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Abstract

High precision ultrasonic time-of-flight measurement is a well known part of non-destructive evaluation used in many 
scientific and industrial applications, for example stress evaluation or defect detection. Although ultrasonic time-of-flight 
measurements are widely used there are some limitations where high noise and distorted ultrasonic signals are conflicting 
with the demand for high precision measurements. Cross-correlation based time-of-flight measurement is one strategy to 
increase reliability but also exhibits some ambiguous correlation states yielding to wrong time-of-flight results. To improve 
the reliability of these measurements a new machine learning based approach is presented based on experimental data col-
lected on tightened bolts. Due to the complex structure of the bolts the ultrasonic signal is influenced by boundary conditions 
of the geometry which lead to high number of the ambiguous cross-correlation results in practice. In this particular applica-
tion, bolts are in practice evaluated discontinuously and without knowledge of the time-of-flight in the unloaded condition 
which prevents the use of all other available comparative preprocessing techniques to detect time-of-flight shifts. Three 
different preprocessing strategies were investigated based on variations in the bolting configurations to ensure a machine 
learning based model capable of predicting the state of the cross-correlation function for different bolting parameters. With 
this approach, we achieve up to 100% classification accuracy for both longitudinal and transversal ultrasonic signals under 
laboratory conditions. In the future the method should be extended to become more robust and be applicable in real-time 
for industrial applications.

Keywords Ultrasound · NDE4.0 · Time-of-flight measurement · Preload determination in bolts · Machine learning · Cross-
correlation · Non-destructive evaluation

1 Introduction

The time-of-flight (TOF) measurement is an important 
application of ultrasound. It is widely used in scientific and 
industrial applications, e.g. in distance measuring, charac-
terization of elastic constants or defect evaluation. The pre-
cision of analysis of a TOF measurement depends on the 
signal quality and ambiguity. For signals with little noise or 
superposition of boundary conditions and applications with 

typically low accuracy requirements, gating and peak detec-
tion are sufficient e.g. for a thickness measurement.

In the presence of distorted or noisy ultrasonic data, for 
example caused by a complex structure combined with 
changes in the material properties, which are in the range of 
parts per thousands, inhomogeneous material, interferences, 
attenuation, scattering and mode conversion for example, the 
TOF analysis becomes more complex [1, 2]. In these cases 
cross-correlation based TOF processing has been shown as 
a reliable analysis, achieving a theoretical precision only 
limited by the sampling rate of the signal digitalization.

Cross-correlation provides a measure for the similar-
ity of two signals with the maximum of the cross-cor-
relation representing the temporal shift resulting in the 
highest similarity of both signals [3]. This temporal shift 
is used to determine the TOF (Fig. 1). To calculate the 
TOF, segments of two back wall echoes with starting 
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points coordinates SPW1 and SPW2 and identical window 
length WL (Fig. 1a), are selected in the ultrasonic time 
signal and extracted (Fig. 1b). Then the maximum position 
of the cross-correlation (MPCC) function is determined 
(Fig. 1c). Together with the sampling frequency (SF) of 
the digitalized signal the time-of-flight can analytically be 
determined based on Eq. 1 [1, 3].

Unfortunately, even cross-correlation can yield ambigu-
ous results for example for preload determinations of tight-
ened bolts. Based on the complex geometry of bolts and 
the required high precision, which is in the range of few 
nanoseconds, the TOF evaluation becomes a limiting fac-
tor due to superposition of the above mentioned effects. 
The ambiguity of the cross-correlation function due to 
interferences, mode conversion and scattering as well as 
bad coupling conditions results in so called “TOF-shifts” 
when the self-similarity function has several maxima with 
similar height (Fig. 2). Due to the present artefacts, the 
global maximum is not necessarily indicative for the real 

(1)TOF = [(SPW2 − SPW1) − (WL − MPCC)] ∗
1

SF

TOF value of the ultrasonic wave and therefore yields 
errors in the determination of the time-of-flight. The shift 
of the maximum is a multiple of the excited ultrasound 
frequency hence the calculated TOF value can be clas-
sified as valid or invalid if physical references including 
dimension, sound velocity or mechanical properties of the 
investigated object are available. The absence of these ref-
erences in the bolting application targeted by the authors 
and the non-Gaussian appearance of the TOF-shifts gener-
ates the necessity for transferable comparative evaluations.

In practice, this artefact strongly impacts the reliability 
and usability of the TOF method for the determination of 
preloads in bolts already tightened as there is a risk of over- 
or under-estimating the preload which could lead to fail-
ure of the structures or loosening of the bolts (Fig. 3). The 
TOF-shifts cause a parallel shift of the predicted preloads 
and result in misinterpretation of the preloads. While some 
values can be excluded based on physical reasoning (e.g. 
negative preloads or loads above the tensile strength), 

Fig. 1  Principal of cross-correlation as used on an ultrasonic signal 
from TOF measurement: the pulses of the first and second back-wall-
echo (red windows) (a) are selected (b) and cross-correlated (c)

Fig. 2  Illustration of a TOF-shift observed in cross-correlation func-
tion measured on a bolt with identical loading conditions

Fig. 3  Effect of TOF-shifts on calculated preloads based on a TOF 
measurement on bolts using two ultrasound modes with differ-
ent physical correlation between sound velocities in direction of an 
applied mechanical load
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identification of the presence of TOF-shifts is not purely pos-
sible based on some physical or mathematical constraints.

To eliminate this limitation of TOF for demanding, high 
precision applications, the authors propose to use a machine 
learning based model, capable of classifying measurements 
based on the presence of TOF-shifts in order to exclude 
ambiguous values from analysis. This means the machine 
learning model is applied on the cross-correlated signals to 
exclude data with TOF-shifts before even calculating the 
TOF. Consequently the reliability of the TOF measurements 
is improved significantly.

In this publication, the principle will be demonstrated as 
preprocessing for cross-correlated ultrasound backwall ech-
oes leading to TOF measurements exemplarily performed on 
bolts subject to different preloading conditions but can be 
transferred to other applications where these types of ambi-
guities in the cross-correlated signals occur.

2  Materials and Methods

2.1  Materials

All experiments were performed on 34CrNiMo6 steel M24 
hexagon head bolts, with varying lengths, shaft lengths and 
thread lengths (Fig. 4a). The parameters for the ten con-
figurations are listed in Fig. 4b. Bolt 1* and Bolt 2* have 
identical geometrical features as Bolt 1 and 2 but exhibit 

different manufacturing tolerances. The end of all threads 
were mechanically planarized to reduce the influences of the 
concave shaped ends and thereby ensure a good reflection of 
the ultrasonic pulse.

2.2  Experimental Method

A custom-built experimental setup [4] enables the TOF meas-
urement on the bolts under increasing preload from 0 to 100 kN 
in 20 kN steps and simultaneously collect reference data of 
real preloads using a load cell (type 8524, Burster GmbH & co 
kg) to classify the results according to the presence or absence 
of TOF-shifts. At each preload level, at least 100 individual 
TOF measurements were collected with slightly different sensor 
positions to generate data with and without TOF-shifts.

A piezoelectric longitudinal transducer with a mean fre-
quency of 5 MHz and a diameter of 12.7 mm is used for TOF 
measurements (SMP212). Additionally a piezoelectric shear 
wave transducer with a mean frequency of 5 MHz and a diam-
eter of 8.7 mm (V156 (66416)) is used to induce shear waves. 
The excited ultrasound signals are digitized at a sampling rate 
of 240 MHz and shear wave compatible coupling agent is used 
for the longitudinal as well as for the shear wave.

For ultrasonic excitation, an UNIUS system is used. 
UNIUS is a high-performance single-channel ultrasound 
electronics system fabricated by the Fraunhofer Institute for 
Nondestructive Testing IZFP [5]. Additionally a customized 
software that enables the user to set all ultrasonic parameters 

Fig. 4  Overview of 34CrNiMo6 
steel hexagon head bolts speci-
mens used for the experiments: 
a schematic of the bolts with 
nomenclature and b parameters 
of the specimens. The bolts 
marked with * have different 
manufacturing tolerances
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in a User Interface (UI) is part of the experimental setup. For 
acquisition of the ultrasonic A-scans the system is param-
eterized with the following settings: 5 MHz filter (range: 
3.7–7.6 MHz), 2 repetitions, SAP-length 100 ns resulting in 
an excitation frequency of 5 MHz.

2.3  Computational Methods

For preprocessing and classification, Python (Version: 3.7, 
Python Software Foundation) is used in conjunction with the 
scikit-learn library for the machine learning algorithms [6]. 
Additionally for data preparation and handling the numpy 
and pandas libraries are used. Visual representation is done 
via matlab and matplotlib [7–10].

The first step of data preprocessing is to perform the 
cross-correlation and determine the TOF as shown in Fig. 1. 
Based on empirical findings, the window length (WL) of 
1024 data points is used throughout this analysis, resulting 
in 2047 data points of the cross-correlation function. Cross-
correlation is calculated using normalized xcorr function in 
Matlab (Version: MATLAB 2019a) and the results labeled 
in data with and without TOF-shift based on reference meas-
urements with the load cell. To avoid negative influence by 
the curse of dimensionality [11] and reduce computational 
time, the 2047 features from the cross-correlation function 
will be reduced to 256 data points selected around the maxi-
mum of the cross-correlation function.

For further dimensionality reduction, three machine 
learning algorithms were studied:

1. Linear Discriminant Analysis (LDA) [12, 13]
2. Principal Component Analysis (PCA) [14]
3. Independent Component Analysis (ICA) [15]

LDA is a supervised dimensionality reduction technique 
and can be used as linear classifier. Supervised dimension-
ality reduction uses the given features and the associated 
classes of the dataset. Hence the LDA algorithm is able to 
transform data into feature spaces with a dimension smaller 
than the amount of classes. In contrast to the LDA the PCA 
and ICA are unsupervised techniques. Unsupervised dimen-
sionality reduction is only based on the features and no infor-
mation about the associated classes is needed. Therefore the 
possible resulting dimension of the dataset can be between 
one and the number of features. To determine the algorithm 
with highest classification accuracy, loop functions are used 
to optimize algorithm-specific parameters considered.

The classification is performed by a k-nearest-neighbor 
(KNN) classifier. Within the KNN classifier the Euclidean 
metric is used as distance indicator, the number of k-nearest 
neighbors is set to 7 and a weighted distance measurement 
is used [6, 11].

The training and test dataset are determined with two 
alternatives: dividing the dataset based on a random gen-
erator (using the train-test-split algorithm from scikit-learn) 
or manually (based on different experimental specimens pre-
determined to be training and test data).

The quality of the used preprocessing is evaluated by the 
accuracy of the model as well as with the False Omission 
Rate (FOR) and the False Discovery Rate (FDR). There are 
two possible false classifications: “False-invalid TOF” refers 
to valid measurements, which are classified as invalid TOF 
and “False-valid TOF” describes data, which represent an 
invalid TOF value but is classified as valid. The FDR and 
FOR accuracies are calculated based on the following two 
equations (Eq. 2) and (Eq. 3):

In Eq. 2 FIT describes the number of “False-invalid TOF” 
classified samples and IT is the number of correct “invalid 
TOF” classified samples. In Eq. 3 FVT describes the number 
of “False-valid TOF” classified samples and VT is equiva-
lent to the number of correct “valid TOF” classified samples. 
The following equation (Eq. 4) displays the way the overall 
accuracy of the model is calculated.

3  Results

The results are presented separately for longitudinal- and 
shear waves because the cross-correlation function is slightly 
different for the both wave types. For both wave types, we 
evaluated two levels of complexity for the machine learning 
model:

– Training and test data are chosen as subsets from meas-
urements performed on the same bolts, no unknown con-
figurations are introduced in the test set.

– Test data include some experimental configurations that 
are not included in training data to evaluate how robust 
the method works and how well it can be generalized.

Results are presented in terms of classification accuracy. 
With respect to our experiments, this is the percentage of 
experiments that were accurately classified as without and 
with TOF-shift. Labeling of the training and test data set is 
based on the separately determined ultrasonic velocities for 

(2)FOR =
FIT

FIT + IT

(3)FDR =
FVT

FVT + VT

(4)Accuracy =
IT + VT

FIT + FVT + IT + VT
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Fig. 5  Accuracy over number of used components for training and test data compiled via train-test-split algorithm for a PCA algorithm and b for 
ICA algorithm

the pristine material as well as the measured length of the 
bolts. As described in the Materials and Methods section, 
the custom build setup enables a time synchronous measure-
ment of actual preloads in the bolts which can be compared 
to the predicted preload based on the TOF to determine clas-
sification in SHIFT or OK data sets.

3.1  Longitudinal Waves

For the first level of complexity, training and test dataset are 
determined via the train-test-split algorithm. Data are col-
lected on Bolt 1 and Bolt 2 taking into consideration three 
clamping lengths and six different preload levels (Fig. 4b). 
For each preload level and each clamping length as well 
as for both bolts at least 100 measurements were recorded. 
3610 measurements were recorded in total (2140 OK and 
1570 SHIFT) and subdivided into 60% training and 40% 
test data.

The LDA algorithm results in only one component due 
to its supervised manner. The PCA and ICA algorithms can 
transform the data in all dimensions smaller or equal to 256 
and require a systematic study of the optimal number of 
components to be taken into account. For each number of 
components a KNN classifier carries out the classification 
after the transformation.

In Fig. 5 the accuracy for PCA and ICA algorithm over 
the number of components is shown. After an increase in 
accuracy for few components both algorithms exhibit a 
range with optimal performance. The PCA shows a con-
stant performance starting at 7 components up to 256 com-
ponents. The ICA provides the best results between 6 and 
12 components. Beyond 20 components the ICA shows a 
significant drop in accuracy as the number of components 
increases which is in accordance with literature [16].

Based on the results shown in Fig. 5 it is visible that the 
PCA and ICA show a perfect classification result for this test 
data configuration. Results from transformation based on 
LDA, PCA and ICA followed by classification with a KNN 
are shown in Table 1. LDA was able to classify the data with 

an accuracy of 99.58% with some instances of false-invalid 
TOF (FOR = 0.24%) and false-valid TOF (FDR = 0.66%) 
classification. PCA and ICA have successfully classified 
100% of the test data.

To increase complexity of the classification task, the 
training and test datasets were compiled manually to evalu-
ate the capability of the algorithms to classify data with 
parameters not included in the training dataset (e.g. different 
preload levels, bolt parameters). Training data are based on 
data from Bolt 1 and 2 (Table 2). The test data were recorded 
on Bolt 3 and 4 as well as Bolt 1* and Bolt 2* (Table 3) and 
data for different preload levels on Bolt 1 with clamping 
length 196.3 mm were added. The test data set covers 3000 
measurements with 684 data points of invalid TOF values. 
The training data consists of 3610 measurements including 
1570 invalid TOF instances.

The highest classification accuracy was achieved with 
4 components for PCA (Fig. 6a) and 11 components for 
the ICA (Fig. 6b). The trends of accuracy with increasing 
number of components are similar to the trends described 
above, but the overall accuracy for both algorithms is lower 

Table 1  Accuracy of LDA, PCA and ICA algorithm on splitted train-
ing and test data from bolts 1 and 2 while the classification is per-
formed with a KNN algorithm. The test data includes 603 instances 
of invalid TOF values

Algorithm Accuracy (%) FOR (%) FDR (%) Components

LDA 99.58 0.24 0.66 1

PCA 100 0 0 7–256

ICA 100 0 0 6–12

Table 2  Manually configured training dataset

Sensor Length (mm) Clamping length 
(mm)

Preload levels (kN)

SMP212 245 196.3/189/172.3 0, 20, 40, 60, 80, 100

SMP212 175 126.3/119/102.3 0, 20, 40, 60, 80, 100
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compared to the training and test data compiled via the train-
test-split algorithm. This is very likely due to the additional 
unknown configurations in the test data, like the unknown 
preload levels or the unknown bolt lengths, because the 

training data provide no information over these unknown 
parameters for the algorithms.

A summary of the results for manually determined train-
ing and test data is shown in Table 4. LDA classified the data 
with 78% accuracy with 20.25% FOR and 27.92% FDR. The 
PCA reaches 81.4% with a FOR of 24.1% and low FDR of 
0.15%. ICA was able to classify the data set with the highest 
accuracy of 98.83% with a FOR of only 2.1%.

3.2  Shear Waves

Similar to the procedure for the longitudinal wave data, the 
train-test-split algorithm is applied first to compile the train-
ing and test dataset for the shear wave from data recorded on 
bolt 1 and 2. For both bolts, three different clamping lengths 
and six preload levels are considered (18 configurations for 
each bolt). A total of 3600 measurements (2729 valid TOF 
samples and 871 invalid TOF samples) are divided into 60% 
training and 40% test.

The best results for the PCA algorithm are obtained 
between 5 and 256 components except 6 components 
(Fig. 7a). For the ICA algorithm, 10 to 21 components 
yield best results (Fig. 7b). Similarly to the longitudinal 

Table 4  Accuracy of LDA, PCA and ICA algorithm for manually 
determined training and test data from bolts 1, 1*, 2*, 3 and 4 while 
the classification is performed with a KNN algorithm. The test data 
include 684 instances of invalid TOF values

Algorithm Accuracy (%) FOR (%) FDR (%) Components

LDA 78 20.25 27.92 1

PCA 81.4 24.1 0.15 4

ICA 98.83 2.1 0 11

Fig. 6  Accuracy over number of used components for training and test data manually compiled: a for PCA algorithm and b for ICA algorithm

Fig. 7  Accuracy over number of used components for training and test data compiled via train_test_split algorithm: a for PCA algorithm and b 
for ICA algorithm

Table 3  Manually configured test dataset

Sensor Length (mm) Clamping 
length (mm)

Preload levels (kN)

SMP212 245 196.3 0, 20, 40, 60, 80, 100

SMP212 245 196.3 0, 10, 30, 50, 70, 90

SMP212 223 189 0, 20, 40, 60, 80, 100

SMP212 175 126.3 0, 20, 40, 60, 80, 100

SMP212 153 119 0, 20, 40, 60, 80, 100
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wave data the ICA algorithm also exhibits a drop in accu-
racy by increasing the number of components.

Table 5 shows the results for each algorithm. LDA clas-
sified the data with 97.85% accuracy with a small percent-
age of false-invalid TOF values and 4.55% FDR. The PCA 
reaches up to 99.65% with a FDR of 1.42%. ICA was able 
to classify the data set with 100% accuracy.

Following the same procedure as for longitudinal waves 
to increase complexity of the data set, the training and 
test dataset were compiled manually. The experimental 
configurations chosen as training and test dataset are 
summarized in Tables 6 and 7. The training data includes 
3000 measurements with 871 invalid TOF occurrences. 
The test data covers 2400 measurements with 161 invalid 
TOF values.

For PCA, 6 components shows the best results (Fig. 8a), 
while for ICA 17 components provides the highest accu-
racy (Fig. 8b). Based on the optimal number of compo-
nents for the three algorithms, results are summarized in 
Table 8. LDA exhibits the lowest accuracy with 98.33% 
with a low FOR of 1.21% but a relatively high FDR of 
8.07%. PCA as well as ICA algorithm provide an accuracy 
of more than 99%. PCA reached 99.79% accuracy with a 
FDR of 1.24% as well as a low FOR of 0.13%. The ICA 
achieved 99.92% accuracy with 0% FOR and 1.24% FDR.

4  Discussion

The results (Tables 1 and 5) indicate a high accuracy up 
to 100% for preprocessing with PCA and ICA and up to 
98% for LDA when the test dataset does not includes any 
unknown parameters. This fact is valid for both wave types. 
If unknown data are included in the test dataset for longitu-
dinal wave data, the accuracy decreased. For the longitudinal 

Table 5  Accuracy of LDA, PCA and ICA algorithm based on auto-
matically generated training and test data from Bolt 1 and 2 while 
the classification is performed with a KNN algorithm. The test data 
includes 452 invalid TOF measurements

Algorithm Accuracy (%) FOR (%) FDR (%) Components

LDA 97.85 1.38 4.55 1

PCA 99.65 0 1.42 5, 7–256

ICA 100 0 0 10–21

Table 7  Manually configured test dataset

Sensor Length (mm) Clamping 
length (mm)

Preload levels (kN)

V156 (66416) 245 196.3 0, 20, 40, 60, 80, 100

V156 (66416) 245 196.3 0, 10, 30, 50, 70, 90

V156 (66416) 223 189 0, 20, 40, 60, 80, 100

V156 (66416) 175 119 0, 20, 40, 60, 80, 100

Table 6  Manually configured training dataset

Sensor Length (mm) Clamping 
length (mm)

Preload levels 
(kN)

V156 (66416) 245 196.3 / 189 / 
172.3

0, 20, 40, 60, 80, 
100

V156 (66416) 175 126.3 / 102.3 0, 20, 40, 60, 80, 
100

Fig. 8  Accuracy over number of used components for training- and test data manually compiled: a for PCA algorithm and b for ICA algorithm

Table 8  Accuracy of LDA, PCA and ICA algorithm based on man-
ually set up training and test data from bolts 1, 1*, 2, and 3 while 
the classification is performed with a KNN algorithm. The test data 
includes 161 invalid TOF instances

Algorithm Accuracy (%) FOR (%) FDR (%) Components

LDA 98.33 1.21 8.07 1

PCA 99.79 0.13 1.24 6

ICA 99.92 0 1.24 17
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waves, only the ICA showed accuracy of above 98% whereas 
the PCA and the LDA exhibited an accuracy of 81.4% and 
78% respectively.

For the shear wave data, the decrease of the accuracy 
for the more complex data sets is low compared to the 
longitudinal waves. One reason for the low decrease in 
accuracy is that manual configured test set for the shear 
wave data includes not so many unknown parameters. 
Furthermore the invalid TOF measurements in shear 
wave data is often of higher order than for the longitu-
dinal wave data, which means the maximum shift of the 
cross-correlation function is not happening to the next 
maxima but to the second or even higher order maxima. It 
is very likely that TOF-shifts of a higher order are easier 
to detect due to a more characteristic change in the cross-
correlation function and result in the higher accuracies 
for shear wave data.

The three algorithms studied in this paper exhibited 
varying accuracies depending of the wave types and train-
ing and test data configurations. One reason the LDA 
shows the lowest accuracy in each configurations is that 
one feature, which is the only possible value due to the 
supervised nature of the algorithm, is not enough to sepa-
rate the data, especially if some unknown parameters are 
considered. The reason the ICA outperforms the PCA on 
the test data with unknown configurations is likely related 
to the way the ICA transform the data onto lower dimen-
sional vectors. The ICA determines components with high 
independency in the data and project the data onto those 
components whereas the PCA identifies vectors in the 
direction of maximal variance. Hence the PCA is a way 
of compressing the data while the ICA recovers the inde-
pendent components hidden in the data which could be 
the reason why the ICA enables the KNN to distinguish 
between valid and invalid TOF values.

One restriction of the ICA algorithm is the relatively 
high number of components needed to give an appropriate 
lower dimensional space representation e.g. for longitudi-
nal waves 11 components are needed and for shear waves 
17 components are needed.

The presented results were performed based on an 
application with occurrence of many TOF-shifts due to its 
complexity to establish a method to successfully preproc-
ess ultrasonic TOF measurements. In the future a more 
extensive validation will be necessary to systematically 
investigate the robustness of the algorithms for different 
training and test data sets. It is especially important to 
establish minimum requirements to be met by the train-
ing data in order to translate the principle to practical 
applications of preload evaluation in bolts and similar 
applications with requirements for high TOF-precision.

5  Conclusion

In this study we demonstrated that a preprocessing of 
ambiguous cross-correlated ultrasonic signals for TOF 
measurement is possible. We propose two different mod-
els for the longitudinal and shear wave data. Over various 
bolting parameters for the longitudinal wave data, it is 
possible to achieve an accuracy of 98.83% with a FOR of 
2.1% and zero FDR if the preprocessing is performed by 
ICA with 11 components. In case of the shear wave data it 
is possible to set up a model with an accuracy of 99.92% 
with zero FOR and a FDR of 1.24% if the preprocessing 
is performed via ICA with 17 components. In contrast the 
PCA and LDA showed considerably lower accuracy values 
for both wave types. PCA and LDA achieved only an accu-
racy of 81.4% and 78% respectively for longitudinal wave 
data in the case of unknown parameters being introduced 
in the test data set.

In this study, we limited variables to bolting parameters 
and did not include a variation of ultrasonic parameters 
such as different ultrasonic transducers, different coupling 
agents as well as other ultrasonic systems. The main chal-
lenge for further investigation of machine learning based 
models consists in varying more boundary conditions and 
investigating the underlying effects. Influences of all these 
factors on the model’s accuracy have to be examined for 
this method to be translated to technical applications.
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