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ORIGINAL RESEARCH

Machine Learning–Based Risk Assessment 
for Cancer Therapy–Related Cardiac 
Dysfunction in 4300 Longitudinal Oncology 
Patients
Yadi Zhou, PhD*; Yuan Hou, PhD*; Muzna Hussain, MD*; Sherry-Ann Brown , MD, PhD; Thomas Budd, MD;  
W. H. Wilson Tang , MD; Jame Abraham, MD; Bo Xu , MD; Chirag Shah, MD; Rohit Moudgil, MD, PhD; 
Zoran Popovic , MD; Leslie Cho, MD; Mohamed Kanj, MD; Chris Watson, PhD; Brian Griffin, MD;  
Mina K. Chung , MD; Samir Kapadia , MD; Lars Svensson , MD, PhD; Patrick Collier , MD, PhD; 
Feixiong Cheng , PhD

BACKGROUND: The growing awareness of cardiovascular toxicity from cancer therapies has led to the emerging field of cardio-
oncology, which centers on preventing, detecting, and treating patients with cardiac dysfunction before, during, or after can-
cer treatment. Early detection and prevention of cancer therapy–related cardiac dysfunction (CTRCD) play important roles in 
precision cardio-oncology.

METHODS AND RESULTS: This retrospective study included 4309 cancer patients between 1997 and 2018 whose laboratory 
tests and cardiovascular echocardiographic variables were collected from the Cleveland Clinic institutional electronic medical 
record database (Epic Systems). Among these patients, 1560 (36%) were diagnosed with at least 1 type of CTRCD, and 838 
(19%) developed CTRCD after cancer therapy (de novo). We posited that machine learning algorithms can be implemented to 
predict CTRCDs in cancer patients according to clinically relevant variables. Classification models were trained and evaluated 
for 6 types of cardiovascular outcomes, including coronary artery disease (area under the receiver operating characteristic 
curve [AUROC], 0.821; 95% CI, 0.815–0.826), atrial fibrillation (AUROC, 0.787; 95% CI, 0.782–0.792), heart failure (AUROC, 
0.882; 95% CI, 0.878–0.887), stroke (AUROC, 0.660; 95% CI, 0.650–0.670), myocardial infarction (AUROC, 0.807; 95% CI, 
0.799–0.816), and de novo CTRCD (AUROC, 0.802; 95% CI, 0.797–0.807). Model generalizability was further confirmed using 
time-split data. Model inspection revealed several clinically relevant variables significantly associated with CTRCDs, including 
age, hypertension, glucose levels, left ventricular ejection fraction, creatinine, and aspartate aminotransferase levels.

CONCLUSIONS: This study suggests that machine learning approaches offer powerful tools for cardiac risk stratification in on-
cology patients by utilizing large-scale, longitudinal patient data from healthcare systems.

Key Words: anthracycline therapy ■ cancer therapy–related cardiac dysfunction ■ cardio-oncology ■ cardiotoxicity ■ 
echocardiography ■ machine learning

C
ardiovascular disease (CVD) is the leading cause 
of death and the second leading cause of morbid-
ity in cancer survivors after recurrent malignancy 

in the United States.1 Comorbidity between CVD and 
cancer suggests underlying shared disease pathogen-
eses, which can be both genetic and environmental. 
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One critical issue regarding environmental factors is 
that CVD can be associated with various treatments 
for cancer itself. First recognized in the 1960s,2 cancer 

therapy–related cardiac dysfunction (CTRCD) has been 
increasingly diagnosed and investigated.3–8 For exam-
ple, a growing number of cancer survivors (>5 million) 
are at risk for cardiotoxicity caused by anthracycline 
therapy years or even decades prior for various types 
of cancer.9

Through the success of basic and translational 
research, cancer survivors have become one of the 
largest growing subsets of patients in the US health-
care system.10 Currently, there are over 16.9  million 
cancer survivors in the United States. This number is 
projected to reach more than 22.1  million by 2030.11 
Increasing numbers of oncology patients are facing 
CTRCD risks as cancer survival improves. The growing 
awareness of cardiovascular toxicity by cancer treat-
ment has led to the emerging field of cardio-oncology, 
which centers on preventing, detecting, and treating 
patients with cardiovascular toxicity from cancer treat-
ment. However, precise prediction and prevention of 
cardiovascular toxicity in individual cancer patients or 
survivors has proven elusive. Further, while basic and 
translational research studies continue, experimen-
tal assays in animal models are limited by significant 
functional disparities between animal and human car-
diomyocytes. Development of novel methodologies or 
tools, such as computational approaches, would offer 
unique opportunities for cardio-oncology by utilizing 
the accumulated longitudinal clinical data available 
from healthcare systems.

In recent years, machine learning (ML) has been 
increasingly used for cardiovascular studies, such 
as for the prediction of drug-induced cardiovascular 
complications,12,13 cardiac resynchronization therapy 
response prediction,14 risk assessment of cardiovas-
cular events after acute myocardial infarction (MI),15,16 
and claims data–based mortality risk predictions.17 
As more longitudinal clinical data are accumulated for 
oncology patients, ML presents a great opportunity 
to use these data to build predictive models in clinical 
practices.18,19

In this study, we hypothesized that supervised ML 
models could accurately predict the risk for developing 
several cardiovascular outcomes in cancer patients. 
Specifically, we applied ML models to the prediction of 
6 types of cardiac outcomes, namely heart failure (HF), 
atrial fibrillation (AF), coronary artery disease (CAD), MI, 
stroke, and de novo CTRCD. We also determined sev-
eral clinically relevant variables associated with these 
outcomes.

METHODS

All data used in this study are available from the cor-
responding author on reasonable request and the 
approval of the institutional review board. The code 

CLINICAL PERSPECTIVE

What Is New?
• This study presents the first, large-scale ma-

chine learning–based approach to evaluate 
complications between cancer therapies and 
cardiovascular diseases using cardiovascular 
echocardiographic and laboratory test variables 
from over 4300 longitudinal cancer patients.

• We developed machine learning models with 
high performance and verified the generalizabil-
ity using time-split data to simulate real-world 
scenarios and found that combining both labo-
ratory test and echocardiographic variables re-
sulted in the highest performance.

• We identified and validated multiple clinically 
relevant variables associated with cancer ther-
apy–related cardiac dysfunction using learned 
weight analysis of the optimal machine learning 
models.

What Are the Clinical Implications?
• We demonstrate the potential clinical implication 

of using a machine learning method to predict 
6 types of cancer therapy–related cardiac dys-
function, including heart failure, atrial fibrillation, 
coronary artery disease, myocardial infarction, 
stroke, and de novo cancer therapy–related 
cardiac dysfunction.

• These machine learning models offer potential 
tools for risk assessment of cancer therapy–
related cardiac dysfunction in cardio-oncology 
clinical practices.

Nonstandard Abbreviations and Acronyms

AUPR area under the precision-recall curve

AUROC area under the receiver operating 
characteristic curve

CTRCD cancer therapy–related cardiac 
dysfunction

GB gradient tree boosting

LR logistic regression

ML machine learning

RF random forest

SMOTE Synthetic Minority Oversampling 
Technique

SVM support vector machine
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can be found at https://github.com/Cheng F-Lab/
CO-ML.

Study Design
Figure 1 shows the overview of the study design. We 
integrated both cardiovascular echocardiographic and 
laboratory testing variables from over 4300 longitudi-
nal cancer patients. We developed and evaluated ML 
models to assist in the risk assessment of CTRCDs. 
We systematically tested 5 classification methods:  
k-nearest neighbors, logistic regression (LR), support 
vector machine (SVM), random forest (RF), and gradi-
ent tree boosting (GB). For the feature sets, we tested: 
(1) laboratory tests only, (2) echocardiography only, and 
(3) laboratory tests and echocardiography combined. 

The generalizability of these models was verified by 
time-based data split. We also interrogated the final 
models to uncover clinically relevant variables associ-
ated with CTRCDs using learned weight analysis.

Study Population and Data Preparation
This study was reviewed and approved by the institu-
tional review board and the patients gave informed 
consent. We extracted the clinical data of over 4600 on-
cology patients receiving cancer therapies from our in-
stitutional electronic medical health record database. All 
adult patients with cancer referred to the cardio-oncology 
service at the Cleveland Clinic from 1997 to 2018 were 
included. Five outcomes, including HF, AF, CAD, MI, and 
stroke, were extracted using International Classification 

Figure 1. Overview of the study design.

We integrated both cardiovascular echocardiographic and laboratory testing variables from over 4300 

longitudinal cancer patients for the prediction of 6 outcomes, including heart failure (HF), atrial fibrillation 

(AF), coronary artery disease (CAD), myocardial infarction (MI), stroke, and de novo cancer therapy–related 

cardiac dysfunction (CTRCD). We systematically tested 5 classification methods: k-nearest neighbors 

(k-NN), logistic regression (LR), support vector machine (SVM), random forest (RF), and gradient tree 

boosting (GB). For the feature sets, we tested laboratory test variables only, echocardiographic variables 

only, and laboratory test and echocardiographic variables combined.

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

://ah
ajo

u
rn

als.o
rg

 b
y
 o

n
 D

ecem
b
er 1

, 2
0
2
0

https://github.com/ChengF-Lab/CO-ML
https://github.com/ChengF-Lab/CO-ML


J Am Heart Assoc. 2020;9:e019628. DOI: 10.1161/JAHA.120.019628 4

Zhou et al Machine Learning for Cardio-Oncology

of Diseases, Ninth and Tenth Revision (ICD-9, ICD-10), 
diagnosis codes and were manually checked by look-
ing at patient charts on EPIC for accuracy (Epic Systems 
Corporation). Both inpatient and outpatient codes were 
included in this study. An additional outcome, de novo 
CTRCD, was also examined in this study. According to 
the diagnosis date of these 5 cardiac events, we iden-
tified the cardiac events that were diagnosed before 
cancer therapy as preexisting cardiac events and those 
after as de novo CTRCD. All variables were collected 
per patient based on the entirety of all available data. All 
patients had 2 sets of clinical variables: laboratory tests 
and echocardiographic variables. Laboratory test results 
included variables such as estimated glomerular filtration 
rate, glycated hemoglobin, glucose, calcium, total pro-
tein, and many others. Echocardiographic data included 
variables such as left ventricular ejection fraction, left 
ventricular end-systolic volume index, and left ventricu-
lar end-diastolic volume index. Since available echocar-
diographic data were longitudinal, we extracted several 
features for each echocardiographic variable: maximum 
of all follow-ups, minimum of all follow-ups, slope of all 
follow-ups, maximum increase within 3  months, and 
maximum decrease within 3 months (see Table S1 for a 
list of the variables). Finally, clinical variables were used 
as features to build ML models among 6 types of car-
diovascular outcomes. After removing patients with >6 
missing variables, the final data set contained 4309 pa-
tients (see Table for the characteristics of the cohort).

Classifier Development and Evaluation
Our first goal was to identify the optimal classification 
method and feature set combination. To do this, we sys-
tematically tested all of the combinations of 5 classification 
methods and 3 feature sets. For each outcome, we adopted 
a training-validation test procedure, repeated 100 times. In 
each iteration, all patients were randomly split into training 
set (81%), validation set (9%), or test set (10%). The training 
and validation sets were used in a grid search (Table S2) 
to identify the optimal hyperparameters for each classifi-
cation method and feature set combination. Then, these 
2 sets were merged and trained with the optimal hyper-
parameters to build the final model, which was evaluated 
using the test set. See Figure S1 for the detailed workflow 
of method and feature selection. All classification models 
were trained using the Python package scikit-learn.20 We 
tested the effect of balancing the data sets using Synthetic 
Minority Oversampling Technique (SMOTE) implemented 
in the Python package imbalanced-learn.21

To test the generalizability of our ML models, we ad-
opted a time-based data split strategy to simulate re-
al-world scenarios, in which models used to predict new 
patients (external validation set) are built on data from the 
past. Specifically, we selected January 1, 2017 (2017.1.1) 
as the cutoff time point, as it produced subsequent test 

sets with reasonable sizes. Patients who received cancer 
therapies before 2017.1.1 were used as the training set, 
and those who received cancer therapies after 2017.1.1 
were used as the test set. The detailed workflow of this 
strategy is provided in Figure S2.

Model Criteria to Determine Predictive 
Variables
Next, we sought to understand which clinically relevant 
variables were significantly associated with CTRCD 
and further contributed to the high performance of ML 
models. We examined the weights of the 100 final LR 

Table 1. Characteristics of the Entire Cardio-Oncology 

Cohort

Variables Cohort (N=4309)

Basic characteristics

Age, y 61.1±13.7*

Sex

Female 2552 (59)†

Male 1757 (41)

Body mass index, kg/m2 28.3±7.3

Tobacco use 2162 (50)

Alcohol use 1995 (48)

Family history 1548 (36)

Comorbidity characteristics

Hypertension 2450 (57)

Hyperlipidemia 1877 (44)

Diabetes mellitus 974 (23)

Chest pain 1724 (40)

Shortness of breath 1523 (35)

Fatigue 2202 (51)

Cardiac outcomes

CTRCD 1560 (36)

HF 596 (14)

AF 653 (15)

CAD 673 (16)

MI 193 (4)

Stroke 275 (6)

Preexisting CVD 722 (17)

de novo CTRCD 838 (19)

Cancer therapy

Chemotherapy 4011 (93)

Radiation 1969 (46)

Chemotherapy and radiation 1780 (41)

Anthracycline 1764 (41)

Cyclophosphamide 1567 (36)

Trastuzumab 822 (19)

AF indicates atrial fibrillation; CAD, coronary artery disease; CTRCD, 
cancer therapy–related cardiac function; CVD, cardiovascular disease; HF, 
heart failure; and MI, myocardial infarction.

*Continuous variables are reported as mean±SD.
†Categorical variables are reported as number (percentage).
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models for each outcome. LR learns a weight for each 
feature, and the prediction is the summation of all of 
the products of the weight and feature pairs squashed 
using a sigmoid function. We identified the clinically 
relevant variables based on 2 criteria: (1) the absolute 
coefficient of variation (the ratio of SD and mean) was 
low to ensure small fluctuation of the weight in the 100 
repeats; (2) the absolute associated weight compared 
with the extremum weight for that outcome was high 
(relative weight). We used 0.5 and 0.3 as the 2 cutoffs:

where T denotes the feature set, wi denotes the learned 
weight for feature i, and sgn is the sign function.

To verify the clinically relevant variables uncovered 
by examining the LR weights, we tested the hazard 
ratios (95% CIs) of the clinically relevant variables for 
the de novo CTRCD. The Wald χ 2 test was used to 
evaluate the variables with statistically significant co-
efficients. In addition, the log-rank test was used for 
global significance evaluation. The hazard analyses 
were performed with the survival (v2.44-1.1) and sur-
vminer (v0.4.6) packages on R 3.6.1.

Statistical Analysis
To evaluate the performance of ML models, we used 2 
metrics: area under the receiver operating characteris-
tic curve (AUROC) and area under the precision-recall 
curve (AUPR). AUROC and AUPR were computed 
using the metrics.roc_auc_score and metrics.aver-

age_precision_score functions from the scikit-learn 
Python package. For the comparison of the perfor-
mances of the laboratory test and echocardiographic 
feature sets, we applied a 2-sided paired sample t test 
using the AUROCs of the test sets from 100 iterations. 
P<0.05 was considered statistically significant. The t 
test was performed using the stats.ttest_rel function 
from the SciPy Python package.22 We applied χ 2 test 
for the categorical variables to verify their associations 
with the outcomes. Kolmogorov-Smirnov test was 
used for the continuous variables. These 2 statistical 
analyses were performed by stats.chi2_contingency 
and stats.ks_2samp from the SciPy Python package.

RESULTS

Overview of the Classifier Performance
In this study, we built a large, longitudinal cardio-on-
cology cohort with 4309 oncology patients collected 

from our institutional electronic medical record data-
base (Table). The median age was 61.1 years (inter-
quartile range [IQR], 53.8–70.5 years) for the overall 
population. Six types of cardiac events, including HF 
(n=596), AF (n=653), CAD (n=673), MI (n=193), stroke 
(n=275), and de novo CTRCD (n=838) were evaluated. 
In total, 1560 (36%) of patients had at least 1 type of 
diagnosed cardiac events, among which 722 (17%) 
patients had preexisting cardiac events/disease before 
cancer therapy, while 838 (19%) patients developed 
de novo CTRCD afterward. Among all of the patients, 
4011 (93%) were treated with chemotherapy and 1969 
(46%) were treated with radiation. For chemotherapy, 
1764 (41%) patients were treated with anthracycline 
drugs (including doxorubicin, idarubicin, daunorubicin, 
and epirubicin), 1567 (36%) were treated with cyclo-
phosphamide, and 822 (19%) patients were treated 
with trastuzumab. A list of all therapies can be found 
in Table S3. Two sets of clinical variables—laboratory 
tests (such as estimated glomerular filtration rate, gly-
cated hemoglobin, glucose, calcium, and total protein) 
and echocardiographic variables (such as left ven-
tricular ejection fraction, left ventricular end-diastolic 
volume index, and left ventricular end-systolic volume 
index)—were used to build the ML models. Table S1 
lists all of the variables used in this study.

We conducted a systematic evaluation of 5 ML 
algorithms (k-nearest neighbors, LR, SVM, RF, and 
GB) and 3 feature sets (laboratory tests only, echo-
cardiography only, or both combined). The average 
performance and SD for each outcome based on 
the 100 iterations are listed in Table  S4 (AUROC) 
and Table S5 (AUPR). LR, RF, and GB achieved the 
first-tier performance, followed by SVM, then k-near-
est neighbors. Although LR, RF, and GB performed 
similarly, LR achieved the highest AUROCs among 
5 outcomes and comparable AUROC for HF which 
GB achieved the highest AUROC. LR was selected 
as the optimal classification method for all further 
analyses.

Figure 2 shows the overall performance for LR mod-
els. The AUROCs were 0.882 (95% CI, 0.878–0.887) 
for HF, 0.787 (95% CI, 0.782–0.792) for AF, 0.821 (95% 
CI, 0.815–0.826) for CAD, 0.807 (95% CI, 0.799–0.816) 
for MI, 0.660 (95% CI, 0.650–0.670) for stroke, and 
0.802 (95% CI, 0.797–0.807) for de novo CTRCD. All 
AUPRs were at least 2-fold of their respective baselines 
of random classifiers. Precision-recall curve showed 
the trade-off between precision and recall, which, in 
this case, means the fraction of patients actually devel-
oped the disease in the patients who were predicted 
to have disease (precision) and their fraction in all of 
the patients who developed the disease (recall). In the 
case of a random classifier, the prediction error made 
by the classifier is consistent (a horizontal line in the 
precision-recall plot), thus leading to a baseline AUPR 

|Coefficient of variation|<0.5

Relative weight=
|
|wi

|
|

max
j∈T,sgn(wi)=sgn(wj)

|
|
|
wj
|
|
|
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Figure 2. Performances for the 6 outcomes in receiver operating characteristic (A through F) and precision-recall (G 

through L) curves using logistic regression and the combined feature set.

For each subplot, light-colored lines correspond to the 100 iterations; the saturated-colored line is the average of the 100 iterations; 

background indicates mean±SD; the grey dotted line indicates the baseline of a random classifier. The area under the receiver operating 

characteristic curves (AUROCs) and area under the precision-recall curves (AUPRs) shown are the averages. AF indicates atrial fibrillation; 

CAD, coronary artery disease; CTRCD, cancer therapy–related cardiac dysfunction; HF, heart failure; and MI, myocardial infarction.
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that is the percentage of patients with the outcomes in 
the cohort. The AUPRs compared with their respec-
tive baselines were 0.651 (95% CI, 0.641–0.661) ver-
sus 0.138 for HF, 0.401 (95% CI, 0.392–0.411) versus 
0.151 for AF, 0.481 (95% CI, 0.469–0.492) versus 0.156 
for CAD, 0.220 (95% CI, 0.206–0.234) versus 0.045 
for MI, 0.138 (95% CI, 0.131–0.146) versus 0.064 for 
stroke, and 0.592 (95% CI, 0.583–0.601) versus 0.234 
for de novo CTRCD.

Combining Echocardiographic and 
Laboratory Test Variables Showed the 
Best Performance
Next, we wanted to find out the complementary effect 
of different feature sets on the model performance. 
Based on the 100 iterations, we found that while echo-
cardiographic or laboratory test variables alone were 
predictive, inclusion of both types of data synergisti-
cally improved performance of the models (Figure  3 

and Figure S3). Moreover, we showed that laboratory 
test and echocardiographic features performed dif-
ferently among the outcomes (2-sided paired t test). 
Echocardiographic features outperformed laboratory 
test for HF (0.854 versus 0.729, P<0.001), MI (0.766 
versus 0.746, P=0.003), and de novo CTRCD (0.742 
versus 0.733, P=0.04). Laboratory test outperformed 
echocardiographic features for AF (0.760 versus 
0.700, P<0.001), CAD (0.797 versus 0.702, P<0.001), 
and stroke (0.656 versus 0.617, P<0.001). In summary, 
combining both echocardiographic and laboratory test 
variables showed the best performance.

Generalizability of the Models
An important aspect of ML models is real-world gen-
eralizability. The patients were further split by dates—
those with cancer therapy start dates before 2017.1.1 
(see Methods) as the training set and those with start 
dates after 2017.1.1 as the test set. The results show 

Figure 3. Comparison of the performances of laboratory test and echocardiographic feature sets.

A through F, When using the combined feature set, the models outperformed those that used either feature set individually. A, D, 

and F, Echocardiographic features showed significantly better performances for heart failure (HF), myocardial infarction (MI), and de 

novo cancer therapy–related cardiac dysfunction (CTRCD) than laboratory test. B, C, and E, Laboratory test features significantly 

outperformed echocardiographic features for atrial fibrillation (AF), coronary artery disease (CAD), and stroke. P values were calculated 

using 2-sided paired sample t test. AUROC indicates area under the receiver operating characteristic curve; and AUPR, area under 

the precision-recall curve.
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that for all 6 outcomes, the AUROCs ranged from 
0.913 for HF to 0.656 for MI (Figure 4 and Table S6). All 
AUPRs were higher than their corresponding baselines 
as well (Figure  S4), indicating high generalizability of 
ML models in the prediction of CTRCD for new pa-
tients in real-world clinical practices.

Clinical Interpretability of the Models
We next interrogated what the LR models learned 
from the data to determine associations between clini-
cal variables and the CTRCD outcomes. We examined 
the model weights of the 100 final models for each 
outcome. Using the mean and SD of the weight, we 
derived 2 metrics, coefficient of variation and relative 
weight (see Methods), to identify the features that have 
stable and relatively large absolute weights throughout 
the 100 iterations. Figure 5A shows the 23 variables 
that were predictive of at least 1 cardiovascular out-
come; the actual values of the weights in the LR mod-
els can be found in Table S7. Age was most predictive 

for all 6 outcomes, followed by hypertension and left 
ventricular ejection fraction, which were also predictive 
for the 6 outcomes. The predictive variables for each 
outcome can be found in Table S8. Using Cox propor-
tional hazards model analysis for de novo CTRCD, left 
ventricular ejection fraction, hazard ratio, and risk fac-
tors such as sex, age, and hypertension, were verified 
as predictive (Figure  5B). The distributions of the 23 
variables among the patients further illustrated the clin-
ical relevancy of the variables uncovered by LR model 
weight analysis (Figure 5C and 5D, Figures S5 and S6).

Impact of Cancer Treatment Types on the 
Models
We next examined whether cancer treatment informa-
tion can affect the model performances by conducting 
2 separate experiments.

In the first experiment, we pursued to find out 
whether our models could be applied to patients with 
specific types of cancer treatments. We generated 5 
subpopulations (Table) based on whether the patients 
were treated with the following cancer therapies re-
spectively: (1) chemotherapy, (2) radiation therapy, (3) 
chemotherapy and radiation therapy, (4) anthracycline, 
and (5) trastuzumab. We found high AUROCs in the 
prediction of de novo CTRCD among different types 
of cancer therapies as well (Figure  6). Specifically, 
the AUROCs were 0.779 (95% CI, 0.771–0.787) for 
anthracycline and 0.764 (95% CI, 0.746–0.783) for 
trastuzumab.

In the second experiment, we examined whether 
cancer therapy information used as features can im-
prove model performances. We included 4 additional 
categorical features: the usage of chemotherapy, ra-
diation, anthracycline, or trastuzumab. We found that 
incorporating treatment information had a marginal 
improvement on the model performances (AUROC: 
0.805 versus 0.802; P>0.1, t test) (Figure S7).

DISCUSSION

In this study, we built predictive ML models for cardiac 
risk assessment among 6 types of cardiovascular 
outcomes, including HF, AF, CAD, MI, stroke, and de 
novo CTRCD. Based on 100 model iterations, all out-
comes received relatively high or high AUROC, rang-
ing from 0.882 for HF to 0.660 for stroke (Figure 2). In 
addition, models built using time-split data demon-
strated a high generalizability of our models for po-
tential clinical implementation (Figure 4).

By comparing the model performances using dif-
ferent feature sets, we found that both laboratory 
test variables and echocardiographic variables con-
tributed to the overall high performance. When lab-
oratory test data were used alone, all outcomes still 

Figure 4. Evaluation of the model generalizability using 

time-split data.

The receiver operating characteristic curve for each outcome 

is shown. Dotted line indicates the theoretical baseline 

performance of a random classifier. Patients were split by the 

date January 1, 2017. Patients who received cancer therapies 

before this date were used for model training, and patients who 

received cancer therapies after this date comprised the test sets. 

Logistic regression and the combined feature set were used. All 

models achieved moderate to high performances, suggesting a 

high generalizability of the models. AF indicates atrial fibrillation; 

AUROC, area under the receiver operating characteristic curve; 

CAD, coronary artery disease; CTRCD, cancer therapy–related 

cardiac dysfunction; HF, heart failure; and MI, myocardial 

infarction.
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achieved moderate to high AUROCs (Figure  3), with 
5 of the AUROCs >0.7 and 1 at 0.66. In addition, by 
comparing the performances of laboratory test and 

echocardiographic feature sets, we found that for 
HF, MI, and de novo CTRCD, echocardiographic fea-
tures significantly outperformed the laboratory test. 

Figure 5. Clinically relevant variables uncovered by weight examination of the final logistic regression models.

A, Twenty-three predictive variables for at least 1 outcome (marked by an “X” in the grid). Color gradient indicates that, as the value of 

the variable increases, the risk for the outcome increases (red) or decreases (green). B, Cox proportional hazards model analysis was 

performed for de novo cancer therapy–related cardiac dysfunction (CTRCD), which verified the clinically relevant variables using the 

machine learning method. C, Distributions of 6 continuous variables by the outcomes (P values were computed by Kolmogorov-Smirnov 

test). D, Distributions of 5 categorical variables (P values were computed by χ 2 test). +/− indicates whether the patients have the symptoms 

(row) or the outcomes (column). AF indicates atrial fibrillation; AST, aspartate aminotransferase; CAD, coronary artery disease; HF, heart 

failure; LVEF, left ventricular ejection fraction; LVESVi, left ventricular end-systolic volume index; and MI, myocardial infarction.
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Figure 6. Performances for de novo cancer therapy–related cardiac dysfunction for patients with different cancer therapies.

A through F, Receiver operating characteristic curves. G through L, Precision-recall curves. F and L, The model performances using 

all of the patients with de novo cancer therapy–related cardiac dysfunction (CTRCD) as comparison. For each subplot, light-colored 

lines correspond to the 100 iterations; saturated-colored line is the average of the 100 iterations; background indicates mean±SD; grey 

dotted line indicates the baseline of a random classifier. The area under the receiver operating characteristic curves (AUROCs) and 

area under the precision-recall curves (AUPRs) shown are the averages.
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For AF, CAD, and stroke, laboratory test performed 
better than echocardiographic features (Figure 3 and 
Figure S3). These highly predictive models offer poten-
tial approaches for cardio-oncology clinical practice. 
Oncologists referred these patients to the cardio-on-
cology services based on professional assessment of 
clinical factors such as cardiac symptoms, preexisting 
cardiac diseases, or cardiovascular risk factors. The 
models trained on laboratory test data could assist in 
the decision of referring, with or without incorporation 
of echocardiographic data.

To understand which specific variables contrib-
uted to model performance, we examined the learned 
weights for the features (Figure 5, Figures S5 and S6). 
We found that increased creatinine level was associ-
ated with high risk of cancer treatment–associated 
HF. In the general population, creatinine elevation in 
patients with HF is associated with increased mortal-
ity.23 Creatinine is the metabolic product of creatine 
that is excreted in the urine.24 An elevated glucose 
level is commonly found in patients with acute MI.25 
Studies have also shown that high glucose level is 
associated with high mortality risk in patients with 
MI.26 Our results showed that a higher glucose level 
was associated with higher risks of cancer treat-
ment–associated MI. Other risk factors, such as 
sex, hypertension, and age, were also verified. Men 
have a higher risk of heart disease than women.27–31 
Age is a well-known CVD risk factor,32–34 and it was 
identified for all 6 outcomes. Hypertension is an-
other strong risk factor for many types of CVDs.35–37 
To summarize, by looking at the learned weights of 
the LR models, we uncovered the clinically relevant 
variables that were strong predictors for the CTRCD 
outcomes in the oncology cohort.

The skewness of the cardiovascular events in the 
data sets, especially in MI and stroke, could negatively 
affect the performances. Therefore, we tested this 
issue using SMOTE.38 As shown in Figure S8, LR did 
not benefit from the resampling. The resampling mar-
ginally improved the performance of other methods 
for certain outcomes, such as k-nearest neighbors for 
MI, SVM for MI, and SVM for AF. However, the im-
proved models still do not outperform LR. We also ex-
perimented with stacking the output of these models. 
We found that stacking LR, RF, and GB achieved a 
marginal improvement compared with using LR alone 
(Figure S9; HF, AF, and stroke). In summary, these ob-
servations suggest a low risk of data skewness in our 
current models, especially for LR models; yet, poten-
tial further improvements by combining the techniques 
such as stacking and resampling, and perhaps by a 
meta-classifier trained using the output of the models, 
are achievable in the future.

Our future work includes several directions. First, 
we will continue to improve the models as more data 

are gathered, since we noticed marginally increased 
model performances when the training sizes increased 
(Figure S10), suggesting the importance of large-scale 
cohorts for ML studies. Our models may also be im-
proved with a more model-specific variable selection 
procedure to further reduce risk of “overfitting.” When 
we tested the effect of limiting variables to a certain 
period (ie, variable collected within 1, 5, and 10 years 
of the first diagnosis for the outcome), we found that 
the models performed similarly, although certain out-
comes may be slightly improved (Figure S11). Second, 
we are actively incorporating imaging data39,40 directly 
using convolutional neural networks to improve perfor-
mance of models further. Third, we plan to integrate 
ML-based risk assessment with online tools for use in 
clinical practice.

Limitations
We acknowledge several potential limitations in the 
current study. First, because of the retrospective na-
ture of this study and potential risk of patient selection 
bias, the model performances may be overestimated 
for real-world uses, even though model generalizabil-
ity was evaluated with time-split data as the external 
validation set. Although each ICD-9/10 diagnosis code 
was manually reviewed by a physician for accuracy, 
potential errors of ICD-9/10 codes may influence the 
performance of ML models. In addition, while our 
models can output a probability for each outcome, 
they have not been explicitly programmed to predict 
risk levels. This could be considered in the next itera-
tion of the models, in which a system of risk-based 
tertiles or quartiles could potentially be implemented 
based on our data.41,42

We did not include feature interactions as additional 
features for the modeling using LR. Some risk factors 
are known to interact with others, such as sex and di-
abetes mellitus.43 A potential improvement would be 
to include these interactions as features. However, we 
should also note that it could introduce a large number 
of features and could potentially increase the risk of 
model overfitting. In addition, some of the classifica-
tion methods we have evaluated had such capacity, 
but they did not outperform LR.

We were able to identify several clinically relevant 
variables that were stable strong predictors of the out-
comes. However, this method could not reveal all of the 
factors. When 2 features are linearly related (multicol-
linearity), their final learned weights may fluctuate and 
will depend on the initial randomization of the weights. 
These features will have high absolute coefficient of 
variations, and their contributions to the observed out-
comes cannot easily be inferred using this method.

Last, although we applied L2 regularization for 
the training of the LR models, the models could still 
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potentially overfit. To overcome this, we could filter the 
features to remove irrelevant ones, which could be 
performed through variance analysis, mutual informa-
tion, and L1 regularization.

CONCLUSIONS

ML models were built for each of 6 CTRCD outcomes 
for the oncology population based on a systematic 
evaluation of 5 classification methods and 3 fea-
ture sets. These models showed moderate to high 
performances and real-world generalizability using 
time-split data. We found that laboratory test and 
echocardiographic variables were each associated 
with different outcomes. We uncovered several clini-
cally relevant variables associated with CTRCD, of-
fering potential predictive factors and biomarkers for 
cardio-oncology clinical practices. Future versions of 
our models can include risk stratification in tertiles or 
quartiles to help with clinical decision-making to im-
pact patient outcomes. To this end, we are currently 
working on the development of free online outcomes 
and risk calculators that integrate our models for 
shared decision-making. Our findings suggest that 
ML tools hold promise for cardiac risk assessment for 
patients before, during, or after cancer treatments by 
integrating large-scale, longitudinal patient data from 
healthcare systems.
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Table S1. Clinical variables used in this study.

Lab test (including demographic) Echocardiographic

Sex LVEF (left ventricular ejection fraction)

Race Heart rate

Family history BSA (body surface area)

Tobacco use SBP (systolic blood pressure)

Alcohol use DBP (diastolic blood pressure)

Diabetes EDV (end-diastolic volume)

Hypertension ESV (end-systolic volume)

Hyperlipidemia LVEDVi (left ventricular end-diastolic volume index)

Peripheral edema LVESVi (left ventricular end-systolic volume index)

Orthopnea

Chest pain

Shortness of breath

Fatigue

Age

BMI (body mass index)

eGFR (estimated glomerular filtration rate)

RBC (red blood cell)

Hematocrit

MCHC (mean corpuscular hemoglobin concentration)

MCV (mean corpuscular volume)

MCH (mean corpuscular hemoglobin)

Blood glucose

Calcium

Total protein

Sodium

Potassium

Chloride

Carbon dioxide

WBC (white blood cell)

Platelet

Creatinine

ALT (alanine aminotransferase)

AST (aspartate aminotransferase)

Albumin

ALP (alkaline phosphatase)

Bilirubin
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Table S2. Classification methods evaluated and hyperparameters explored.

Classifier Hyperparameter Value

k-nearest neighbors (k-NN) K
metric

3, 5, 7
Euclidean, correlation

Logistic regression (LR) C 0.01, 0.1, 1, 10, 100, 1000

Support vector machine (SVM) C
gamma

0.1, 1, 10, 100
1e-3, 1e-2, 1e-1

Random forest (RF) max features
max depth

0.1, 0.2, 0.4, 0.8
4, 8, 12

Gradient tree boosting (GB) n estimators
max depth
learning rate
subsample

100, 500
2, 3, 4
0.01, 0.05, 0.1
0.33, 0.66, 1

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

://ah
ajo

u
rn

als.o
rg

 b
y
 o

n
 D

ecem
b
er 1

, 2
0
2
0



Table S3. A list of all therapies used in the entire cardio-oncology cohort.

Therapy Patients Therapy Patients Therapy Patients Therapy Patients

Radiation 1969 Imatinib 89 Panobinostat 12 Elotuzumab 3

Cyclophosphamide 1567 Mercaptopurine 83 Regorafenib 12 Folinic Acid 3

Doxorubicin 1304 Dasatinib 80 Trimethoprim 12 Lomustine 3

Carboplatin 838 Vinorelbine 76 Mitomycin 11 Melphalan 3

Trastuzumab 822 Eribulin 75 Idelalisib 10 Oxaliplatin 3

Paclitaxel 684 Pazopanib 75 Methenamine 10 Pembrolizumab 3

Docetaxel 662 Sunitinib 73 Midostaurin 10 Trastuzumab
emtansine

3

Cytarabine 645 Goserelin 72 Pertuzumab 10 Alectinib 2

Rituximab 632 Ixazomib 66 Prednisolone 10 Alitretinoin 2

Anastrozole 620 Leuprolide 66 Thioguanine 10 Arsenic 2

Vincristine 602 Sorafenib 64 Venetoclax 10 Axicabtagene
ciloleucel

2

Etoposide 595 Palbociclib 63 Daratumumab 9 Flutamide 2

Methotrexate 506 Irinotecan 59 Olaparib 9 Ingenol 2

Busulfan 493 Methoxsalen 57 Pralatrexate 9 Lenvatinib 2

Lenalidomide 393 Fosfomycin 50 Aminolevulinic 8 Methenamine 2

Tamoxifen 385 Nilotinib 43 Gemcitabine 8 Mitotane 2

Plerixafor 371 Ruxolitinib 43 Temsirolimus 8 Palifosfamide 2

Bortezomib 356 Axitinib 42 Trifluridine 8 Ribociclib 2

Letrozole 302 Temozolomide 41 Chlorambucil 7 Sipuleucel-t 2

Daunorubicin 287 Tretinoin 36 Afatinib 6 Aldoxorubicin 1

Ifosfamide 281 Trametinib 31 Bexarotene 6 Atezolizumab 1

Fluorouracil 238 Erlotinib 30 Dactinomycin 6 BCG LIVE 81 MG
INTRAVESICAL
SUSPENSION

1

Hydroxyurea 226 Bicalutamide 28 Pegaspargase 6 Brentuximab 1

Cisplatin 222 Vorinostat 28 Procarbazine 6 Cabazitaxel 1

Exemestane 220 Dabrafenib 27 Triptorelin 6 Enasidenib 1

Capecitabine 206 Neratinib 25 Vemurafenib 6 Fludarabine 1

Idarubicin 158 Topotecan 25 Asparaginase 5 Gefitinib 1

Leucovorin 153 Coenzyme M 24 Ceritinib 5 Histrelin 1

Carfilzomib 148 Ponatinib 24 Cobimetinib 5 Memantine 1

Mitoxantrone 147 Abiraterone 22 Niraparib 5 Nelarabine 1

Pomalidomide 136 Enzalutamide 20 Osimertinib 5 Nilutamide 1

Dacarbazine 129 Romidepsin 18 Pemetrexed 5 Octreotide 1

Everolimus 129 Alemtuzumab 15 Acalabrutinib 4 Omacetaxine 1

Bevacizumab 121 Cabozantinib 15 Decitabine 4 Peginterferon alfa-
2b

1

Vinblastine 119 Cetuximab 15 Ipilimumab 4 Pentostatin 1

Bleomycin 116 Crizotinib 15 Mechlorethamine 4 Thalidomide 1

Azacitidine 105 Epirubicin 15 Talimogene
laherparepvec

4 Thiotepa 1

Ibrutinib 103 Bacillus calmette -
guerin substrain tice
live antigen

13 Abemaciclib 3 Vandetanib 1

Megestrol 93 Nivolumab 13 Aldesleukin 3

Lapatinib 90 Bosutinib 12 Amifostine 3
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Table S4. Model performance in area under the receiver operating characteristic
curve for all methods and feature sets combinations.

Outcome k-NN LR SVM RF GB

Feature - Combined

HF 0.788 ± 0.035 0.882 ± 0.022 0.877 ± 0.025 0.876 ± 0.025 0.884 ± 0.022

AF 0.652 ± 0.039 0.787 ± 0.025 0.734 ± 0.031 0.772 ± 0.028 0.774 ± 0.028

CAD 0.675 ± 0.032 0.821 ± 0.027 0.795 ± 0.027 0.798 ± 0.029 0.809 ± 0.028

MI 0.597 ± 0.055 0.807 ± 0.045 0.702 ± 0.061 0.764 ± 0.050 0.756 ± 0.050

Stroke 0.531 ± 0.047 0.660 ± 0.052 0.527 ± 0.060 0.649 ± 0.052 0.643 ± 0.052

de novo CTRCD 0.681 ± 0.035 0.802 ± 0.027 0.793 ± 0.028 0.779 ± 0.027 0.789 ± 0.026

Feature - Lab test

HF 0.644 ± 0.035 0.729 ± 0.031 0.664 ± 0.044 0.726 ± 0.033 0.725 ± 0.034

AF 0.642 ± 0.030 0.760 ± 0.025 0.670 ± 0.038 0.747 ± 0.026 0.744 ± 0.026

CAD 0.660 ± 0.033 0.797 ± 0.027 0.720 ± 0.033 0.778 ± 0.026 0.781 ± 0.028

MI 0.594 ± 0.058 0.746 ± 0.045 0.645 ± 0.065 0.709 ± 0.047 0.710 ± 0.047

Stroke 0.538 ± 0.048 0.656 ± 0.048 0.572 ± 0.058 0.641 ± 0.049 0.641 ± 0.052

de novo CTRCD 0.643 ± 0.033 0.733 ± 0.030 0.683 ± 0.034 0.721 ± 0.031 0.721 ± 0.029

Feature - Echo

HF 0.755 ± 0.039 0.854 ± 0.030 0.843 ± 0.034 0.851 ± 0.028 0.858 ± 0.028

AF 0.583 ± 0.038 0.700 ± 0.031 0.644 ± 0.041 0.692 ± 0.036 0.695 ± 0.036

CAD 0.632 ± 0.037 0.702 ± 0.036 0.639 ± 0.038 0.703 ± 0.034 0.715 ± 0.033

MI 0.613 ± 0.055 0.766 ± 0.054 0.706 ± 0.073 0.745 ± 0.059 0.728 ± 0.060

Stroke 0.516 ± 0.043 0.617 ± 0.054 0.519 ± 0.052 0.589 ± 0.050 0.579 ± 0.052

de novo CTRCD 0.651 ± 0.034 0.742 ± 0.033 0.722 ± 0.033 0.728 ± 0.031 0.733 ± 0.029

HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial infarction; CTRCD
- cancer therapy-related cardiac dysfunction; k-NN - k-nearest neighbors; LR - logistic regression; SVM -
support vector machine; RF - random forest; GB - gradient tree boosting.
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Table S5. Model performance in area under the precision-recall curve for all
methods and feature sets combinations.

Outcome Baseline k-NN LR SVM RF GB

Feature - Combined

HF 0.138 0.466 ± 0.055 0.651 ± 0.051 0.641 ± 0.056 0.632 ± 0.058 0.639 ± 0.054

AF 0.152 0.239 ± 0.034 0.401 ± 0.049 0.344 ± 0.051 0.385 ± 0.051 0.378 ± 0.051

CAD 0.156 0.284 ± 0.040 0.481 ± 0.057 0.432 ± 0.050 0.455 ± 0.054 0.471 ± 0.052

MI 0.045 0.078 ± 0.028 0.220 ± 0.069 0.130 ± 0.050 0.207 ± 0.069 0.174 ± 0.059

Stroke 0.064 0.082 ± 0.022 0.138 ± 0.037 0.093 ± 0.030 0.120 ± 0.036 0.126 ± 0.038

de novo CTRCD 0.234 0.402 ± 0.045 0.592 ± 0.048 0.580 ± 0.047 0.563 ± 0.046 0.572 ± 0.045

Feature - Lab test

HF 0.138 0.238 ± 0.033 0.345 ± 0.045 0.309 ± 0.052 0.343 ± 0.047 0.340 ± 0.053

AF 0.152 0.228 ± 0.024 0.352 ± 0.041 0.281 ± 0.041 0.326 ± 0.041 0.320 ± 0.037

CAD 0.156 0.247 ± 0.026 0.419 ± 0.051 0.342 ± 0.042 0.391 ± 0.046 0.393 ± 0.044

MI 0.045 0.072 ± 0.025 0.162 ± 0.055 0.092 ± 0.026 0.119 ± 0.033 0.119 ± 0.036

Stroke 0.064 0.078 ± 0.016 0.136 ± 0.039 0.098 ± 0.027 0.119 ± 0.025 0.125 ± 0.037

de novo CTRCD 0.234 0.332 ± 0.032 0.477 ± 0.048 0.431 ± 0.047 0.456 ± 0.043 0.452 ± 0.047

Feature - Echo

HF 0.138 0.446 ± 0.053 0.623 ± 0.056 0.610 ± 0.061 0.615 ± 0.060 0.621 ± 0.060

AF 0.152 0.195 ± 0.022 0.327 ± 0.045 0.263 ± 0.038 0.315 ± 0.043 0.316 ± 0.047

CAD 0.156 0.264 ± 0.038 0.342 ± 0.052 0.296 ± 0.048 0.363 ± 0.051 0.365 ± 0.051

MI 0.045 0.085 ± 0.031 0.187 ± 0.063 0.125 ± 0.040 0.196 ± 0.065 0.166 ± 0.063

Stroke 0.064 0.071 ± 0.008 0.109 ± 0.027 0.079 ± 0.014 0.103 ± 0.028 0.101 ± 0.028

de novo CTRCD 0.234 0.379 ± 0.038 0.527 ± 0.051 0.508 ± 0.052 0.519 ± 0.047 0.514 ± 0.046

HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial infarction; CTRCD
- cancer therapy-related cardiac dysfunction; k-NN - k-nearest neighbors; LR - logistic regression; SVM -
support vector machine; RF - random forest; GB - gradient tree boosting.
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Table S6. Test set performances by time-based data split.

Outcome Number of cases vs. total patients* AUROC AUPR

HF 35 / 419 (0.084) 0.913 0.548

AF 51 / 419 (0.122) 0.805 0.379

CAD 64 / 419 (0.153) 0.860 0.494

MI 11 / 419 (0.026) 0.656 0.071

Stroke 23 / 419 (0.055) 0.684 0.120

de novo CTRCD 38 / 331 (0.115) 0.791 0.431

* Number of patients in the test sets. Values in the parentheses are the fractions of patients having the
corresponding outcome, which are also the baselines for the AUPRs. HF - heart failure; AF - atrial
fibrillation; CAD - coronary artery disease; MI - myocardial infarction; CTRCD - cancer therapy-related
cardiac dysfunction; AUROC - area under the receiver operating characteristic curve; AUPR - area under
the precision-recall curve.
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Table S7. Mean and standard deviation of the logistic regression weights of the
clinically relevant variables from 100 iterations.

Variable HF AF CAD MI Stroke de novo

CTRCD
Sex -0.18 ± 0.12 0.20 ± 0.08 0.51 ± 0.20 0.39 ± 0.29 0.12 ± 0.10 0.18 ± 0.09

Family history 0.11 ± 0.04 0.15 ± 0.06 0.36 ± 0.11 0.13 ± 0.07 0.11 ± 0.05 0.19 ± 0.06

Tobacco use 0.04 ± 0.04 -0.14 ± 0.12 0.42 ± 0.21 0.25 ± 0.20 0.12 ± 0.09 0.08 ± 0.04

Hypertension 0.20 ± 0.08 0.18 ± 0.07 0.46 ± 0.13 0.28 ± 0.15 0.26 ± 0.12 0.24 ± 0.07

Hyperlipidemia 0.07 ± 0.03 -0.04 ± 0.06 0.77 ± 0.21 0.22 ± 0.10 0.21 ± 0.08 0.12 ± 0.02

Peripheral edema 0.37 ± 0.18 0.06 ± 0.03 0.01 ± 0.04 -0.03 ± 0.05 -0.04 ± 0.06 0.15 ± 0.04

Chest pain -0.07 ± 0.10 0.08 ± 0.04 0.45 ± 0.13 0.36 ± 0.20 0.09 ± 0.04 0.12 ± 0.03

Shortness of breath 0.41 ± 0.15 0.06 ± 0.02 0.13 ± 0.03 0.06 ± 0.04 -0.09 ± 0.08 0.23 ± 0.04

Fatigue 0.10 ± 0.03 0.07 ± 0.03 -0.01 ± 0.06 -0.02 ± 0.06 0.30 ± 0.14 0.23 ± 0.05

Age 0.28 ± 0.04 0.60 ± 0.11 0.62 ± 0.09 0.23 ± 0.05 0.31 ± 0.06 0.50 ± 0.07

Blood glucose 0.01 ± 0.03 0.06 ± 0.02 0.16 ± 0.02 0.21 ± 0.03 0.08 ± 0.04 0.09 ± 0.02

Sodium -0.04 ± 0.02 -0.04 ± 0.02 -0.17 ± 0.05 -0.05 ± 0.03 -0.06 ± 0.02 -0.07 ± 0.02

Carbon dioxide 0.07 ± 0.02 0.18 ± 0.02 0.09 ± 0.03 -0.09 ± 0.06 -0.10 ± 0.03 0.11 ± 0.02

White blood cell -0.04 ± 0.02 0.05 ± 0.01 0.08 ± 0.02 0.18 ± 0.04 -0.04 ± 0.02 0.07 ± 0.02

Creatinine 0.16 ± 0.02 0.06 ± 0.03 -0.05 ± 0.06 0.01 ± 0.06 0.01 ± 0.03 0.06 ± 0.03

AST 0.05 ± 0.05 0.00 ± 0.02 0.07 ± 0.03 0.16 ± 0.07 0.14 ± 0.09 0.03 ± 0.02

Albumin 0.02 ± 0.02 0.03 ± 0.02 0.03 ± 0.01 0.07 ± 0.02 0.12 ± 0.02 0.04 ± 0.01

LVEF -0.66 ± 0.05 -0.17 ± 0.04 -0.22 ± 0.05 -0.20 ± 0.11 -0.16 ± 0.03 -0.44 ± 0.03

Heart rate -0.13 ± 0.04 -0.16 ± 0.06 -0.14 ± 0.03 0.01 ± 0.03 -0.06 ± 0.03 -0.14 ± 0.04

Diastolic blood pressure -0.12 ± 0.02 -0.02 ± 0.02 -0.14 ± 0.04 -0.23 ± 0.09 0.01 ± 0.04 -0.05 ± 0.03

Systolic blood pressure 0.15 ± 0.04 -0.02 ± 0.03 0.03 ± 0.04 0.02 ± 0.12 0.19 ± 0.05 0.17 ± 0.04

End-systolic volume 0.17 ± 0.06 -0.04 ± 0.08 0.02 ± 0.11 0.06 ± 0.09 -0.01 ± 0.18 0.04 ± 0.21

LVESVi 0.21 ± 0.06 -0.13 ± 0.10 0.12 ± 0.11 -0.07 ± 0.12 0.02 ± 0.14 0.17 ± 0.19

Minimum weight -0.66 -0.60 -0.57 -0.54 -0.19 -0.44

Maximum weight 0.42 0.75 0.77 0.43 0.31 0.50

HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial infarction; CTRCD
- cancer therapy-related cardiac dysfunction; AST - aspartate aminotransferase; LVEF - left ventricular
ejection fraction; LVESVi - left ventricular end-systolic volume index.
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Table S8. Predictive variables for the individual outcomes.

Outcome Variables
HF Hypertension

Peripheral edema
Shortness of breath
Age
Creatinine
LVEF
Systolic blood pressure
End-systolic volume
LVESVi

AF Age
CAD Sex

Family history
Tobacco use
Hypertension
Hyperlipidemia
Chest pain
Age
Sodium
LVEF

MI Hyperlipidemia
Age
Blood glucose
White blood cell
AST
Diastolic blood pressure

Stroke Family history
Hypertension
Hyperlipidemia
Fatigue
Age
Sodium
Carbon dioxide
Albumin
LVEF
Heart rate
Systolic blood pressure

de novo CTRCD Sex
Family history
Hypertension
Shortness of breath
Fatigue
Age
LVEF
Heart rate
Systolic blood pressure

HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial infarction; CTRCD
- cancer therapy-related cardiac dysfunction; AST - aspartate aminotransferase; LVEF - left ventricular
ejection fraction; LVESVi - left ventricular end-systolic volume index.
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Figure S1. Workflow for the classification method and feature set 
selection and evaluation.

Grid search

Test  10%Training 81%

Final model

M ean impute

Z-score scaling

Strat ified data split

Validat ion 9%

Evaluat ion

Preprocessing

Result  analysis

Repeat  for each outcome

Repeat  100 t imes

Full t raining set  + best  HP

Impute &  scale based

on the t raining set

Opt imize for AUROCRepeat  for:

Combined (lab + echo)

Lab test

Echo

Repeat  for:

k-NN, LR, SVM , RF, GB

 A training-validation-test procedure was performed for 100 times for each outcome. In each 
iteration, all data were split to training, validation, and test sets. Five methods, k-NN, LR, SVM, RF, 
and GB, and three feature sets, echo only, lab test only, echo and lab test combined were tested. 
The training set and validation set were used for hyperparameter tuning. Then, they were 
combined and trained using the optimal hyperparameter set that achieved the highest area under 
the receiver operating characteristic curve for the validation set. The final model was then used to 
predict the test set, and the performance of the test set was reported for each outcome.
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Figure S2. Workflow for the model generalizability test by splitting 
data chronologically. 

All patients were split by the date 2017.1.1. Patients that received cancer therapy before this date 
were used for model training, and patients that received cancer therapy after this date comprised 
the test sets for evaluation of the model performances. Logistic regression and combined feature 
set were used. A hyperparameter tuning was performed to optimize for the area under the receiver 
operating characteristic curve (AUROC) of the validation set for each outcome. Then, the training

set and validation set were combined and trained using the optimal hyperparameter set that

achieved the highest AUROC. The final model was then used to predict the test set, and the

performance of the test set was reported for each outcome.

Grid search

Test > 2017.1.1Training < 2017.1.1

Final model

M ean impute

Z-score scaling

Time-based split

Validat ion < 2017.1.1

Evaluat ion

Preprocessing

Result  analysis

Full t raining set  + best  HP

Impute &  scale based

on the t raining set

Opt imize for AUROC Repeat  for each outcome
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Figure S3. Comparison of the performances of the three feature 
sets. 

Three feature sets, echo only, lab test only, both sets combined were evaluated based on the test sets performances 
from 100 iterations using logistic regression.(A-F) receiver operating characteristic and (G-L) precision-recall curves 
show that combined feature sets achieved better performances than either feature set alone. In addition, for heart 
failure (HF), myocardial infarction (MI), and de novo cancer therapy-related cardiac dysfunction (CTRCD), echo feature 
set achieved better results than lab test

(AUROC, P = 8.6 ×  10 , 2.7 ×  10 , 3.7 ×  10 , respectively, two-sided paired sample t-test). For atrial fibrillation 
(AF), coronary artery disease (CAD), and stroke, lab test outperformed echo (AUROC, P = 4.0 ×  10 , 8.3 ×  10 , 
1.1 ×  10 , respectively, two-sided paired sample t-test).
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Figure S4. Precision-recall curves of the time-split test sets. 

Logistic regression and combined feature sets were used to train the models. Dotted lines indicate 

the baseline (BL) performances of random classifiers. Our models achieved positive performances 

in terms of area under the precision-recall curve (AUPR) for all outcomes (all AUPRs are higher 

than the baselines).

2017.1.1Cancer therapy start date

2018.81997.3 Training set Test set

3,890 patients 419 patients
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Figure S5. Distributions of the identified continuous clinically 
relevant variables in the patients.

 +, patients with the outcome; -, patients without the outcome. P < 0.05 are highlighted in red 
(Kolmogorov-Smirnov test). HF - heart failure; AF - atrial fibrillation; CAD - coronary artery 
disease; MI - myocardial infarction; CTRCD - cancer therapy-related cardiac dysfunction. WBC -

white blood cell; LVEF - left ventricular ejection fraction; HR - heart rate; SBP - systolic blood 
pressure; DBP - diastolic blood pressure; ESV - end-systolic volume.

P = 2.53E-08 P = 2.94E-17 P = 7.76E-05 P = 4.22E-06P = 1.34E-32

P = 1.95E-02 P = 4.89E-01 P = 4.49E-01 P = 2.25E-02 P = 4.61E-01

P = 4.67E-61 P = 1.48E-01 P = 1.30E-139 P = 4.06E-01 P = 2.08E-02

P = 1.47E-03P = 7.66E-08 P = 2.28E-02 P = 3.88E-05 P = 5.91E-86
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Figure S6. Distributions of the identified categorical clinically 
relevant variables in the patients.

 For the outcomes, + indicates patients with the outcome, - indicates patients without the 
outcome. For the variables, + and - indicates whether patients have this symptom. P < 0.05 are 
highlighted in red (  test). HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; 
MI - myocardial infarction; CTRCD - cancer therapy-related cardiac dysfunction.

P = 1.95E-27 P = 8.67E-42 P = 2.78E-15 P = 3.91E-16

P = 2.13E-13 P = 2.96E-04 P = 6.13E-15 P = 1.20E-27

P = 9.16E-09 P = 1.05E-02 P = 1.23E-10 P = 8.45E-08

P = 6.04E-20 P = 5.13E-20
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Figure S7. Performance comparisons of the models with (A and C) 
and without (B and D) the cancer therapy-related features.

With four treatment features Without treatment features

A B

C D

 * indicates these models were trained and evaluated with four additional categorical features: 

chemotherapy, radiation, anthracycline, and trastuzumab usage. Integrating these features 

marginally improved the model performances (AUROC = 0.805 vs. 0.802, P > 0.1, t-test).
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Figure S8. Model performances using synthetic minority 
oversampling technique for the training sets. 

Synthetic minority oversampling technique (SMOTE) was used to generate new training data from 

existing training data. No improvement was observed for logistic regression. Y axis shows the area 

under the receiver operating characteristic (AUROC) values of 100 repeats. Raw, original model 

performances without using SMOTE. 1:2, the minority class was resampled to a ratio of 1:2 to the 

majority class. 1:1, both classes were balanced. The number below each group shows the average 

AUROC value. HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - 
myocardial infarction; CTRCD - cancer therapy-related cardiac dysfunction; k-NN - k-nearest 
neighbors; LR - logistic regression; SVM - support vector machine; RF - random forest; GB - 
gradient tree boosting.

k-NN

LR

SVM

RF

GB
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Figure S9. Performance comparisons of the stacked models. 

The outputs of the original models of the five algorithms were stacked using three methods: minimum, 
mean, and maximum. We evaluate the results by stacking all five algorithms (Min of 5, Mean of 5, and Max 
of 5). In addition, we also excluded k-NN and SVM due to their overall lower performances than the other 
three (Min of 3, Mean of 3, and Max of 3). The number below each group shows the average area under the 
receiver operating characteristic (AUROC) value of 100 repeats. HF - heart failure; AF - atrial fibrillation; 
CAD - coronary artery disease; MI -myocardial infarction; CTRCD - cancer therapy-related cardiac 
dysfunction; k-NN - k-nearest neighbors; LR - logistic regression; SVM - support vector machine; RF - 
random forest; GB - gradient tree boosting.
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 Results are based on 100 repeats. In each run, a portion of the training samples was used. 

Black lines indicate the means. All outcomes benefited from an increasing number of training 

samples. HF - heart failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial 

infarction.

Figure S10. Performance comparisons of the models using different 
sizes of training set.
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Figure S11. Performance comparisons of the models using 
variables collected within different time points.

AUROC AUROC

1 year All P

HF 0.855 0.883 6.2E-12

AF 0.797 0.788 2.8E-02

CAD 0.827 0.826 8.9E-01

MI 0.797 0.804 3.6E-01

Stroke 0.669 0.661 2.9E-01

 Models performed similarly overall. Slightly improvement may be achieved by experimenting of a 

model specific variable selection procedure. AUROCs in the tables are the averages. HF - heart 

failure; AF - atrial fibrillation; CAD - coronary artery disease; MI - myocardial infarction.
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