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Abstract

Purpose: The new classification announced by the World
Health Organization in 2016 recognized five molecular sub-
types of diffuse gliomas based on isocitrate dehydrogenase
(IDH) and 1p/19q genotypes in addition to histologic phe-
notypes.We aim todeterminewhether clinicalMRI can stratify
these molecular subtypes to benefit the diagnosis and mon-
itoring of gliomas.

Experimental Design: The data from 456 subjects with
gliomas were obtained from The Cancer Imaging Archive.
Overall, 214 subjects, including 106 cases of glioblastomas
and 108 cases of lower grade gliomas with preoperative
MRI, survival data, histology, IDH, and 1p/19q status were
included. We proposed a three-level machine-learning
model based on multimodal MR radiomics to classify
glioma subtypes. An independent dataset with 70 glioma

subjects was further collected to verify the model
performance.

Results: The IDH and 1p/19q status of gliomas can be
classified by radiomics and machine-learning approaches, with
areas under ROC curves between 0.922 and 0.975 and accura-
cies between 87.7% and 96.1% estimated on the training
dataset. The test on the validation dataset showed a comparable
model performancewith that on the trainingdataset, suggesting
the efficacy of the trained classifiers. The classification of 5
molecular subtypes solely based on the MR phenotypes
achieved an 81.8% accuracy, and a higher accuracy of 89.2%
could be achieved if the histology diagnosis is available.

Conclusions: The MR radiomics-based method provides a
reliable alternative to determine the histology and molecular
subtypes of gliomas. Clin Cancer Res; 24(18); 4429–36.�2018 AACR.

Introduction
Recent studies on glioma based on The Cancer Genome Atlas

(TCGA) database have uncovered the strong association of iso-
citrate dehydrogenase (IDH) mutation, 1p/19q codeletion, and

telomerase reverse transcriptase (TERT)mutationwith the patient
outcomes (1–3). The new classification announced by the World
Health Organization (WHO) in 2016 recognized several new
entities of diffuse gliomas based on genotypes in addition to the
histologic phenotypes of tumors (4, 5). Among them, the muta-
tions in the IDH gene and 1p/19q codeletion were selected as the
critical genetic parameters to further classify the gliomas into five
molecular subtypes: the oligodendroglioma and/or anaplastic
oligodendroglioma with IDH mutation and 1p/19q codeletion,
diffuse and/or anaplastic astrocytomawith IDHmutation, diffuse
astrocytoma with wild-type IDH, glioblastoma (GBM) with IDH
mutation, and GBM with wild-type IDH, where the former three
belong to lower grade gliomas (LGGs, grade2 and3) and the latter
two are GBMs (grade 4; refs. 4, 5).

Growing evidence has revealed the feasibility of using MRI
phenotypes to probe the underlying genotypes, suggesting the
potential application in differentiating tumor molecular profiles
basedon imaging traits (6). Radiomics, a recently developedhigh-
throughput approach, can potentially characterize tumor pheno-
types by using thousands of image features based on intensity
histogram, geometry, and texture analyses covering the entire
tumor volume (7, 8). By applying MR radiomics, substantial
relations between imaging traits and genomic profiles were fur-
ther discovered in GBM. To handle such a large amount of
radiomic features in the characterization of tumor phenotypes,
amachine-learning algorithmprovides a reliablemodel for tumor
classification and outcome prediction. A computer-aided diag-
nostic tool for the differentiation ofGBMs fromLGGbased on the
radiomic features of contrast-enhanced T1-weighted images was
developed (9, 10). Recent attempt to predict IDH mutations in
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higher grade gliomas based on MR radiomics has shown clinical
implications (11, 12). On the other hand, multimodal MR radio-
mics that combines features from different imaging sequences,
such as contrast enhancement, T2 fluid attenuation inversion
recovery (FLAIR), and ADC, has also shown promise in the
identification of tumor genotypes and in the prediction of patient
survivals (11, 13).

In this study, we developed a full scale of a three-levelmachine-
learning algorithm with 4 binary classifiers to characterize the
histology, IDH, and 1p/19q status of gliomas based on multi-
modal MR radiomics. We aim to test the hypothesis that MR
radiomics can classify five glioma subtypes according to the new
WHO standard.

Materials and Methods
Study cohorts

This study was approved by the local Institutional Review
Board. The image data of 456 subjects with gliomas were
obtained from The Cancer Imaging Archive (14), including
257 GBM cases from the TCGA-GBM collection (15) and
199 LGG cases from the TCGA-LGG collection (16). The
inclusion criteria for this study were as follows: (i) available
histology, IDH, and 1p/19q status recorded in TCGA; (ii)
preoperative MR image data; (iii) postcontrast T1-weighted
images (T1 þ C), T2 FLAIR, T2-weighted images (T2W), and
diffusion-weighted images (DWI), where T2W and DWI are
optional; and (iv) sufficient image quality without significant
head motion or artifacts. A total of 214 subjects (106 GBM and
108 LGG subjects) were finally included for the subsequent
analyses and training of machine-learning models (Supple-
mentary Fig. S1). The detailed information of included subjects
is given in Supplementary Table S1, and the MR data integrity is
listed in Supplementary Table S2.

Based on the histology, driver gene mutations of IDH, and
1p/19q codeletion, gliomas can be classified into 5 subtypes
(three are LGGs and two are GBMs), as follows: (i) LGG with
IDH mutation and 1p/19q codeletion (LGG-IDHmut-codel); (ii)
LGG with IDHmutation and 1p/19q non-codeletion (LGG-IDH-

mut-noncodel); (iii) LGG with wild-type IDH (LGG-IDHwt); (iv)
GBM with IDH mutation (GBM-IDHmut); and (v) GBM with
wild-type IDH (GBM-IDHwt; ref. 2). These 5 glioma subtypes
exhibit distinct tumor characteristics and overall survival out-
comes (Table 1).

An independent dataset, including 30 subjects recruited from
local hospitals with approval of local Institutional Review Boards
and 40 subjects downloaded from the REMBRANDT collection
(17), was collected for the validation of model performances. All
the included subjects were confirmed to have required multi-
modal MR image data with sufficient image quality. Please see
Supplementary Table S3 for the full subject list of the validation
dataset.

Image postprocessing and MR radiomics
Several postprocessing steps on the MR images were applied

to reduce the discrepancy of imaging parameters that were
employed in different hospitals. The adjustment of image
resolution was first performed to resample all voxel size to
0.75 � 0.75 � 3.00 mm3 without gaps between consecutive
slices for each MR modalities. The T2 FLAIR, T2W images, and
apparent diffusion coefficient (ADC) maps derived from DWI
were then registered to the subject's T1 þ C images using a six-
parameter rigid body transformation and mutual information
algorithm. Image intensity normalization was employed to
transform MR imaging intensity into standardized ranges for
each imaging modality among all subjects. The region of
interest (ROI) covering the total tumor volumes (including
the contrast enhancing, edema, and necrotic regions) was
identified through a semiautomatic image process. Prime
regions of contrast enhancing and edema portions were first
detected by applying a threshold to extract the hyperintense
voxels on the T1 þ C images and T2 FLAIR, respectively. The
region-growing segmentation algorithm was then implemented
on the ROIs to remove the irrelevant voxels from the target
regions. The necrotic regions (if existed) were delineated by the
surrounding contrast-enhancing and edema portions. Finally,
manual adjustment was performed if demanded by an experi-
enced researcher in neuroradiology (C.F. Lu) and confirmed by
two experienced neuroradiologists (K.L.-C. Hsieh and C.-Y.
Chen). The diagram of image processing is displayed in
Supplementary Fig. S2.

A discrete and undecimated wavelet transform was then
applied for a multiscale representation of each MR image using
the three-dimensional low- and high-spatial frequency filters
(18). The 16 first-order and 1,073 texture features [including
22 gray-level cooccurrence matrix features (8), 11 gray-level
run-length matrix features (8), 16 local binary pattern features
(19), and 1,024 scale invariant feature transform features
(20, 21)] were calculated on the raw MR images and 8 wavelet
image sets to yield 9,801 features. The 8 shape and size features
were calculated based on the three-dimensional geometry of the
tumor volumes (8, 13). In total, 39,212 MR radiomic features
(9,801 features� 4 image contrastsþ 8 shape and size features) at
most were generated for each subject. The detailed calculations of
MR radiomics are provided in the Supplementary Table S4. The
imaging postprocessing and the calculation of MR radiomics
employed in this study were carried out on a home-made soft-
ware, MR Radiomics Platform (MRP, www.ym.edu.tw/�cflu/
MRP_MLinglioma.html), with a graphic user interface built on
MATLAB programming environment.

Translational Relevance

Machine learning–based radiomics provides the potential
for noninvasive and efficient assessment of 2016 WHO clas-
sification of glioma subtypes. The advances in knowledge of
this study include: (i) a three-level machine-learning model
composed of 4 binary classifiers was proposed to stratify 5
molecular subtypes of gliomas; (ii)machine learning based on
multimodal magnetic resonance (MR) radiomics allowed the
classifications of the IDH and 1p/19q status of gliomas with
accuracies between 87.7% and 96.1%; (iii) the complete
classification of 5 molecular subtypes solely based on the MR
radiomics achieved an 81.8% accuracy, and a higher accuracy
of 89.2% could be achieved if the histology diagnosis is
available. In conclusion, multimodal MR radiomics can effec-
tively differentiate glioblastomas from lower grade gliomas
and characterize the IDH and 1p/19q status using the
machine-learning approach to benefit the diagnosis and treat-
ment of gliomas in clinical practice.

Lu et al.
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Machine learning–based classification
We proposed a three-level binary classification model to clas-

sify gliomas into 5 molecular subtypes based on MR radiomic
features (Fig. 1). The classification model was composed of 4
binary classifiers to differentiate patients with LGG or GBM (the
first level, Fig. 1A), IDHmutation orwild type in LGGs/GBMs (the

second level, Fig. 1B and C), and codeletion or non-codeletion of
1p/19q in IDHmutation LGGs (the third level, Fig. 1D). The best
model for each binary classification was selected from 6 support
vectormachines (SVM) and 3 ensemble learning approaches with
the protection of overfitting using the 5-fold cross-validation. The
6 SVMmodels included the linear, quadratic, cubic,fineGaussian,

Table 1. The clinical characteristics of the training dataset

Subtypes LGG IDH mut – codel LGG IDH mut – noncodel LGG IDH wt GBM IDH mut GBM IDH wt

Subject number 31 (28.7% of LGG) 56 (51.9% of LGG) 21 (19.4% of LGG) 8 (7.5% of GBM) 98 (92.5% of GBM)
2016 WHO entity Oligodendroglioma/

anaplastic
oligodendroglioma,
IDH mut – codel

Diffuse/anaplastic
astrocytoma, IDH mut

Diffuse astrocytoma,
IDH wt;
oligodendroglioma, NOS

GBM, IDH mut GBM, IDH wt

Histology
Astrocytoma 0 (0%) 22 (39.3%) 10 (47.6%) 0 (0%) 0 (0%)
Oligoastrocytoma 4 (12.9%) 19 (33.9%) 3 (14.3%) 0 (0%) 0 (0%)
Oligodendroglioma 27 (87.1%) 15 (26.8%) 8 (38.1%) 0 (0%) 0 (0%)
Glioblastoma 0 (0%) 0 (0%) 0 (0%) 8 (100%) 98 (100%)

ATRX status
Wild type 30 (96.8%) 18 (32.1%) 22 (100.0%) 3 (37.5%) 53 (54.1%)
Mutation 1 (3.2%) 38 (67.9%) 0 (0%) 3 (37.5%) 1 (1.0%)
Unknown 0 (0%) 0 (0%) 0 (0%) 2 (25%) 44 (44.9%)

Age at diagnosis (years)
Mean (SD) 51.7 (13.2) 40.2 (12.4) 52.5 (12.3) 39.0 (15.9) 60.8 (12.1)

Survival (months)
Mean (95% CI) 57.8 (40.6–74.9) 90.0 (62.6–115.3) 48.0 (12.1–83.9) 32.7 (19.2–46.2) 15.0 (12.6–17.5)

Karnofsky performance scale
100 3 (9.7%) 9 (16.0%) 1 (4.8%) 3 (37.5%) 12 (12.3%)
90 6 (19.4%) 17 (30.4%) 8 (38.1%) 0 1 (1.0%)
70–80 3 (9.7%) 7 (12.5%) 4 (19.0%) 4 (50.0%) 50 (51.0%)
<70 2 (6.5%) 2 (3.6%) 0 (0%) 0 17 (17.3%)
Unknown 17 (54.7%) 21 (37.5%) 8 (38.1%) 1 (12.5%) 18 (18.4%)

Abbreviations: Codel, 1p/19q codeletion; NOS, not otherwise specified.

Figure 1.

Three-levelmachine-learning architecture. The proposed three-level (histology, IDHmutation, and 1p/19q codeletion) binary classificationmodel (a–d) to categorize
the diffuse gliomas into 5 potential subtypes, that is, LGG-IDHmut-codel, LGG-IDHmut-noncodel, LGG-IDHwt, GBM-IDHmut, and GBM-IDHwt.

Machine Learning for Molecular Subtyping of Gliomas
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medium Gaussian, and coarse Gaussian methods (22), and the 3
ensemble learning approaches were the bootstrap-aggregated
(bagged) tree algorithm with decision tree (23), the AdaBoost
algorithm with decision tree (24), and the RUSBoost algorithm
with decision tree (25). The SVM models have high computa-
tional efficiency and can achieve satisfactory performance when
handling big feature sets, such as the radiomics applied in this
study. Alternatively, ensemble learning approaches that com-
bined several machine-learning techniques into one predictive
modelmayhave better performancewhen a singlemodel fails. All
the machine-learning algorithms were implemented using the
Statistics and Machine Learning Toolbox on MATLAB environ-
ment (MathWorks, Inc.).

Statistical analysis
Even though the gigantic amount of radiomic features may

provide a comprehensivemodel in revealingmolecular profiles of
gliomas, the process of feature selection that removes redundant
features can potentially improve the model efficacy in the tumor
classification (26). The radiomic features were first ranked by the t
scores of two-sample t tests with a pooled variance estimate.
Afterward, 0.05% to 5% top ranking features (i.e., 20–1,960
features) along with patient age and sex were then iteratively
selected for the subsequent model training and performance
evaluation. A 5-fold cross-validation approach was applied to
validate the performance of the machine-learning models. Sub-
jects were randomly divided into two subsets, 80% for model
training and 20% for validation, and the process was repeated for
5 rounds to obtain averaged estimates of performance. Themodel

and feature selection was determined by the criteria of the highest
overall accuracy and the AUC of the ROC curve among all tested
combinations. The Matthews correlation coefficients (MCC),
used as a measure of binary classification quality, were also
calculated (27). The MCC is a balanced measure that takes into
account full components of confusion matrix that can be used
even if the classes are of very different sizes. TheMCC represents a
correlation coefficient between the observed and predicted binary
classifications, where a coefficient of þ1 represents perfect pre-
diction and �1 indicates total disagreement between predictions
and observations. The interpretations of MCC are given as fol-
lows: (i) a value higher than 0.7 represents a very strong agree-
ment; (ii) between 0.5 and 0.7 indicates a moderate agreement;
(iii) below 0.5 suggests a weak agreement (28–30).

Results
Clinical characteristics of the study cohort

Table 1 lists the clinical characteristics and the relevant subtypes
of the 214 included glioma subjects in the training dataset. For
LGG, the most prevalent subtype is LGG-IDHmut-noncodel
(51.9%), followed by LGG-IDHmut-codel (28.7%) and LGG-
IDHwt (19.4%). Most of the subjects with GBM had the GBM-
IDHwt subtype (92.5%), which shows the poorest overall survival
(average, 15.0 months) among all glioma subtypes. Only a small
cohort of GBM subjects (7.5%) had the GBM-IDHwt subtype,
which has a mean survival of 32.7 months. Most LGG-IDHmut-
codel gliomas were oligodendroglioma (87.1%) with wild-type
ATRX (30/31 cases, 96.8%). The included study cohort exhibited

Figure 2.

Predictive model scores and ROC curves. The predictive model scores estimated by the binary classifier for GBM versus LGG (A), IDH wt versus mut in GBMs (B),
IDH wt versus mut in LGGs (C), and 1p/19q noncodel versus codel in IDH mut LGGs (D). E, The areas under the ROC curves for the 4 binary classification
models are between 0.922 and 0.975, representing the satisfactory results that can be achieved in the classification of histologic and molecular status based on the
proposed method (please see Table 2 for details).

Lu et al.
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consistent profiles with the full TCGA glioma dataset (974
subjects; refs. 2, 3).

Performance of the three-level binary classification model
Profiles of the selected radiomic features in the differentiation

of LGG/GBM, IDH, and the 1p/19q status of gliomas are shown in
Supplementary Fig. S3. The chosen machine-learning models
were the linear SVM for the classification of histology (LGG vs.
GBM, Fig. 1A), the linear SVM for the classification of IDH status
in LGG (Fig. 1B), the cubic SVM for the classification of IDH status
in GBM (Fig. 1C), and the quadratic SVM for the classification of
1p/19q status in IDH mutation LGG (Fig. 1D). The predictive
model scores estimated by the selected machine-learning models
are shown in Fig. 2A–D. The discrepancies between the predictive
scores of the groups demonstrated the ability of the machine-
learningmodels to transfer radiomic features into a differentiable
value for effective classification. The machine-learning models
can achieve satisfactory classifications with AUCs between 0.922
and 0.975 and MCCs between 0.768 and 0.834 estimated using
the training dataset. The ROC curves for the four classifications are
displayed in Fig. 2E. The detailed model performances are listed
in Table 2.

The trained classifiers were then applied to the validation
dataset, and the results are listed in Table 3. In general, the model
performances are comparable with the estimates based on the
training dataset, suggesting the satisfactory efficacy of classifica-
tion on the new dataset. It is noted that the specificity in the
classification of 1p/19q status in IDH-mutant LGGs is only
66.7%. This low specificity is due to the small testing size of only
5 subjects (2 subjects with non-codel and 3 subjects with codel) in
this subgroup. Ourmodel correctly classified the 1p/19q status in
4 of 5 subjects; only 1 of 3 subjects with codel wasmisclassified as
non-codel resulting in a 2/3 � 100% ¼ 66.7% specificity.

In addition to the use of an individual classifier as proposed
in the previous section, the proposed classification model can
be applied in several circumstances, creating potential applica-
tions in clinical practice with specific combinations (Combi) of
trained classifiers (Table 4). More specifically, the applications
can be separated into two scenarios. In a scenario in which only
MRI is available for patients with gliomas, Combi #1 listed
in Table 4 can be used to differentiate the malignancy of glioma
in the patients who receive MRI before surgery (achieving an
accuracy of 90.7%). If further information regarding IDH status
and full classification of the 5 molecular subtypes is required,
Combi #2 and #3 can be employed with the accuracy of 85.1%
and 81.8%, respectively. In a scenario in which both tumor
histology and MRI are available (more likely in clinical prac-
tice), the first-level classifier can be excluded from the combi-
nation. Accordingly, a higher accuracy of 93.2% can be
achieved in the differentiation of IDH status using Combi
#4, and an accuracy of 89.2% can be achieved for the differ-
entiation of IDH and 1p/19q status using Combi #5 (Table 4).

Discussion
We developed a three-level classification model with satisfac-

tory performance to probe the histologic and genomic profiles
of gliomas basedonMRphenotypes. Basedon the analysis results,
we suggested thatmultimodalMR radiomics alongwithmachine-
learning models reflected glioma subtypes consistent with
the new 2016 WHO classification. By employing a specificTa
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combination of the developed classifiers, several clinical applica-
tions for the detection of IDH and 1p/19q statuses in gliomas can
be accomplished with or without tumor histology.

The proposed three-level binary classification design was
inspired by the general strategy for reducing the problem of
multiclass classification to multiple binary classifications and the
tree structure of the hierarchical clustering. This design had several
advantages compared with the traditional multiclass classifica-
tion, namely classifying subjects into one of the 5 subtypes using a
single classification learner. First, we incorporated the flowchart
from the 2016 CNS WHO guideline in the differentiation of the
histologic and genetic types of gliomas (4). Based on the designed
structure, the binary classifier of 1p/19q statuswas applied to only
the classified IDH-mutation LGG subgroup, reducing the model
complexity. Second, feature selection was performed separately
for each binary classification. This procedure specified the radio-
mic features extracted from specific image contrasts that exhibited
significant difference between two classified conditions for each
classifier and therefore ensured the classification performance.
Third, we were able to separately select the best classifier from the
9 tested machine-learning models and perform the parameter
optimization accordingly. As shown in our results, the bestmodel
varied between classifications based on the discrepant patterns of
employed radiomic features.

The identifications of imaging features that can comprehen-
sively describe the target condition are important in machine
learning–based classification. Contrast enhancement observed on
T1 þ C, which suggests blood–brain barrier impairments with
leakage of contrast agents, is generally associated with more
aggressive lesions or high-grade gliomas (31). Therefore, T1 þ
C relevant features contributed predominantly to the classifica-
tion between LGGs and GBMs (Supplementary Fig. S3A). How-
ever, some LGGs may also show contrast enhancement and one
third of nonenhancing gliomas are malignant (32). The added
values extracted from other image contrast, such as T2 FLAIR, to
reflect infiltrative edema can further improve differentiation.
Regarding the detection of IDH mutations, the radiomics of T1
þCand T2Whave been reported to be useful imaging biomarkers

in thedifferentiation of IDHstatus inhigh-grade gliomas (11, 12).
In addition to these biomarkers, we found that the features
associated with T2 FLAIR were critical in the classification of IDH
genotypes in GBMs (Supplementary Fig. S3C). We further estab-
lished the classifiers for IDH genotype in LGGs and 1p/19q status
in IDH mutation LGGs based on MR radiomics to identify the
subgroup of LGGs with the IDH mutation and 1p/19q non-
codeletion (with a high prevalence of ATRX loss) that exhibited
a favorable clinical outcome (2, 33). It is also noteworthy that
more than 97.3% of the selected features belonged to texture
category for the 3 classifiers of IDH and 1p/19q status (Supple-
mentary Fig. S3F–S3H), and no shape and size feature played a
role in all the classifiers (Supplementary Fig. S3E–S3H). Texture
features quantify local image patterns and the inhomogeneity of
signal intensities across the full tumor volume. Our results indi-
cated that the texture measurements describing spatial variations
of tumor intensity were the most illustrative for the IDH and
1p/19q genotypes.

Several issues and limitations are discussed as follows. First, the
inclusionof advancedMR techniques in addition to the employed
modalities should be considered to construct more comprehen-
sive functional andmetabolic radiomics in the characterization of
gliomas. For instance, the MR perfusion-weighted images for the
measurement of tumor vascular leakage and/or regional cerebral
blood volume are associated with tumor malignancy and patient
outcomes (34, 35). Recently, proton MR spectroscopy provided
promising results in thedetectionof IDHmutationbyquantifying
the concentration of 2-hydroxyglutarate in vivo (36). With this
in vivo 2-hydroxyglutarate indicator, the accuracy of IDH classi-
fication in LGGs may be further improved. Several studies have
demonstrated that diffusion kurtosis imaging can differentiate
glioma grades more effectively than the conventional ADC and
fractional anisotropy (37, 38). Second, the recently highlighted
deep-learning approach, such as 3D convolutional neural net-
works, can be applied for automatic lesion detection and pattern
recognition to improve the prediction accuracy (39, 40). The
technical concern of deep learning is the insufficient number of
samples to train a reliable learner model (typically, at least 1,000

Table 4. Applications of the proposed three-level classification model

Combinations/applications

GBM vs.
LGG
(1st level)

IDH wt
vs. mut
in GBMs
(2nd level)

IDH wt
vs. mut
in LGGs
(2nd level)

1p/19q
noncodel
vs. codel in
IDH mut
LGGs
(3rd level) Accuracya

Available MRI
#1/Classification of GBM and LGG ü 90.7%
#2/Prediction of IDH status ü ü ü 85.1%
#3/Full classification of 5 molecular subtypes ü ü ü ü 81.8%

Available histology and MRI
#4/Prediction of IDH status in histologically diagnosed GBMs or LGGs ü ü 93.2%
#5/Prediction of IDH and 1p/19q status in histologically diagnosed GBMs or LGGs ü ü ü 89.2%

Abbreviation: Codel, codeletion.
aAccuracies are estimated using the training dataset.

Table 3. Model performances for the 4 binary classifiers estimated on the validation dataset

Classification (subject numbers) Accuracy Sensitivity Specificity MCC

GBM vs. LGG (70 subjects) 87.7% 82.6% (true rate for GBM) 90.5% (true rate for LGG) 0.830
IDH wt vs. mut in GBMs (18 subjects) 88.9% 88.2% (true rate for wt) 100.0% (true rate for mut) 0.542
IDH wt vs. mut in LGGs (12 subjects) 91.7% 85.7% (true rate for wt) 100.0% (true rate for mut) 0.845
1p/19q noncodel vs. codel in IDH mut LGGs (5 subjects) 80.0% 100.0% (true rate for noncodel) 66.7% (true rate for codel) 0.667
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subjects for each molecular subtype are required). Transfer learn-
ing that applies a pretrained model in a similar problem domain
and fine-tunes the parameters by approximately 100 subjects may
be the alternative solution to overcome the limitation of sample
size for glioma subtyping (41). Finally, the small sample size of
IDH-mutant GBMs can cause an issue of imbalance sampling
while training the classificationmodel of the IDH status in GBMs.
However, this small subgroup reflects the actual prevalence of
IDHmutation, that is, around 7% to 8% in GBMs (3), and hence
causing the difficulty for data collection. Similar to the enrolled
training dataset that only 8 of 106GBMswere IDHmutant, only 1
of the 18 GBMs in the validation dataset (recruited from local
hospitals) exhibited IDH mutation. However, our results
in Tables 2 and 3 show that the IDH-mutant GBM can always
be classified in both the training and validation datasets (100%
specificity) with a trade-off that the sensitivity (the correctness
rates for detecting IDH-wt GBM) may be sacrificed in a certain
level (88.2%–95.7% sensitivity). This phenomenon is relevant to
the threshold selection when performing binary classification.
Refinement of the proposed models with a larger and balanced
population is encouraged.

We concluded that multimodal MR radiomics can effectively
differentiate GBMs from LGGs and characterize the IDH and 1p/
19q status of gliomas. The proposed image-based approach
provides an alternative for the noninvasive and efficient identi-
fication of the molecular profiles, which can benefit the diagnosis
and treatment of gliomaswithout increasing health care expenses.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Authors' Contributions
Conception and design: C.-F. Lu, K.L.-C. Hsieh, Y. Yen, C.-Y. Chen
Development of methodology: C.-F. Lu, C.-Y. Chen
Acquisition of data (provided animals, acquired and managed patients,
provided facilities, etc.): C.-F. Lu, S.-J. Cheng, P.-H. Tsai, C.-Y. Chen
Analysis and interpretation of data (e.g., statistical analysis, biostatistics,
computational analysis): C.-F. Lu, K.L.-C. Hsieh, Y.-C.J. Kao, S.-J. Cheng,
R.-J. Chen, C.-Y. Chen
Writing, review, and/or revision of the manuscript: C.-F. Lu, Y.-C.J. Kao,
S.-J. Cheng, R.-J. Chen, C.-C. Huang, C.-Y. Chen
Administrative, technical, or material support (i.e., reporting or organizing
data, constructing databases): C.-F. Lu, F.-T. Hsu, S.-J. Cheng, J.B.-K. Hsu,
P.-H. Tsai
Study supervision: R.-J. Chen, C.-C. Huang, C.-Y. Chen

Acknowledgments
The authors thank Yung-Hsiao Chiang, Wan-Yuo Guo, Min-Hsong Chen,

Liang-Wei Chen, Chih-Chun Wu, and Kuo-Chen Wei for the assistance in
patient recruitment from local hospitals. This work was supported by the
Ministry of Science and Technology, Taiwan (MOST106-2314-B-010-058-MY2,
MOST105-2314-B-038-014, and MOST104-2314-B-038-051-MY3), Taipei
Medical University (TMU103-AE1-B20), and National Health Research Insti-
tutes (MG-106-SP-07 andNHRI-EX107-10732NI). The funding sources had no
role in the design and conduct of the study; collection,management, analysis, or
interpretation of the data; preparation, review, or approval of the manuscript;
and decision to submit the manuscript for publication.

The costs of publication of this articlewere defrayed inpart by the payment of
page charges. This article must therefore be hereby marked advertisement in
accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

ReceivedNovember 23, 2017; revised April 11, 2018; acceptedMay 17, 2018;
published first May 22, 2018.

References
1. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA,

Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter
mutations in tumors. N Engl J Med 2015;372:2499–508.

2. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al.
Comprehensive, integrative genomic analysis of diffuse lower-grade glio-
mas. N Engl J Med 2015;372:2481–98.

3. CeccarelliM, Barthel FP,Malta TM, Sabedot TS, Salama SR,Murray BA, et al.
Molecular profiling reveals biologically discrete subsets and pathways of
progression in diffuse glioma. Cell 2016;164:550–63.

4. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Orga-
nization Histological Classification of Tumours of the Central Nervous
System. Lyon, France: International Agency for Research on Cancer;
2016.

5. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016 World Health Organization classification of
tumors of the central nervous system: a summary. Acta Neuropathol
2016;131:803–20.

6. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, et al.
Identification of noninvasive imaging surrogates for brain tumor gene-
expression modules. Proc Natl Acad Sci U S A 2008;105:5213–8.

7. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG,
Granton P, et al. Radiomics: extracting more information from medical
images using advanced feature analysis. Eur J Cancer 2012;48:441–6.

8. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S,
et al. Decoding tumour phenotype by noninvasive imaging using a quan-
titative radiomics approach. Nat Commun 2014;5:4006.

9. Hsieh KL-C, Chen C-Y, Lo C-M. Quantitative glioma grading using trans-
formed gray-scale invariant textures of MRI. Computers Biol Med 2017;
83:102–8.

10. Hsieh KL-C, Lo C-M, Hsiao C-J. Computer-aided grading of gliomas based
on local and global MRI features. Computer Methods Prog Biomed
2017;139:31–8.

11. Zhang B, Chang K, Ramkissoon S, Tanguturi S, Bi WL, Reardon DA, et al.
Multimodal MRI features predict isocitrate dehydrogenase genotype in
high-grade gliomas. Neuro-oncol 2017;19:109–17.

12. Hsieh K, Chen C, Lo C. Radiomic model for predicting mutations in the
isocitrate dehydrogenase gene in glioblastomas. Oncotarget 2017;8:
45888–97.

13. Kickingereder P, Burth S, Wick A, G€otz M, Eidel O, Schlemmer HP,
et al. Radiomic profiling of glioblastoma: identifying an imaging
predictor of patient survival with improved performance over
established clinical and radiologic risk models. Radiology 2016;280:
880–9.

14. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer
Imaging Archive (TCIA): maintaining and operating a public information
repository. J Digit Imaging 2013;26:1045–57.

15. Scarpace L, Mikkelsen T, Cha S, Rao S, Tekchandani S, Gutman D,
et al. Radiology data from The Cancer Genome Atlas Glioblastoma
Multiforme [TCGA-GBM] collection. The Cancer Imaging Archive;
2016.

16. PedanoN, Flanders AE, Scarpace L,Mikkelsen T, Eschbacher JM, Hermes B,
et al. Radiology Data from The Cancer Genome Atlas Low Grade Glioma
[TCGA-LGG] collection. The Cancer Imaging Archive; 2016.

17. Scarpace L, Flanders AE, Jain R, Mikkelsen T, Andrews DW. Data from
REMBRANDT. The Cancer Imaging Archive; 2016.

18. Starck J-L, Fadili J, Murtagh F. The undecimated wavelet decomposition
and its reconstruction. IEEE Trans Image Process 2007;16:297–309.

19. Ojala T, Pietik€ainen M, M€aenp€a€a T. Gray scale and rotation invariant
texture classificationwith local binary patterns. Berlin/Heidelberg, Germany:
Springer; 2000.

20. Rister B, Horowitz MA, Rubin DL. Volumetric Image Registration From
Invariant Keypoints. IEEE Trans Image Process 2017;26:4900–10.

21. Cheung W, Hamarneh G. N-SIFT: N-Dimensional Scale Invariant Feature
Transform. IEEE Trans Image Process 2009;18:2012–21.

www.aacrjournals.org Clin Cancer Res; 24(18) September 15, 2018 4435

Machine Learning for Molecular Subtyping of Gliomas

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/18/4429/2046394/4429.pdf by guest on 27 August 2022



22. Sch€olkopf B, Smola AJ. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Cambridge, MA: MIT press;
2002.

23. Breiman L. Random Forests. Machine Learn 2001;45:5–32.
24. R€atsch G, Onoda T, M€uller K-R. Soft margins for AdaBoost. Machine Learn

2001;42:287–320.
25. Seiffert C, Khoshgoftaar TM, Van Hulse J. RUSBoost: A hybrid approach

to alleviating class imbalance. IEEE Transactions on Systems 2010;40:
185–97.

26. Guyon I, Elisseeff A. An introduction to variable and feature selection.
J Machine Learn Res 2003;3:1157–82.

27. Matthews BW. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim Biophys Acta 1975;405:442–51.

28. Powers DM. Evaluation: from precision, recall and F-measure to ROC,
informedness, markedness and correlation. J Mach Learn Tech 2011;
2:37–63.

29. Mukaka MM. A guide to appropriate use of correlation coefficient in
medical research. Malawi Med J 2012;24:69–71.

30. Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral
sciences. Boston, MA: Houghton Mifflin College Division: 2003.

31. Upadhyay N, Waldman A. Conventional MRI evaluation of gliomas. Br J
Radiol 2011;84:S107–11.

32. Scott J, Brasher PM, Sevick RJ, Rewcastle NB, Forsyth PA. How often are
nonenhancing supratentorial gliomas malignant? A population study.
Neurology 2002;59:947–9.

33. Wiestler B,CapperD,Holland-Letz T,KorshunovA, vonDeimlingA, Pfister
SM, et al. ATRX loss refines the classification of anaplastic gliomas and
identifies a subgroup of IDH mutant astrocytic tumors with better prog-
nosis. Acta Neuropathol 2013;126:443.

34. Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, et al.
Gliomas: predicting time to progression or survival with cerebral blood

volume measurements at dynamic susceptibility-weighted contrast-
enhanced perfusion MR imaging. Radiology 2008;247:490–8.

35. Law M, Yang S, Babb JS, Knopp EA, Golfinos JG, Zagzag D, et al. Com-
parison of cerebral blood volume and vascular permeability from dynamic
susceptibility contrast-enhanced perfusionMR imaging with glioma grade.
Am J Neuroradiol 2004;25:746–55.

36. Choi C, Ganji SK, DeBerardinis RJ, Hatanpaa KJ, Rakheja D, Kovacs Z, et al.
2-hydroxyglutarate detection bymagnetic resonance spectroscopy in IDH-
mutated patients with gliomas. Nat Med 2012;18:624–9.

37. Van Cauter S, Veraart J, Sijbers J, Peeters RR, Himmelreich U, De Keyzer F,
et al. Gliomas: diffusion kurtosis MR imaging in grading. Radiology
2012;263:492–501.

38. Raab P, Hattingen E, Franz K, Zanella FE, LanfermannH. Cerebral gliomas:
diffusional kurtosis imaging analysis of microstructural differences 1.
Radiology 2010;254:876–81.

39. Pereira S, Pinto A, Alves V, Silva CA. Deep convolutional neural
networks for the segmentation of gliomas in multi-sequence MRI. In:
Crimi A, Menze B, Maier O, Reyes M, Handels H, editors. Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries.
Lecture Notes in Computer Science. Springer: Cham, Switzerland;
2015.

40. Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-
modal imaging-guided survival time prediction of brain tumor patients.
In: Ourselin S, Joskowicz L, Sabuncu M, Unal G, Wells W, editors.
Medical Image Computing and Computer-Assisted Intervention –

MICCAI 2016. Lecture Notes in Computer Science. Springer: Cham,
Switzerland; 2016.

41. Shin H-C, Roth HR, GaoM, Lu L, Xu Z, Nogues I, et al. Deep convolutional
neural networks for computer-aided detection: CNN architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging 2016;35:
1285–98.

Clin Cancer Res; 24(18) September 15, 2018 Clinical Cancer Research4436

Lu et al.

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/18/4429/2046394/4429.pdf by guest on 27 August 2022


