.e. > 15.5 mutations/Mb); all CN-low-like and all CN-high-like tumors were TMB-L. Two of three MMR-D 
tumors with TMB-L had low tumor cell content (i.e. ≤ 20%). �e discovery (n = 105) and validation (n = 45) 
groups were similar with respect to the clinical variables, molecular subtypes, and TMB status (p ≥ 0.05 all com-
parisons) (Table 1).

Integrated radiomic‑clinical machine learning classifier can identify MMR‑D tumors. �e  
performance of the radiomic-clinical model to distinguish MMR-D from CN-low-like and CN-high-like ECs 
is summarized in Table  2. For this analysis, ECs of POLE molecular subtype were excluded. We found that 
our model achieved a cross-validation AUROC of 0.78 (95% CI 0.67–0.88) for the training dataset and a true  
validation AUROC of 0.78 (95% CI 0.58–0.91) for the test dataset (p = 1.0) (Fig. 3A).

�e radiomic-clinical model identi�ed three peritumoral-rim Gabor edge features as the most relevant 
features to the classi�cation, i.e., Gini feature importance > 25.0 (Supplemental Table 1). �e above peritumoral-
rim features remained signi�cant a�er the adjustment for multiple comparisons (p ≤ 0.008) (Supplemental 

Table 1.  Patient characteristics. IQR interquartile range, FIGO the International Federation of Gynecology and 
Obstetrics, POLE polymerase epsilon, MMR-D DNA mismatch repair-de�cient, CN copy number, TMB tumor 
mutational burden, mut/Mb mutations per megabase. *Categorical variables were compared using Fisher exact 
test; continuous variables were compared with Mann–Whitney U-test.

Entire cohort
N = 150

Discovery cohort
N = 105

Validation cohort
N = 45 p-values*

Median patient age, years (IQR) 64 (58–71) 65 (59–71) 62 (56–68) 0.10

Histology, number (%) 0.09

Endometrioid 62 (41.3%) 45 (42.9%) 17 (37.8%)

Serous 31 (20.7%) 22 (21.0%) 9 (20.0%)

Clear cell 11 (7.3%) 8 (7.6%) 3 (6.7%)

Carcinosarcoma 26 (17.3%) 15 (14.3%) 11 (24.4%)

Undi�erentiated/dedi�erentiated 6 (4.0%) 2 (1.9%) 4 (8.9%)

Unclassi�ed high-grade type 14 (9.3%) 13 (12.4%) 1 (2.2%)

Tumor grade, number (%) 0.60

Well/moderately di�erentiated 109 (72.7%) 75 (71.4%) 34 (75.6%)

Poorly di�erentiated 41 (27.3%) 30 (28.6%) 11 (24.4%)

Stage, number (%) 0.80

Extra-uterine 84 (56.0%) 58 (55.2%) 26 (57.8%)

Uterine-con�ned 66 (44.0%) 47 (44.8%) 19 (42.2%)

Molecular subtype, number (%) 0.59

POLE 6 (4.0%) 3 (2.9%) 3 (6.7%)

MMR-D 44 (29.3%) 33 (31.4%) 11 (24.4%)

CN-low-like (endometrioid-like) 28 (18.7%) 20 (19.0%) 8 (17.8%)

CN-high-like (serous-like) 72 (48.0%) 49 (46.7%) 23 (51.1%)

Median TMB, mut/Mb (IQR) 6.7 (3.6, 24.4) 6.7 (3.9, 25.7) 6.9 (3.5, 15.8) 0.40

Table 2.  �e perfromance of the integrated radiomic-clinical classi�cation model to di�erentiate MMR-D 
from CN-low-like and CN-high-like ECs. EC endometrial cancer, AUROC area under the receiver operating 
curve, CI con�dence interval, PPV positive predictive value, NPV negative predictive value, MMR-D 
DNA mismatch repair-de�cient, CN copy number. * deLong test. a Cross-validated AUROC. b Patients with 
polymerase epsilon (POLE) subtypes of EC were excluded from this analysis.

Data sets AUROC (95% CI) Sensitivity (95% CI) Speci�city (95% CI) PPV (95% CI) NPV (95% CI) p-value*

Training set (discovery 
cohort, N = 102b)

0.78a (0.67, 0.88) 0.67 (0.48, 0.82) 0.77 (0.65, 0.86) 0.58 (0.41, 0.74) 0.83 (0.71, 0.91)

1.0
Test set (validation 
cohort, N = 42b)

0.78 (0.58, 0.91) 0.64 (0.31, 0.89) 0.74 (0.55, 0.88) 0.47 (0.21, 0.73) 0.85 (0.66, 0.96)
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Table 1). Peritumoral-rim radiomics interrogates and potentially quanti�es the heterogeneity across the inter-
face between the periphery of tumor and its environment; Gabor �lters are the edge detectors that capture the 
orientation-sensitive information. Our results suggest that the peritumoral-rim of MMR-D ECs demonstrates 
higher heterogeneity compared to the peritumoral-rim of CN-low-like and CN-high-like tumors.

Integrated radiomic‑clinical machine learning classifier can identify TMB‑H tumors. As a next 
step, we assessed the performance of the radiomic-clinical model to di�erentiate all TMB-H ECs, including 
ECs of MMR-D and POLE subtypes, from TMB-L tumors (Table 3). We found that our model achieved a cross-
validation AUROC of 0.74 (95% CI 0.64–0.84) for the training dataset and a true validation AUROC of 0.87 
(95% CI 0.73–0.95) for the test dataset (p = 0.09) (Fig. 3B).

�e radiomic-clinical model selected 21 features as the most important to the classi�cation, i.e., Gini feature 
importance > 25.0 (Supplemental Table 2). Of these, 12 features remained signi�cantly associated with TMB 
status a�er the adjustment for multiple comparisons (p ≤ 0.044). Again, the peritumoral-rim features including 
Gabor edge features were among the most relevant to the classi�cation. Concretely, the peritumoral-rim features 
accounted for 9/12 (75%) signi�cant features for identifying TMB-H tumors (Supplemental Table 2).

Discussion
Here, we demonstrate that CE-CT radiomics can distinguish MMR-D from CN-low-like and CN-high-like 
ECs and identify TMB-H ECs. Our machine learning classi�er was built using clinical variables and both intra-
tumoral and peritumoral-rim radiomic features; the model was subsequently validated on the holdout test 
dataset. �e resultant integrated clinical-radiomic models achieved true validation AUROCs of 0.78 and 0.87 
for classifying MMR-D and identifying TMB-H ECs, respectively. MMR IHC is a highly sensitive and speci�c 
tool to determine MMR status, however, the screening is not universal beyond tertiary  centers48. In view of the 

Figure 3.  Receiver operator characteristic curves demonstrate the performance of the integrated clinical-
radiomic models in the training dataset and the holdout test dataset to (A) di�erentiate MMR-D from CN-low-
like and CN-high-like tumors, and (B) distinguish TMB-H from TMB-L ECs. EC endometrial cancer, MMR-D 
DNA mismatch repair-de�cient, CN copy number, TMB tumor mutational burden.

Table 3.  �e performance of the integrated radiomic-clinical classi�cation model to distinguish TMB-high 
from TMB-low ECs. TMB tumor mutational burden, EC endometrial cancer, AUROC Area under the receiver 
operating curve, CI con�dence interval, PPV positive predictive value, NPV negative predictive value. *deLong 
test. a Cross-validated AUROC.

Data sets
AUROC 
(95% CI) Sensitivity (95% CI) Speci�city (95% CI) PPV (95% CI) NPV (95% CI) p-value*

Training set (discovery 
cohort, N = 105

0.74a (0.64, 0.84) 0.83 (0.66, 0.93) 0.73 (0.61, 0.83) 0.60 (0.45, 0.74) 0.89 (0.78, 0.96)

0.09
Test set (validation 
cohort, N = 45)

0.87 (0.73, 0.95) 0.75 (0.43, 0.95) 0.82 (0.65, 0.93) 0.60 (0.32, 0.84) 0.90 (0.73, 0.98)
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common use of CE-CT to stage ECs at the time of initial diagnosis and recurrence, non-invasive radiomic-based 
identi�cation of MMR-D and TMB-H tumors may reduce the cost and improve the accessibility of molecular 
strati�cation. Further, radiomics may complement the evaluation of TMB status in the setting of low tumor 
content, a scenario that is not uncommon with primary low-grade endometrioid ECs.

In our study, the machine learning classi�er selected peritumoral-rim radiomics as the most relevant to the 
classi�cation. �is �nding may suggest that MMR-D and TMB-H ECs demonstrate greater heterogeneity at the 
interface between the tumor and its environment when compared to CN-low-like and CN-high-like/TMB-L 
tumors, respectively. A number of studies across multiple tumor types have reported on the value of peritumoral-
rim radiomics (in addition to or beyond that of intra-tumor radiomics) in uncovering associations with tumor 
biology, prognosis, and treatment  response8,49–54. �e peritumoral-rim encompasses the invasive edge of the 
tumor and, thus, potentially provides insight into the role of the tumor microenvironment in cancer biology 
and behavior. MMR-D tumors are known to have a higher composition of tumor in�ltrating lymphocytes (TILs) 
compared to MMR-pro�cient  disease55,56. In breast cancer, several studies have demonstrated an association 
between peritumoral features and TIL density at the tumor  margins8,51. �is is a rich area of research; further 
studies are warranted to explore the associations between the peritumoral-rim radiomics and the density of 
peritumoral TIL in EC.

To our knowledge, only two recent studies evaluated whether machine learning can identify MMR-D/MSI-H 
tumors, focusing on gastrointestinal  tumors57,58. Kather et al. implemented automated tumor detection on the 
Hematoxylin and Eosin (H&E)-stained sections of colorectal and gastric cancers and tessellated each lesion 
into the color-normalized tiles. Using the color tiles, a deep learning model was trained on TCGA cohorts to 
identify MSI-H tumors, achieving AUCs of 0.77–0.84 depending on the  cohort57. �e model was then validated 
on a multi-institutional cohort with a true validation AUC of 0.84. Interestingly, the authors found that MSI was 
associated spatially with poor di�erentiation and lymphocyte-rich tumor areas, consistent with prior histopa-
thology literature. Golia Pernicka et al. evaluated whether CE-CT-based radiomics can predict MMR-D status 
in patients with colon  cancer58. Similar to our study, the combined clinical-radiomic model predicted MMR-D 
colon cancer with an AUC of 0.80 for the training dataset and 0.79 for the test dataset. �e combined model was 
slightly superior to the clinical-only (AUC of 0.74) and radiomic-only models (AUC of 0.76). Peritumoral-rim 
features were not included in the analysis.

To date, only one prior study has explored the role of radiomics in decoding TMB. Wang et al. evaluated 61 
tumors in 51 patients with surgically proven early stage lung cancer and preoperative CT. �e authors reported 
an AUC of 0.671 for predicting TMB status using a combined clinical-radiomic  model59. Comparison between 
Wang et al. and our �ndings is limited by the di�erences in tumor types and the lack of universal de�nition of 
TMB-H status.

ECs are a heterogenous group of tumors with diverse clinical behaviors and distinct genomic alterations. Con-
ventional  chemotherapy60,61 and endocrine  treatments62,63 have limited e�cacy in advanced or recurrent disease, 
highlighting the need for novel therapeutic  paradigms64. �e molecular strati�cation of ECs may expand further 
our understanding of tumor behavior and response to therapy, and, thus, accelerates the realization of precision 
medicine through better patient selection and innovative clinical trial design. Nevertheless, the widespread 
implementation of genomic pro�ling and molecular classi�cation is limited by the cost, as well as availability of 
sequencing, tissue availability/tissue purity, functional assays, and area-speci�c expertise. Furthermore, MMR 
IHC is frequently performed on the primary tumor, which may miss acquired MMR de�ciency in metastatic/
recurrent  disease26,27. Reliable and cost-e�ective identi�cation of patients with MMR-D/MSI-H ECs are essential 
given the FDA approval of Pembrolizumab for MMR-D/ MSI-H solid  tumors22. Robust and inexpensive assess-
ment of TMB status is also timely given the ongoing prospective clinical trials which are enrolling patients with 
pan-solid tumors on the basis of TMB and other molecular classi�ers (NCT03668119, NCT0291141)64. Our 
�ndings suggest the potential of radiomics as an adjunct tool to molecular pro�ling, especially given its possible 
advantage in the presence of intra-tumor heterogeneity.

Our study has several limitations, including retrospective study design, relatively small patient cohort, and 
the fact that all patients were sourced from a single institution. Notably, many patients in our cohort (36%) 
were imaged at various outside institutions, suggesting that our models may be generalizable across multiple 
CT protocols and vendors. Further validation of this approach utilizing large multi-institutional cohorts will be 
essential to exclude over�tting and con�rm the applicability of our results across di�erent institutions/patient 
populations. In addition, many ECs were challenging to delineate on CE-CT, probably due to smaller size and 
ill-de�ned borders. �is limitation may be overcome with Magnetic Resonance Imaging (MRI), which has 
superior so� tissue contrast, and, according to the NCCN guidelines, is considered for evaluating local disease 
extent during initial work-up28. However, preoperative MRI may be unavailable for many patients because of the 
growing shi� toward sentinel lymph node sampling/mapping (making preoperative information about the depth 
of myometrial invasion less critical)11. �e radiomic analysis may be enhanced further by utilizing deep learn-
ing algorithms. Deep learning identi�es salient features without the need for segmentation and, given enough 
training data, outperforms traditional machine learning approaches that are based on “hand-cra�ed”  features65. 
Finally, our study was restricted to primary ECs given that the sequencing and IHC analyses was performed 
on primary tumors. Considering that pembrolizumab is currently FDA-approved in the advanced or recurrent 
setting, it will be important to validate our results in the advanced disease setting.

In conclusion, we have developed clinical-radiomic machine learning models to non-invasively identify 
MMR-D and TMB-H ECs from CE-CT images. �is serves as a proof-of-principle that radiomic models should 
be investigated and validated further in large multi-institutional cohorts with the aim of developing these algo-
rithms as a reproducible companion/complementary diagnostic for clinical trial enrollment and standard-of-care 
 treatment66. Moving forward, it will be also informative to deploy radiomics to capture intra-patient variability 
and to decode other key EC genomic drivers with clinical indications.
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