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Abstract—Majority of energy consumption in Singapore 

buildings is due to air-conditioning, because of its hot and humid 

weather.  Besides attaining a healthy indoor environment, a prior 

knowledge about the occupant’s thermal comfort can be 

beneficial in reducing energy consumption, as it can save energy 

which is otherwise spent in extra cooling. This paper proposes a 

data-driven approach to predict individual thermal comfort level 

(‘cool-discomfort’, ‘comfort’, ‘warm-discomfort’) using 

environmental and human factors as input. Six types of 

classifiers have been implemented- Support Vector Machine 

(SVM), Artificial Neural Network (ANN), Logistic Regression 

(LR), Linear Discriminant Analysis (LDA), K-Nearest Neighbors 

(KNN), and Classification Trees (CT), on a publicly available 

database of 817 occupants for air-conditioned and free-running 

buildings separately. Results show that our approach achieves 

prediction accuracies of 73.14-81.2%, outperforming the 

traditional Fanger’s PMV (Predicted Mean Vote) model, which 

has accuracies of only 41.68-65.5%. Age, gender, and outdoor 

effective temperature, which are not included in the PMV model, 

are found to be important factors for thermal comfort. The 

proposed approach also outperforms modified PMV models- the 

extended PMV model and the adaptive PMV model which attain 

accuracies of 61.75% and 35.51% respectively. 

Keywords— thermal comfort; smart building; PMV model; 

adaptive model; machine learning 

I.  INTRODUCTION 

Singapore is a hot and humid country due to its close 
proximity to the equator at 1.3521° N, and is characterized by 
uniformly high temperatures and humidity throughout the year. 
About 50% of the electricity consumption in Singapore is due 
to buildings, and about 60% of the electricity consumption in 
buildings is due to cooling [1]. Hence substantial amount of 
energy and capital resources is spent every year in cooling to 
achieve a thermally comfortable environment in buildings. 
Maintaining a healthy indoor climate is crucial to prevent 
health hazards to the occupants such as thermal stress and 
hypothermia [2]. A healthy indoor environment also improves 
productivity at work. A prior knowledge of the occupant’s 
thermal comfort level can help to control how much energy is 
to be spent in cooling, thus limiting the energy consumption as 
per requirement. Prediction of thermal comfort can therefore, 
not only maintain a favorable indoor climate but also aid in 
reducing energy consumption. It can bring about an optimal 
balance between energy use and thermal comfort- a vital 
objective of smart city buildings.  

The most widely adopted method to predict thermal 
comfort is the Fanger’s PMV (Predicted Mean Vote) Model 
[2]. According to this model, a person’s thermal comfort 
depends upon six factors – air temperature, mean radiant 
temperature, relative humidity, air speed, clothing rate 
(clothing insulation of the person), and metabolic rate (activity 
level of the person). The PMV model uses these six factors as 
inputs to predict actual thermal comfort by an index termed 
PMV. The PMV index ranges on a scale of -3 (Cold) to +3 
(Hot), according to the ASHRAE thermal comfort scale (Fig. 
1), where neutral is the desirable level [3]. However, previous 
works have revealed discrepancies between the predicted vote 
PMV and the actual thermal sensation vote reported by the 
occupants [4, 5]. This could probably be because certain other 
factors such as age, gender and the outdoor climate conditions 
are not included in the PMV model. 

  Metabolic ability decreases with age and so it changes the 
person’s sensitivity to heat or cold [6]. In case of gender, 
women have lower metabolic rate and hence lower evaporative 
heat loss as compared to men. It is found that women usually 
prefer higher air temperature [7]. Several works have studied 
the impact of age and gender, but resulting in different 
conclusions [2, 6-8]. Outdoor weather can have psychological 
effect on thermal comfort in air-conditioned (HVAC) 
buildings, and direct effect on thermal comfort in naturally 
ventilated (NV) buildings. This paper investigates the 
importance of these three factors (age, gender and outdoor 
weather) on thermal comfort in building indoors.  

In this paper, we have proposed a data-driven approach to 
predict individual thermal comfort in real time using several 
environmental and human factors including the six Fanger’s 
factors and the three new proposed factors- age, gender and 
outdoor weather. Machine learning algorithms [9-13] have 
been used for this approach because they can deal with big 
data, and yet have high computational speed as compared to 
PMV model, which has a long and complex iterative 
computation process. HVAC and NV buildings are studied 
separately. The proposed model has been compared with 
Fanger’s PMV model, as well as modified PMV models 
(ePMV, aPMV) that are based on the adaptive model [14, 15]. 

 

 

 

Figure 1. ASHRAE Thermal Comfort scale 
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 Several work [2, 13, 16] have been done to predict thermal 
comfort, but this study differs from them in the following 
ways: this is a data-driven approach unlike most of them; it is 
specific to equatorial climate and buildings of Singapore 
(different climatic regions  have different building envelopes 
and properties suited to their climates); air-conditioned and 
naturally ventilated buildings are studied separately; three new 
features, namely age, gender, and outdoor weather have been 
introduced, and lastly, outdoor effective temperature has been 
used for outdoor weather data, because unlike air temperature, 
effective temperature is representative of the overall weather. 

II. PROPOSED PREDICTION MODEL 

We propose a data-driven approach to real time prediction 
of individual thermal comfort level. The thermal comfort 
reported by occupants on the ASHRAE scale (Fig. 1) is first 
classified into three levels: Cool discomfort [-3,-1), 
Comfortable/neutral [-1, 1], Warm discomfort (1, 3]. This level 
is taken as ground truth or actual thermal comfort level. Our 
approach is based on supervised machine learning algorithm 
wherein a classifier learns the pattern between the inputs and 
the outputs, and gains the ability to predict the output for 
unseen future input. The overview of the approach is presented 
in Fig. 2. The first step is the selection of the best classifier. 
Each classifier takes in several environmental and human 
factors as input, and the actual comfort level; trains itself, and 
its accuracy is tested on new/test dataset. The classifier with the 
minimum classification error is selected as the best.  The 
selected classifier with its optimal tuning parameters forms the 
prediction model, which can be implemented in real-time. The 
predicted comfort level can be sent as a signal to the HVAC 
controller in air conditioned buildings, or in case of naturally 
ventilated buildings, it can be displayed, and used by the 
occupant to manually control the cooling device (fans etc.). 
The inputs are called as features and a set of inputs is called a 
feature set. In this case, feature selection is not done as we 
consider all the mentioned inputs as important. Unlike several 
indoor thermal studies, we have not discarded mean radiant 
temperature as studies show that it is in fact one of the most 
important factors, especially in a wet equatorial region as 
Singapore [17] where solar radiation is high. 

There are two types of thermal comfort models- static and 
adaptive. Fanger’s PMV model is a static model, applicable to 
both HVAC and NV case, while the adaptive model is more 
suited for NV buildings. In this paper, HVAC and NV 
buildings have been studied separately because they have 
different thermal dynamics, not only in terms of control, but 
also the influencing factors. According to the adaptive model, 
in NV buildings, several other factors such as the occupant’s 
adaptation abilities, psychological state, thermal preferences 
and control also play a role in the way thermal comfort is 
perceived [15]. The modified PMV models, namely the ePMV 
and aPMV models take into account these extraneous factors 
while predicting the comfort level [14, 15, 19]. These modified 
models have been discussed in later sections.  

The rest of the paper is as follows: section III describes the 
methodology used: the dataset, its processing and the six 
machine learning algorithms studied, section IV presents the 
results and discussion  for  HVAC  and  NV  buildings  and  the  

 

 

 

 

 

 

 

Figure 2. Overview of proposed approach 

importance of proposed features- age, gender, and outdoor 
weather; lastly section V concludes the findings. 

III. METHODOLOGY 

A. Data Preprocessing 

ASHRAE is one of the main organizations that set thermal 
comfort standards and guidelines. For this study, we have used 
the database of thermal comfort experiments performed in 
Singapore by de Dear et al., which is publicly available as part 
of the ASHRAE RP-884 project [18]. A total of 818 people 
were surveyed about their thermal sensation, across several 
buildings in Singapore. There were two types of buildings used 
in the survey: air-conditioned (HVAC) and naturally ventilated 
(NV) buildings.  A total of 235 occupants were surveyed across 
12 different air-conditioned office buildings. These were all 
high-rise buildings with open plan design, with centrally 
controlled HVAC system. For naturally ventilated buildings, a 
total of 583 residents were surveyed across 4 public residential 
buildings. These buildings were high-rise as well, and the 
mode of thermal control consisted mainly of manually 
operating ceiling fans and standing fans. For each occupant, 
following measurements were taken during the experiments 
among others: indoor and outdoor environmental parameters 
(air temperature, air velocity, mean radiant temperature, 
relative humidity), personal parameters (gender, age, metabolic 
rate, clothing rate), and thermal comfort questionnaire. 

For our study, we are interested in the data of Fanger’s six 
parameters, thermal sensation vote, gender, age and outdoor 
weather. Hence, the datasets that had any of these missing 
values were excluded. This amounted to 229 datasets and 583 
datasets for HVAC and NV buildings respectively.  

B. Feature Set and Output 

The following factors were included in the feature set: 

 Fanger’s parameters: The six Fanger’s parameters are 
well established as definite influencers of thermal 
comfort: air temperature (Ta), mean radiant 
temperature (MRT), relative humidity (RH), air speed 
(Va), clothing rate (Clo), and metabolic rate (M). 

 Outdoor effective temperature (ETout): The effective 
temperature indicates the combined effect of air 
temperature, relative humidity and air velocity [18]. 
Thus it better represents overall outdoor weather, as 
compared to using only outdoor air temperature.  

 Age (A) 

 Gender (G) 

 



 To study the importance of the three new factors ETout, A 
and G on thermal comfort, we created two different feature 
sets, one including and one excluding these three factors. For 
NV case, the feature sets are: 

fNV_wo = {Ta, MRT, Va, RH, M, Clo}, and 

fNV_w = {Ta, MRT, Va, RH, M, Clo, A, G, ETout}. 

 However, information about occupant’s age were not 
available for the HVAC buildings, hence the feature set for 
HVAC case are: 

fHVAC_wo = {Ta, MRT, Va, RH, M, Clo}, and 

fHVAC_w = {Ta, MRT, Va, RH, M, Clo, G, ETout}. 

 The ratio of gender proportion in HVAC case was: 61% 
(male), 39% (female); and for NV case it was 49.2% (male) 
and 50.8% (female). The ages were divided into four groups in 
the NV case. The proportion of ages were: 15% (17-20 years 
old), 41.3% (21-40 years old), 28.3% (41-60 years old), and 
15.4% (>60 years old). 

 The comfort experiments required the occupants to fill a 
questionnaire/survey wherein each occupant was supposed to 
express their thermal sensation on the ASHRAE thermal scale 
(Fig. 1). This reported sensation is called as the Actual Mean 
Vote (AMV) [2, 3].The AMVs were classified into 3 comfort 
levels: Cool discomfort [-3,-1), Comfortable/neutral [-1, 1], 
Warm discomfort (1, 3]. This thermal comfort level is 
considered the actual or ground truth for the classifiers. 

C. Machine Learning Algorithms 

This study is a case of supervised learning, as inputs and 
outputs are both provided. Our aim is to implement several 
classification algorithms and select the method with the best 
classification accuracy. To avoid scaling issue, all the feature 
data were standardized by normalizing them to a mean of zero 
and standard deviation of one, prior to learning. Each sample 
consisted of a feature set and its corresponding thermal comfort 
level.  The datasets were then divided into training and testing 
sets in the ratio 70%:30%. Thus there were 160 samples for 
training and 69 samples for testing in HVAC case (n=229); and 
408 samples for training and 175 samples for testing in the NV 
case (n=583); where, n is the total number of samples. 
However, for Artificial Neural Network (ANN), the datasets 
were divided into three sets: training, validation, and testing in 
the ratio 70%: 15%: 15%. Thus the numbers of samples in each 
case were: training (161), validation (34) and testing (34) for 
HVAC case; and training (409), validation (87), and testing 
(87) for NV case.  

We have tested six different machine learning classifiers on 
the datasets of each type of building. This is repeated for each 
of the two feature sets per building type, HVAC: (fHVAC_wo, 
fHVAC_w), and  NV: (fNV_wo, fNV_w). The different classifiers 
studied are discussed briefly as follows: 

1) Support Vector Machine (SVM): SVM  is an extension 

of support vector classifier which is based on the concept of a 

hyperplane that separates different classes of training 

observations with a soft margin, using kernels [9, 10, 12].  In 

SVM, cost (C) is a non-negative tuning parameter that is used 

to control the bias-variance tradeoff.  In this study, we have 

experimented with different types of kernels, and Radial basis 

Function (RBF) worked best among them. We found the best 

tuning parameters of cost and gamma () using 10-fold cross-

validation, the values of which are presented in Table I. We 

have used a C-type classification (C-SVC) with one-versus-

one approach. 

2) Artificial Neural Networks (ANN): ANN is based on the 

human biological neuron networks, wherein signals are passed 

between a defined numbers of neurons over weighted 

connection links, with each neuron using an activation 

function to determine the output signal [10, 11]. In our study, 

we have used a two-layer feed forward ANN, with sigmoid 

function as activation function for hidden and output neurons. 

Scaled conjugate gradient backpropagation has been used to 

train the network. The optimal number of neurons (N) is 

mentioned in Table I. 

3) Logistic Regression (LR): Logistic Regression uses 

maximum likelihood method to fit the data according to a 

logistic function model. Once the coefficients are estimated, it 

can calculate the probabilities of the observation belonging to 

each class. LR then predicts the class according to the highest 

probability [9]. 

4) Linear Discriminant Analysis (LDA): LDA is similar to 

Logistic Regression in the aspect that it also produces linear 

decision boundaries, and takes a probabilistic approach to 

classification. However, unlike LR, LDA estimates the 

coefficients using estimated mean and variance from a normal 

distribution, using the least squares method [9]. 

5) K- Nearest Neighbours (KNN): The KNN classifier is 

one of the simplest yet powerful classifiers [9, 10]. It requires 

a user-input constant K. It first identifies K number of points 

in the training data that are closest to the test observation, 

estimates the conditional probability of each class as a fraction 

of points among the K points belonging to that class. KNN 

then classifies the test observation to the class with the highest 

probability using Bayes rule. K=1 gives the optimal result in 

this study. 

6) Classification Trees (CT): CT classifier is a decision 

tree that is grown using recursive binary splitting [9, 10]. The 

leaves are the class labels and the branches are the feature 

subsets leading to the class label. CTs are built using either 

classification error rate, Gini index or cross entropy as the 

criterion for making the splits. This classifier is popular for its 

strong interpretation abilities. 

 

TABLE I.  OPTIMAL TUNING PARAMETERS OF LEARNING ALGORITHMS 

 HVAC NV 

fHVAC_wo fHVAC_w fNV_wo fNV_w 

SVM 

C=1 

=0.1 

C=1 

=0.1 

 

C=1 

=0.5 

 

C=1 

=0.1 

ANN 
 

N = 20 
 

N = 20 
 

N = 20 
 

N = 20 

KNN K=1 K=1 K=1 K=1 



IV. RESULTS AND DISCUSSION 

A. Performance Metrics 

We have used Classification accuracy as the criterion for 
comparing performance of the algorithms. The classification 
accuracy is basically the percentage of the test samples whose 
thermal comfort level have been correctly predicted by the 
learning algorithm. Confusion matrix is a table that provides a 
visualization of a supervised algorithm’s performance. Each 
row consists of the true labels of the comfort level, and 
columns represent the predicted comfort levels. Classification 
accuracy is the ratio of the sum of the diagonals in the 
confusion matrix to the total number of test samples.  

B. Air conditioned buildings (HVAC) 

Table II presents the results of the predictive performance 

of the six machine learning classifiers on the test dataset of air 

conditioned buildings. The first and second column presents 

the classification accuracies for feature sets fHVAC_wo and 

fHVAC_w respectively. The Fanger’s PMV model reaches an 

accuracy of 65.5%. It is observed that all the classifiers 

studied outperforms the Fanger’s method at predicting the 

actual comfort level, with SVM performing the best at 79.7% 

and ANN performing the best at 85.3% for each feature set 

respectively. Also, it is observed that the feature set that 

includes gender and outdoor effective temperature along with 

the six Fanger’s parameters results in improved accuracies for 

all the methods. This implies that gender and outdoor weather 

environment are important factors for thermal comfort in 

HVAC buildings. 

C. Naturally ventilated buildings (NV) 

Table III presents the results of the predictive performance 

of the six machine learning classifiers on the test dataset of 

naturally ventilated buildings. The first and second column 

presents the classification accuracies for feature sets fNV_wo and 

fNV_w respectively. The Fanger’s PMV model reaches an 

accuracy of 41.68%. PMV model gives better results in air-

conditioned buildings, which is consistent with previous 

studies that the PMV model is better suited to HVAC case 

compared to NV case [14, 15]. It is observed that all the 

classifiers studied outperforms the Fanger’s method at 

predicting the actual comfort level, with SVM performing the 

best at 71.43%, and both SVM and LR performing the best at 

73.14% for each feature set respectively. It is evident that 

inclusion of the proposed features improves the prediction 

accuracies. This implies that gender, age and outdoor weather 

are important factors of thermal comfort in NV buildings. 

TABLE II.  PREDICTION ACCURACY (%)– HVAC BUILDINGS 

 fHVAC_wo fHVAC_w 

SVM 79.70 81.20 

ANN 79.40 85.30 

LR 76.81 79.71 

LDA 73.91 76.81 

KNN 72.46 75.36 

CT 72.46 75.36 

Fanger’s PMV 65.50 

TABLE III.  PREDICTION ACCURACY (%)– NV BUILDINGS 

 fNV_wo fNV_w 

SVM 71.43 73.14 

ANN 70.10 72.40 

LR 70.28 73.14 

LDA 61.14 64.00 

KNN 56.00 61.71 

CT 62.86 64.57 

Fanger’s PMV 41.68 

 

The confusion matrices for SVM and LR are presented in 

Table IV. To decide which method performs better, we have 

calculated Positive Predictive Value (PPV) or Precision for 

each of the comfort levels. PPV is the ratio of the true 

positives to the sum of true positives and false positives. A 

PPV of 0.8 implies that out of the times a class was predicted, 

80% of the time the prediction was correct. Both SVM and LR 

perform equally well on overall accuracy. But PPV results 

(Table V) shows that SVM performs better at each comfort 

level, with almost same and balanced precision for each level 

unlike LR which is biased towards comfort level. 

Naturally ventilated buildings may/may not have open 

windows, which allow wind and solar radiation to enter and 

influence the indoor climate. Thus it is intuitive to believe that 

in such buildings, outdoor weather have influence on indoor 

climate. However, adaptive model says that the occupant’s 

control over the environment such as ability to close/open the 

windows, operate and regulate fans, also have a psychological 

influence on the thermal sensation in naturally ventilated 

buildings. Besides thermal control, thermal preferences, 

expectations, and adaptation abilities (physiological, 

behavioral, psychological), can also influence thermal 

sensation. These factors are not taken into consideration by the 

Fanger’s PMV model, which may explain its low prediction 

accuracy. In order to include these extraneous factors, 

modified PMV models were developed specifically for 

naturally ventilated buildings. 

TABLE IV.  CONFUSION MATRIX FOR SVM AND LR FOR NV CASE 

 

SVM  LR 

Predicted Comfort Level 

-1 0 +1 

 

-1 0 +1 

True 

Comfort 

Level 

-1 8 15 0 8 2 0 

0 2 97 7 17 87 18 

+1 0 23 23 0 10 33 

 

TABLE V.  POSITIVE PREDICTIVE VALUE (PPV) / PRECISION 

Comfort Level SVM LR 

Cool discomfort (-1) 0.8 0.3 

Comfortable (0) 0.7 0.9 

Warm discomfort (1) 0.8 0.6 



Fanger developed an extended PMV model which 

takes into account these extraneous factors, and predicts the 

actual thermal sensation as in (1), where ‘e’ is called as the 

expectancy factor [14, 19]. 

 

ePMVePMV  (1) 


Another modified PMV model is the adaptive PMV model 

developed by Yao et al. [15, 19]. It uses an adaptive 

coefficient ‘’ to predict the actual thermal sensation as in (2).  

 

aPMV PMV PMV)    (2) 

 

For this study, we have calculated ‘e’ and ‘’ according to the 

method mentioned in [19], and their values are given in Table 

VI. A comparison of our method with the existing methods 

reveals that our method outperforms them at an accuracy of 

73.14% (Table VII). It is also observed that the extended PMV 

model at 61.75% performs almost two times better than the 

adaptive PMV model at 35.51%. 

TABLE VI.  CALCULATED COEFFICIENTS OF MODIFIED PMV MODELS 

ePMV e = 0.6 

aPMV = -0.3217 

 

TABLE VII.  ACCURACY (%) OF PMV MODEL, MODIFIED MODELS, AND 

PROPOSED MODEL 

Fanger’s PMV 41.68 

ePMV Model 61.75 

aPMV Model 35.51 

Proposed Approach 73.14 

 

V. CONCLUSION 

This paper presents a data-driven approach for real-time 

prediction of thermal comfort at individual level. The model 

takes in several environmental and human factors as input, and 

predicts the occupant’s thermal comfort level (‘cool-

discomfort’, ‘comfort’, ‘warm-discomfort’), which can then be 

fed as signal to HVAC controller or used for manual control. 

Six different state of the art machine learning classifiers have 

been studied. Results show that our approach achieves 

prediction accuracies of 73.14-81.2%, outperforming the 

traditional Fanger’s PMV model, which has accuracies of 

41.68-65.5%. Age, gender, and outdoor effective temperature, 

which are not included in the PMV model, are found to be 

important factors for thermal comfort. The proposed approach 

also outperforms modified PMV models- the extended PMV 

model and the adaptive PMV model which attain accuracies of 

61.75% and 35.51% respectively. The proposed approach can 

help to achieve an optimal balance between thermal comfort 

and energy consumption, which is a vital objective of smart 

building and smart cities. In future, we aim to study the 

scalability of this approach to other climatic regions, probably 

a cold climate, where a good deal of energy consumption is 

due to heating in buildings. 
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