
Applications of Data analytics and
Machine Learning tools to the
enhanced design of modern

communication networks and security
applications

IGNACIO MARTÍN MARTÍNEZ

En cumplimiento parcial de los requisitos para el grado
de Doctor en

INGENERÍA TELEMÁTICA

Universidad Carlos III de Madrid

Director:

José Alberto Hernández Gutiérrez
Fecha de Defensa de La Tesis:

Junio de 2019

iii

Copyright c© 2019 Ignacio Martín Martínez

PUBLISHED BY UNIVERSIDAD CARLOS III DE MADRID

Licensed under the Creative Commons License version 3.0 under the terms of At-
tribution, Non-Commercial and No-Derivatives (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the Li-
cense at ❤tt♣✿✴✴❝r❡❛t✐✈❡❝♦♠♠♦♥s✳♦r❣✴❧✐❝❡♥s❡s✴❜②✲♥❝✲♥❞✴✸✳✵. Unless required
by applicable law or agreed to in writing, software distributed under the License is
distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied. See the License for the specific language governing permissions
and limitations under the License.

April 2019

http://creativecommons.org/licenses/by-nc-nd/3.0

v

To all my family, those we were
and those we will be.

vii

Acknowledgements

Like in any long-term project, there are many persons to thank for, both for their
day to day involvement and for their silent suffering of my errors, anxieties and bad
moods arisen from such a big thing as writing a Thesis. The first person I would like
to recognize is José Alberto, for being the best possible supervisor, supportive, trust-
worthy and teaching me to learn by doing rather than observing. I would also like
to thank all ADSCOM group members for their help and advise, specially present in
all those Friday meetings where an idea can be shown, discussed and very much im-
proved. Furthermore, thank you to all members of the department for this friendly
environment, specially to all PhD fellow students who have contributed to make
days here better.

I would like to thank as well all the people I have worked with during this
period, for making things easier specially when the circumstances where adverse.
Thank you very much to Iyad Rahwan for letting me fulfill any engineer’s dream
during my stay at MIT with his team and to Nick Obradovich for his exceptional
inputs and educational conversations during that time. Special mention here to Án-
gel, who trusted me with that project which is starting now to see the light and will
produce fruitful results.

Finally, it is impossible no to recognize the infinite support of friends and family,
who may not have been completely aware of it, but have helped a lot (what better
way to close an sterile week at the office that a good Friday night dinner). Concisely,
there are three persons I would like to acknowledge most in this category. Thanks
mom for making me keep my feet on the ground with your cautious advise. Thanks
dad for continuously reminding me how to use my brain, even when your wise in-
quiries make me rethink my last achievement all over again. And, of course, thanks
to you, Pilar for being always there, forgiving and forgetting those concerns that
turned unfairly against you and hearing my craziness out even when your batteries
had run out.

To all of you,who have helped and are always there, thank you. This is your baby too.

ix

Published and Presented Contents

• Android malware detection from Google Play meta-data: selection of im-
portant features; A. Muñoz, I. Martín, A. Guzmán, J. A. Hernández in IEEE Conf.
Communications and Network Security (CNS’15). Florence, Italy. Sep 2015;
doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❈◆❙✳✷✵✶✺✳✼✸✹✻✽✾✸

– Partially included in Chapter 4.

– The student contributed with the design and implementation of the ex-
periments regarding Step-AIC experiments mainly.

– The material from this source and included in the thesis is not indicated
neither by typographical means nor references.

• Android Malware Characterization using Metadata and Machine Learning
Techniques; I. Martín, A. Muñoz J. A. Hernández, A. Guzmán in Security and
Communication Networks, Hindawi, June 2018, vol 2018; doi: ❤tt♣s✿✴✴❞♦✐✳
♦r❣✴✶✵✳✶✶✺✺✴✷✵✶✽✴✺✼✹✾✹✽✶

– Completely included in Chapter 4.

– The student contributed with the design and implementation of the ex-
periments, including the study of features, permission analysis and ML
system development and performance assessment. Tables and Figures
were also developed by the student who participated on the writing of
the article.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Insights of Antivirus Relationships when Detecting Android Malware: A
Data Analytics Approach; I. Martín, J. A. Hernández, S. Santos, A. Guzmán
in ACM Conf. Computer and Communications Security (CCS’16). Viena,
Austria. Oct 2016, pages 1778-178; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✷✾✼✻✼✹✾✳
✷✾✽✾✵✸✽

– Completely included in Chapter 5.

– The author contributed with the design and implementation of the exper-
iments, the results and conclusions, creating the figures and tables and in
the writing of the article.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Analysis and Evaluation of Antivirus Engines in Detecting Android Mal-
ware: A Data Analytics Approach, I. Martín, J. A. Hernández, S. Santos, in
European Intelligence and Security Informatics Conference (EISIC’18). Karl-
skrona Sweden, Oct 2018

https://doi.org/10.1109/CNS.2015.7346893
https://doi.org/10.1155/2018/5749481
https://doi.org/10.1155/2018/5749481
https://doi.org/10.1145/2976749.2989038
https://doi.org/10.1145/2976749.2989038

x

– Completely included in Chapter 5.

– The author contributed with the design and implementation of the all the
experiments, the design and creation of the figures and tables and in the
writing of the article.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• SignatureMiner: A fast Anti-Virus signature intelligence tool; I. Martín, J.
A. Hernández, S. Santos in IEEE Conf. Communications and Network Security
(CNS’18). Beijing, China. Apr 2018 Best Poster Award; doi: ❤tt♣s✿✴✴❞♦✐✳♦r
❣✴✶✵✳✶✶✵✾✴❈◆❙✳✷✵✶✽✳✽✹✸✸✶✹✶

– Completely included in Chapter 6.

– The author contributed in the article elaboration (writing, figures, tables...),
the design of the solution and implemented most of the code available
online at Github.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Machine Learning based analysis and Classification of Android Malware
Signatures; I. Martín, J. A. Hernández, S. Santos, in Elsevier Future Generation
Computer Systems, August 2019, vol 97, pages 295-305; doi: ❤tt♣s✿✴✴❞♦✐✳♦r
❣✴✶✵✳✶✵✶✻✴❥✳❢✉t✉r❡✳✷✵✶✾✳✵✸✳✵✵✻

– Completely included in Chapter 6.

– The author contributed both in the article elaboration (writing, figures,
tables...) and in the design and implementation of the analysis and exper-
iments carried out in the article.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• CloneSpot: Fast detection of Android Repackages; I. Martín, J. A. Hernández,
in Elsevier Future Generation Computer Systems, May 2019, vol 94, pages 740-
748, doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❢✉t✉r❡✳✷✵✶✽✳✶✷✳✵✺✵

– Completely included in Chapter 7.

– The author lead the article, implemented most of experiments and con-
tributed to the design of experiments and solutions supervised by the
thesis director.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Is Machine Learning Suitable for Solving RWA Problems in Optical Net-
works? I. Martín, J. A. Hernández, S. Troia, F. Musumeci, G. Maier, O. González de
Dios, in European Conference on Optical Communications (ECOC’18). Rome,
Italy, Sept 2018; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❊❈❖❈✳✷✵✶✽✳✽✺✸✺✺✻✷

– Completely included in Chapter 8.

https://doi.org/10.1109/CNS.2018.8433141
https://doi.org/10.1109/CNS.2018.8433141
https://doi.org/10.1016/j.future.2019.03.006
https://doi.org/10.1016/j.future.2019.03.006
https://doi.org/10.1016/j.future.2018.12.050
https://doi.org/10.1109/ECOC.2018.8535562

xi

– The author led together with his advisor this work, contributing in the de-
sign and implementation of the experiments as well as in the conclusions
and the elaboration of the manuscript, figures and tables included.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Netgen: A Fast and Scalable Tool for the Generation and Labeling of Net-
working Datasets, I. Martín, J. A. Hernández, O. González de Dios, under review.

– Completely included in Chapter 8.

– The author contributed in the design and implementation of the solution,
including manuscript elaboration (including figures and tables) and code
development.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

• Machine-Learning-Based Routing and Wavelength Assignment in Software-
Defined Optical Networks, I. Martín, S. Troia, J. A. Hernández, Alberto Rodríguez,
F. Musumeci, G. Maier, Rodolfo Alvizu, O. González de Dios, under review.

– Partially included in Chapter 8.

– The author led together with his advisor this work, contributing in the
design and implementation of the ML experiments and the parts regard-
ing Netgen. The author led the writing of the paper, specially creating all
figures and tables included from it in the thesis.

– The materials from this source and included in the thesis are not indicated
neither by typographical means nor references.

xiii

Abstract

Lately, Artificial Intelligence and Machine Learning (ML) have become game-changing
technologies due to their ability to generalize from data and infer algorithmic behav-
iors that consider larger casuistic that humans are able to. In short, these technolo-
gies pursue the installation of human-like intelligence to computer tasks so they can
overtake different functions. Despite, their implantation and development in many
fields is still too early stage, not to mention the requirements and needs they entail.

Therefore, the aim of this thesis is to advance in the application of these tech-
nologies and for that we will consider an specific field: The Internet Infrastructure.
To this aim, contributions focus on two main specific areas, namely cybersecurity
and optical WDM networks.

On the security side, we propose a new approach for malware detection and ap-
plication quality assessment that relies in application meta-information, that is, the
data describing the application (such as description, category, permissions...) in-
stead of application code. This approach is detailed and validated in two specific
applications: ML-based detection of malware and scalable repackaging detection
through meta-data semantic clustering.

The first application consists on the usage of meta-data as Machine Learning
features with a labeled collection of malware applications to detect whether they
are malware or not. Resulting algorithms are capable of detecting malware to a
good extent in certain conditions, reaching F-score values of nearly 0.9.

Arising from the observations from Machine Learning analysis, Antivirus (AV)
engines coming from multi-scanner tools are inspected using data analytics and AI
technologies aiming at the understanding of their lack of consensus at the detection
and categorization levels. The main aim for this study is twofold: advancing on the
understanding of AV detection patterns and policies and the improvement multi-
engine detection by proposing different aggregation and cleaning tools.

Initially, AV engine detections are inspected, showing that most engines disagree
when detecting malware to the extent of not completely agreeing in the detection of
a single application. Moreover, different detection patterns are observed, namely
leader, follower and eccentric engines. At the end, an estimation of the risk of mal-
ware per application based on Structural Equation models is proposed.

On the family side, we propose a lightweight categorization scheme that achieves
comparable scores to other alternatives in the literature at a smaller train cost: Sig-
natureMiner. Using such system, we normalize and categorize AV signatures into
41 distinct families and three broader categories, namely adware, harmful and un-
known. Then, an ML classifier to assign and specific category to unknown malware
is proposed with high performance.

Another application explored for meta-data is that of repackaging detection. Us-
ing similarity clustering, a large collection of unlabeled applications from Google

xiv

Play are inspected and compared to detect potential repackaged applications and
their victims. This approach is capable to unveil nearly 420K applications poten-
tially cloned within the Google Play application market.

On the network side, we contribute to the introduction of Machine Learning in
the field by proposing an integral pipeline framework that improves the develop-
ment of ML-powered network protocols as enhanced heuristics that emulate opti-
mal solutions in many areas. Such framework is based on data generation, modeling
and validation and network implementation. In this thesis, we focus on the first two
steps by developing proof of concept solutions for both.

Dataset generation and data labeling is addressed with Netgen, a versatile net-
work data generator based on Net2Plan. Netgen functionality is presented and per-
formance and abilities demonstrated. Finally, this thesis addresses the modeling
of Routing and Wavelength Assignment (RWA) in its ILP version as an ML prob-
lem. The assumption is that ML can be useful to develop an ML-powered heuristic
for RWA that performs better than regular heuristics and much faster than ILP and
heuristics. Results support the viability of this approach, opening the scheme for
other complex network protocols.

In sum, this thesis builds different AI-based components to enhance the func-
tionalities and capabilities of different elements in the proposed fields, defining sys-
tematic approaches and methodologies to this aim. That way, all works in this doc-
ument contribute to the design and development of the concept of AI as a Service
(AIaaS), that proposes a paradigm for the integration of AI technologies over spe-
cific knowledge areas with limited expertise in both AI and the specific area.

xv

Contents

Acknowledgements vii

Abstract xiii

1 Introduction and Motivation 1

1.1 Brief History of Artificial Intelligence 1

1.2 Motivation and Overview . 3

1.3 Thesis Objectives and Goals . 5

1.4 Thesis Structure and Contributions . 6

2 State of The Art 9

2.1 Security in the Android Ecosystem . 9

2.1.1 Android Malware Detection . 10

2.1.2 Repackaging Detection . 14

2.2 Antivirus Analysis and their Detections 18

2.3 ML Applied to Optical WDM Networks 25

2.4 Conclusions and Progress Beyond the State of the Art 32

3 Methodology and Tools 35

3.1 Data Mining . 36

3.1.1 Distances and Item Similarity 36

3.1.2 Locality-Sensitive Hashing Methods 37

3.1.3 Market Basket Analysis and Frequent Itemset Mining 38

3.2 Machine Learning . 39

3.2.1 Supervised Problems . 40

3.2.2 Unsupervised Problems . 41

3.2.3 Machine Learning Workflow 42

3.2.4 Machine Learning Performance Measurement 44

3.2.5 Feature Selection . 46

3.2.6 Deep Learning . 47

3.3 Other Statistical Methods . 49

xvi

3.3.1 Latent Variable Models . 49

3.3.2 Graph Modeling . 49

3.4 Summary and Conclusions . 50

4 Android Meta-data for Malware Detection 53

4.1 Android Application Meta-data . 53

4.2 Meta-data Collection for Malware Detection 55

4.2.1 Intrinsic Application Features 56

4.2.2 Social-related Features . 57

4.2.3 Entity-related Features: Developers and Certificate Issuers . . 57

4.2.4 Malware Detection Attributes 58

4.2.5 Dataset Benchmark . 58

4.3 Analysis of Meta-data Features in Legitimate and Malware Applica-
tions . 59

4.3.1 Predictive Power of Permissions 61

4.3.2 Feature Importance and Selection: A Machine Learning Ap-
proach . 62

4.4 Malware Detection Model . 64

4.4.1 Determining Model Size . 64

4.4.2 Solution Modeling and Results 65

4.4.3 Robustness of the Models . 65

4.4.4 Performance and Computational Time 67

4.5 Summary and Conclusions . 68

5 Data-driven Interrelation Analysis of AV engines 69

5.1 Detection Matrix and Dataset Insights 70

5.2 Peer Relations among AV Engines . 72

5.2.1 Followers and Eccentrics . 72

5.2.2 Principal Component Analysis 73

5.2.3 Correlation between Engines 74

5.2.4 Association Rule Learning . 75

5.3 Latent Variable Modeling for Malware Risk Assessment 77

5.4 Summary and Conclusions . 80

6 AV Label-based Analysis of Malware Families 83

6.1 SignatureMiner: A fast Anti-Virus Signature Intelligence Tool 84

xvii

6.1.1 SignatureMiner Performance 86

6.2 Malware Categorization and Classes using SignatureMiner 86

6.3 Malware Family Classes and Categories Interdependences 91

6.3.1 Correlation of Malware Categories 91

6.3.2 Graph Community Clustering to Detect Class Redundancies . 92

6.3.3 Grouping AVs by their Detection Schemes 93

6.4 Identifying Unknown Malware . 95

6.5 Summary and Conclusions . 97

7 Android Meta-data for Repackaging Detection 99

7.1 Meta-data Application Collection . 99

7.2 CloneSpot: Fast Detection of Application Duplicates 100

7.2.1 Clustering Qualitative Meta-data through Min-hashing 101

7.2.2 Market-scale Detection of Application Duplicates 102

7.2.3 Intra-group Detection Scoring 102

7.3 CloneSpot service: Fast Retrieval of Potential Clones 106

7.3.1 Application Removal in Google Play 107

7.3.2 Real-time Repackaging Detection through the CloneSpot Service109

7.4 Summary and Conclusions . 111

8 Optical WDM Networks Configuration from an ML perspective 113

8.1 Netgen: Automated Tool for Network Data Generation 114

8.1.1 Net2Plan: An Open-source Network Planner 115

8.1.2 Netgen Architecture . 115

8.2 Modeling RWA as an ML classifier . 117

8.2.1 Methodology . 118

8.2.2 Dataset Generation and Labeling 119

8.2.3 Machine Learning Classification Models 121

8.3 Results . 122

8.3.1 Dataset Generation Efficiency of Netgen 122

8.3.2 ML-based Heuristic to Solve RWA (Spanish 5 Node topology) 123

8.3.3 ML-based Heuristic to Solve RWA (Abilene topology) 124

8.3.4 Complexity and Time Impact of ML Predictions 125

8.4 Summary and Conclusions . 127

xviii

9 Conclusions and Future Work 129

9.1 Summary of Main Contributions . 129

9.2 Future Work . 132

9.3 List of Publications during Thesis Period 133

Bibliography 137

xix

List of Figures

1.1 Main Events in AI history . 2

2.1 Multiscanner tools . 24

2.2 Summary of ML methods in Networking 32

3.1 Neural network example . 48

3.2 Neural network example . 50

4.1 Malware detections per application . 58

4.2 Feature comparison . 59

4.3 Feature hashing permissions . 61

4.4 Filter analysis of features . 63

4.5 Incremental models . 64

5.1 Detections per sample . 70

5.2 Engine activity . 71

5.3 PCA of AV engines . 73

5.4 Engine correlation . 74

5.5 Detailed correlations . 75

5.6 Graph scheme of Followers . 77

5.7 Logistic Zsem . 79

5.8 Logistic Zsem distributions . 80

6.1 Most Frequent AV Signatures . 85

6.2 Per-family AV detection frequencies 90

6.3 Communities in malware families . 92

6.4 AV communities (Family patterns) . 94

6.5 AV weights (LR) . 96

7.1 ASI score rankings . 105

7.2 Repackaging example 1 . 105

7.3 App-set size distribution . 108

xx

7.4 Repackaging example 2 . 109

8.1 NetGen diagram . 116

8.2 Studied topology . 117

8.3 Abilene Network Illustration . 120

8.4 Accuracy and loss for DNN . 122

xxi

List of Tables
2.1 SoA for malware detection . 17

3.1 Truth Table . 46

4.1 Dataset overview . 56

4.2 Summary of meta-data features . 60

4.3 Step-AIC selection results . 62

4.4 Benchmark Results . 66

4.5 Robustness Test . 67

5.1 Association rules . 76

5.2 AV coefficients . 78

6.1 SignatureMiner rules . 88

6.2 Category Correlation . 91

6.3 Classifier results . 96

6.4 Harmful amounts in unknown samples 97

7.1 Summary of features . 100

8.1 Time consumption of NetGen . 123

8.2 5-Node results . 123

8.3 Abilene results . 124

8.4 Complexity of ML-RWA solution . 126

xxiii

List of Abbreviations

AI Artificial Intelligence
ML Machine Learning
AGI Artificial General Intelligence
AV AntiVirus (engine)
PoC Proof of Concept
API Application Programming Interface
GUI Graphical User Interface
CLI Command Line Interface
TPU Tensor Processing Unit
CSV Comma Sepparated Values
JSON JavaScript Object Node
KDD Knowledge Discovery in Databases
DL Deep Learning
RL Reinforcement Learning
BoW Bag of Words
HMM Hidden Markov Model
LR Logistic Regression
SVM Support Vector Machine
DT Decision Tree
RF Random Forest
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
PCA Principal Component Analysis
SEM Structural Equation Model
LSH Local Sensitive Hashing
MSE Mean Squared Error
MAE Mean Absolute Error
RMSE Root Mean Absolute Error
TP True Positive
TN True Negative
FP False Positive
FN False Negative
PR Precision Recall
AIC Aikake Information Criteria
ROC Receiver Opperation Characteristic
AUC Area Under the Curve
LVM Latent Variable Model
SEM Structural Equation the Model
ASI Application Similarity Index
APK Android APplication PacKage

xxiv

IPS Intrusion AProtection System
SM Signature Miner
IP Internetworking Protocol
TM Traffic Matrix
DPI Deep Packet Inspection
OBS Optical Burst Switching
BER Bit Error Rate
QoS Quality of Service
QoE Quality of Experience
SDN Software Defined Networking
NFV Network Function Virtualization
BoF Bag of Flows
WDM Wavelength Division Multiplexing
EON Elastic Optical Networks
ILP Integer Linear Programming
RWA Routing and Wavelength Assignment
RMSA Routing and Modullation Spectrum Assignment
RWC Routing and Wavelength Configuration

1

Chapter 1

Introduction and Motivation

This chapter devotes to the introduction, the historical background and the mo-
tivation of this thesis, highlighting contributions and objectives. Specifically, Sec-
tion 1.1 begins with the history of AI and its initial developments, while Section 1.2
introduces the main motivations behind the thesis. More specifically, Section 1.3
clearly states the objectives pursued upon this document. Finally, Section 1.4 overviews
the structure and content of the document.

1.1 Brief History of Artificial Intelligence

Artificial Intelligence (AI) comprises a set of technologies that attempt the emulation
of human intelligence in computer systems. The AI term was coined in 1956 by John
McCarthy, Marvin Minsky and Claude Shannon, even though work had begun in
the early 50s. At its origin, AI attempted to create computer programs that had real
intelligence, as if they were humans, and for that purpose, different methods and
algorithms have been explored in detail; concisely Information Retrieval algorithms

2 Chapter 1. Introduction and Motivation

near the 70s, that have been very useful in the development of search engines or
large database organization, and Machine Learning algorithms that learn patterns
from data and gained popularity around the 80s, even though they have become
much more relevant today.

FIGURE 1.1: The timeline in the figure reflects some of the most
relevant milestones in the AI history. Such events are separated

among global events, algorithms and technologies.

The field of AI advanced quickly with the apparition of the previous key sub-
fields which have procured algorithms to deal with a very broad range of intelligent
tasks, such as performing semantic web search, numerical predictions or even pro-
cess images or audio. Indeed, one of the key components in the development of AI
has been the advent of Machine Learning (ML), which attempts to make machines
learn patterns and behaviors from large data sources in such a way they are able to
perform decisions based on them in future events.

Actually, Machine Learning has had a huge impact on data analysis and, ul-
timately, on Artificial Intelligence itself, ranging from simple linear regression to
much more complex and powerful Deep Learning. At its origins, ML was a family
of useful algorithms which perform descriptive analytics. Regression and classifica-
tion algorithms were mainly used to understand and describe datasets rather than
providing predictive analytics. From 2010, with the advent of Big Data, computing
capacity has increased and ML has become a really powerful tool to assist machines
undertaking more advanced tasks, such as prediction or decision making.

In spite of its early advancements and abundant milestones, there have been
moments in history where AI has experienced limitations and its capabilities have
stalled. This has given birth to AI winters where research has been almost completely
abandoned. These winters have occurred for different reasons, mainly regarding
profound limitations algorithms have encountered during time. For instance, one of
these AI winters occurred around the late 80s and was mainly due to the collapse of
the expert systems as they were rather limited by the restricted hardware technology
and the lack of consistent and labeled datasets at that time.

1.2. Motivation and Overview 3

Nowadays, we are experiencing a new AI Spring: data sources are limitless
thanks to the Internet; hardware has evolved and is driving the discovery of new
powerful and computationally intensive algorithms, such as Deep Learning. Re-
searchers have achieved stunning breakthroughs in the last decade, by solving com-
plex tasks, such as Image recognition [1], Speech recognition [2] or even beating
humans at computationally unfeasible games, like Go [3].

As a result, new algorithms, technologies and hardware are created every year
enabling new and enhanced applications. Together with a thriving ecosystem pop-
ulated by a plethora of companies, investors, platforms and technologies, the field
is advancing very fast and enabling the improvement of a growing number of dif-
ferent research areas.

As a summary, Fig 1.1 locates the main events in the recent AI history in time
along with the most relevant algorithmic and technological breakthroughs and mile-
stones. It can be observed that most theoretical advancements were ready around
the nineties, even though full progress has been impossible until the vast improve-
ment of computing capabilities.

1.2 Motivation and Overview

Artificial Intelligence is a game-changing technology that can revolutionize every
single aspect of daily life, from clothing design and supply chain management to
autonomous vehicles or automated translation. Despite, AI technologies are not
trivial to use and hence, their development is still in a very early-stage in many
fields and areas. Actually, problems different to classification or regression require
expert practitioners in each area capable of mapping constrained problems into the
rigid structure of classification/regression. This is very hard in many fields where
workers’ profiles are not experts on data analysis and statistics.

Moreover, it is worth remarking that many of these problems come from fields
with data-less backgrounds, so the introduction of AI technologies does require a
paradigm shift where existing tools must be adapted to include data collection and
analytics policies among other requisites.

In this light, this thesis is proposed to advance the adoption of AI technologies
by introducing intelligent components in two Internet-related fields: Cybersecurity
and Optical WDM Networks. Both areas are key in the development of the indus-
trial Internet and can be deeply optimized by AI to generate better expert systems
that reduce operational costs and optimize processes. Furthermore, they have both
historically neglected data collection and monitoring in their problem resolution
process, so the introduction of any data-driven application must necessarily con-
template data collection and labeling procedures.

In the field of cybersecurity, we focus on Android malware, which has emerged
as a consequence of smartphone popularity worldwide. Android has a flamboy-
ant ecosystem crowded with applications, devices and markets which has attracted
malware developers too. In this thesis, we propose a novel method to search, iden-
tify and detect malware based on meta-data, that is, all those inherent application

4 Chapter 1. Introduction and Motivation

data pieces not included in the source code, but informative of the application such
as the title, description or category.

While previous work mainly focuses on other characteristics of Android apps,
like application code or behavior, our aim is to study meta-data and use it in the
detection of malware applications. Hence, we first perform an in-depth analysis of
quantitative meta-data features and their capabilities for detecting malware using
ML algorithms without code inspection or sandboxing. Such capabilities have been
demonstrated in a ML system powered by a random forest that can predict malware
with an F-score value of 0.89.

From that initial work, we found that Android malware analysis has been partly
sustained on multi-scanner detection tools which provide the detection information
from several antivirus (AV) tools for a given malware sample. There has been dis-
cussion in the literature regarding the combination and utilization of such informa-
tion to provide malware ground truth, which has been relevant within the scope of
malware detection inside this thesis. Hence, we continue with the analysis of AV
engines in large, including tools for AV signature normalization (SignatureMiner)
as well as the detailed inspection of AV interrelations to unveil interesting patterns
and groups of AV engines according to their behavior, namely followers, leaders and
eccentrics

In addition, AV engines are also inspected according to the malware families
they assign to different malware samples, including a proposal for a categorical dis-
tinction of malware families according to the origin and objectives of the different
threats they contain. Up to 41 different malware families are extracted from this
analysis along with four groups of AVs according to their detection behaviors with
respect to families. At the end, an ML classifier that determines whether a sample is
adware or harmful malware is proposed, achieving an F-score of up to 0.84.

Afterwards, we return to meta-data of qualitative type as a solution to facilitate
and improve the detection of repackaged applications by means of data mining and
locality sensitive hashing techniques, such as min-hashing. The detection of applica-
tion clones which have been repackaged from legitimate ones is usually a hard task,
specially inside of large markets with millions of applications. Our solution, the
CloneSpot methodology, is proposed and validated over a 1.3M application-wide
dataset, detecting up to 420K potential clone applications.

Finally, in the field of Optical WDM Networks, this thesis has surveyed the more
recent works where AI in networking is getting relevance as a way to manage future
networks together with the new Software Defined Networking paradigm. As a result,
we propose a framework workflow for the application of ML algorithms from data
generation to network implementation.

The objective for such framework is twofold: (i) define and specify the details
for an ML network workflow in its different stages and (ii) demonstrate how classi-
cal protocols, such as Routing and Wavelength Assignment (RWA), can be modeled by
ML for solution approximation. In this example, numerical results show that near-
optimal RWA approximations can be obtained by machine learning, much faster
than other classical solutions including Integer Linear Programming (ILP) or heuris-
tics.

1.3. Thesis Objectives and Goals 5

All these contributions have been developed with the common goal of applying
AI/ML solutions to non-straightforward problems, so they have required specific
modeling and the adaptation of different tools, algorithms and methodologies to
the specific details of the problems addressed at each distinct chapter.

1.3 Thesis Objectives and Goals

The main contribution of this dissertation is the consolidation and application of
the latest ML algorithms and methods to the enhancement of the Internet infras-
tructure by producing incremental advances in two main fields: Cybersecurity and
Computer Networks.

• Cybersecurity: The main objective is to improve Android application security
in the context of Google Play by analyzing the meta-data available in applica-
tion markets and Antivirus signatures from multi-scanner tools. Main contri-
butions:

1. Data-driven inspection of meta-data features from Google Play, indicat-
ing which ones are the most relevant in the detection of malware.

2. ML-powered detection of Android malware inside Google Play using as
Ground Truth multi-scanner malware detection outcomes.

3. In-depth analysis of multi-scanner tools to produce a methodological ap-
proach for enhanced malware labeling.

4. Normalization of AV engine outputs and cross-engine analytics aiming at
improving the categorization of malware samples.

5. Detection of application clones, either repackaging or any other plagia-
rism attempt by clustering applications’ descriptions and titles.

• Optical WDM Networks: The main aim is to provide ML solutions to ap-
proach the planning and management of network problems, specially in the
context of Optical WDM Networks. Advancements:

1. Proposal of a data-driven framework for the introduction of ML in the
computer Network ecosystem in general and in the optical WDM net-
works field in particular.

2. Enhancements to the acquisition, generation and labeling of data collec-
tions within computer networks assisted by well-known and open source
planning solutions.

3. Approximation of network algorithms and protocols in the context of Op-
tical Networks using ML algorithms that learn from optimally resolved
examples.

6 Chapter 1. Introduction and Motivation

1.4 Thesis Structure and Contributions

This thesis focuses on the application of Artificial Intelligence and Machine Learning
technologies to two interconnected fields where problems are usually beyond tradi-
tional ML classification/regression alternatives. The results throughout this work
are strongly supported by academic publications in different journals and confer-
ences, which have achieved recognition and prizes in some occasions. The thesis
document is structured in seven different chapters organized thematically.

Chapter 2 performs an extensive revision of the State of the Art regarding An-
droid malware detection, multi-scanner analysis of AV engines and ML applications
in computer networks. Additionally, Chapter 3 provides an extensive summary of
the main methods, tools and technologies mainly used in most of the solutions pro-
posed along the thesis.

In the following chapter, we explore the detection of Android malware using
meta-data, that is, every piece of information available regarding an application that
is not directly contained within its code. In Chapter 4 we define meta-data in the
context of Android applications and propose a malware classifier based on quan-
titative meta-data with labels from multi-scanner tools. This chapter’s results are
supported by a journal article published in Hindawi Security and Communication
Networks and a publication in the Conference on Communications and Network Secu-
rity (Florence, 2015).

Afterwards, Chapter 5 uses AI technologies to homogenize, analyze and clas-
sify malware detection signatures from different AV engines obtained from multi-
scanner tools. Specifically, malware detections from 80 thousand suspicious samples
are analyzed and used to train an Structural Equation Model (SEM) system that es-
timates the risk on a sample to be malware based on the AV engines involved in
its detection.The work of this chapter has been presented in prestigious conferences
like the ACM Conference on Computer and Communications Security (Vienna, 2016)
and further extended at the European Intelligence and Security Informatics Conference
(Karlskrona, 2018).

Chapter 6 continues the analysis of application detection signatures from a mal-
ware family perspective and uses the resulting conclusions to train an adware-harmful
classifier to help differentiating malware families. The signature normalization ap-
proach proposed, SignatureMiner was presented at the Conference on Communications
and Network Security in Beijing in 2018 where it was awarded Best Poster Award. In
addition, many contents of this chapter belong to a paper that has been accepted to
Elsevier Future Generation Computer Systems journal.

Then, in Chapter 7 we revisit meta-information of Android applications to at-
tempt the identification of groups of potentially repackaged applications using qual-
itative fields, such as application title or description. This chapter is based on a
paper published in Elsevier Future Generation Computer Systems.

In Chapter 8, we propose a workflow to apply ML in computer networks and
focus on two main stages: the generation of labeled networking datasets for ML
applications and the solution of non-straightforward computer network problems

1.4. Thesis Structure and Contributions 7

through ML. Concisely, we focus on modeling the Routing and Wavelength Assign-
ment problem as a classification problem, where each of the classes is a complete
network routing and wavelength configuration. This chapter is based on a publication
in the European Conference on Optical Communications in Rome in 2018 and a paper
under revision.

Finally, Chapter 9 summarizes the main relevant conclusions and aspects ex-
tracted from this work and presents the academic contributions during this period
in detail. Additionally, this chapter outlines the main directions regarding future
work and continuation possibilities of the thesis. For full publication details, the
reader may refer to Section 9.3.

9

Chapter 2

State of The Art

Throughout this chapter, we review and survey the literature for the different
fields and disciplines involved in this thesis, presenting the most relevant works.
In Section 2.1 Android Security solutions are studied, specially focusing on AI-
powered and repackaging solutions while Section 2.2 revises the literature of AV en-
gine analysis. Afterwards, an extensive review of the application of ML and AI to
networking is performed in Section 2.3. The chapter concludes in Section 2.4 with a
brief recap to enumerate the gaps in the literature that have motivated the different
contributions of this thesis.

2.1 Security in the Android Ecosystem

The Android ecosystem is so extensive and popular that the amount of threats
within is also limitless. Such popularity exists mainly due to Android’s extensive
community and device penetration, which could be deeply compromised with the
advent of malware and in the absence of proper security solutions. Consequently,

10 Chapter 2. State of The Art

both academia and industry have conducted a massive research effort on malware
detection, mitigation and prevention.

This section reviews prior works on Android application security focusing on
ML-based and repackaging detection systems. At the end of the section, Table 2.1
summarizes the basic details of the most prominent solutions, including perfor-
mance and dataset sizes.

2.1.1 Android Malware Detection

At present, malware detection is a very complex process that investigates appli-
cations to discover undesired behaviors and take the required actions for their re-
moval. Malware fighting methods range from legacy techniques such as static anal-
ysis or heuristics to recent approaches, namely dynamic analysis, sandboxing or
anomaly detection. Idika et al [4] explore and analyze many of these fields on their
survey. More recently, the authors pf [5] have reviewed malware techniques from
a renovated perspective. Also, the authors of [6] extensively summarize malware
types, their implementation details and even propose some defensive techniques
against them.

Lately, traditional approaches have been combined with new technologies to fur-
ther enhance the detection of malware, both in general and, more specifically inside
the Android Ecosystem. For instance, Machine Learning methods have been pro-
posed [7] and extensively reviewed [8] for cybersecurity applications, like malware
detection. In both reviews, different algorithms and their implementation details
are commented and discussed.

Signature-based Detection

Signature-based detection is the earliest and most established detection technique,
regularly used by AV engines. Its main objective is finding a unique stream of bytes
from the code of a malware sample that unequivocally identifies such malware [9].
The previous work summarizes static application analysis timeline and its impor-
tance within AV engines.

Furthermore, the authors summarize malware classes and basic signature de-
tection methods along with the most relevant issues, which involve novel malware
techniques such as polymorphism or metamorphism capable of avoiding detection eas-
ily. Indeed, many limitations of signature-based analysis are reviewed in [10], in-
cluding detection evasion techniques such as obfuscation and binary transformation.

Dynamic Analysis

Dynamic analysis, also known as behavior detection, consists on the execution-driven
analysis of suspicious samples. Instead of analyzing static code, which can be easily
hindered, dynamic analysis proposes to execute samples within a controlled envi-
ronment to observe malicious actions at runtime. Dynamic and static analysis are

2.1. Security in the Android Ecosystem 11

perfectly compatible and some authors, like the ones of [11], combine static and
behavior based techniques with ML classifiers to improve malware detection.

Sometimes, behavior analysis is referred to as sandboxing, since applications are
executed inside a virtual machine that isolates samples and their actions for safety
purposes. Such a virtual machine is called sandbox in reference to the safe play-
ground for children. The authors of [12] present the CWSandbox, which provides a
testing environment to safely run suspicious applications and generate an extensive
report of behaviors, loaded libraries, modified files, memory locations, etcetera; to
help malware analysts with the dynamic analysis of applications.

In [13], the authors propose a distributed firewall application that integrates the
Cuckoo sandbox [14] to enhance its functioning with an in-house system for the dy-
namic analysis of applications and URLs. Recently, VirusTotal released Droidy [15], a
sandbox system capable of extracting information from malware samples including
Network and SMS activities, Java reflection calls, file system interaction, etcetera.

In spite of its advantages, Petsas et al [16] review anti-analysis techniques that
can be used to avoid dynamic analysis and even detect the presence of a hyper-visor
(and thus that the application is running on a virtual machine). In addition, they
test their methods against state-of-the-art anti-malware solutions, finding many of
them vulnerable to their attacks. Apart from proposing some countermeasures, the
authors raise concerns regarding the effectiveness of current analysis techniques.

Finally, the authors of [17] perform an extensive experiment that compares static,
dynamic and hybrid detection techniques while using Application Programming In-
terface (API) calls and opcode sequences, showing that obfuscation complicates static
detection of opcodes but not so much of API calls. Moreover, the authors demon-
strate that no hybrid approach is able to dispute the performance of a fully dynamic
approach.

ML-powered Malware Detection

Malware detection typically poses a classification problem that might be addressed
with the help of ML classification techniques. The work from Baskaran et al [18]
offers a detailed survey on works applying ML in the cybersecurity realm.

For instance, the authors of [19] propose a malware detection framework that
relies on "a multi-stage combination (cascade) of different versions of the perceptron
algorithm" aimed at reducing false positives. The classification task relies on 308
binary features to classify over clean and malware applications, the latter coming
from the Virus Heaven collection [20]. Results show a very good overall detection
score with a very low number of false positives, down to 0.1%.

Similarly, in [21], the authors use permissions and control flow graphs along
with a one-class Support Vector Machine (SVM) to differentiate malware from good-
ware applications. The authors in [22] explore Bayesian learning techniques over
a set of features extracted through static analysis: permissions and "code proper-
ties indicative of potential malicious payload". Malware applications are obtained

12 Chapter 2. State of The Art

from a labeled dataset containing up to 49 known malware families and results seem
promising, with an Area under the Curve (AuC) up to 0.977.

Elish et al [23] propose a single-feature classification system, the TriggerMetric.
This feature is computed by modeling the relations between users’ behaviors and
application operations, specially regarding critical system functions. This metric is
extracted through a complex static process of dependence analysis following data-
flow analysis.

Androdialysis [24] explores the intents of each application as features for the clas-
sification task inspired their "semantic richness" in detailing operations that could
be indicators of malware. In addition, the authors argue that the combination of
intents with other well-known features, such as application permissions, can yield
even better results. At the end, intents are compared and combined with permis-
sions to demonstrate that they do not overlap and that their joint analysis can im-
prove malware detection.

Actually, API calls have been extensively chosen as ML input features, probably
due to their promising results in many works. In [25], the authors leverage a hybrid
Wrapper-Filter SVM which tries to classify malware using API calls and compute
relevant statistics from applications. In a similar approach, the authors of [26] use
API calls and permissions to train SVMs and Decision Trees (DT). Yerima et al [27] try
different ensemble methods, such as Random Forests (RF) over API calls and sorted
code chunks to detect Android malware. Fereidooni et al [28] propose an ML system
for malware detection based on API calls, intents and suspicious actions.

Android Malware Detection Systems

Android malware detection features have been specifically studied in works like [29],
where the monitorization of 30 goodware and 5 malware apps is proposed to extract
and analyze different features for malware detection, namely, CPU usage, network
transmission data, process IDs and names and memory information including vir-
tual memory. For detection, the authors propose a simple ML classifier based on
activity traces. Mas’ud et al [30] also consider Android system calls inside their
detection vectors that they have fed to different ML classifiers in an attempt to vali-
date the selection of malware indicators rather than actually targeting classification
accuracy. Indeed, their results show good performance using API calls.

ANDRUBIS [31] is an automated tool for the analysis of suspicious samples
based on the analysis sandbox Anubis. In this work, a million Android applications
have been collected and inspected to highlight differences between goodware ("good"
software) and malware (malicious software). The ANDRUBIS platform is capable of
analyzing applications coming from different sources, like crawling markets or user
uploads, at a very impressive rate of 3, 500 samples a day. Later, in [32], the authors
present the results and gained insights of making ANDRUBIS open to the public,
providing an extensive analysis on malware trends and their evolution during the
collection of a nearly one million sample collection.

Droidchain authors [33] propose a new model to examine Android applications
following a combination of static analysis to create behavior chains that rely on API

2.1. Security in the Android Ecosystem 13

call graphs describing undesired behaviors. To detect malware, the authors reverse-
engineer different malicious applications to build their behavior chain and look for
them in new samples afterwards. The authors distinguish four types of malicious
behavior chains for malware detection, namely: "Privacy leakage", "SMS financial
charges", "Malware installation", and "Privilege escalation".

Moreover, Drebin [34] is a system that gathers features from application code and
manifest (permissions, API calls, etc) and uses Support Vector Machines to detect
and identify different malware families. The resulting Android application gives
users an estimation of the danger of any application being malware prior to instal-
lation along with a description of the main reasons behind such value.

Other authors have inspected different features to detect malware different than
application code. This is the case of [35] where the authors perform sentiment anal-
ysis over applications’ comments extracted from Google Play in order to obtain in-
dicators of potentially harmful applications. This approach is one of the few in the
literature that considers application meta-data, which will be used in this thesis as
input features for ML classification.

Permission-based Detection of Android Malware

In general, permissions have been extensively studied for malware detection within
the Android Ecosystem. The Android permission system defines a series of pro-
tected resources, including API calls for hardware (led light, sending SMS) or soft-
ware (booting options, contact list) manipulation. These permissions have to be
declared at installation time for any application to use them. These properties have
motivated researchers to inspect permissions under the assumption that the con-
currence or abuse of certain subsets of permissions may be critical in identifying
malware.

However, works like PUMA [36] have indicated that the difference in permis-
sions between goodware and malware is not directly obvious. Despite, the authors
are able to train a random forest classifier that obtains 0.92 AuC on a small dataset
of over two hundred applications.

The Droid Permission Miner system [37] extracts features, mainly permissions, for
malware detection using the manifests of a set of applications from the Contagio
Dump blog. Furthermore, the authors perform feature selection over permissions
differentiated by their malware status and conclude that high accuracy malware
detection is possible by using roughly 15 permissions.

In a different approach, Hein et al [38] collect Android application permissions
and train a Self Organizing Map (SOM) to infer permission-based models informative
regarding the risks the users suffer from installing applications. Likewise, Barrera
et al [39] follow a similar methodology involving SOMs that recommends splitting
general and very often used permissions like INTERNET into smaller categories and
collapsing some other more infrequent and self-defined permissions into a generic
category.

14 Chapter 2. State of The Art

Alternatively in [40], the authors present a pattern mining algorithm capable of
contrasting requested permissions versus used permissions. In fact, they show how
many permissions declared in the Android Manifest are not used later on the appli-
cation. Following a similar approach, the authors of [41] extract "real permissions"
used by the applications in contrast to the permissions declared in the app manifest.

Finally, the authors of [42] systematically review and discuss the Android per-
mission model, including what makes it a good reference for the internals of An-
droid Operating System. Moreover, the paper presents a detailed collection of at-
tacks against the Android permission model. Similarly, Felt et al [43] review the An-
droid permission model and analyze potential patterns of developer error. Besides,
they present the Stowaway tool, capable of detecting overprivileged applications.

2.1.2 Repackaging Detection

Repackaging is a very extended malware development technique that relies on us-
ing the code from legitimate applications inside any market to introduce malicious
code, re-compile and offer them in any application market as if they were the orig-
inal copies. Since the bytecode produced by the Android Dalvik Virtual Machine can
be reverted back to smali, which is close to Java, any Android application is vulner-
able to this technique. Indeed, any Android application can be decompiled, modified
and re-uploaded to the market to lure users into downloading clones rather than the
legitimate version at a very low cost. A survey on repackaging detection methods
can be found at [44]. Interestingly, only Li et al [45] track repackaging origins in an
extensive analysis of piggybacked apps and their basic characteristics.

Application Code Inspection

One of the most popular approaches for repackaging detection is the inspection of
application code seeking for patterns and suspicious data structures. For this, dif-
ferent parts of the source code of any two applications are compared to look for
hints on whether they have been cloned. Andarwin [46] systematically analyzes ap-
plication code by representing each application as a Program Dependent Graph (PDG)
that maps methods and relations inside applications. To provide potentially cloned
applications, the system clusters them together using min-Hashing of PDGs. The
authors remark that this is a very scalable approach, mainly due to the automatic
similarity approximation provided by clustering.

Guan et al [47] propose targeting the input/output symbolic representations of
each app to detect clones based on semantic similarities. In their paper, the authors
present their prototype, RepDetector and evaluate it with repackaged, obfuscated
and Google Play apps. Furthermore, the authors of [48] search for anomalies in-
troduced in the data section of application code by Smali decompilers. Actually,
the authors propose a novel technique, the String Offset Order (SOO) that looks for
these anomalies and any other element falling out of the standard guidelines of the
Android code data section.

2.1. Security in the Android Ecosystem 15

Following the code line, execution patterns of applications have been explored
too. In [49], the authors propose MIGDrodid, a system based on the comparison
of Method Invocation Graphs computed from the smali code of each app to detect
the injection of potentially malicious code inside applications. This way, MIGDroid
is capable of assigning a threat score to each code part relative to the sensitivity of
each of the APIs invoked. To evaluate the system, the authors apply the MIGDroid
methodology to 1, 260 Android Malware samples, achieving an average "detection
effectiveness" of 95.95% and a false positive rate of 8.9%.

Similarly, the authors of [50] compute Control Flow Graphs of each application’s
code following a similar approach to the one in MIGDroid. Then, using such graphs,
they apply a centroid-based clustering algorithm that measures app similarity. Such
approach is validated and demonstrated through cross-market analysis of applica-
tions from five different markets. Results show a False Negative Rate (FNR) of down
to 0.4% and a False Positive Rate (FPR) of 0.38%.

Finally, at the interactive level, User Interface (UI) code and visualizations have
been inspected and compared. Chen et al [51] develop a large-scale system to de-
tect resembling structures and intersections in UI code. This methodology, called
MassVet, relies on a very efficient differential analysis of any application against the
entire market to find the aforementioned similarities. Their methodology is demon-
strated over a collection of 1.2 million applications discovering 127, 429 malware
applications.

The authors in [52] propose a novel approach based on the inspection and clus-
tering of the UI birthmarks of each application that can be extracted from the view
hierarchy in XML. To do this, the authors leverage Local Sensitive Hashing (LSH) over
these birthmarks containing runtime information to locate near neighbors within
them. Then, similar pairs are compared using Hungarian similarity scores and clus-
tered into groups of clone sets. The authors highlight that the effectiveness of this
approach is rooted on its focus on UI rather than any other application code part
that may be easily obfuscated.

Finally, RepDroid [53] automatically detects application duplicates by extracting
their Layout Group Graph (LGG) from runtime UI traces, which are also resistant to
classical obfuscation attacks and enables comparison through similarity scores. On
their validation, the authors report an FPR of 0.08%.

Meta-data for Repackaging Detection

Recently, meta-information has been inspected to look for application similitudes
too. The authors of [54] investigate meta-information from application markets to
provide insights and patterns that are very focused on permissions. They also pro-
pose a detection system based on similarity clustering and anomaly detection over
semantic patterns in different meta-data features, including permissions, user rat-
ings or downloads among others.

The authors of [55] develop a white list system to check incoming APKs from a
database of legitimate applications and compare application icons when no white

16 Chapter 2. State of The Art

list match is found. The solution consists on the detection of repackaging appli-
cations independently of the specific application store: the application targets ele-
ments "an attacker is reluctant to significantly alter", such as the application name
and icon. Their validation results report a detection rate of up to 91% within a col-
lection of almost 400 applications.

In [56], the authors propose various pairwise similarity metrics of different meta-
information fields, such as application name, description or icon to unveil applica-
tion copies. In spite of proposing an indexing system, the authors do not discuss on
specific details regarding the complexity and time consumption of the approach.

Market-scale Solutions

In repackaging, the scalability of solutions is a great concern, since most repackaged
applications have original victims that are not necessarily known in advance. Thus,
it is important to look for scalable solutions that can dive into huge application mar-
kets to quickly find not only cloned applications but also their victims to support
their findings.

In this light, many authors have addressed the problem by proposing market-
scale solutions, like Andradar [57], which monitors several Android markets in real-
time tracking application changes and removals using "lightweight identifiers", like
the package name, developer’s certificate fingerprint and method signatures. This
solution has enabled the tracking of different applications through time, that facil-
itates an in-depth analysis over 8 alternative markets involving a total of 318, 515
applications and the study the publishing patterns of malware developers on 16
different markets.

Indeed, many of the aforementioned solutions are scalable, such as that of Chen
et al [51] regarding differential analysis or the one in [55], where the authors propose
a white list filter and efficient comparison techniques based on hashing to scale out.
Besides, the authors of [58] perform large-scale inspection of 200, 000 Android apps
in order to determine which ones have been cloned. For that, they focus on applica-
tion intents and exit points leveraging labeled collections from other studies, such
as [59, 50, 45], in supervised classification.

Repackaging Countermeasures and Consequences

The repackaging detection literature does not only contain detection proposals, but
also other interesting works, including countermeasures and impact reports. To
fight against repackaging, some approaches propose active countermeasures to avoid
repackaging from the beginning of the development process: The authors of [60]
look for inspiration on Copyright Watermarking to embed applications with author-
ship verification as an anti-plagiarism solution. Their specific proposal consists on
introducing "non-stealthy" watermarking within the application protected by means
of Self-Decrypting Code (SDC). Similarly, Zhou et al [61] propose a system to repro-
duce and watermark Android applications using dynamic graph mechanisms.

2.1. Security in the Android Ecosystem 17

TABLE 2.1: Summary of works regarding malware and repackaging
detection in the literature.

Paper Methods Detection Features Target Data Acc. FPR(%)

Devesa et al [11] Various classifiers Behavior logs Automated dynamic analysis system 1.5K 0.96 1.3

Willems et al [12] Dynamic analysis, mal-
ware techniques System calls Sandbox system to extract behavior reports - - -

Vasilescu et al [13] Firewall tables, dynamic
analysis Incoming traffic Distributed firewall with integrated sand-

box for in-house analysis - - -

Damodaran et al[17] Hidden Markov Models API calls and opcode se-
quences

Comparison of Static and dynamic mal-
ware analysis 785 - -

Gavrilut et al [19] Perceptron multi-stage
combinations Distinct binary features Malware detection focused on reducing

false positives 300K 0.88 0.1

Sahs et al [21] One-class SVM Permissions and control
flow Graphs Malware detection - 0.25 -

Yerima et al [22] Bayesian Learning Permissions and code
properties Zero-day malware detection 1K 0.93 -

Elish et al [23]
Data Dependence Graphs,
threshold-based classifica-
tion

TriggerMetric (user rela-
tions)

Data-flow application analysis for malware
detection 4K 0.979 2

AndroDialysis [24] Bayesian Network Application intents and
permissions

Explore intents as features for malware de-
tection 7K 0.95 -

Huda et al [25] Hybrid Wrapper-Filter
SVM API calls Malware detection targeting malicious ac-

tivities 67K 0.96 -

Peiravian et al [26] SVM and DT API calls and permissions Malware detection 3K 0.95 -

Yerima et al [27] Ensemble methods API calls and sorted code
chunks Malware detection 6.8K 0.97 -

Fereidooni et al [28] XGBoost and feature selec-
tion

API calls, intents and sus-
picious actions

Malware detection and family-based classi-
fication 16K 0.92 -

Ham et al [29] Various Feature Selection
and Classification

CPU usage, network trans-
mission data process ID
and names and memory
info

Malware detection with runtime monitor-
ing parameters 15K 0.99 -

Mas’ud et al [29] Various Feature Selection
and Classification Android API calls ML-based malware detection - 0.83 23

Andrubis [31] Anubis for app collection Java and Native Code Implementation of high throughput detec-
tion system and feature analysis 900K - -

DroidChain [33] Using API call sequences
for behavior chains Chain models (API calls) Malware detection based on behavior

chains 1.2K 0.8 -

Drebin [34] Static analysis and linear
SVM

Application Code and
Manifest

On-device Malware detection with ex-
plained decisions 120K 0.94 -

Nannen et al [35] Sentiment Analysis Google Play comments Detection of malware application - - -

PUMA [36] Random Forest Permissions Analysis of permissions for malware detec-
tion 239 0.92 -

Aswini et al [37] Feature selection and di-
verse classifiers Permissions Permission-based malware detection 436 0.82 22

Hein et al [38] Self Organizing Map Permissions Inform users on application’s risks 300 - -
Barrera et al [38] Self Organizing Map Permissions Show permission hierarchies and usage 1.1K - -
Moonsamy et al[40] Pattern mining Permissions Differentiate used vs required permissions 2.5K - -

Andarwin [46] Program Dependent
Graph and min-hashing Application code Repackaging detection 265K 0.96 3.7

RepDetector [47] Similarity detection Application input/output
symbolic representations Repackaging detection 1K 0.99 -

Gonzalez et al [48] Anomaly detection Data section of DEX code Repackaging detection 85K 0.98 2.9
MIGDroid [49] Method Invocation Graphs Smali code Assign Threat score to APIs involved 1.2K 0.95 8.9

Chen et al [50] Control Flow Graphs and
clustering Application Code Detect application repackages in different

markets 150K - 0.38

MassVet [51] Differential analysis with
market UI Structures Compare applications with markets at

scale 1.2M - -

Soh et al [52] LSH clustering UI birthmarks Detect repackages from their UIs 521 - 0.08
RepDroid [53] Layout Group Graph Runtime UI traces Repackaging detection 125 - 0.08

Teufl et al [54] Clustering and anomaly
detection

Application market meta-
data

Provide insights on meta-data and repack-
aging detection system - - -

Gurulian et al [55] Hashing methods Application name and icon Whitelist system and icon-based compari-
son for repackaging detection 400 0.91 -

Kywe et al [56] Pairwise similarities Application name, de-
scription and icon

Detect repackaging by pairwise similarity
metrics of meta-data fields 30K - 9.2

Andradar [57] Package name, developer
certificate items

Monitoring of Android markets with real-
time application tracking 320K - -

DecisionDroid [58] Various classifiers App intents and exit points Repackaging detection 200K 0.98 -

18 Chapter 2. State of The Art

In [62], the authors suggest provisioning applications with self-protection capa-
bilities. Such protection capabilities include the injection of "randomized detection
code" into the bytecode of any Android application that is split across the original
code and prevents correct application functioning when it has been repackaged.

Recently, the authors of [63] proposed the introduction of malware-style logic
bombs in legitimate applications to prevent repackaging. Such logic bombs would be
hindered inside legitimate applications and triggered upon repackaging detection to
corrupt application code.

In a different approach, some authors have used repackaging to improve appli-
cation security, as in [64], which proposes the introduction of a user-level sandbox
into applications automatically through repackaging. Such a sandbox would be in
charge of enhanced security mechanisms that would include a fine-grained permis-
sion management system, behavior monitoring or network interception.

Similarly, the authors of [65] repackage applications with a privacy reporter com-
ponent capable of auditing the use of personal user data. For this purpose, such
component would monitor data access attempts along with permissions used to be
sent to a third party application that works like an Intrusion Protection System (IPS).

Finally, the consequences of being a repackaging victim have been studied for
many areas, such as banking [66], messaging applications [67] or even smarthome
devices [68]. In most cases, the authors try to identify basic vulnerabilities, propose
countermeasures and identify the risks and impact of such attacks.

2.2 Antivirus Analysis and their Detections

Antivirus (AVs) applications are in charge of the detection and mitigation of mal-
ware in computers, mobile phones or any other device. Historically, AVs have re-
layed in static signature-based analysis to detect malware, but due to the advance-
ments of the malware industry, they have required to include new techniques, such
as dynamic analysis or sandboxing.

Usually, AV engines have been the main barrier against malware at user level,
protecting all kind of devices. Nowadays, AV engines alone are not so useful any
longer, albeit they can offer still a first defense layer against well-known attacks. In
addition, the maintenance of efficient teams of analysts to deal with new incoming
threats, specially zero-day attacks, makes AVs still useful to some extent.

In this light, AV engines have been persistently scrutinized to unveil flaws and
understand their detection rules and policies. Recall the work from Moser et al [10]
which performs a comprehensive review on the limits of static analysis. Other au-
thors, like [17, 16] also show such limitations mainly affecting AV engines.

AV Resilience to Anti-detection Techniques

For instance, Rastogi et al [69] perform a systematic evaluation of Android anti-
malware products by studying their detection abilities in the presence of anti-detection

2.2. Antivirus Analysis and their Detections 19

techniques, such as obfuscation. The authors study the evolution of many AV prod-
ucts over a year period, showing that engines make an effort to improve the detec-
tion abilities of its signatures. Nonetheless, the authors show most AV engines fail
against common evasion techniques even when signatures are strengthened. In the
end, the authors explore potential improvements for current solutions.

Similarly, in [70], the authors review common evasion techniques and perform
an experiment to evade detection in VirusTotal using "two of the simplest tests".
In [71], the authors discuss the limitations of malware detection using sandboxes
and demonstrate their theses by fingerprinting ten different sandbox solutions. These
solutions can be then evaded using Divide-and-conquer type of attacks. They even
show that Google Bouncer, the first-response AV engine introduced by the company
in Google Play, can be avoided by such techniques.

In the mobile world, the authors of [72] perform a review of different solutions
for Android malware detection, both in-device and in-cloud. Besides, they revise
the key points in designing AV engines to adapt them to mobile AV versions and
focus on detection from different perspectives.

Malware Detection Systems

Malware detection systems can be grouped into two different paradigms: (i) online
services, sometimes web-based, that produce fast responses upon suspicious appli-
cation queries for direct usage, such as pre-installation checks or user security, and
(ii) powerful offline services that analyze large collections of applications to enforce
security at market scale.

On the one hand, there has been extensive research regarding lightweight ap-
plications, typically in-device, that can inform users on the risks they are taking
with the installation of any application. For instance, Drebin [34], which has been
presented before, develops an Android application that assesses new applications’
risk along with a verbose description of the key observations for that estimation.
Furthermore, the authors of [73] propose the Secloud system that facilitates the ap-
plication of powerful intrusion detection solutions and other methods by emulating
each device environment within a resource-friendly cloud environment rather than
the same device.

Andromaly [74] is conceived as an in-device malware detection system, similar to
traditional Antivirus engines, that monitors the device and applies machine learn-
ing classifiers to separate goodware from malware applications. In the paper, the
authors perform feature selection as well and try different ML algorithms to pro-
duce more accurate results. Applications can be analyzed either locally or in the
cloud and users are encouraged to mark applications they consider malicious.

On the other hand, mass detection offline systems have been very popular too,
like the DroidAPIMiner approach [75] that uses semantic information extracted from
bytecode in different lightweight classifiers to obtain fast and accurate application
prediction. RiskRanker [76] is a scalable solution to analyze applications at market
scale that even supports the detection of the so-called zero-day attacks.

20 Chapter 2. State of The Art

In addition, Gravity [77] is a massively parallel AV engine build over the source
code of ClamAV that relies on GPUs to provide very fast and efficient threat detec-
tion. Actually, the authors claim Gravity is able to process applications at 20Gbps,
reaching peaks of 110Gbps and a 100x fold with respect to regular ClamAV. In a dif-
ferent approach, LeakMiner [78] identifies and prevents data leakage by decompiling
applications into bytecode, identifying points of data usage and following the exe-
cution path through activity graphs to identify potential leak points. As a reference,
the reader can consider the survey in [79], which extensively reviews other relevant
detection systems and techniques proposed in the literature for the Android ecosys-
tem.

Finally, it is worth considering the gathering and collection of threat intelligence,
including malware behaviors, AV-like signatures and more relevant data. One of
the most promising solutions is CrowDroid [80], a framework that centralizes the
collection and analysis of application traces along with the detection of anomalies
and uncommon behaviors. Indeed, the authors propose their platform as a "crowd-
sourcing system" that relies on users sharing their devices’ information to collect
and detect malware. Such detection is based on a two-group clustering algorithm
over "application system calls" (API calls).

Moreover, in [81], its authors propose a system to collect and analyze Android
malware aiming at the creation of quality detection signatures that collects appli-
cations from different sources in the Internet and produces signatures based on the
hashing of sequences of API calls. The DeepSign approach [82] relies on a Deep
Learning system to generate malware signatures from binary application features
using an autoencoder network architecture. Such system executes applications in-
side a Sandbox and feeds the resulting logs to the network which output is fixed
to 30 values. Finally, the solution is validated by training an SVM classifier that
achieves testing accuracy values over 95%.

AV Performance and Alternatives

AV solutions are conceived as regular system programs loaded with privileges and
capabilities to perform their protection tasks including extensive system control and
risky access permissions. As any other application, AV engines have been shown
to contain vulnerabilities like any other software and, which must be immediately
addressed to prevent larger damages to the host system upon detection [83].

In spite of their benefits, AV performance and the impact in their host devices has
also been studied in depth. In truth, many AV solutions have been very criticized for
different reasons, such as unjustifiably large performance overheads or even taking
actions that could be considered malicious.

Al-Saleh et al [84] analyze the intrusiveness of two AV solutions (Symantec and
Sophos) using a Windows event logger in an attempt to evaluate the impact on sys-
tem performance. Their results show that the presence of an AV engine noticeably
impacts on regular program execution, not only in terms of CPU usage, but also
in IO operations and paging issues. Before, in [85] AV engine overhead was for-
mally characterized and used to evaluate engines from an on-access perspective, that

2.2. Antivirus Analysis and their Detections 21

is, when the engine is monitoring files and system settings in the background.

In this light, cloud computing has emerged as a key trend for malware detection
systems due to its computing potential and versatility. In-cloud malware solutions
can be conceived as lightweight approaches that get installed in host devices just to
collect monitoring information and other important systems and send it to a ded-
icated cloud environment provisioned with large computing capabilities to check
samples and potential threats and return devices responses and action policies.

Indeed, cloud computing can be used to collect and identify malware signa-
tures, like the authors of [86] do by proposing the Automatic Malware Discovery Sys-
tem (AMDS). AMDS installs some lightweight cloud signatures in-devices that are
tested before sending samples to cloud environments. Also, cloud computing has
been proposed to collect and identify malware signatures. In [87], the authors pro-
pose uCLAVS, a cloud environment using many detection schemes and AV engines.
Furthermore, the system proposes an ontology that rules the interrelations between
web and security components such as firewalls or vulnerability scanners.

In [88], the authors deepen on the concept of "Antivirus as a Network Service" by
sending new files generated by system applications to a cloud server. Besides, the
authors remark the importance of considering the detection outcome of more than
one AV engine as enabled by cloud computing. As a proof of concept, they propose
CloudAV, composed by 10 AV engines and two behavioral detection engines, show-
ing 35% performance increase with respect to single AV engines. Using a dataset of
more than 7, 000 samples, the authors show a 98% performance.

The authors in [89] perform an extensive analysis of malware detection solutions
and propose a framework involving many alternatives that can be used as a mod-
ular, scalable and private cloud system. Such system would be open source and
extended with innovative tools applied to malware detection such as data mining.
At this point, it is worth recalling the Crowdroid system [80] presented above. Such
work is proposed as a centralization alternative to gather crowdsourced detection
signatures from different devices.

Multi-scanner Detection Tools

Lately, several online multi-scanner services have appeared to integrate malware de-
tections coming from different engines with the goal of collaboration and threat
sharing. These tools are typically web services to upload potential malware applica-
tions, URLs, files or similar sources in order to get detection reports from many pop-
ular AV engines. These detection reports do not only include whether each engine
considers malware a sample or not, but also details regarding the threat, versions or
even target operative system. Some of the most popular multi-scanner solutions are
VirusTotal [90], Meta-Scan [91] or Jotti [92].

These tools enable analysts or any other interested actor to have more than one
"expert" opinion for each suspicious sample. Actually, many authors [93, 94] have
demonstrated the advantages of considering more than one AV engine on malware
decisions. Using multi-scanner detections from VirusTotal, the authors in [95, 94]

22 Chapter 2. State of The Art

compare different engines and model each engine’s confidence through a hyper-
exponential curve using as reference a previously labeled collection of applications.
Furthermore, the authors observe that full detection coverage of their malware col-
lection is achieved by 25% of all possible AV pairs and almost 50% of the possible
triplets.

In [93], the authors perform an empirical analysis of different AV engines from
VirustTotal using malware samples obtained from a honeypot and conclude that
using more AV engines improves overall detection, showing that engines alone are
limited as well. The authors also point to regression cases, where AV engines stop
detecting a certain malware sample. Following the same line, the authors of [96]
analyze dates from VirusTotal labels in order to track their evolution in time includ-
ing changes and withdrawals. To do this, they consider samples obtained from a
custom honeypot network.

Besides, the authors in [97] use VirusTotal labels and human experts to detect
malware using temporally consistent labels. The authors analyze a million applica-
tion dataset and involve "humans in the loop" to further improve the performance
of detection systems. In fact, the authors claim to outperform regular AVs in terms
of detection and FPR.

AV-Meter [98] analyzes nearly 12K labeled applications and discusses AV engine
behaviors and decisions. In their analysis over a manually labeled dataset, the au-
thors include different custom evaluation metrics. Moreover, in [83] 30 of the top
AV solutions to detect and prevent malware are compared. In their analysis, the au-
thors reverse-engineer some AV engines to try to understand their detection logic,
finding in the process different detection vulnerabilities and flaws.

Quarta et al [99] leverage VirusTotal detections to analyze AV engines following
a black-box approach: only input samples and different detection results from each
engine are considered. For this, the authors develop a set of tests within the CRAVE
framework to test several engines and their anti-evasion capabilities in VirusTotal.
Together with their findings, the authors make a powerful statement regarding the
importance of analyzing and testing AV engines to clarify the "obscurity" they have.

In this light, multi-scanner tools are limited and have still several shortcom-
ings. New threats and attacks can be built leveraging these tools to improve their
anti-evasion capabilities, like the case of [100], where its authors discover malware
developers using multi-scanner tools directly integrating multi-scanners into their
malware development pipelines to avoid detection. The authors further propose a
methodological approach to detect such malware developers in VirusTotal submis-
sions using ML classification over submission details and meta-data.

Actually, Willems [101] discusses good and bad features of multi-scanner tools,
including trends and observations from the malware-development community. Among
other observations, the author discusses that beginner malware developers (known
in the security jargon as Script Kiddies) still use public multi-scanner tools for mal-
ware development, probably without knowing that their samples are being shared
with the community, whereas more professional developers are aware of this fact
and have developed their own multi-scanner tools.

2.2. Antivirus Analysis and their Detections 23

Finally, two main problems with AV engines are worth noting, since they have
been further confirmed by multi-scanner tool detections. Those are the lack of con-
sensus AVs show in detecting samples as malware and the naming inconsistencies in
the categorization of threats.

In [102], Hurier et al perform an extensive review of AV engine consensus in
terms of detection and class labels, showing the deficiencies in the process. In gen-
eral, they find very generic malware labels along with the observation that AV en-
gines involved in more detections tend to perform better. Besides, the authors pro-
pose different metrics and scoring systems to quantify the lack of consensus aiming
at the assessment of ground truth datasets.

In addition, using multi-scanner tools, Maggi et al. [103] show how different
engines name malware families differently. In their work, they extensively review
such inconsistencies, that they observe very often whenever more than one engine
is involved in detection. Their specific approach relies on using a graph to model
the relations between different vendors’ naming schemes.

Therefore, the rest of this section will develop on malware categorization and
review the most popular and extended solutions to these problems, which are key
to unlock the potential benefits and improvements multi-scanner tools can give to
the ecosystem.

Malware Categorization

Not all malware is equally malicious, neither does it pursue the same goals nor
follow the same methods. The different types any malware sample can belong to
are usually called malware classes or families. Different families indicate a distinct
type of behavior or target victim. Such schemes can be useful, specially to detect
and prevent similar threats with the same type of actions.

Through the literature many authors have attempted to categorize malware in
different families. The most straightforward strategy is that of code analysis. For
instance, Dendroid [104] proposes a novel text mining approach to extract malware
families from application code. For that, the authors propose the calculation of code
structures similarity to accurately assign the appropriate family to any incoming
sample. In addition, the authors perform evolutionary analysis over family code
through dendrograms. It is worth noting the complementary approach of Zheng et
al, DroidAnalytics [81], which is also capable of collecting and categorizing zero-day
malware samples into existing families.

With the proliferation of AV engines and, specially, multi-scanner tools, many
authors have leveraged the latter to infer and study different malware families.
In [105], the authors discover up to 49 distinct malware families by examining a
collection of more than 1, 200 applications and systematically studying the internals
through time. In [106], the authors consider multi-scanner outputs and majority
keyword voting to obtain labeled malware samples. Then, their approach relies
on supervised learning and clustering over application behavior to identify well-
known families. Thanks to this process, the authors are able to create a nearly 25, 000
sample dataset containing malware applications categorized in families.

24 Chapter 2. State of The Art

Finally, the authors in [107] use Droidbox, a sandbox application, to demonstrate
how AV engines are not completely proficient at detecting and identifying certain
malware families. In some way, this paper deepens more in the aforementioned lack
of consensus.

FIGURE 2.1: Multi-scanner tool-based analysis, current problems and
solutions

Solutions to Multi-scanner Tool Limitations

Previously, we have reviewed the literature regarding multi-scanner tools and iden-
tified some issues, such as their lack of consensus as well as their frequent naming
inconsistencies. Since using many engines is beneficial in malware detection and fa-
cilitated by multi-scanners, there is a clear need for solutions to achieve consensus
and consistency among engines or, at least, filter out the less useful ones.

Some authors have developed solutions to both problems, mainly oriented to
mitigate the potential disagreements among engines. The authors in [108] review a
large collection of malware samples from VirusTotal, SGNET and ANUBIS and show
how malware was becoming preeminent. Furthermore, they debate the difficulties
in determining whether the lack of detection of a malware sample is a failure com-
mitted by the AV engine.

In the work of Kantchelian et al [109], the authors propose a novel Generative
Bayesian model that takes as input the detection reports of different engines coming
from multi-scanner tools and outputs the probability that a detection is malware.
In short, this system uses the AV engines that have detected a sample to estimate
how likely is such sample to be malware. Hence, determining whether a sample

2.3. ML Applied to Optical WDM Networks 25

is malware becomes partially dependent on the predominant detection patterns of
many engines.

Regarding family controversies and inconsistencies, solutions aim at the normal-
ization or homogenization of detection labels. AVClass [110] is proposed as a tool
for the extraction of malware families from multi-scanner detection signatures. To
this end, AVClass processes the text of these signatures to obtain common tokens
to which it applies frequency mining. After some cleaning and using large signa-
ture datasets, AVClass accurately computes the normalization of all the signatures
within a malware sample and applies majority voting to determine the most likely
class.

Euphony [111] is a more recent approach that follows a similar methodology.
In this case, the authors use heuristics to clean the report signatures and create a
graph connected according to the different signatures associated to the same sam-
ples. Then, to aggregate labels they compute the most notorious sub-graphs and
name each cluster after the predominant substring within.

Fig. 2.1 recaps works motivating multi-scanners, analyzing distinct AV engines
in the light of them and proposing solutions to the above-described problems of lack
of consensus and naming inconsistencies.

2.3 ML Applied to Optical WDM Networks

AI and Big Data have emerged into the networking field as game-changing tech-
nologies capable of enhancing network protocols by means of ML-based approxima-
tions that are faster and better than common heuristics. Actually, AI tools are really
well suited to be applied in conjunction with Software Defined Networking (SDN)
technologies, a networking paradigm that seeks making networks programmable
and flexible. Both fields combined have opened huge possibilities to the extent of
Knowledge-defined networking or Cognitive Networking [112, 113].

Some interesting tutorials on algorithms, frameworks and applications of AI
technologies to networking, including open challenges and specific examples of In-
telligent Networking may be found in different works, such as [114, 115, 116, 117]. The
authors of [117] specifically overview the potential, challenges and future of Deep
Learning (DL) in computer networks. Recently, Boutaba et al [118] have performed
an extensive survey of ML applications to networking along with "a purposeful dis-
cussion of the feasibility of the ML techniques for networking", where the authors
discuss how ML techniques application to different network environments together
with the most prominent challenges.

Furthermore, the authors in [119] summarize the advantages of putting SDN and
Big Data technologies together. Concisely, they focus on how Big data technologies
can take decisions that would be easily implemented and applied to the network
through SDN controls. Furthermore, the authors recap specific applications in traffic
engineering, cross-layer design and even defeating security attacks.

26 Chapter 2. State of The Art

ML-powered Network Traffic Classification

Traffic Classification has been one of the most straightforward network problems
to be solved through ML. In general, traffic flows can be observed and quantified
into a diverse set of features, like bytes sent and received, the amount of created
connections, etcetera, which can be directly used to classify flow types.

Therefore, many researchers have attempted direct ML classification, like the
authors in [120], who join classifiers with Deep Packet Inspection methods (DPI)
within a framework applicable through SDN. The classification is performed ac-
cording to Quality of Service (QoS) levels and uses as features flow-level informa-
tion, such as inter-arrival packet times, packet length, protocols or any other relevant
parameter. The resulting accuracy is above 90%.

In fact, some works date from before the beginning of AI popularity in network-
ing [121]. There, several approaches and open challenges were indicated. Recently,
the authors of [122] propose a fuzzy clustering system over traffic statistics to dis-
cover and label different flows in a semi-supervised manner. The reported results
show up to 95% classification accuracy.

In a different approach, the authors of [123] propose the Bag of Flows (BoF) method-
ology to identify traffic flows by correlating the ones observed in a network. In a
more recent paper, the authors extend the BoF model and propose a novel method
for traffic flow class discovery [124]. This method, the Robust statistical Traffic Clas-
sification (RTC), targets "zero-day applications", which represent those new flows
appearing after the training process. RTC relies on an initial step involving K-means
clustering and Random Forests to isolate zero-day flows and extract relevant fea-
tures that can be afterwards used by the original BoF approach.

Shafiq et al [125] review classification proposals from port-based schemes to DPI
and motivates the use of machine learning in order to go beyond. In [126], its au-
thors survey over different traffic classification techniques, including those fueled
by ML.

From that point, traffic size prediction has followed. For instance, Poupart et
al [127] propose a data mining system to estimate flow sizes motivated by traffic
classification works. In their approach, the authors propose using common features
from the initial packets of a flow to estimate its size and share it with the rest of
network controllers. In [128], their authors advance on traffic prediction by using
a Hidden Markov Model (HMM) over "easy to collect features", namely, number of
flows in the network at a time interval. In an interesting study [129], the impact of
IoT devices on network traffic and connections is also evaluated, showing different
models for IoT traffic.

ML-powered Routing

Routing is a complex network problem that has been solved through many algo-
rithms, such as Disjtra or distance vector. In general, classical routing algorithms do
not consider real time parameters, such as overall network load. However, using

2.3. ML Applied to Optical WDM Networks 27

ML, routing can be made more efficient, by dynamically tracking traffic loads and
re-routing the most conflictive demands.

Mao et al [130] review different routing strategies, including network traffic con-
trol, deep learning and computing architectures and propose a per-node "routing
strategy" based on classifiers that compute the routes to follow for incoming packets
at each step. In a similar approach, the authors of [131] propose a routing algorithm
based on a Convolutional Neural Network (CNN) trained with past network states.
Such solution is specially effective in congested scenarios, where it outperforms tra-
ditional routing protocols.

ML-powered Quality of Service Management

Quality of Service (QoS) is a paradigm for policing and traffic management that
attempts to differentiate network services according to their use and measures the
overall service provided. Lately, QoE (Quality of Experience) has appeared as the
user-centric metric that contrasts to the application-centric QoS.

By design, QoS defines a series of methods and parameters that have to be ad-
justed in order to provide network users with a certain "service level" and for that,
ML can be useful, as these parameters usually need estimation from network states
and observation. Moreover, QoS and QoE are similar measures obtained at each of
the ends in the Service level agreement (service providers and users) that usually
are hard to correlate. ML and data analysis can also help in relating both to improve
final user satisfaction.

In [132], the authors investigate QoE and QoS along with their potential rela-
tions. Concisely, the authors measure the quantitative relation of QoE "opinion
scores" and QoS parameters, such as down times or packet loss along with the corre-
lation analysis of network measurements and the aforementioned QoS parameters.
At the end, the authors conclude that users showing better QoE are also those with
larger online times.

Mushtaq et al [133] point out the need for relating QoS and QoE and provide
some ML-based methods to improve the assessment of user experience. In their
analysis, the authors consider QoS network parameters, such as packet losses, jitter
or delay as well as video characteristics (bit rate, frames, etc) and use ML algorithms
over user feedback to find the most relevant factors in common between QoS and
QoE.

The authors of [134] propose a QoE estimation system that uses QoS parame-
ters and user emotions collected by video recording of the users facial expressions.
The estimation of QoE is performed by testing different ML models. Furthermore,
in [135], the authors use decision trees to estimate QoE from limited user feedback
aiming to reduce the number of subjective tests to be performed.

Recently, some authors have addressed the prediction of QoS for narrow areas
of networking, usually based on data-driven and observational approaches. As an
example, the authors of [136] propose a data-driven technique to infer QoS informa-
tion for Industrial IoT using Kernel Least Mean Square algorithm (KLMS) over an

28 Chapter 2. State of The Art

user-item matrix like in recommender systems. Such matrix contains different QoS
features of different web services measured for different users.

For further reference, the authors of [137] perform a survey on QoS-QoE corre-
lation methods based on ML that provide basic definitions and descriptions along
with a comprehensive collection of relevant papers.

ML-powered Provisioning and Resource Allocation

Resource allocation and provisioning is another important area inside network-
ing, as the regular operation of any network requires the availability of usable re-
sources for expected and unexpected demands. In fact, network operators are usu-
ally obliged to overprovision, that is, reserve much more resources than eventually
needed to prevent the collapse of the network due to traffic bursts. Hence, AI could
be a useful tool to better adjust the amount of resources dedicated to a network and,
in combination with SDN, develop responsive solutions that allocate more resources
to networks upon need.

In [138], the authors propose a Reinforcement Learning (RL) provisioning system
capable of maximizing monetary gains by tuning parameters of DiffServ networks.
To obtain this gain, the authors leverage the response ability of RL techniques to
provision the network dynamically according to each moment’s requests rather than
static allocation. The main novelty of this work is the use of RL to adjust the pricing
policy to the actual network usage to save money for clients and operators.

The authors in [139] develop a DL-based traffic predictor to facilitate resource
allocation in the near future. In a first stage, traffic is predicted using a Deep Neural
Network (DNN) that facilitates the assignment of resources; afterwards, the authors
propose a second DNN to perform resource allocation. In their results, the authors
show smaller blocking probability values and larger resource occupation rates than
using other well-known solutions.

In [140], Hayasi discusses the use of ML in SDN network environments with a
twofold objective: (i) detect anomalies and failures and (ii) support the automated
management of such network. Then, the author surveys different applications of
ML to those objectives in an SDN network taking into account the improvement of
the business processes.

This type of solutions has been proposed in optical networks too, specifically on
detecting failures and problems within the network. As an example, the authors
in [141] propose a system to detect and avoid power excursions in ROADMs using
a DNN. Moreover, Gutterman et al [142], propose an NN regressor to predict the
amount and sign of power excursions when adding a new wavelength to a ROADM.

ML-powered Network Traffic and Congestion Control

Traffic and congestion control is essential for networks in general to adequate the
throughput and traffic passing through them. This way, resources can be efficiently

2.3. ML Applied to Optical WDM Networks 29

distributed following fair policies that do not treat traffic from any source or desti-
nation arbitrarily.

For instance, the authors of [143] propose a maximum likelihood estimator to
identify the cause for TCP packages getting lost at origin. Furthermore, in [144]
the authors explore the use of supervised learning to determine the specific type
of a packet loss in the context of wireless networks. For this end, the authors try to
develop different models (i.e. decision trees, Xboost, neural nets) to classify network
losses into two categories: link errors and congestion.

In [145] the authors propose a loss classification technique for Optical Burst
Switching (OBS) networks that differentiates between contention and congestion
packet losses. For that purpose, they propose a new measure called Number of Bursts
Between Failures (NBBF) that models contention and congestion losses as Gaussian
distributions with different parameters. The authors rely on hidden Markov models
and expectation maximization to infer the NBBF metric from past cases and create a
classifier to separate between congestion and contention cases.

Regarding queues, where most congestion can occur, some works have addressed
their management from an ML perspective. For example, Harari et al [146] propose
in their letter NN-RED a NN architecture to predict future queue occupations and
decide when to drop packets.

The authors of [147] demonstrate how an ML classifier hosted in an intermediate
node can predict the TCP congestion window size used on the sender of a TCP
connection. For this, they use ML over TCP cross-traffic flows and metrics, including
bandwidth, delay, jitter and packet loss.

In addition, congestion can be approximated through the estimation of different
network parameters which values might indicate congestion, such as throughput or
Round Trip Times (RTT). For the former, the authors of [148] propose a lightweight
SVR (Support Vector Regressor) system that estimates network throughput by com-
bining history-based records with "end-to-end path properties".

Edalat et al [149] propose the SENSE system (Smart Expert for Network State
Estimation) that provides "near-future" estimations of the network conditions by
means of Machine Learning. Specifically, it modifies a combination of fixed-share
learning and exponentially weighted moving average (EWMA) which works better
than other proposed approaches, such as the EWMA used in TCP or unaltered fixed-
shares.

Autonomous Networking

Lately, research has aimed at the development of the autonomous network paradigm,
where networks are composed by intelligent components prepared for self-adaptive
and self-managed networking to enable full automation of computer network manage-
ment and configuration [150]. In their paper, Barron et al propose an autonomous
system that correlates and monitors network events that are analyzed using ML to
provide automatic response and actions.

30 Chapter 2. State of The Art

Broadly, autonomous networking includes all the processes and systems that
support network self-configuration and self-management in order to reduce costs
and improve user experience (sometimes known as Quality of Experience). Very of-
ten, such autonomous processes involve the creation of network data planes or mon-
itoring systems.

In this light, Mestres et al propose in [112] a new paradigm for networking,
called Knowledge-defined networking where a Knowledge plane is added into modern
network structure. Zorzi et al [151] proposed Cognitive Network Management as a
framework, where novel AI technologies such as DL or RL could be used for au-
tonomous network management. Ayoubi et al [113] have recently reviewed and
extended this concept into a prototype system that deploys the MAPE control loop
(Monitor-Analyze Plan-Execute over a shared Knowledge) into networks supported
by ML to implement cognitive network management.

Challenges in Autonomous Networking

In spite of previous success, there are still many problems and challenges that com-
plicate the introduction of a cognitive network management system. One of the
most relevant limitations is that of data scarcity. The key element in AI success is
the availability of quality labeled datasets. In the field of computer networks, such
availability cannot be always ensured, as very few entities, mainly network opera-
tors and vendors, may have access to observational data which typically lacks accu-
rate labels, is not consistent, unstructured or contains other flaws.

Actually, many authors raise this issue in their works, specifically referring to
the lack of data, the costs of collection and the importance of simulation data [152];
the necessity of standardized and benchmark datasets made available to the public,
using in their work publicly accessible datasets [112]; the challenges arising from
the collection of such data, such as storage or data analysis [153] or showing the
opportunity for upcoming technologies, such as SDN, to introduce network data
monitoring systems aware of ML needs, notwithstanding the potential risks and
overheads associated with the process [154].

There are tools in the literature for traffic generation, such as the well-known
Iperf [155] or the D_ITG [156] which relies on stochastic processes to generate real-
istic traffic at packet level. Still, the labeling process of such datasets requires other
planning tools, such as Net2Plan [157]. In this line, projects such as GEANT [158] or
SNDLib [159] have contributed by sharing traffic matrices and other network com-
ponents in different datasets openly.

ML in Optical Network Problems

AI and Big data popularity have been also proposed to improve optical networks,
both at physical level and the link layer. A survey on ML applied to optical net-
working problems is available at [115].

2.3. ML Applied to Optical WDM Networks 31

For instance, the authors in [160] propose an ML system to estimate the qual-
ity of transmission of optical lightpaths based on simple parameters known before
deployment. Concisely, the authors predict whether the Bit Error Rate (BER) will
exceed a predefined threshold.

Shahkarami et al [161] propose a simple ML-powered anomaly detection system
for BER values in optical networks that trades-off model complexity and monitoring
details. Moreover, the previously described works from Mo et al [141] and Gutter-
man et al [142] address the detection of power excursions in ROADMs, specially
when adding new wavelengths.

Similarly, the authors of [162] propose an ML estimator for the Signal To Noise
Ratio (SNR) of networks. Indeed, the system is conceived as a learning system intro-
duced between brownfield and greenfield planning to help users reducing SNR by
design.

The authors of [163] develop the VENTURE system to monitor and optimize op-
tical networks. The system is supported by traffic prediction to optimize overprovi-
sioned resources, specially optical transponders. In the same line, the previous work
from Yu et al [139] uses DNNs to predict and optimize the assignment of resources
within a datacenter optical network.

Nevertheless, in [164], its authors review some of the major risks and problems
arising from the incorrect application of ML to optical networks in particular. Specif-
ically, authors show the risk of overestimating performance gain, specially when
neural networks deal with Pseudo-Random Bit Sequences (PRBS) or other types of ran-
dom sequences. Particularly the authors raise concerns regarding reproducibility of
such experiments and state the importance of transparency in this line of research.

Routing and Wavelength Allocation Problem

Routing and Wavelength Allocation (RWA) is the algorithm for mapping traffic de-
mands to routes and wavelenghts (i.e. lightpaths). RWA and similar problems have
been solved by complex Integer Linear Programming (ILP) optimization formula-
tions, which provide costly but optimal numerical results [165].

However, the complexity introduced by these methods is usually translated in
terms of too long execution times, being completion times too long for large net-
works. In this light, many heuristic solutions have been proposed to provide faster
configurations at the expense of producing suboptimal results.

Other studies have addressed the RWA problem and similar ones from different
perspectives in order to propose a more efficient and less suboptimal solution. For
instance, in [166] the authors address the Optical Regenerator Placement (ORP) prob-
lem, similar to RWA using genetic algorithms. In detail, the authors re-state the ORP
problem and propose the genetic algorithm solution.

In their early work, Pointurier et al [167] propose an RL system that tackles the
routing part of the RWA problem. Concisely, the authors leverage the generalization
abilities of RL to select the most optimal route among a predefined set of them.
Wavelength assignment is assumed to follow a first fit strategy. Results show that

32 Chapter 2. State of The Art

FIGURE 2.2: Summary of the most prominent methods used to
address each of the problems surveyed.

the proposed solution can reduce the blocking probabilities with respect to other
methods.

Chen et al propose in [168] a self-learning routing protocol based on RL and DL
to provide routing and spectrum modulation assignment in the context of optical
networks. The solution trains a Deep Reinforcement learning solution called Q-
learning that learns a set of policies to apply to the network RMSA configuration
according to different key elements of the network, such as topology or spectrum
utilization. The authors claim to achieve a "significant reduction" in the blocking
probability obtained by the solution.

Finally, the authors in [169] review all basic concepts regarding Elastic Optical
Networks (EONs) and perform an extensive review on all available Routing and Spec-
trum Allocation (RSA) algorithms. RSA algorithms represent a more general case of
the specific RWA problems.

As a synopsis of this section, Figure 2.2 aggregates the distinct tools used to
tackle the problems surveyed. Such tools mainly come from AI and ML, but other
relevant tools are also included.

2.4 Conclusions and Progress Beyond the State of the

Art

Throughout this review, we have identified different gaps in the surveyed areas
which correspond to those parts we have contributed to with the work of this thesis.
Concisely the specific gaps we target on this thesis are the following:

2.4. Conclusions and Progress Beyond the State of the Art 33

1. Analysis datasets in the literature are not very large, only some few large
datasets; in Android malware we analyze from 100K applications to up to 1.3M
and propose scalable approaches that can work with even more data.

2. Meta-data from Android application markets has been considered, but has not
been analyzed in depth for the detection of malware. In Chapter 4 we propose
a detection scheme for malware based on meta-information.

3. We find and tackle unresolved issues regarding AV engines lack of consensus,
which are observed and analyzed in Chapter 5 along with the discovery and
verification of different behavioral patterns for engines.

4. We propose SignatureMiner to homogenize AV signatures and use it to inspect
classes and categories over a large dataset of them in Chapter 6. This way, we
propose a solution for the Name Inconsistencies problem. Furthermore, we use
the new consistent names to infer a categorization scheme for malware fami-
lies and propose a ML classifier that identifies Unknown malware families.

5. We find a lack of scalable and fast alternatives to detect application repackag-
ing at market scale, which is why we propose our approach: CloneSpot that
also relies on meta-data (Chapter 7).

6. There is a clear lack of labeled data and standardized datasets in the network-
ing field. Netgen is proposed to alleviate such problems. Using this tool, it
is possible to quickly generate traffic matrices and the solution for different
network problems. (Chapter 8)

7. Only some few networking problems have been addressed from an ML per-
spective; those that correspond to a classification/regression problem. We
propose in Chapter 8 an alternative methodology to emulate ILP solutions of
RWA, which is a perfect example of non-straightforward classification/regression
problem.

35

Chapter 3

Methodology and Tools

In this chapter, we revise the main methods and technologies utilized along the
work in this thesis, specially regarding AI and ML technologies. Artificial Intelli-
gence is a very broad discipline that comprises algorithms, technologies and rou-
tines which attempt to provision a computer (or any other device) with some sort of
intelligence, typically for narrow problem solving. Strictly speaking, current AI is
aimed towards enhancing machines’ abilities to perform specific tasks rather than
obtaining what is known as Artificial General Intelligence (AGI) [170].

Through this chapter, we initially perform a brief review on data mining algo-
rithms and techniques in Section 3.1, to continue with an overview of the main al-
gorithms and issues regarding ML in Section 3.2 as well as other relevant statistical
methods in Section 3.3. Finally, we conclude the chapter in Section 2.4 with a brief
recap and overview of the elements in the chapter.

36 Chapter 3. Methodology and Tools

3.1 Data Mining

Data Mining [171] consists on the automatic extraction of patterns from data in
any form that has evolved from the well-established field of Knowledge Discovery
in Databases (KDD). In general, any procedure that extracts valuable information
from available data, not only in databases, but also in text (text mining) or the Web
(web mining) among others is considered data mining.

At present, data mining involves any process aimed at understanding and ana-
lyzing data collections with unknown or nonexistent structure coming from differ-
ent sources. There are many resources and procedures to label and categorize data
mining. In this chapter, we will target data mining as the ability of extracting infor-
mation from data, considering other fields such as Machine Learning outside of the
Data Mining domain.

3.1.1 Distances and Item Similarity

Distance metrics are frequently useful to compare two or more elements in a quanti-
tative manner, that is, how close they are. Strictly speaking, a distance inside a space
of points, that receives as input a pair of points x and y from that space, is a function
d(x, y) produces a real number. Such number is non-negative, zero only in case both
points are identical (x = y), equal to the symmetrical distance (d(x, y) = d(y, x)) and
satisfies the well-known triangle inequality:

d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z (3.1)

that intuitively indicates that the distance metric has to be the length of the short-
est path between the given points. Below follows a short summary of popular dis-
tance metrics and functions.

Euclidean Distance

Is the most straightforward and common definition of distance inside an n-dimensional
Euclidean space where points have n dimensions and for which distance is the ℓ2
norm:

d(~x,~y) =

√

n

∑
i=1

(xi yi)2 (3.2)

being ~x, ~y two points in the n-dimensional Euclidean space. The distances based
on different norms can also be used, and they receive the generic name of ℓr norms.
In this case r = 2 is the above-defined ℓ2 norm. All these come directly from the
algebraic Euclidean space definition and have been the most popular metrics for
numerical values.

3.1. Data Mining 37

Cosine Distance and Cosine Similarity

Cosine distance is a metric to estimate how far away two numerical vectors are. The
cosine distance measures the distance between two vectors in terms of the cosine of
the angle separating them. When translated to actual degrees or radians (by means
of the arc-cosine function) it becomes the angular distance.

Cosine distance is better known by its opposite metric, cosine similarity, that mea-
sures how similar two vectors are. Usually, similarity is left as a cosine value, so the
value is bounded between -1 and 1. Cosine similarity is computed as follows:

~CS(~a,~b) =
~a ·~b

‖a‖ × ‖b‖
(3.3)

Edit Distance

The edit distance is a special distance metric best suited to compare strings numer-
ically. Simply, the edit distance between two strings a and b is the smallest possible
number of character changes to be applied to string a so it becomes string b. For
instance,

ed(hello, world, hello, world!) = 1 (3.4)

The prior equation depicts and example of the edit distance. Basically, the dis-
tance between the two input texts is the trailing exclamation sign and, therefore, has
edit distance equal to one.

Jaccard Similarity

The Jaccard similarity is a similarity metric to compare itemsets, that is, groups of
elements of any type. In general, the Jaccard distance compares sets using union
and intersection of the elements inside both of them. The Jaccard similarity between
two sets of items A and B is defined as follows:

J(A, B) =
|A ∩ B|
|A ∪ B|

(3.5)

That is, the amount of items present in both sets (intersection) divided by all
items appearing in any of the two sets (union). The Jaccard similarity is bounded
between 0 and 1 and the more common items two sets have, the larger their Jaccard
similarity is.

3.1.2 Locality-Sensitive Hashing Methods

Hashing functions are one-way functions that transform an arbitrary length input
into a fixed-length string of bytes that cannot be inverted; that is, once hashed, the

38 Chapter 3. Methodology and Tools

function cannot be reverted back to the input content. Common Hash functions are
MD5 or SHA1. In addition to their well-known applications in security mechanisms
and protocols, hashing functions can be leveraged as very efficient indexers.

In this context, Locality-Sensitive Hashing methods comprise a set of techniques
that propitiate the aggregation and indexing of similar elements within large collec-
tions of data. Different techniques can be applied in different situations and the rest
of this section is devoted to summarize the most well-known.

Feature Hashing

Feature hashing [172], also known as the hashing trick is a dimensionality reduction
method that consists on applying hashing functions over the existing input features
of an ML problem. These features can be structured and numerical or even arbitrary
and unstructured, like free text.

The idea for the dimensionality reduction mechanism is to leverage collisions
in certain hashing methods to define feature buckets in which input features can be
mapped and consistently reduced to the number of buckets assigned to the algo-
rithm.

This way, large feature sets can be compressed into a fixed predefined length that
can be useful to reduce feature space in very large datasets following a methodolog-
ical approach.

Min-hashing

Min-Hashing is a very fast algorithm for grouping together similar sets of objects
of any type. It relies on the collisions of hash functions to group together similar
itemsets such that, for any two collections, their probability of collision is the Jaccard
similarity between them. Therefore, the more similar two items compared by min-
Hashing are, the more likely they will output the same min-Hash falling into the
same bucket.

A classical example of min-Hashing is that of text similarity. For similarity group-
ing, all the texts in a collection are split into several chunks of equal size k called
shingles. Hash functions are applied to each shingle in such a way that for each
text, a number of hashes (that can be converted to numbers) is obtained, of which
the minimum is selected as index and called the min-hash. Even when used with
large text corpora, once the min-hash is computed for each entry, the aggregation is
instantaneous, since similar elements just need to be grouped by min-hash.

3.1.3 Market Basket Analysis and Frequent Itemset Mining

Frequent Itemset Mining (best known as the Market Basket Analysis model) are a set
of techniques and algorithms that seek for patterns from data by associative obser-
vation. The market basket analysis term comes from the inspection of the elements

3.2. Machine Learning 39

bought together by any client inside a supermarket under the assumption that there
exist inherent relations within elements of many clients’ shopping lists.

For instance, it is very probable that someone who buys hot-dog bread will also
buy hot-dog sausages. While this insight is straightforward, continuing on this anal-
ysis, other interesting patterns may be that such a shopping list probably includes
ketchup or fries as well. From a business viewpoint, this information is useful to
understand and design how to better configure market shelves so people find most
commonly bought together items at a glance.

Rule Mining

Rule mining or association rule learning seeks finding patterns or rules that govern
the apparition of frequently common items, that is, rules capable of predicting the
probability of an item to appear given the presence of others. The most prominent
method for rule mining is the Apriori [173] algorithm. The apriori algorithm iter-
atively counts the number of times each set of items appears together following a
breath-first search strategy to mine itemsets efficiently. The following list summarizes
the most important metrics and values that association rules find and compute:

• Support: is computed as the frequency of an item with respect to the total.

Support(X) =
Frequency of item X

Total number of transactions
(3.6)

• Confidence: shows how frequently a certain rule appears within all detections
with respect to the observed behavior.

Con f .(X → Y) =
Support(X ∩ Y)

Support(X)
(3.7)

• Lift: computes the ratio of frequencies for each part of the rule if they were
independent from each other:

Li f t(X → Y) =
Support(X ∩ Y)

Support(X)× Support(Y)
(3.8)

A detailed explanation of distances, hashing methods and frequent itemset min-
ing along with other data mining methods and their specific details and demonstra-
tions may be found in [174].

3.2 Machine Learning

Machine Learning (ML) is one of the core enabling technologies of Artificial Intelli-
gence. Machine Learning algorithms are able to analyze past data records and dis-
cover patterns and structures that might be repetitive in the future. Provided it has

40 Chapter 3. Methodology and Tools

sufficient data, an ML algorithm is usually able to generalize and perform accurate
predictions over unseen data points.

ML tools are optimization systems that try to minimize the value of a given error
function, such as the logarithmic probability or similar. During this optimization,
which is called training, some weights or internal parameters are updated in the
models thereby enabling the prediction of future samples. As a result, machine
learning tools are very powerful mathematical algorithms capable of learning the
way to solve a problem inspired by past data observations. In this process, ML is
able to identify patterns from data and look for them in new data observations.

Generally, ML problems go through two phases (neglecting, for now, model val-
idation): (i) the training phase, when the algorithm is fed with training data to learn
patterns and adjust itself and (ii) the prediction phase, when the already trained model
is used to make predictions upon new data samples.

Usual tools for solving distance-based ML algorithm statements are well-known
mathematical optimizers, such as Stochastic Gradient descent, Newton’s method or Co-
ordinate Descent methods. In addition, many algorithms often have hyper-parameters,
which allow fine-tuning the algorithm to better suit an specific problem.

Machine learning algorithms are divided into two families: supervised and un-
supervised. While the former are yielding most ground-breaking results, they re-
quire labeled samples that the latter do not, making them less versatile. The book
in [175] provides a good overview of machine learning algorithms, specially feature
engineering and classical supervised and unsupervised algorithms.

3.2.1 Supervised Problems

Supervised machine learning problems are those where the expected output is known
at training time. All the input features or variables are coupled with one or more
output variables, called class or target. This target can be either discrete and limited
(classification) or continuous and unlimited (regression).

In this context, supervised ML algorithms are in charge of inferring a function
f (~x) from the training set ~x that maps inputs and outputs minimizing the error, that
is, making f (~x) y minimal. There are many different algorithms that tackle either
regression or classification, even though the formulations of their optimization tar-
gets have been different lately. A list of some of the most well-known and famous
classification and regression algorithms follows:

• Linear regression, where the relation between the input and the output is as-
sumed to be linear. For classification, the Logistic Regression model [176], is
based on a linear regression and adjusted with sigmoid curves for probability
estimation.

• Bayesian Networks [177], that take into account Bayes theorem to model output
data from input in a probabilistic manner.

• Gaussian processes, which compute Gaussian mixtures to approximate the ob-
served regression distribution.

3.2. Machine Learning 41

• K-Nearest-Neighbors [178], that looks for patterns among the closest points for
each datapoint.

• Support Vector Machines (SVM) [179], which develop different classifiers that
attempt to maximize the margin of the classification border to the closest dat-
apoints on each side.

• Decision Trees [180], that select the most separating features and compute thresh-
olds for them in order.

• Random Forests [181], that compute many naïve decision trees from random
subsamples of data and features and uses them to solve the classification prob-
lem by majority voting.

• Neural Networks [182] that are stacked collections of single neurons connected
by means of non-linear activation functions. Lately, Neural Network models
have been deepened, introducing more neurons and more layers in their ar-
chitectures which has enabled enormous breakthroughs.

Supervised algorithms are very good at solving estimation (regression) and cat-
egorization (classification) problems from a very simple problem statement. Never-
theless, they require labeled data (a.k.a. ground truth), which is a scarce resource.
Labeled data means that for every datapoint inside a collection there is an associated
label identifier that gives the output of the system for such datapoint, that can be
either an amount or a category.

For instance, consider a classification problem where the objective is to classify
whether a bank client will default a credit card based on past financial information:
there, the label is whether the client will default (yes class) or not (no class) and
any classifier should be trained with data points labeled by both yes and no classes.
The previous example is a binary classification, notwithstanding that most machine
learning algorithms provide support for multi-class problems.

In addition, ground truth is usually employed to refer to labeled data that is com-
pletely accurate, frequently by external validation. In short, ground truth is the
inherent information associated to some observational data which can be available,
for example in a collection of suspicious URLs that have been manually inspected
and tagged as dangerous, or not, like the collection of user likes suggesting certain
preferences of users but do not match to their exact preferences.

3.2.2 Unsupervised Problems

Unsupervised machine learning problems address the organization and structuring of
unlabeled data collections lacking ground truth. An unsupervised ML algorithm
attempts to derive some structure, category or clustering scheme by looking at input
features only. In this case, algorithms are in charge of inferring boundaries within
datapoints that can separate observations to meaningful classes.

42 Chapter 3. Methodology and Tools

The most typical case of unsupervised learning problem is clustering, which given
a collection of features organizes them in groups according to some criteria, usually
distance. Some specific examples are K-means or hierarchical clustering [183].

The K-means clustering algorithm initially defines K randomly picked cluster
centroids, which are the center points for each of the K clusters to be computed. Each
point is assigned a group according to its closest centroid and afterwards centroids
are recomputed by averaging the center among all newly assigned points in the
cluster. This process is repeated until no reassignment is performed.

In the case of hierarchical clustering, pairwise distances of all elements are com-
puted and the closest points are assigned to the same cluster. Then, the process
is repeated until all points get assigned to a single group, typically conforming a
dendrogram that displays closer elements together and connected to the rest hierar-
chically according to their group-wise average distances.

Other interesting unsupervised method is Principal Component Analysis (PCA),
which is capable of reducing the dimensionality of a feature set by rearranging its
dimensions into a new algorithmic base. Since this algorithm is typically used in
feature reduction scenarios, it will be described in the corresponding section below.

Similarly, Deep Learning is usually considered an unsupervised pre-training phase
given the ability of DNNs to non-linearly transform input features into new and
richer features that ease the classification task, sometimes without the need of labels.

3.2.3 Machine Learning Workflow

Data Separation: Train and Test

One of the key indicators of any type of ML algorithm is their generalization ability,
that is, whether a given model is capable of predicting completely unseen samples
correctly. To quantify this and the model predictive power, any ML workflow starts
by dividing all data in at least two sets: train and test. Train data is used for model
estimation whereas test data is used to check a model’s generalization ability by
comparing its predictions with the ground truth labels. Despite this process is also
performed over train data, the test set is more relevant since its data has never been
seen by the model and can better assess its response to completely new prediction
cases.

When the resulting model is very good in the train set but performs poorly on
the test set, it is said that such model is overfitting, that is, memorizing all training ex-
amples instead of learning patterns and generalizing from them. The reader should
note that a model that exclusively learns all training examples by heart will not be
able to generalize and thus will show poor performance.

Model Validation and Tuning

For robustness, data can be split into more chunks and combined differently to pro-
duce models trained and tested by different datasets. One way of implementing

3.2. Machine Learning 43

this strategy is by using K-fold cross-validation, where data is split into K chunks to
train and test K different models over different iterations being the test set a differ-
ent chunk each time. Using cross-validation yields more robust results against the
random variation arisen from the partitioning between test and train data.

In addition, cross-validation can be used for hyper-parameter tuning: In order to fit
the most appropriate hyper-parameters to a model, different value combinations are
tested over an entire cross-validation cycle each. At the end, the best combination
is selected and their results are verified through a new validation set, which would
be a third split of the data and cannot be used during the cross-validation hyper-
parameter tuning process.

Data Pre-processing

In any machine learning process, it is important to follow certain policies to ensure
the quality and optimality of the data analyzed. Let us define pre-processing as the
set of actions that convert a raw dataset into an ML-ready dataset, containing clean,
normalized and numerical fields.

The first step is to curate data, deal with missing and incoherent values and en-
sure the correct management of the different events that may arise during the anal-
ysis. Moreover, data can be normalized to facilitate training, specially for distance-
based algorithms like logistic regression or SVMs.

Normalization consists on scaling all the values in the dataset consistently fol-
lowing some predefined criteria over the training set. Common normalization schemes
are min-max normalization, where the data is scaled to fit in the value range of the
train set and standard normalization, where the data gets subtracted the mean and
divided by the standard deviation of the training set.

In addition, non-numerical features must be converted to their numeric approx-
imations to facilitate the classification or regression tasks. There exist different ap-
proaches for text-to-number mapping in the literature which can be separated into
two groups:

• Categories: they comprise textual features that comprise a closed set of words
or characters (a.k.a. categories) that identify a subset of elements within a
dataset. In general, these can be mapped through direct indexing, even though
one-hot encoding is preferred to prevent unintended biases. One-hot encoding
consists on converting a categorical feature with N categories into N different
binary features, one per category that are assigned value one when the cate-
gory they represent is the one from the current datapoint and zero otherwise.

• Free-text: Free text variables are more tricky to deal with, as the specific fea-
tures must be created from the text and may not represent the optimal subset.
In the literature there are many methods for this transformation, such as TF-
IDF, word-embeddings or the very recent and popular approach of word2Vec.

44 Chapter 3. Methodology and Tools

3.2.4 Machine Learning Performance Measurement

Most machine learning problems attempt to predict or estimate quantities, generally
approximating a real function y = f̂ (x) with an estimated function ŷ = f (x) that
attempts to replicate as best as possible the observed behavior. There are different
metrics to assess the performance of a machine learning model over different train,
test or validation sets. The following list summarizes some of the most popular
metrics:

• Regression: Scores measure the absolute difference between target and pre-
dicted values. The variables y and ŷ denote the real and the estimated outputs
respectively

– Mean Squared Error (MSE): Squared difference between target and pre-
diction:

MSE =
1
n

n

∑
i

(yi ŷi)
2 (3.9)

– Mean Absolute Error (MAE): Absolute difference between target and
prediction:

MAE =
1
n

n

∑
i

|yi ŷi| (3.10)

– Root Mean Squared Error (RMSE): Root of the average squared differ-
ence between target and prediction:

RMSE =

√

1
n

n

∑
i

(yi ŷi)2 (3.11)

• Classification: In classification, it is useful to turn to a binary problem that has
a positive class and a negative one for illustration purposes. Given a binary
classification problem, each predicted sample must fall into one of the follow-
ing states: True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN). Table 3.1 depicts a confusion matrix of the classification task that
visually indicates which of these corresponds to each pair of actual and pre-
dicted value combinations.

– False Positive and Negative Rates (FPR and FPN): Amount of misclassi-
fication cases due to failures to correctly assign one class:

FPR =
FP

TN + FP
FNR =

FN
TP + FN

(3.12)

– Accuracy: The number of correctly classified samples against the total
number of classes. Accuracy is not robust and specially misguiding when
the number of positive and negative classes is unbalanced.

Acc =
TP + TN

TP + TN + FP + FN
(3.13)

3.2. Machine Learning 45

– F-score: F-Score trades-off precision, which indicates how many classes
labeled as positive are indeed positive, and recall, which measures how
many positive classes the model detects from all positive classes in the
real data.

Precision =
TP

TP + FP
(3.14)

Recall =
TP

TP + FN
(3.15)

F-score = 2 ×
Prec × Rec
Prec + Rec

(3.16)

– Multi-class F-score: When F-score is formulated for the Multi-class prob-
lem, precision and recall values are computed for each one-vs-all possible
combinations and averaged through classes, being the computation of the
F-score the same for the average metrics.

Precj =
cjj

∑k cjk
Prec =

Precj

M
(3.17)

Recallj =
cjj

∑k ckj
Recall =

Recallj

M
(3.18)

F-score = 2 ×
Prec × Rec
Prec + Rec

(3.19)

where the total number of classes is assumed to be M, cj corresponds
to the number of elements assigned to class j and cjk is the number of
elements from class k assigned to class j.

– Area Under the Curve (AuC): In any classification problem it is possible
to create two types of curves by using different sets of hyper-parameters,
typically decision thresholds. Such curves can be ROC (Receiver Op-
erating Characteristic) that trades-off FPR and FNR and PR (Precision-
Recall) that trades-off precisely precision and recall. The intuition for
these curves is that the larger the area they cover the better a model is,
since the compared values typically behave oppositely. This way, the
Area under the Curve can be used as a metric of goodness of fit for a
model overall, indicating a good balance among the used hyper-parameter.

• Clustering: Due to the absence of Ground Truth in clustering algorithms, the
scoring systems are mere indicators of how homogeneously distributed result-
ing clusters are.

– Rand Index: measures the similarity between two data clusters. It esti-
mates how likely it is that two different items in the dataset fall into the
same cluster.

– Separation and compactness: In general, a good clustering scheme must
comply with two principles: clusters should be widely separated from
one another whilst elements inside each cluster should be as compact,
that is, as close together, as possible.

46 Chapter 3. Methodology and Tools

TABLE 3.1: Index of detection for any ML classification task

Predicted
Positive Negative

A
ct

u
al Positive TP FN

Negative FP TN

– Within Cluster Sum of Squares (WSS): this metric is defined as the sum
of all the deviations between each observation and their corresponding
cluster centroid. Usually, WSS is used as a measure for cluster compact-
ness, as smaller WSS indicate closer cluster points. However, this mea-
surement is highly influenced by the number of samples as it just sums
all deviations.

WSS = ∑
i

(xi x̄c)
2 (3.20)

These metrics are typically computed for test, train and validation sets separately
in order to provide different information per case. Test and validation scores can be
used to check model generalization capabilities as well as the performance to be
expected upon new datapoints. In addition, training scores can provide further in-
formation to help identifying concrete problems a model may show, like overfitting.

3.2.5 Feature Selection

In ML, available data are usually the key element for success. Algorithms and meth-
ods can improve and enhance results slightly, but quality training data is the core of
ML performance.

In fact, not all available features should always be used; sometimes the meaning-
ful input variables are small subsets or combinations of existing features whereas at
other times many more variables and their combinations are required to obtain ac-
curate results. In general, it is a good idea to keep the number of input features as
small as possible without losing accuracy, as larger feature models are more diffi-
cult to understand and manage. Moreover, the more variables a model considers,
the easier it falls into the well-known curse of dimensionality, where the excess of in-
put features makes the required number of observations grow very fast to obtain
acceptable performance.

In this light, feature selection comprises a a pre-modeling step to help determin-
ing the most relevant and useful variables in any learning task. Traditionally, feature
selection was a manual task undertaken by a human data scientist who inspects in-
put variables looking for relations, removes duplicated or redundant variables and
deals with inconsistencies. In general terms, there are three types of feature selection
methods:

• Filter methods: These score and rank variables according to their statistical
relation with the target variable. They are directly applied to data collections

3.2. Machine Learning 47

and before ML. For example, F-measure, Gini index or the Chi-squared test are
filter methods that produce a score for each input feature.

• Wrapper methods: These methods define a strategy to add or remove ranked
sets of features according to some criteria (i.e. filter method) and compute, for
each of them, the expected performance inside an ML context. This way, fea-
ture selection is performed by choosing the best performing subset of features
at the end of the process. Typical examples of wrapper methods are Forward-
Selection, Backward elimination or Recursive Feature Elimination (RFE).

• Embedded methods: These methods are integrated into ML algorithms and
perform implicit feature selection by introducing additional constraints in tar-
get optimization functions to prevent the use of redundant features. In other
words, to select features, these methods rely on the constrained training process
of their hosting ML optimization algorithms. Of these methods, regularization
is the most extended case.

Lately, feature selection has turned towards feature engineering, where the process
of data pre-processing is automated and features are transformed following pre-
defined methods and algorithms that can be directly introduced in the ML work-
flow. Principal Component Analysis (PCA) or Factor Analysis are typical cases of fea-
ture engineering.

PCA [184] is a feature engineering process that attempts to rearrange the input
features into a new orthogonal feature space. Each of the new features, called com-
ponents is sorted by their contribution to the overall variance of data, such that less
components are required to explain the same amount of variance with respect to
the initial feature set. To do this, PCA relies eigenvalue decomposition of the in-
put feature matrix to create a new algebraic basis along the direction of maximum
variability.

Furthermore, deep learning can be used as a process of feature engineering where
input features are combined and selected optimally to create better inputs to ML al-
gorithms. The most relevant example of unsupervised feature selection using DL
is the well-known autoencoder architecture, which intermediate layer contains less
features that input/output. In this setting, the optimization goal is to reduce the
difference between the input and output, that should be identical. This way, the
NN is forced to learn a non-linear compression scheme that reduces features in the
intermediate label without losing information.

3.2.6 Deep Learning

Deep learning (DL) or Deep Neural Networks (DNN) is the most relevant breakthrough
in Machine learning in the last decade [185]. Deep learning is rooted on Artificial
Neural Networks, which consist on layers of simple artificial neurons such as the
perceptron. Although neural networks date back from the early 50s, they were
abandoned during the AI winter due to their huge computational costs and data
requirements and have been retaken recently, as they achieved new milestones like
the stunning results in the MNIST ImageNet challenge [1].

48 Chapter 3. Methodology and Tools

In short, a deep learning algorithm stacks layers of neurons together. In the case
of DNN they are conceived with many more layers than simple NNs to create a deep
structure that combined with non-linear activation functions provides one of the
most accurate and versatile machine learning algorithms. Fig 3.1 depicts a sample
scheme of neural network showing a couple of hidden layers. In DNNs, the number
of layers is a typical hyper-parameter which requires adjustment.

FIGURE 3.1: Sample image of an Artificial Neural Network. DNNs
follow the same scheme but instead of having a single hidden layer,

they have many of them, each one containing many neurons.

The key issue in deep learning is its ability to successively transform input vari-
ables at every new layer until the classification task is easily separable by a simple
classifier. The produced output at each layer is a non-linear transformation of the
input that is more suitable for the next step.

Many researchers have developed more focused and task-oriented architectures,
such as Convolutional Neural Networks (image recognition), Recurrent Neural Networks
(Speech Recognition) or Long-Short Term Memory Neural Networks (Time series anal-
ysis). In fact, the architecture of a deep neural network is a broad field of research
with different proposals for different situations [186].

Deep Learning has still shortcomings. Any DNN requires a lot of data to pro-
duce generalizable results and is prone to overfitting, although techniques such as
dropout [187] have been effective in mitigating such effect. Dropout is a robustness
technique that randomly kills certain neuron connections at training time, in such

3.3. Other Statistical Methods 49

a way that different stages in the training phase have to deal with slightly modi-
fied versions of the NN architecture during each training phase. This way, learning
the entire dataset instead of patterns is harder for the network since training data is
randomly distributed over different subsets of networks.

Furthermore, training a deep neural network requires operating over billions of
parameters, which results in a computationally costly process. However, hardware
improvements in GPUs or the new TPUs proposed in [188] are improving the train-
ing phase and enabling better models. Together with the development of much
more efficient software and distributed computation models, DL can bring several
breakthroughs and advancements in many fields, like autonomous vehicles or real-
time translation.

3.3 Other Statistical Methods

3.3.1 Latent Variable Models

Latent Variable Models (LVM) are a family of statistical models that attempt to iden-
tify statistical relations and causality by means of assuming the existence some un-
observed latent or hidden variable. Such variable would explain the observable inter-
dependencies and relations of the existing variables. Even though latent variables
do not exist explicitly, they explain such relations and thus, exist implicitly.

In this light, Latent Variable Models provide a range of tools and methodologies
to hypothesize and confirm or deny whether latent variables exist, being possible in
some cases the estimation of such variable’s values.

Some examples of LVMs are mixture models which represent the presence of sub-
populations inside a broader population, factor analysis [189] that helps in describing
the variability among observed correlated variables in terms of latent variables that
are called factors or Structural Equation Models (SEM) [190] which is a set of mathe-
matical and statistical models along with computer algorithms that assess whether
hypothetical structures fit to a given data collection.

3.3.2 Graph Modeling

A graph is a data structure representation formed by points joined together by lines
connecting some of them according to the different relations among the different
entities represented by points. Concisely, graphs are mathematical structures that
model pairwise relations between different objects.

A graph is generally made up of nodes (previously points) that are connected
with other nodes by means of edges (the previous lines) following relational pat-
terns, that is, according to the relations existing between nodes. Graphs can be di-
rected, where each edge has a direction consistent with the relation between the
given pair of nodes or undirected, where edges simply denote an existing connec-
tion shared by both nodes. Graph theory facilitates the study of networks and the

50 Chapter 3. Methodology and Tools

relationships among its members by using different methods, such as distances, sim-
ilarities or adjacencies.

Another good feature regarding graphs is that they can be represented graphi-
cally to offer a very efficient visual representation of entity relations across a network
at a glance. Relations between graph entities (nodes) are generally modeled by dif-
ferent data structures such as the adjacency matrix which directly states pairwise
relation strength, or the incidence matrix that represents the number of times each
node is incident with each edge.

In addition, graph analysis facilitates several procedures easier to solve graphi-
cally rather than analytically, such as sub-graph computation, relationship exploita-
tion or connection exploration.

Graphs have been used broadly in the literature, specially to represent people
within organizations, like companies or Social Networks. In this context, graphs
can be used to infer communities within the full graph, using for instance the edge be-
tweeness [191] algorithm; or weighting the strength of relations in a Social Graph [192].

3.4 Summary and Conclusions

FIGURE 3.2: Summary of the main technologies used along the thesis
and their pairing with the different chapters and contributions

This chapter has presented the methods and tools employed to reach the differ-
ent contributions in the thesis. Most of the tools reviewed here are either used in
some proposal or needed for the understanding of the former. The interested reader
can refer to different books for further references, in data mining [174], machine

3.4. Summary and Conclusions 51

learning [175], deep learning [193], Structural Equation Modeling [194] or Graph
theory [195].

Overall, the most utilized methods reviewed here are ML and Data Mining, spe-
cially hashing techniques. Actually, some ML classifier or regressor is used in all
chapters, with the exception of Chapter 5, where SEM is used instead.

In Chapter 4, different ML classifiers, namely logistic regression, SVMs and ran-
dom forests are used along with filter and wrapper selection methods, namely Step-
AIC, Chi-Squared or the Gini index. Besides, feature hashing is used to reduce the
number of permission-related features. Indeed, the main goal of the chapter is de-
veloping malware detection classifiers using meta-data fields which are evaluated,
selected and improved through feature selection techniques.

Chapter 5 uses many of these tools, including rule and itemset mining, SEM
equations, correlations and PCA. All those tools are helpful to unveil AV engine re-
lationships. Correlation indicates engines of the follower kind, but specially its lack
points to eccentric engines. PCA shows the need of many engines for complete rep-
resentation of the dataset whereas rule mining unveils the existing causal relations
among followers. Finally, SEM tools are used to verify the prior discoveries and to
infer malware risk.

Concerning Chapter 6, min-hashing along with some standard text-processing
enables the good performance of SignatureMiner. Then, correlations and graph mod-
eling techniques are used for the analysis of malware families and two ML algo-
rithms, logistic regression and random forests, are leveraged to analyze each engine
contribution and to classify malware between harmful and adware.

Min-hashing is the core technology as well in Chapter 7 together with two dis-
tance metrics, namely edit distance and cosine similarity. In this chapter, min-
hashing is used to aggregate similar applications according to their meta-data and
distances are used to compute scores for each app-set.

Finally, in Chapter 8, the most relevant algorithms and tools used are ML algo-
rithms again, in this case logistic regression with embedded regularization (ℓ1 and
ℓ2) and a deep neural network. For completeness, Fig 3.2 visualizes all technologies
and their usage through this thesis.

53

Chapter 4

Android Meta-data for Malware
Detection

This chapter introduces our ML-based malware detection system which uses
meta-data as features and multi-scanner outputs as labels. The proposed feature
set, meta-data, is presented in Section 4.1 and the specific dataset and its contents
for this chapter are detailed in Section 4.2. In 4.3, different meta-data fields are an-
alyzed using ML and feature selection techniques to assess their predictive power
and Section 4.4 describes the specifics and experiments of the malware detection
system. Finally, Section 4.5 ends the chapter and highlights the most relevant con-
clusions.

4.1 Android Application Meta-data

Android is the prevalent mobile operating system in the market. Its share reaches
about 86% of the total [196], which makes it a target objective for many stakeholders,

54 Chapter 4. Android Meta-data for Malware Detection

both benign (manufacturers, users, developers...) and malicious (scammers, malver-
tisers....). As a result, the Android ecosystem is huge and diverse, including tons of
distinct system flavors, alternative application markets and millions of applications.

Within such ecosystem, the number of potential threats to device and user secu-
rity are limitless, whereas the ability to fight against them is much more restricted.
One of the main reasons for this is the difficulty to analyze and track every malware
sample published per day. Even under the best conditions, malware analysts cannot
keep up with the pace of malware developers, of more than 360, 000 new samples
daily [197].

Traditionally, suspicious samples are manually analyzed by experts, also known
as malware analysts, who have to decide whether an application sample is malicious
or not. This approach is not scalable and alternatives are needed to boost malware
detection, such as large-scale classification of application features. Other approaches
based on application code classification or automated inspection are useful, but easy
to evade by modern malware (See section 2.1 for more details).

In this light, Meta-data poses a great candidate for fast Android application anal-
ysis, as it includes data that cannot be easily hindered. Meta-data or meta-information
is the set of features containing relevant details about an application which are not
contained in the application itself. Instead of being part of the binary program,
meta-data provides informative details of application functions and features to the
user before installation. Although incomplete, the following list presents some of
the most relevant meta-information features within an Android application context:

• Application Title: The title given to the application.

• Application Category: The category each application is associated to, typi-
cally assigned by the application market.

• Application Description: Textual description of the application functionalities
and features. The quality of this description entirely depends on the developer
of the application.

• Application Developer: The name of the developer account responsible for
the application, which is managed by each distinct market.

• Upload Date: The date of upload of the application.

• Update Date: The date of the last application update.

• Version: The current version of the application.

• Number of Downloads: The total number of user downloads of the applica-
tion.

• Application Size: The total size of the application in bytes.

• Application Permissions: Items that identify the application capabilities in-
side a device.

4.2. Meta-data Collection for Malware Detection 55

Actually, many other features could be considered meta-data, as long as they de-
scribe intrinsic aspects of the application and are not part of the application code.
Meta-information exists, either explicitly or implicitly, for every single application.
For instance, application title, description or category are present even though they
are not reported. Hence, a very good indicator for application quality is its meta-
data: An application with extensive and detailed meta-data is often more trustwor-
thy than another lacking details and verbosity in descriptions.

As a result, legitimate developers have no problem in generating and maintain-
ing quality and updated meta-data, since application transparency attracts more
users. On the contrary, the meta-data of malware applications must hinder applica-
tion malicious practices to lure users into installation, even though malware devel-
opers may not spend time and effort in curating it. Hence, malware applications’
meta-data could display traits that differentiate malware from legitimate applica-
tions.

Furthermore, since meta-data is a requisite in many trustworthy markets most
applications must declare at least a subset of meta-data fields to appear visible for
victims. For all this, meta-data poses as a good indicator for malware detection,
even capable to detect zero-day malware that cannot be targeted by classical AV en-
gines. In this light, this chapter reviews and evaluates meta-information fields as
predictors for malware detection.

4.2 Meta-data Collection for Malware Detection

The collection of applications studied during this chapter has been collected from
Google Play store, the official Android market with one of the largest application
counts of over two million applications. The market is installed in Android mobile
devices and accessible via web [198]. In both places, each application is presented
by its meta-data and other applications recommended by the market.

Concisely, the collection comprises 118, 000 Android applications obtained from
Google Play during 2015 by the Tacyt cyber-intelligence tool. Tacyt is a platform
developed by Telefonica Security & Privacy which downloads applications from dif-
ferent application markets like Google Play and enriches them with external sources
of information, such as antivirus detections. Applications are served in a market-
like platform which enables users to perform application search and advanced an-
alytics. Tacyt information includes application packages, meta-data, other binary
details and even antivirus detections from different multi-scanner tools. This way,
Tacyt users are provided with a very large, rich and complete database of Android
applications they can use for analysis and malware prevention [199].

The main meta-data fields in this dataset are related to quantifiable information,
such as permissions, size, number of downloads, star ratings and, in some cases,
categorical items like developer or certificate issuer names from which numerical
reputations can be extracted. Besides, every application has been inspected for mal-
ware by different AV engines from multi-scanner tools provided by Tacyt. Table 4.1
provides the most prominent figures for the collection.

56 Chapter 4. Android Meta-data for Malware Detection

TABLE 4.1: Dataset overview: The applications have been collected
from Google Play in 2015.

Dataset element Dataset Figures
Number of applications 118, 846

Applications flagged as malware 69, 918
Number of single-detection applications 34, 025

Number of developers 53, 780
Number of certificate issuers 44, 244

Number of different permissions 21, 541
Number of intrinsic features 15

Number of social-related features 7
Number of reputation features 2

Features are classified into four different categories, namely intrinsic application
features, which are related to the pure application information, social-related features,
that indicate how popular an application is, entity-related features, which keep track
of developers and certificate issuers, and malware detection attributes. Below follows a
comprehensive description of the aforementioned feature categories. As a summary
at the end of this section, Table 4.2 gives the details of every feature in the dataset,
their description, type and specific category.

4.2.1 Intrinsic Application Features

Intrinsic application features are related to information about the application binary
(a.k.a APK from Android aPplication pacKage), including its size in bytes, the ap-
plication category, the number of images or files included, etc. In total, this group
comprises 14 features.

Application permissions are also included in this intrinsic category. Due to An-
droid Permission system, there are over 21K different permissions used by the ap-
plications in the dataset, being the most popular ones:

• android.permission.internet (found in 96.07% of apps)

• android.permission.access_network_state (91.15%)

• android.permission.read_external_storage (54.5%)

• android.permission.write_external_storage (54.12%)

• android.permission.read_phone_state (39.81%)

Permissions can be self-defined and, therefore, many permissions seldom appear
in the dataset more than once. Self-defined permissions in an Android application
refer to those applications created ad-hoc as a combination of already existing per-
missions to suit the specific needs of application developers.

4.2. Meta-data Collection for Malware Detection 57

Due to this open design, the potential one-hot encoding space size for permis-
sions is enormous. Indeed, out of the potential few tens of permissions defined by
the Android system, we are reporting up to 21K distinct permissions, which would
force 21K different features for classification. Instead, we will consider feature hash-
ing (see Section 3.1 for details) to reduce the number of permissions involved effi-
ciently.

4.2.2 Social-related Features

These are the result of social interaction within the market. The group contains
seven features collected from the opinions and votes of different Google Play users
that install applications and rate them according to their experience. Using this
information, Google Play weights results and offers an average vote and other in-
teresting figures of the quality of each application.

The rating system is formed by stars assigned once per user and application
which are reported separately in each application’s meta-data page. Therefore,
the features include the number of votes for each of the five possible scores, the
weighted average and the total number of votes per application.

4.2.3 Entity-related Features: Developers and Certificate Issuers

Google Play gives detailed information about application developer (name, email
address and website) and the issuer of the certificate (expedition or expiration dates,
name of issuer, subject names, etc). Most of these are categorical or textual values
that cannot be directly utilized but they might be transformed into numerical values.

In the dataset, there are around 53K different developer names and 44K certifi-
cate issuer names involved in the development and signature of more than 120K
applications, suggesting some developers and issuers are responsible for more than
one application. Typically, it is common for malware and goodware developers to
continue producing what they develop and hence, tracking their reputation scores
might be helpful to discriminate applications.

In this light and following [200], we have created two new features called devel-
operRep and issuerRep which are computed as the amount of applications declared
malware from the ones they have developed/signed. Thus, malware developers
will have this reputation very high whilst goodware developers should have it
close if not equal to zero. When used for classification, both metrics are computed
only using the training set, forcing new entities’ reputation, those appearing only in
test/validation sets, to zero.

The reader must note that Google Play allows self-signed applications, i.e. ap-
plications where the same entity develops and signs an application. However, their
reputations may change, as many issuers may not sign their own applications ex-
clusively and not all developers self-sign their applications.

58 Chapter 4. Android Meta-data for Malware Detection

4.2.4 Malware Detection Attributes

The Tacyt system provides a number of AV detections coming from multi-scanner
tools. For this chapter, these detections are considered in binary form (malware/goodware)
per different engine. Out of the near 120K applications approximately 69K have
been tagged as malware by at least one of the 61 engines in the multi-scanner tool
connected to Tacyt.

FIGURE 4.1: Histogram of AV detectors per malware application.

The detection pattern of these applications follows a zipf-like pattern, where
most malware applications account a single Antivirus (AV) detection and a small
amount of samples get a very large detection count. Particularly, the first quantile is
one, the median is two and the third quantile is four AV engines.

Fig. 4.1 depicts the histogram of application detection counts, where the zipf-like
shape is clear with most applications detected by a single engine (34K applications)
and an average detection of three. To mitigate differences arising from different
AV labeling schemes, we will consider these distribution quantiles as thresholds to
establish the ground truth for experiments.

4.2.5 Dataset Benchmark

To facilitate experiments and perform an exhaustive analysis, nine different datasets
have been created by randomly selecting different subsets of 50K applications with
certain constraints. For each different subset, two elements are modified: malware

4.3. Analysis of Meta-data Features in Legitimate and Malware Applications 59

percentage and AV threshold. Each set contains an amount of 2, 25 or 50% of mal-
ware applications and a threshold for malware of 1, 2 or 4 AVs following detection
count quantiles.

For example, the dataset containing 25% malware and the malware considera-
tion of 1 AV engine will be referred as (1-AV, 25%) and will contain 75% goodware
and 25% malware randomly selected among all applications whereby at least one
AV engine has detected malware. Exceptionally, the size of the (4-AV, 50%) dataset
contains roughly 36K application samples due to the lack of malware applications
detected by four AV engines or more.

These benchmarks are conceived to systematically analyze and compare differ-
ent detection patterns, algorithms and methodologies both in terms of malware sen-
sibility and amount. This way, we can evaluate how malware sensitivity (engine
detections) and amount affect different classification schemes.

4.3 Analysis of Meta-data Features in Legitimate and

Malware Applications

(a) Number of Downloads (b) Days in Google Play (c) Developer Reputation

FIGURE 4.2: Goodware/Malware boxplot comparison for three
features: Number of downloads, number of days since the application

was uploaded and developer reputation.

Some features will be more predictive than others, as noted in Fig. 4.2. In this
sample figure, three boxplots for malware/goodware classes are shown for three
features: the number of times the application has been downloaded from the market
(see Fig. 4.2(a)), the time the application has been in Google Play (see Fig. 4.2(b)) and
the developer reputation (see Fig. 4.2(c)).

The figure clearly elucidates that downloads will not be a very useful feature, as
no clear separation can be found, being both goodware and malware in a similar 25-
percentile (around 10) as well as 75-percentile (48), values (Fig. 4.2(a)). Concerning
the number of days in Google Play in Fig. 4.2(b), quantiles suggest a longer stay of
malware applications in the market, so malware apps could be indicated by those
remaining longer unchanged. Finally, the reputation boxplot in Fig. 4.2(c) does show
how developers generate either only malware or goodware, posing as a very nice
feature for classification.

60 Chapter 4. Android Meta-data for Malware Detection

TABLE 4.2: Overview of all the meta-data fields collected and
analyzed.

Name Description Value

Intrinsic features

1 size Application size in bytes Numeric
2 categoryName Assigned Google Play Category Categorical
3 ageInMarket Number of days the app has been on

Google Play
Numeric

4 lastSignatureUpdate Number of days from last app signa-
ture update

Numeric

5 timeFromCreation Number of days since the application
was developed

Numeric

6 lastUpdate Number of days since the application
was last updated

Numeric

7 certVal Number of days from which applica-
tion is valid

Numeric

8 oldestDateFile Number of days from the creation of
the oldest file in the application

Numeric

9 numPerm Total number of permissions required
by the application

Numeric

10 numFiles Total number of files the application
contains

Numeric

11 numImages Total number of images the applica-
tion contains

Numeric

12 numDownloads Total number of times the application
has been uploaded

Numeric

13 versionCode Google Play reported version of the
application

Numeric

14 f+number features Each of the different Feature hashes Numeric
Social-related features

15 totalVotes Total number of rating votes given to
the application

Numeric

16 OneStarRatingCont Number of one-star votes received Numeric
17 twoStarRatingCont Number of two-star votes received Numeric
18 threeStarRatingCont Number of three-star votes received Numeric
19 fourStarRatingCont Number of four-star votes received Numeric
20 fiveStarRatingCont Number of five-star votes received Numeric
21 meanStar weighted average rating of the appli-

cation
Numeric

Entity-related features

22 developerRep Developer reputation metric Numeric
23 issuerRep Issuer reputation metric Numeric
Label

L isMalware True if flagged by one or more AV en-
gines

Boolean

4.3. Analysis of Meta-data Features in Legitimate and Malware Applications 61

In what follows of this section, feature selection and engineering analysis is per-
formed over quantitative meta-data fields, aiming at understanding which variables
are more suitable for malware detection.

4.3.1 Predictive Power of Permissions

FIGURE 4.3: ROC curve for malware detection using different
numbers of feature a hashes over permissions. For this experiment no

other feature is considered.

Researchers have studied the permissions used by an application and their abil-
ity to detect malware in the past. For instance, the authors in [37] achieve F-score
values in the range of 0.6 to 0.8. However, we have previously shown how permis-
sions comprise a very sparse and high-dimensional matrix of up to 21K applications.
One-hot-encoding vectorial representation of these applications is going to be sparse
and have very little prediction power, so we use feature hashing to reduce dimen-
sionality (for feature hashing reference the reader can recall Section 3.1).

In our experiments, we try different hashing spaces, namely 32, 64, 128, 256,
512, 1024 and 2048 hashes, running a 10-fold cross-validation process to correctly
assess the feature amount vs performance trade-off. Using logistic regression, we
try different threshold values and compute the Area Under the Curve (AuC) for each
of the hashing spaces. Fig. 4.3 shows the ROC curves and the corresponding AuC
values using LR for the different number of hashes for the (4-AV, 50%) dataset. As

62 Chapter 4. Android Meta-data for Malware Detection

observed, the more hash functions used, the higher AuC achieved, in the range of
0.7 (for 256 hashes and above).

Specifically, 512 hashes shows a good trade-off between model performance and
the total number of features in the figure. For this specific case, average F-score is
0.675 whereas the area under PR curve (AuPR) is 0.685 in the LR case. For Random
Forest algorithm, the model achieves 0.653 and for SVM 0.659, both in terms of F-
score. In any case, experiments show that permissions alone are a good indicator
for malware.

4.3.2 Feature Importance and Selection: A Machine Learning Ap-

proach

Beginning at 512 permissions hashes, 35 Android-defined categories and the re-
maining 22 features, variable selection is performed to evaluate and rank features
attending to their predictive power. In addition, this feature selection sheds light on
meta-data features and how it differs with malware applications. This section cov-
ers two of the main types of feature selection methods: wrapper and filter methods
(details are available in Section 3.2).

Wrapper Methods: Step-AIC

Step-AIC performs feature selection by measuring variable importance using the
Akaike Information Criteria over a subset of features that are incremented with a dif-
ferent new variable at each step. Step-AIC is used to obtain the 8 most relevant
features over a random sample of applications, considering as malware any appli-
cation that accounts at least a single detection.

TABLE 4.3: This table summarizes the parameter of the model
computed by the step-AIC algorithm

Features Estimate z-score p-value
developerRep 7.34 9.26 1.93x10-20

timeFromCreation -4.48x10-02 -7.93 2.05x10-15

numPerm 1.14x10-01 4.28 1.79x10-5

issuerRep 3.08 3.68 2.24x10-4

cat.LIFESTYLE -8.35x10-01 -2.68 7.27x10-3

ageInMarket 5.40x10-04 1.67 9.42x10-2

oneStarRatingCont 3.71x10-05 1.65 9.69x10-2

cat.OTHER -4.55x10-01 -1.59 1.09x10-1

Table 4.3 depicts such top-8 features sorted by p-value, which indicates how
likely any feature is to be predictive by chance, being smaller p-values indicators
of high chance of causal relation.

Overall, entity related features, involving developer reputation (developerRep)
and certificate-issuer reputation (issuerRep) are the most relevant and, thus, the

4.3. Analysis of Meta-data Features in Legitimate and Malware Applications 63

most predictive ones. Anyway, developerRep has by far the smallest p-value, that
makes it the best possible malware predictor by itself.

Other interesting features involve the number of days in market (ageInMarket
and uploadDate), that show really small p-values. The amount of permissions each
application requires also ranks high within the resulting features. Interestingly, only
one star ratings are relevant for the step-AIC model, together with two specific cat-
egories: LIFESTYLE (cat.LIFESTYLE) and OTHER (cat.OTHER).

Step-AIC achieves almost 0.59 F-score in training and 0.39 in testing, which is
a low score, mainly driven by the small sample in the experiment. In fact, step-
AIC is a very demanding and greedy algorithm that makes difficult extending the
experiment over the entire quantitative dataset. For this same reason, permission
hashes were not considered for this experiment. Next sections will perform other
lightweight feature selection approaches to the entire dataset.

Filter Methods: Relevance Metrics

Throughout this section we measure different importance metrics, namely Pearson’s
Chi Squared, the Gain Ratio, the Information Gain and the Mean Decrease in Node Impu-
rity over each feature in the dataset and rank them to assess their performance.

FIGURE 4.4: This figure shows the different features sorted by average
score on the four studied filter methods, namely: Pearson Chi

Squared, Gain Ratio, Information Gain and Gini index.

Fig. 4.4 illustrates such scores, sorted by average. All metrics are normalized
with respect to the maximum value and computed over the (4-AV, 50%) dataset.
Again, it can be observed that developerRep feature is the most important feature in
the dataset in terms of all four metrics and followed closely by issuerRep.

64 Chapter4. Android Meta-datafor MalwareDetection

Itis worthnotingthatthesetworeputationsachievenearly0.8ontheirown,
sotheycouldbeselectedastheonlydetectionfeatures. Despite,consideringother
features wouldbeusefultoavoid missingdetectionsifthe malwaredeveloperor
issueraccountisnewandhasnoreputationvalueassociated.

Thenextfeaturesintermsofimportancearerelatedtodates,namelyageInMarket,
lastSignatureUpdate,timeForCreation,lastUpdateandcertVal,suggestingthatapplica-
tiontimeperiodsaredifferentfor malwareandgoodwaredevelopers. Addition-
ally,applicationelementcounts(numPerms,numFiles,numDownloads)presentsmall,
thoughslightlyrelevantimportancetodistinghishbetweenmalwareandgoodware.

Finally,permissionhashesandsocialratingsshowverylittleinfluenceindetect-
ing malware.Itisworthnotingthatthescorespresentedhavebeenscaledbythe
maximum(developerRep)and,thus,theresultsonlyimplytherearebettervariables
todetectmalwareotherthansocialrelatedfeaturesandpermissions.

4.4 MalwareDetection Model

4.4.1 Determining ModelSize

Modelsizeisquiteanimportantdecision mainlyduetothecostsassociatedfor
training,storingandmanaginglargermodels,nottomentionthewell-knownCurse
ofDimensionality

●

●

●

●

● ●

●

● ●

●
●

● ●
● ●

0.75

0.80

0.85

0.90

F
−

S
c
or

e

d
ev

el
o
p
er

R
e
p

is
s
u
er

R
e
p

a
g
eI

n
M
ar

k
et

l
as

t
Si

g
n
at

ur
e

U
p
d
at

e

ti
m
e
Fr

o
m

Cr
e
ati

o
n

l
as

t
U
p
d
at

e
c
er

t
Va

l
n
u

m
Pe

r
m

n
u

m
Fil

es

n
u

m
D
o

w
nl

o
a
ds

ve
rs

i
o
n

C
o
d
e

o
n
e

St
ar

R
ati

n
g

C
o
nt

f
2
1
6

si
z
e

m
e
a
n

St
ar

t
ot

al
Vo

t
es

f
6
7

t
hr

e
e

St
ar

R
ati

n
g

C
o
nt

t
w
o

St
ar

R
ati

n
g

C
o
nt

fi
ve

St
ar

R
ati

n
g

C
o
nt

fo
ur

St
ar

R
ati

n
g

C
o
nt

f
1
0
4

f
2
9
2

f
1
6
1

f
3
5
2

f
2
1
1

f
3
8
2

f
5
5

f
3
4
6

n
u

mI
m
a
g
es

f
1
1
3

f
4
5
6

f
1
8
7

f
1
7
6

f
3
8
4

f
4
3
8

f
1
9

f
2
8
2

f
2
2
8

f
4
5
0

f
1
0
5

f
3
8
5

f
4
6

f
1
2
9

f
2
6
2

f
5
1

f
2
2
2

f
2
1

f
2
4
7

f
4
1
4

f
3
1
0

f
3
4
8

f
2
7

f
2
7
2

f
2
7
7

f
2
9
3

f
1
9
9

f
2
2
0

f
9
3

f
4
9
1

● Random Forest Support Vector Machine Logistic Regression

.Ontheotherside,toosmallmodelscanbebiasedandaffectedby
subtlechangesin meta-data,damagingperformanceanditsdetectionabilities.In
sum,choosingtherightsizeforthe modelisrequiredasarobustnesspolicythat
worksevenagainstfeaturealteration,corruptionorabsence.

FIGURE4.5:F-scorevaluesfordifferentmethodsandfeaturesets.
Variablesaresortedinorderofadditiontothemodels.

4.4. Malware Detection Model 65

To better adjust models, we perform an experiment that consists on running ten-
fold cross-validation to compute the F-score values of models built step by step in-
crementing one variable at a time. The new variable is selected by ranking features
following the ordering in Fig. 4.4. For this experiment we use SVM, RF and LR
classification algorithms.

Fig. 4.5 shows the results of such experiment, where RF is the clear winner with
an F-score value of nearly 0.89 compared to 0.86 of LR and 0.87 of SVM. In general,
all three models show that few more variables can improve the model more than
reputations, showing a flat curve from approximately 15 features onwards.

This trend does show that the increase of the feature space and complexity be-
yond 15 features is useless, as no further gain is achieved. In fact, in the case of LR,
this threshold is reached at 6 variables. Accordingly, we set the number of features
in the model to be the top 15 according to Fig. 4.4 ranking.

4.4.2 Solution Modeling and Results

Models are trained and tested over the benchmark datasets, using only their top-15
features, namely: developerRep, issuerRep, ageInMarket, lastSignatureUpdate, timeFor-
Creation, lastUpdate, certVal, numPerm, numFiles, numDownloads, versionCode, oneS-
tarRatingCont, f216, size and meanStar. Table 4.4 shows the training/test F-score,
precision and recall values for each dataset and ML model.

Indeed, table results show that RF performs slightly better than the rest while
the overall performance increases when the amount of malware in the set increases,
showing the best results when malware and goodware are balanced. Actually, in
most 2%-malware cases, the difference between train and test error suggests gener-
alized overfitting.

Furthermore, the algorithms perform best at identifying those malware applica-
tions tagged by several AV engines, which suggests that either low detection count
malware samples are not always malware or that the meta-data is more predictive
when more AV engines agree on their detection. In addition, the permissions-only
approach is clearly inferior to this system, that does not use almost any permission
hash.

4.4.3 Robustness of the Models

One of the potential weaknesses of this approach is the possibility that issuers and
developers use new accounts to reduce their reputation and avoid detection. How-
ever, reputations are not the only good features for detection and, therefore, the pro-
posed model could detect malware samples coming from a good reputation account
since the classifiers are built using more than these two variables.

Indeed, the proposed 15 features represent a very good trade-off, being more
unnecessary, as demonstrated by the flat behavior of Fig. 4.4. Despite, no less fea-
tures should be selected either, since many of them contribute to the redundancy
required to make the system robust. This is very important, specially for cases when

66 Chapter 4. Android Meta-data for Malware Detection

TABLE 4.4: Performance metrics of the algorithms for each dataset in
the benchmark.

Logistic Regression (train/test)
Malware NDet F-score Precision Recall

2% 1 0.82/0.1 0.76/0.06 0.89/0.24
25% 1 0.89/0.57 0.87/0.46 0.91/0.73
50% 1 0.93/0.79 0.94/0.82 0.93/0.77
2% 2 0.8/0.18 0.74/0.12 0.88/0.33
25% 2 0.9/0.68 0.89/0.59 0.9/0.79
50% 2 0.94/0.82 0.95/0.78 0.93/0.86
2% 4 0.81/0.27 0.75/0.19 0.89/0.47
25% 4 0.91/0.73 0.9/0.65 0.91/0.83
50% 4 0.95/0.84 0.97/0.79 0.94/0.89

Suport Vector Machine (train/test)
Malware NDet F-score Precision Recall

2% 1 0.85/0.08 0.76/0.05 0.96/0.23
25% 1 0.93/0.68 0.92/0.69 0.93/0.67
50% 1 0.96/0.82 0.96/0.87 0.95/0.77
2% 2 0.82/0.16 0.72/0.1 0.95/0.35
25% 2 0.93/0.73 0.93/0.7 0.93/0.76
50% 2 0.96/0.84 0.97/0.9 0.94/0.8
2% 4 0.81/0.26 0.7/0.17 0.97/0.54
25% 4 0.94/0.77 0.94/0.72 0.93/0.83
50% 4 0.96/0.87 0.98/0.89 0.95/0.84

Random Forest (train/test)
Malware NDet F-score Precision Recall

2% 1 0.99/0.12 0.99/0.07 0.99/0.33
25% 1 0.99/0.73 0.99/0.7 0.99/0.77
50% 1 0.99/0.84 0.99/0.88 0.99/0.8
2% 2 0.99/0.22 0.99/0.15 0.99/0.46
25% 2 0.99/0.77 0.99/0.73 0.99/0.83
50% 2 0.99/0.87 0.99/0.89 0.99/0.86
2% 4 0.99/0.32 0.99/0.22 0.99/0.59
25% 4 0.99/0.81 0.99/0.76 0.99/0.87
50% 4 0.99/0.89 0.99/0.88 0.99/0.9

4.4. Malware Detection Model 67

some features are corrupted or unavailable, like for instance when the developer has
changed accounts.

For further illustration, Table 4.5 shows the F-score results of the RF algorithm
over different subsets of features, selected by a sliding window procedure. The first
column shows the same train/test F-score values as in Table 4.4 since both use the
same top-15 features. The second column shows the values for features from 3 to
17 in Fig. 4.4, which represent top-17 features without developerRep and issuerRep.
In this case and the following ones (5-19, 7-21 and 9-23) F-scores are worse than
before, but still reach an acceptable performance that drops once top-7 features are
not used.

TABLE 4.5: Random Forest F-score for different feature subsets based
on an incremental sliding window.

F-score Random Forest (train/test)
NDet 1-15 feats. 3-17 feats. 5-19 feats 7-21 feats 9-23 feats
1 AV 0.99/0.84 0.99/0.86 0.99/0.84 0.99/0.74 0.96/0.72
2 AV 0.99/0.87 0.99/0.87 0.99/0.86 0.99/0.79 0.96/0.75
4 AV 0.99/0.89 0.99/0.88 0.99/0.87 0.99/0.80 0.96/0.77

4.4.4 Performance and Computational Time

In the light of the obtained results, the proposed solution could be implemented as
an early detection system that rapidly inspects meta-data upon application upload
to any market. In this case, the time consumed by the system and specifically the de-
lays introduced are important, specially regarding the impact on market submission
systems.

To assess such impact, we conducted an experiment measuring train, test and
prediction times over an Intel Xeon E5-2630 server with 24 cores and 190 GB of
RAM memory. Results are displayed below and suggest that this system would be
fast and scalable:

• Logistic Regression:

– Prediction time: 0.1 µs

– Train and test time: 46 ms

– Train with Hyper-parameter tuning: 2 m 6 s

• Support Vector Machines:

– Prediction time: 16 ms

– Train and test time: 2.4 s

– Train with Hyper-parameter tuning: 8h 20m

• Random Forest:

68 Chapter 4. Android Meta-data for Malware Detection

– Prediction time: 32 µs

– Train and test time: 3.5 s

– Train with Hyper-parameter tuning: 47 m 32 s

Prediction times are fast for all models, even though SVMs are slightly slower.
Moreover, training times enable daily model computation, which would be enough
for model validity. As a result, the algorithm proposed in this section, that relies on
meta-data to detect malware is fast and scalable and could be applied satisfactorily
for market-scale malware detection.

4.5 Summary and Conclusions

For most developers, meta-data is important, as it presents application functional-
ities and features inside any Android market, where meta-data appears naturally
connected to their apps in order to give transparency to potential users.

Through this chapter, we have analyzed meta-data as a malware indicator and
applied it for malware detection. Early in Section 4.3, we have focused on the anal-
ysis of quantitative meta-data features to understand which ones are more related
to malware itself and how each of them behaves in malware and gooware. In fact,
it has been proved that developer and certificate issuer reputation are the most im-
portant features separating what is malware and what is not.

Then, Section 4.4 conducts an extensive experiment involving a collection of
benchmark datasets with different malware configurations and machine learning al-
gorithms. The aim has been to study the viability of using meta-data in a large-scale
malware detection system using detections from important multi-scanner vendors
as ground truth. Results have shown that such system is possible, robust, fast and
easily scalable. Moreover, permissions have been demonstrated not to be the most
efficient predictor.

In conclusion, this chapter has demonstrated and analyzed how meta-data can
be used for malware detection in the context of Android applications. Relying on
malware detections from different AV engines, we have proposed a ML system that
identifies malware with an 89% F-score using solely meta-data and can work fast at
market scale.

69

Chapter 5

Data-driven Interrelation Analysis of
AV engines

In the last chapter (Chapter 4), we performed ML-powered malware detection
using as ground truth a large list of multi-scanner detections. Solving such problem
unveiled that multi-scanner labels offer distrusted detection information due to the
disagreements among engines on what is malware and what is not. Indeed, one of
the most interesting and conflicting observations in the previous chapter is that no
single application is flagged as malware by every single AV engine, accounting the
mostly detected application for just 53 detections out of a total of 61. In fact, the
average number of detections in our application collection is 3.135.

In this light, this chapter investigates such discrepancies and relations of AV
engines from a data analytics perspective. Intuitively, AV engines should eventu-
ally agree on evident malware applications, even though our observations show
different behavior patterns not converging to this assumption. In this chapter, we
leverage different data analysis tools to understand these behaviors and identify AV
trends.

70 Chapter 5. Data-driven Interrelation Analysis of AV engines

Recall that whenever a malware engine detects a malware application, it returns
a detection signature containing some additional data, like last scan date or mal-
ware class identifier. Since such detections are not always consistent, they become
controversial and makes the identification of malware a non-trivial task. For com-
pleteness, we will include in the analysis any sample that has been tagged by at least
one AV engine.

For this chapter, we use an application collection containing 82, 866 multi-scanner
outputs coming from suspicious applications and provided by the same tool as in
previous Chapter 4: Tacyt (developed by Telefónica). In contrast to the previous
chapter, only AV engine detection reports accounting for a total of 259, 608 positive
detections with an average of 3.13 detections per application are considered. To pre-
serve privacy, AV engines have been renamed to AV1 to AV61 consistently along the
thesis.

First, we begin by describing the dataset and the process to extract its Detec-
tion matrix along with some insights in Section 5.1. Afterwards, in section 5.2, we
describe our initial hypothesis of follower and eccentric engines and look for verifica-
tion through the analysis of the detection matrix using PCA, correlations and rule
mining. Finally, we present in Section 5.3 a statistical approach based on latent vari-
able models to estimate the risk of a sample being malware. The chapter is finished
in Section 5.4 providing the most relevant conclusions.

5.1 Detection Matrix and Dataset Insights

FIGURE 5.1: Number of AV flags per application

5.1. Detection Matrix and Dataset Insights 71

Let A be an 82, 866 × 61 matrix which elements Aij ∈ {0, 1} are equal to 1 if
the ith app is considered malware by the jth engine and 0 otherwise. This matrix is
called the Detection Matrix of the collection and indicates which AVs have tagged
each application. Each of the rows in the detection matrix A is called the Detection
Vector of each application sample and is a one-hot-encoding vector of all the detections
any application sample may have.

The detection matrix is very sparse with roughly 5% non-zero entries. On aver-
age, each application is detected by 3.135 ± 3.46 engines, showing enormous fluctu-
ations that depend on each specific application. Above all, six engines (AV27, AV58,
AV7, AV2, AV30 and AV32) are the most active ones, with detection counts above
10, 000 applications.

Fig. 5.1 represents the the amount of applications for different numbers of de-
tections in matrix A. The data clearly follows a heavy-tail zipf distribution where
most malware applications are detected by a small number of AV engines and larger
counts rare. Indeed, single-detection applications account for a total of 38, 933 (46.9%),
almost half of the application collection. Interestingly, the lack of consensus is so
prominent that no single application has been detected by all the 61 engines, being
the highest detection count at 53 engines.

FIGURE 5.2: Activity of AV engines: Sorted AV engines by their
individual detection rate

In addition, Fig. 5.2 shows the AV activity histogram, where the number of de-
tections per engine is illustrated in relative terms. There, the most active engine
(AV27) performs more than 33, 975 exposures, which is 40% of the dataset. At the
same time, other engines are less active and do not reach even 50 application detec-
tions each (AV53 to AV38). The figure displays as well the five-number summary of
the number of uncoverings per engine.

72 Chapter 5. Data-driven Interrelation Analysis of AV engines

These figures raise a big dilemma, specially to malware analysts: While one or
two engines are detecting malware in a sample, there are as many as 59-60 that find
no harm in the analyzed application, which endangers the trustworthiness of the
prior positive detections. In fact, any detection could be considered enough to mark
a sample as malware, but in that case, the question arises: Why do the rest of engines
do not find any harm in these samples? To solve this, Section 5.2 will initially review
this insight and will analyze AV patterns and behaviors.

Furthermore, we assume two types of detections based on the previous observa-
tions: genuine and supported detections. Genuine detections correspond to lone de-
tections, those where an AV engine classifies something as malware on its own. On
the contrary, supported detections are those where some sort of agreement between
engines is shown.

5.2 Peer Relations among AV Engines

5.2.1 Followers and Eccentrics

AV engines perform detections according to certain policies and parameters de-
signed by their parent companies. Such policies are aimed to improve their de-
tection rates and better prevent malware in AV client devices. In spite of aiming to-
wards the common objective of fast and efficient detection of malware applications,
different engines follow different policies to target malware that usually translate in
different detection patterns.

Indeed, we identify two potential groups of AV engines that show completely
opposite behaviors: Followers and Eccentrics. Such groups aggregate the two main
trends we have discussed above:

• Follower engines usually perform detections paired with other engines, mean-
ing that samples detected by one follower engine, which would be a leading
engine, will easily have exposures from other followers as well. This pattern
implicitly gives peer support to follower engines: AV detections that are sup-
ported or ratified by other engines, even within a group, are more likely to be
indicating malware more accurately than non-supported detections. Follow-
ing the previous debate on engine patterns, the engines in this group would
mainly perform supported detections.

• Eccentric engines do exactly the opposite of followers. They show erratic pat-
terns that no other engine is supporting, hardly ever colliding with others in
their detections. The behavior in this group matches to those engines perform-
ing genuine detections.

These concepts are theoretical and have not been demonstrated yet. However,
through the rest of this section we will try to find traces of these patterns and ratify
the previous hypotheses from a data analysis perspective.

5.2. Peer Relations among AV Engines 73

5.2.2 Principal Component Analysis

PCA seeks for the highest variance direction within the dataset and projects all data
onto such direction. Then, it repeats the process with orthogonal directions for as
many directions as features within the dataset. These directions or linear combina-
tions of features are called Principal Components (PCs), and they typically summa-
rize the contributions of different variables to the dataset variance (See Section 3.2
for reference).

Using PCA, it is possible to determine the amount of variability in engine de-
tection, as the smaller the variability, the easier for PCA to reduce dimensions and
therefore remove AV engines, which in turn points to irrelevant or redundant en-
gines.

FIGURE 5.3: Contribution of principal components to variance. The
variance depicted is cumulative, so posterior components include

previous contributions.

Fig. 5.3 shows the percentage of cumulative variance captured by each one of the
principal components. As shown, 50% of the variance in the dataset is explained
with the first 13 PCs, 75% of the variance is explained with the first 29 PCs whilst
reaching 95% of variance explainability requires up to 48 PCs.

As a result, engines seem not to be so alike, which forces a dimensionality-
reduction algorithm such as PCA to compress 61 dimensions into 48 potential ones.
This demonstrates just the contrary of expectations: AV engines are not redundant,
as they do not detect the same applications and, therefore, there are not many en-
gines providing the same detection information that could be potentially removed.

74 Chapter 5. Data-driven Interrelation Analysis of AV engines

5.2.3 Correlation between Engines

Since the goal of all AV engines is aligned, AV detections should be highly corre-
lated, specially in those cases of real malware. Nonetheless, correlation analysis
manifests the exact opposite: the correlation matrix of the detection matrix A shows
that AV engines are weakly correlated in general terms, except for some small sub-
sets of engines, which potentially indicate follower-like behaviors.

FIGURE 5.4: Pairwise correlations of all AV engines. Boxes represent
standard 1st, 2nd and 3rd quantiles.

Fig. 5.4 depicts the correlation boxplots for each AV engine with respect to all
their peers, which contains most boxes nearby zero, indicating weak or negligible
correlation values albeit there is a significant number of outlier correlation pairs.
Such outliers appear strongly correlated with others, reaching values over 0.8, which
indicates very similar detection patterns.

Looking at the groups of correlated AVs, the most relevant one contains AV1,
AV15, AV31 and AV42 with a very strong correlation one another. Furthermore,
other AVs that show noticeable correlations as well are AV3, AV45, AV39 or AV11.

In opposition, other engines retain no correlation to any other, not even negative.
These seem to perform detections completely independent of the rest, like AV17
or AV26. In Fig. 5.4 they are easily identifiable through their flat boxplot around
zero and almost no variability. The most obvious ones are AV17 and AV26, which
indicate a purely eccentric behavior, but some others, like AV2, AV38 or AV19 show
very small correlation value distributions as well, with values relatively close to
zero.

Additionally, Fig. 5.5 depicts the most relevant engines for the correlation analy-
sis on a one to one basis. It is worth noting the large correlation evinced in all cases

5.2. Peer Relations among AV Engines 75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

AV34

AV3

AV15

AV42

AV46

AV1

AV31

AV54

AV45

AV29

AV6

AV41

AV39

AV25

AV44

AV11

AV49

AV22

AV40

AV24

AV30

AV60

AV28

AV55

AV48

AV52

AV32

AV35

AV17

AV26

AV34

AV3

AV15

AV42

AV46

AV1

AV31

AV54

AV45

AV29

AV6

AV41

AV39

AV25

AV44

AV11

AV49

AV22

AV40

AV24

AV30

AV60

AV28

AV55

AV48

AV52

AV32

AV35

AV17

AV26

FIGURE 5.5: Most relevant correlations between AV engines: The top
ones are the most correlated ones while the two bottom ones are the

pure eccentrics

among AV1, AV15, AV31 and AV42 as well as the strong correlations between AV3
and AV34. Other AVs, such as AV46, AV54 or AV45 are also highly correlated to the
latter group. Finally, AV17 and AV26 at the bottom of the graph show themselves as
pure eccentrics with a correlation close to zero with the rest.

5.2.4 Association Rule Learning

Association Rule Mining can help identifying AV engines that frequently appear
together revealing whether they are followers or leaders, that is, follower-like engines
that lead the detections (for reference regarding rule mining, see Section 3.1). We
leverage the R package arules [201] for this experiment.

Indeed, Table 5.1 shows a list of the most relevant association rules sorted by
support. For instance, rule no. 1 {AV58} → {AV27} reveals that, when AV58 de-
tects a malware application (which occurs in 21.3% of the cases), then 62% of the
times AV27 tags the same application as malware too. The opposite occurs in 52%
of the cases as indicated in rule no. 2.

Support values are not so high, as they correspond to the joint frequency of all

76 Chapter 5. Data-driven Interrelation Analysis of AV engines

TABLE 5.1: This table shows the 40 most relevant association rules for
AV engines.

No lhs rhs support conf. No lhs rhs support conf.

1 AV58 AV27 0.213 0.620 21 AV58 AV56 0.096 0.280
2 AV27 AV58 0.213 0.520 22 AV28,AV58 AV27 0.087 0.884
3 AV7 AV27 0.203 0.850 23 AV27,AV28 AV58 0.087 0.801
4 AV27 AV7 0.203 0.496 24 AV27,AV58 AV28 0.087 0.408
5 AV32 AV27 0.123 0.858 25 AV32 AV58 0.086 0.599
6 AV27 AV32 0.123 0.301 26 AV58 AV32 0.086 0.250
7 AV43 AV27 0.118 0.660 27 AV43 AV58 0.083 0.467
8 AV27 AV43 0.118 0.288 28 AV56,AV58 AV27 0.082 0.854
9 AV7 AV58 0.117 0.490 29 AV27,AV56 AV58 0.082 0.733
10 AV58 AV7 0.117 0.341 30 AV27,AV58 AV56 0.082 0.386
11 AV56 AV27 0.112 0.712 31 AV49 AV27 0.081 0.926
12 AV27 AV56 0.112 0.274 32 AV32,AV58 AV27 0.077 0.895
13 AV28 AV27 0.108 0.784 33 AV27,AV32 AV58 0.077 0.625
14 AV27 AV28 0.108 0.265 34 AV27,AV58 AV32 0.077 0.361
15 AV58,AV7 AV27 0.106 0.908 35 AV32 AV7 0.075 0.525
16 AV27,AV7 AV58 0.106 0.523 36 AV7 AV32 0.075 0.315
17 AV27,AV58 AV7 0.106 0.499 37 AV56 AV7 0.074 0.470
18 AV28 AV58 0.098 0.710 38 AV7 AV56 0.074 0.309
19 AV58 AV28 0.098 0.286 39 AV56 AV32 0.074 0.469
20 AV56 AV58 0.096 0.611 40 AV32 AV56 0.074 0.515

AV engines performing the same detection, which we have shown to be low in this
dataset. In fact, top joint detections account for roughly over 20% of the samples in
the dataset. Nevertheless, confidence is high, specially in top rules, which suggests
there are several engines showing agreements in a large amount of detections.

Actually, Fig. 5.6 illustrates the graph obtained when using the support of the
obtained rules as adjacency matrix. The graph shows two clearly defined groups:
The one formed by AV1, AV15, AV25, AV31 and AV42 and the other one containing
the rest. The smaller group seems to comprise highly correlated AV engines that also
appear frequently enough together in the detections. They are related with all the
rest in the group, but it is clear in the graph that they they follow a slightly different
trend with respect to them. On the other side, the larger group seems to be a bunch
of AV engines that detect altogether much more frequently and that follows in some
way the engines in the previous group.

This clearly shows that the follower group is a broad scope group that includes
both leader and follower engines. Indeed, this graph strengthens the previous hy-
pothesis whilst indicating the existence of an additional smaller group that could
be leading detections. The other engines appear pure followers, that is, those who
look for some trendy engine to copy, possibly in the leader group. Furthermore,
the extracted rules completely lack those engines identified as eccentrics in Fig 5.4
according to their correlations.

5.3. Latent Variable Modeling for Malware Risk Assessment 77

FIGURE 5.6: AV engine follower graph computed from the rules
computed by the apriori algorithm. The support of rules is used as

adjacency matrix of the graph.

5.3 Latent Variable Modeling for Malware Risk Assess-

ment

So far, we have exposed different AV behaviors when detecting malware. Specifi-
cally, we have found three types of AV engines attending to their detection patterns:
Leaders, followers and eccentrics. Although some AV engines are correlated, most
of them are not and therefore, there are severe discrepancies to determine engine
to be trusted in malware decisions. Whenever a malware sample is detected by a
majority of engines it should be considered malware; despite, such situation seems
unlikely in the light of previous Fig. 5.1 that associated the majority of samples with
one or two detections at most.

In the literature, any predetermined number of AV detections is considered a

78 Chapter 5. Data-driven Interrelation Analysis of AV engines

good enough criterion to assign the malware label, such as five or more. Nonethe-
less, the problem is that even though five engines are saying that a sample is mal-
ware, the remaining 56 engines are stating it is not. Besides, depending on the spe-
cific five AVs triggering detection, the confidence on the final decision could be af-
fected, as we have shown many AV engines just follow others.

In this light, this section focuses on defining a new metric to provide a malwar-
ish score to each application, considering the underlying relations of engines and
their disagreements. To approach this metric, we leverage the well-known Latent
Variable Models (LVMs) to assess actual malware risk. There are many probabilis-
tic methodologies to address LVMs and we have selected Structural Equation Models
(SEM) given their simplicity and extended use. SEMs model relations assuming a
linear relation where the latent variable is the outcome:

SEM =
61

∑
i=1

αi × XAVi (5.1)

where the observed variables denoting the AV votes on an application (XAVi) con-
tribute to the latent Zsem malware variable; coefficients αi are fitted by the algorithm
using the available data. The R library lavaan [202] has been used to fit the coef-
ficients and function parameters. The results of this experiment are shown in Ta-
ble 5.2.

TABLE 5.2: SEM Coefficients for each AV engine in the dataset.

XAVi αi XAVi Coeff. αi XAVi Coeff. αi

AV1 1.000 AV22 0.297 AV43 0.353
AV2 0.039 AV23 0.119 AV44 0.012
AV3 0.017 AV24 0.336 AV45 0.024
AV4 0.284 AV25 0.956 AV46 0.016
AV5 0.035 AV26 0.000 AV47 0.203
AV6 0.010 AV27 0.287 AV48 0.125
AV7 0.241 AV28 0.389 AV49 0.446
AV8 0.023 AV29 0.387 AV50 0.002
AV9 0.062 AV30 0.984 AV51 0.003

AV10 0.067 AV31 1.025 AV52 0.118
AV11 0.498 AV32 0.341 AV53 0.007
AV12 0.078 AV33 0.030 AV54 0.019
AV13 0.065 AV34 0.017 AV55 0.036
AV14 0.175 AV35 0.110 AV56 0.201
AV15 1.029 AV36 0.107 AV57 0.008
AV16 0.064 AV37 0.017 AV58 0.205
AV17 0.000 AV38 0.001 AV59 0.013
AV18 0.064 AV39 0.367 AV60 0.018
AV19 0.009 AV40 0.256 AV61 0.017
AV20 0.001 AV41 0.023
AV21 0.172 AV42 1.018

In the table, coefficients range between 0.001 to 1.029. Interestingly, eccentric

5.3. Latent Variable Modeling for Malware Risk Assessment 79

engines match those engines the model assigns negligible weights to, follower en-
gines are scored with weights in the range 0.15 to 0.4 and all the highest weights are
assigned exactly to the set of leader engines discovered above (AV1, AV15, AV25,
AV30, AV31 and AV42).

Additionally, those engines with smaller detection counts (below 100 samples
tagged) get smaller α coefficient values, as they are lacking too many detections to
be considered as important as other more active engines.

To better estimate malware probability, we constrain Zsem score between 0 and 1
into a probabilistic value by using the well known logistic (aka logit) function:

Zsem =
p

1 p
⇒ p =

eZsem

1 + eZsem
(5.2)

FIGURE 5.7: Logistic Zsem as opposed to AVCount.

Fig. 5.7 shows a scatter plot of Zsem values against the number of AVs that tagged
each apk as malware (AV count) for the total 82K apps. Clearly, applications iden-
tified as malware by many AVs also typically score high in Zsem and vice versa,
showing 0.92 correlation between AV count and Zsem. Indeed, for AVCounts larger
than 10, the probability of true malware is greater than 0.8. While majority voting
may not be the best reference to compare to is still a good proxy, since is the only
available and should be correlated: the more AV engines detect a threat, the more
likely such threat is real.

80 Chapter 5. Data-driven Interrelation Analysis of AV engines

FIGURE 5.8: Boxplot of Zsem scores for aggregated detection counts

Similarly, Fig. 5.8 shows ZSEM as a function of constrained AVCounts, showing
the trend for each AVCount or group of them. Actually, the figure clearly shows
an increasing trend where probability values are likely to be incremented as the
AVCount is higher. However, we can observe that even in cases of large AVCount,
the score can be low and vice versa, as noted by the outliers shown in both parts of
the figure.

As an example, consider application number 2, 257, that has 73% probability of
being malware and has been spotted by a single powerful engine: AV30. This appli-
cation scores higher than almost everyone accounting for two detections and many
than those with three-four detections. Oppositely, application 69, 284 has a similar
Zsem value of 73% but has been flagged by three less powerful AV engines, namely:
AV49, AV24 and AV56 (see Table 5.2).

5.4 Summary and Conclusions

Through the inspection of malware detections performed by different engines over a
collection for 82, 866 application samples, this chapter has investigated the different
types and inter-relations of AV engines using the detection matrix A. Indeed, we ini-
tially advanced the existence of follower and eccentric engines, that show completely
opposite detection patterns. These types of AV engines have been demonstrated
empirically through data-driven analysis of malware detections.

In fact, AV engines’ uncoverings have been observed surprisingly uncorrelated,
suggesting the counter-intuitive idea that many engines are needed to justify the en-
tire set of applications, as suggested by the 48 dimensions required to obtain 95% of

5.4. Summary and Conclusions 81

variance in the PCA analysis of AV detections. Nevertheless, rule mining has shown
that a good number of engines follow or copy very often their patterns, clearly sep-
arating follower engines into pure followers and leaders.

As a result, we have disclosed three groups of engines that fit the afore-defined
scheme: (i) Leader engines, including AV1, AV15, AV25, AV31 and AV42, which
present a follower-like behavior, but more independent than other follower engines
suggesting they are the leading detectors among all engines; (ii) Follower engines,
which comprise a large subset of engines with very high correlations and consistent
detections with leaders and one another themselves and, (iii) Eccentric engines, that
have almost no correlation with others and follow their own detection patterns, like
AV17 or AV26.

Finally, we have attempted to assess application malware risk through a combina-
tion of Structural Equation Models and the logistic function that has been validated
through its consistency with AVCounts (i.e. the detection account of each sample).
In this process, engines have been implicitly weighted by the SEM model and pro-
duced weights consistent with the observed group scheme of leaders, followers and
eccentrics.

The next chapter will continue with the analysis of AV engines by focusing on
other key element of multi-scanner outputs: detection signatures, that is, the string
tokens AV engines produce to identify the detected threat together with the detec-
tion result.

83

Chapter 6

AV Label-based Analysis of Malware
Families

Following Chapter 5, AV engines have been shown to sustain three different de-
tection patterns, namely: Leaders, followers and eccentrics. Such patterns have been
found using the detection matrix of the dataset which contains whether an app is
flagged or not by each engine from a one-hot binary encoding matrix. However,
multi-scanner AV detections (a.k.a. signatures) typically include more information
related to the detection, such as the scanning dates or identifiers of different mal-
ware classes.

In any case, such malware identifiers are delivered as textual references with no
structure or format supporting machine processing. Actually, malware is not the
same altogether: malware families or classes are used to differentiate among mal-
ware according to their behaviors and actions. According to the literature many en-
gines present large naming inconsistencies when determining the family each sam-
ple belongs to, that is, AV engines do not agree on what is malware and neither on
what malware family each sample belongs to.

84 Chapter 6. AV Label-based Analysis of Malware Families

In this light, this chapter continues AV engine analysis from a different perspec-
tive than in Chapter 5: we now focus on the patterns of engine interrelations with re-
spect to malware families. Again, we consider the same suspicious application col-
lection of Chapter 5, that comprises 82, 866 applications that have produced 259, 608
free-text signatures that must be normalized and inspected to provide insights of
malware classes or families.

Through this chapter such analysis is structured as follows: we begin in Sec-
tion 6.1 detailing our SignatureMiner approach to homogenize and normalize differ-
ent AV signatures. In Section 6.2 we leverage SignatureMiner to find a normalization
scheme for the nearly 260K signatures in the collection and categorize the resulting
families into three broader categories, namely: adware, harmful and unknown. Then,
in Section 6.3 we perform family-based pattern detection supported by correlations
and graph theory algorithms aiming to unveil potential naming inconsistencies. Af-
terwards, the most relevant advancement is presented in Section 6.4, where an ML
classifier of malware samples into adware or harmful class is trained and evaluated.
Finally, Section 6.5 summarizes this chapter findings and remarks the most relevant
conclusions.

6.1 SignatureMiner: A fast Anti-Virus Signature Intel-

ligence Tool

To enable cross-engine analysis in multi-scanner detections, we have developed Sig-
natureMiner, a lightweight application for the semi-supervised extraction of mal-
ware information encoded inside AV identifiers. Once adjusted, SignatureMiner
can return a normalized malware family that is consistent across all engines.

To this aim, SignatureMiner enables semi-supervised training by helping users
to create a set of rules to be applied to existing AV solutions. This process is based
on the nature of malware detection signatures, that contain common substrings in-
dicating details from each threat. For instance, signatures can contain parts of to-
kens like "Trojan", "GingerMaster" or "FakeFlash", which provide useful information
regarding the type of malware each sample contains. Consider as an specific exam-
ple an adware sample detected by three different AV engines, namely: AVA, AVB
and AVC. When asked, each engine detecting malware returns a different detection
signature like the following ones:

• AVA: a variant of Android/AdDisplay.Startapp.B

• AVB: Adware/Startapp.A

• AVC: Adware.AndroidOS.Youmi.Startapp (v)

which agree on labeling the malware sample as a variant of adware from the Star-
tapp family. While this process is simple and obvious for the human reader, it is a
challenging task for modern computers and devices.

6.1. SignatureMiner: A fast Anti-Virus Signature Intelligence Tool 85

FIGURE 6.1: Wordcloud of the observed AV signatures in the dataset.
The size of each signature is consistent to its frequency in the dataset.

As an illustration, Fig 6.1 depicts a wordcloud of the signatures inside the de-
tection collection. The size of each signature is proportional to the frequency of ap-
pearance, showing at first glance that adware is the most frequent type of malware
in this dataset. Besides, different signatures containing the same families appear,
such as StartApp, RevMob or Leadbolt.

To overcome these differences, SignatureMiner separates detection identifiers
into a subset of identifier tokens that represent the items found in different detections.
Starting by applying conventional text-cleaning techniques, SignatureMiner strips
raw strings of weird characters, applies lower-casing, punctuation removal and text
tokenization by dots. Then, SignatureMiner leverages min-hashing to put similar
tokens together for manual inspection (recall min-hashing is detailed in Section 3.1).

Similar substrings are aggregated under the same min-hashes and presented to
the human user so they can create detection rules based on Python’s regular expres-
sions. For example, htmlframe and htmliframe tokens or yomi and youmi, would easily
obtain the same min-hash, helping the user to find a rule that targets them together.
This process can be repeated as much as needed using at each step the rules already
defined at each point, which enables systematic improving and refinement.

Moreover, this SignatureMiner mining component can help users to define alter-
native directives that produce other signature merging schemes, like neglecting cer-
tain families or defining broader family schemes. At the end, the resulting rules are
used by SignatureMiner’s classification component to produce the normalized class
defined in the rules upon receiving a new signature from any AV. As an additional
component, SM supports majority voting to directly output a single classification
output. SignatureMiner source source code is available in Github [203].

86 Chapter 6. AV Label-based Analysis of Malware Families

6.1.1 SignatureMiner Performance

In order to assess SignatureMiner performance and capabilities, it has been com-
pared to the most relevant work in the literature: AVClass; a detection signature nor-
malization system that is trained over large datasets to extract the most important
malware classes and find them in newly incoming signatures [110]. Since the code
for AVClass is available online, we downloaded and executed it over our dataset
and compared results with those of SignatureMiner.

AVClass repository contains a pre-trained version, which is the one used for the
experiments following the suggestions of AVClass authors. At the same time, we
trained SignatureMiner by elaborating a set of rules over the malware applications
of the dataset and assigning each sample a unique class through the majority voting
feature of SignatureMiner. Following AVClass terminology, any uncertain outcome,
like ties in majority voting, is referred to as SINGLETON.

SignatureMiner does only generate 9, 348 SINGLETON cases, which is roughly
11.5% of total data. In contrast, AVClass is unable to accurately classify 48, 743
(52.1%) malware samples from the dataset, generating as many SINGLETON la-
bels. When combined, both approaches are unable to determine a class for only
5, 504 samples, which is the number of samples that receive SINGLETON label by
both SignatureMiner and AVClass. Moreover, both approaches agree on the class
of 28, 330 samples and lack consensus on 1, 932 samples. Neglecting SINGLETON
cases on any of the two sides, the actual coincidence by both approaches is 93.6%,
which is very high.

Actually, many disagreements are a consequence of the SINGLETON class label
in any of the two sides, being the 10 most frequent mismatches due to SINGLE-
TONs. Of those, AVClass is responsible for 9, whereas SignatureMiner is respon-
sible for only one. In general, completely different class assignments are rare: the
most frequent case, which is adware (SM) vs adwo (AC), occurs only in 152 cases.
Oppositely, the most frequent mismatch is adware (SN) vs SINGLETON (AC) and
occurs 12, 290 times.

Finally, it is worth noting that SignatureMiner requires only as many samples
as those available at classification time. In contrast, AVClass authors warn that AV-
Class "requires as input the AV labels for a large set of samples, e.g. several million
samples".

6.2 Malware Categorization and Classes using Signa-

tureMiner

Signature detections in the analysis dataset can be homogenized thanks to the Sig-
natureMiner solution. During the training process of SignatureMiner, 41 distinct
malware families have been identified from the samples in the dataset. Using the
SM classification component, a normalized class is assigned to each sample (classes
and SM rules are detailed in Table 6.1 below).

6.2. Malware Categorization and Classes using SignatureMiner 87

Malware Classes identified in the dataset have been scrutinized to comprise a ro-
bust normalization scheme and further inspected to unveil three broader categories
in which malware families are grouped:

1. Applications looking into fast monetary gain using too many ads or a maluse
of them (in what follows adware type).

2. Applications attempting intrusive and harmful techniques such as informa-
tion leakage (in what follows harmful).

3. Applications AV engines detect as threats but cannot produce an accurate class
(in what follows unknown).

Table 6.1 provides a summary of each of the 41 (S1, . . . , S41) rules obtained through
SignatureMiner along with their malware family and other details. Concisely, the
table contains the predicate for each rule in regular expression syntax, family name
of the malware class assigned and its associated broader malware category (i.e. ad-
ware, harmful or unknown), along with the number of cumulative detections, ap-
plications and AV engines from each class respectively. In what follows, a detailed
summary of categories, their classes and specific details of each threat is presented.

Adware

Adware class labels are present in 60, 538 applications, which is a very large penetra-
tion of 73% of the dataset. Since this application collection comes from Google Play,
these figures suggest a clear preeminence of adware-related apps in this market.

• Leadbolt, Revmob, Startapp, WAPSX, Dowgin/dogwin, Cauly, Modwin and Apper-
hand/Counterclank are well-known advertisement networks that can be used to
perform full screen and invasive advertising malciously.

• Kuguo, is an advertisement library which has been known due to the abuses
and maluses of its developer community.

• Youmi and DroidKungFu are advertising services that have been involved in
data exfiltration incidents.

• Airpush is an advertisement network known for the abuse of adbar pushing
notifications.

• Fraud/osoneclick is a fraudulent adware piece that attempts to increase number
of ad clicks by stealthily displaying advertisements behind interactive appli-
cations.

• Adware (gen) tag is a generic reference assigned to those samples that engines
detect solely as adware. In addition, other AVs mark as Multiads applications
that contain different advertisement libraries known for the display of invasive
ads.

88 Chapter 6. AV Label-based Analysis of Malware Families

TABLE 6.1: Malware classes, their figures and their SignatureMiner
rules

Regexp rule Family Cat. Det. Apps AVs
S1 .*a[ir]*push?.* Airpush

A
d

w
ar

e

35,850 12,802 26
S2 .*leadbolt.* Leadbolt 17,414 4,045 21
S3 .*revmob.* Revmob 38,693 13,680 18
S4 .*startapp.* StartApp 29,443 11,963 13
S5 [os]*apperhand.* |.*counterclank.* Apperhand 1,606 716 12
S6 .*kuguo.* Kuguo 2,127 1,893 23
S7 wapsx? WAPS 1,546 344 6
S8 .*dowgin.*|dogwin Dogwin 1,098 421 23
S9 .*cauly.* Cauly 1,143 626 3

S10 [os]*wooboo Wooboo 220 120 14
S11 [os]*mobwin Mobwin 1,284 249 3
S12 .*droidkungfu.* DroidKungFu 105 54 3
S13 .*plankton.* Plankton 4,557 741 25
S14 [os]*you?mi Youmi 1,472 370 22
S15 [osoneclick]*fraud Fraud 736 382 19
S16 multiads Multiads 560 555 3
S17 .*adware.*|ad.+ Adware (gen) 33,133 24,515 46
S18 riskware Riskware

H
ar

m
fu

l

1841 1353 14
S19 spr SPR 1,789 1,789 2
S20 .*deng.* Deng 2,926 2,926 1
S21 .*smsreg SMSreg 649 440 16
S22 [os]*covav? Cova 1,564 1,296 5
S23 .*denofow.* Denofow 1,224 610 11
S24 [os]*fakeflash FakeFlash 1,381 510 15
S25 .*fakeapp.* FakeApp 518 420 14
S26 .*fakeinst.* FakeInst 493 401 22
S27 .*appinventor.* Appinventor 4,025 3,113 6
S28 .*swf.* SWF 4,651 4,566 10
S29 .*troj.* Trojan (gen) 23,775 16,851 49
S30 .*mobi.* Mobidash 981 796 16
S31 .*spy.* Spy 1483 1,221 26
S32 .*gin[ger]*master Gingermaster 58 36 10
S33 unclassifiedmalware UnclassifiedMalware

U
nk

no
w

n

857 855 1
S34 .*virus.* Virus 959 896 15
S35 .*heur.* Heur 182 179 15
S36 .*gen.* GEN 9,827 9,118 25
S37 [osgen]*pua PUA 1,249 1,152 2
S38 [ws]*reputation Reputation 2,886 2,885 1
S39 .*applicunwnt.* AppUnwanted 4,863 4,860 1
S40 .*artemi.* Artemis 9,662 6,175 2
S41 .* (Default Case) Other 10,778 7,880 57

TOTAL 259,608

6.2. Malware Categorization and Classes using SignatureMiner 89

Recall that adware is a very controversial type of malware detection, since it is
generally a legitimate way for developers to obtain a benefit for the applications
they offer for free. This practice is widely accepted and therefore, cannot be consid-
ered malware in all cases. Consequently, the line between good and malicious use
of advertisement is thin and different engine brands develop distinct policies that
become inconsistencies and disagreements on a multi-AV environment.

Harmful

This category is reserved for more dangerous applications that perform actions di-
rectly harming users, such as premium service enrollment or data exfiltration. The
total number of applications with at least one harmful label is 29, 675.

• Deng, SPR (Security and Privacy Risk) and Riskware are given to flag applications
that require too many harmful permissions or threaten user privacy.

• Denofow and Cova are trojan programs that subscribe users to premium SMS
services.

• SMSReg is a generic indicator for applications that require SMS-related per-
missions for data exfiltration or premium subscriptions.

• FakeFlash, FakeInst or Fakeapp are names for applications that look like or even
replicate popular apps to lure users into installing their malicious code.

• Appinventor is a developer platform that has been very popular for malware
developers.

• SWF stands for different versions of Shockwave Flash Player exploits.

• Trojan (gen) is the generic reference for trojan applications as detected by en-
gines.

• GingerMaster is a well-known family of rooting exploits.

• Spy is a generic reference for spyware malware.

Unknown

This category includes AVs which detections include generic class-related informa-
tion, including generic detection signatures and those signatures that do not fit any
other rule. There are 23, 915 applications getting at least one of these classes.

• UnclassifiedMalware, Virus, Heur (from heuristics), GEN (Generic Malware),
PUA (Potentially Unwanted Application), Reputation, AppUnwanted (Applica-
tion Unwanted) and Artemis are generic identifiers given by different engines
in order to indicate applications that are detected as harm without any further
details.

90 Chapter 6. AV Label-based Analysis of Malware Families

FIGURE 6.2: Frequency of detections per malware class. The colors in
the figure are consistent with the assigned categories.

• Other includes the applications not assigned to any other family by SM.

Altogether, Revmob, Airpush and Adware are the most popular signatures involv-
ing many AV different engines and detections. Trojan detections are also very pop-
ular in the harmful category and identified by up to 49 different engines. Indeed,
Fig. 6.2 depicts the numbers in Table 6.2 by category where adware families popu-
larity is clearly displayed.

In general, family classes are spotted by more than one engine, with some ex-
ceptions, usually in the unknown category, where family classes like Reputation or
AppUnwanted are flagged by a single AV engine. Additionally, the most active en-
gines indicated in Chapter 5 are also very active in the detection of adware samples,
further supporting the adware popularity in Google Play.

Family matrix

Using such normalized classes, let us define a matrix B of size 82, 866 × 41 where
the elements Bij ∈ {0, 1} have value 1 if the i-th app has been identified to belong
to the j-th family malware category or 0 otherwise. Such matrix is named Family
Matrix and each of the vectors will be referenced individually as Family Vector of the
application.

6.3. Malware Family Classes and Categories Interdependences 91

Out of the 43, 933 applications with more than one detection, 63.26% are assigned
to more than one malware family by different AVs,reaching some applications up to
12 distinct malware families. These results evince that not only do AV engines fail in
agreeing on malware detection, but also in the specific family or category a sample
may be related to. The following sections deepen on this observation and provide
additional insights.

6.3 Malware Family Classes and Categories Interdepen-

dences

Recall there are 27, 781 applications in the collection which family classifications are
controversial, that is, more than one single family. This discovery is in line with the
literature [103, 102], as one third of applications lack consensual detections.

In what follows, multi-class applications will be analyzed and explored in order
to identify whether they correspond to name duplicities where the same malware is
given different names or just plain engine disagreements.

6.3.1 Correlation of Malware Categories

Previously, each of the 41 malware classes has been assigned to one of three possible
categories, namely adware, harmful and unknown. For categorical analysis, we define
the Category Matrix C as an 82, 866 × 3 matrix where Cij accounts for the number
of times the i-th application has received a detection of each category. The correla-
tion of the columns of matrix C can indicate and approximation on how frequently
each pair of categories are assigned to the same application. Table 6.2 illustrates the
correlation matrix of C.

TABLE 6.2: Correlation of matrix C (Malware Categories)

Adware Harmful Unknown
Adware 1 0.06 0.3
Harmful 0.06 1 0.44

Unknown 0.3 0.44 1

In the table, harmful and adware categories show really weak correlation values
(0.06), indicating that AV engines are usually clear on whether some app is adware
or harmful. Oppositely, the unknown category shows higher correlation values,
both with adware (0.3) and harmful categories (0.44).

In this light, many AV inconsistencies seem to be present around the unknown
category. Indeed, the unknown class corresponds to a set of samples AV engines
are unable to correctly categorize, but still recognize them as threats and assign a
synthetic family identifier. Anyway, correlations suggest such ambiguities should
belong to any of the other two categories, being the harmful class slightly more
involved.

92 Chapter 6. AV Label-based Analysis of Malware Families

6.3.2 Graph Community Clustering to Detect Class Redundancies

Starting from the correlation matrix of family matrix B, it is possible to build and
explore a graph using network theory. For that, we compute the correlation matrix
Corr(B) and create a graph using it as adjacency matrix. The resulting graph has
41 nodes (as many as malware classes) separated according to their pairwise class
correlations.

With the help of edge betweenness algorithms for community search (See Sec-
tion 3.3 for reference), nodes are grouped into high correlation clusters to find re-
lated malware classes according to the discrepancies of AV engines. To prevent
noise from building insignificant communities, we set a threshold, Corrmin, below
which correlation values are set to zero.

Adware

Airpush

Apperhand

Appinventor
AppUnwanted

Artemis

CaulyCova

Deng

Denofow

Dowgin

DroidKungFu

FakeApp

FakeFlash

FakeInst

Fraud

GEN

GingerMaster Heur

Kuguo
Leadbolt

Mobidash

Mobwin

Multiads

Other

Plankton

PUA

Reputation

Revmob

Riskware

SMSreg

SPR

Spy

startApp

SWF

Trojan

UnclassifiedMalware

Virus

WAPS

WooBoo

Youmi

(a) Corrmin = 0.2

Adware

Airpush

Apperhand

Appinventor

AppUnwanted
Artemis

Cauly

Cova

Deng

DenofowDowgin

DroidKungFu

FakeApp

FakeFlash

FakeInst

Fraud
GEN

GingerMaster

Heur

Kuguo

Leadbolt

Mobidash
Mobwin

MultiadsOther

Plankton

PUA

Reputation

Revmob

Riskware

SMSreg

SPR

Spy

startApp

SWF

Trojan

UnclassifiedMalware
Virus

WAPS

WooBoo

Youmi

(b) Corrmin = 0.35

Gi
ng

erM
as

ter

He
ur

Ku
gu

o

Le
ad

bo
lt

Mo
bid

as
h

Mo
bw

in

Mu
ltia

ds

Ot
he

r

PU
A

Re
pu

tat
ion

Re
vm

ob

Ris
kw

are

SM
Sr

eg SP
R

Sp
y

sta
rtA

pp

SW
F

Tro
jan

Un
cla

ss
ified

Ma
lwa

re

Vir
us

WA
PS

Wo
oB

oo

Yo
um

i

Fa
ke

Fla
sh

Fa
ke

Ap
p

Pla
nk

ton

Ap
pe

rha
nd

Ad
wa

re

Air
pu

sh

Ap
pin

ve
nto

r

Ap
pU

nw
an

ted

Ar
tem

is

Ca
uly

Co
va

De
ng

De
no

fow

Do
wg

in

Dr
oid

Ku
ng

Fu

Fa
ke

Ins
t

Fra
ud

GE
N

0
10

20
30

40

(c) Dendrogram Corrmin = 0.5

FIGURE 6.3: Communities of malware classes for different correlation threshold values

Fig. 6.3 displays two different communities for Corrmin equal to 0.2 and 0.35
along with the dendrogram for the community groups with Corrmin = 0.5 where
the evolution of groups according to increasing correlation thresholds is shown. In

6.3. Malware Family Classes and Categories Interdependences 93

Fig. 6.3(a) many groups are clearly defined, even though their intra-community cor-
relation is not very high. Interestingly, most communities mainly involve families
from a single category, notwithstanding the concurrence with unknown samples.
Actually, raising the correlation slightly, as Fig. 6.3(b) shows, eliminates almost all
groups leaving only three survivor groups, which members belong to the same cat-
egory.

Hence, the most interesting communities are three: one larger community formed
by three unknown signatures (AppUnwanted, Artemis and Other) and one harmful
threat (the generic trojan family) and two smaller communities, FakeFlash-FakeApp
and Plankton-Apperhand.

The case of the last two communities, namely FakeFlash-FakeApp and Plankton-
Apperhand, is comprised by two moderately correlated pairs (0.61 and 0.72 respec-
tively) and suggest inconsistencies according to family names and relations. First,
the case of FakeFlash and FakeApp could belong to a minor name inconsistency,
since FakeFlash could be considered an specific case of FakeApp. Then, the case of
Plankton and Apperhand the problem is less obvious and seems a plain nomencla-
ture inconsistency where different AVs give different names to the same threat.

Finally, the larger community members show smaller correlation values than
the previous ones. Actually, the presence of a harmful member could be hinting
a slightly larger lookalike to harmful rather than adware categories for those un-
known families. Indeed, the dendrogram in Fig. 6.3(c) does show this third group
disappearing when Corrmin reaches 0.5. Eventually, same-category classes tend to
aggregate together with the exception of the unknown class, but keep some inner
structure among them, sometimes relating to opposing classes.

In conclusion, most of the signatures obtained through SignatureMiner are ro-
bust as not many others are detecting the same malware. There are only two clear
exceptions described along this section that will be merged for the rest of the chapter.
In addition, unknown classes have shown overlapping patterns with both adware
and harmful categories, suggesting they may be part of them inherently. These ob-
servations show that unknown classes might be classified into their correct category,
as will be described in Section 6.4.

6.3.3 Grouping AVs by their Detection Schemes

To investigate how AV engines relate according to the families they detect, we lever-
age a derivation of the detection and the family matrix, which represents at each
element abij the number of detections performed by AV engine j (columns) of class
i (rows). We call this matrix the correspondence matrix AB and leverage graph theory
again using Corr(AB) as adjacency matrix.

In this case, Fig. 6.4(a) shows the AV-based graph obtained for engine relations
containing nodes colored according to their group (Corrmin = 0.35). In the commu-
nity plot, most AV engines are grouped into a certain community while a few others,
matching with the eccentrics discovered in Chapter 5, appear as loners. These AVs

94 Chapter 6. AV Label-based Analysis of Malware Families

(a) Graph groups

A
V

4
7

A
V

5
2

A
V

4
8

A
V

4
2

A
V

3
1

A
V

2
9

A
V

2
5

A
V

1
5

A
V

9

A
V

1

A
V

4
3

A
V

3
8

A
V

5
6

A
V

5
3

A
V

5
1

A
V

4
5

A
V

4
1

A
V

3
7

A
V

3
5

A
V

3
4

A
V

3
3

A
V

2
6

A
V

1
9

A
V

8

A
V

6

A
V

1
3

A
V

3
6

A
V

2
1

A
V

2
0

A
V

6
1

A
V

6
0

A
V

5
9

A
V

5
7

A
V

5
5

A
V

5
4

A
V

4
6

A
V

4
4

A
V

1
1

A
V

1
0

A
V

5

A
V

3

A
V

5
0

A
V

2

A
V

5
8

A
V

3
2

A
V

3
0

A
V

2
8

A
V

2
7

A
V

2
4

A
V

1
8

A
V

1
2

A
V

7

A
V

1
6

A
V

1
4

A
V

4
9

A
V

4

A
V

2
3

A
V

1
7

A
V

2
2

A
V

4
0

A
V

3
9

0
1
0

2
0

3
0

4
0

5
0

6
0

(b) Dendrogram

FIGURE 6.4: Community cluster of AV engines according to the classes
they detect

6.4. Identifying Unknown Malware 95

are AV22 and AV39-AV40 that have no relation at all and AV4, AV47, AV23 and
AV17 with subtle relations to some others in groups.

Besides, there are four main groups or communities: an adware-focused group
(blue), which most frequent detections are Revmob, Adware, Airpush or startApp; a
harmful-oriented group of AVs (red), with top families such as Trojan, Airpush, Gen
or Kuguo and two mixed groups: The first (green) shows mainly Plankton, Adware or
Trojan detections whilst the second one (orange) contains detections on Other, Deng,
Airpush or Leadbolt.

Fig. 6.4(b) depicts the dendrogram of matrix AB, where the same patterns are
observed: loners are way too far from the rest as compared to other engines and
therefore connected very high in the dendrogram. Other groups show internal dif-
ferences, suggesting they could be clustered in more fine-grained groups, but still
make sense as groups.

Furthermore, the position of each group in the dendrogram is very interesting
as well: the harmful group is in between both mixed groups and away of the ad-
ware related group, indicating a marked difference in their detections despite they
somehow converge in the yellow group. Additionally, most loners are closer to ad-
ware, which could be a sign of them being more adware focused. On the other side,
the green group is closer to harmful and matches very much with the leader group in
Chapter 5, that evinces leaders catch mainly harmful threats, even though not losing
most relevant adware samples, which strengthens their leadership hypothesis and
positions them as suitable candidates for effective malware labeling.

These groups further demonstrate how engines often incur in similar detection
patterns at the family level, being category-oriented detections very frequent. It is
worth noting that the yellow group contains many unknown categories along with
top engines from harmful categories while, at the same time, the green cluster is
more associated with broad-focus engines targeting similarly adware and harmful
categories.

6.4 Identifying Unknown Malware

Previously, malware families within the unknown category have been observed to be
more related to harmful than to adware category according to their correlations (0.44
to 0.3). This section attempts to unveil the specific malware category (either harmful
or adware) of malware families from the unknown category using Machine Learning
for classification.

For this purpose, we developed a machine learning classifier to predict the mal-
ware category of a given sample using as input features the detection vector of each
application. This classifier has a twofold objective: (i) provide a fast categorical as-
signment using solely AV detections with no family information, and (ii) further
identify which AV engines are more powerful for either adware, harmful or both
detections. Hence, we propose two different classifier algorithms Logistic Regres-
sion for optimized probability estimation and interpretability and Random Forest for
performance (these and other ML methods are reviewed in Section 3.2).

96 Chapter 6. AV Label-based Analysis of Malware Families

The Logistic Regression algorithm has been regularized to improve its perfor-
mance and analyze AV engine contribution, forcing less biased AVs towards a cate-
gory to be have near-zero weight while other engines are associated with a weight
according to their relevance for harmful detection (positive contribution) or adware
(negative contribution). Lasso regularization is used due to its well-known perfor-
mance over binary feature-sets.

To train and validate both algorithms we use the samples in the adware and
harmful categories first, assuming as label their majority voting category facilitated
by SignatureMiner. Hyper-parameter tuning is performed using 10-fold cross-validation.

Table 6.3 displays the performance results of both ML algorithms during training
and validation, showing F-score values above 0.75 for Logistic Regression and 0.84
for Random Forest. As expected, RFs outperform LR in terms of accuracy, showing
outstanding results (0.92 accuracy test). The optimal hyper-parameter values are
also shown in the table.

TABLE 6.3: Train and validation scores for the different models.

Algorithm Acctrain Acctest Ftrain Ftest

Logistic Regression 0.895 0.894 0.758 0.757
Random Forest 0.935 0.927 0.859 0.841

-8 -6 -4 -2 0 2 4 6 8

AV54

AV61

AV26

AV10

AV21

AV8

AV19

AV47

AV4

AV9

AV33

AV37

AV41

AV39

AV55

AV14

AV35

AV11

AV52

AV42

AV36

AV53

AV29

AV60

AV46

AV56

AV3

AV45

AV13

AV57

AV49

AV6

AV38

AV32

AV23

AV43

AV25

AV15

AV51

AV22

AV12

AV18

AV27

AV40

AV20

AV48

AV31

AV1

AV28

AV5

AV58

AV7

AV30

AV16

AV44

AV24

AV59

AV2

AV17

AV50

AV34

FIGURE 6.5: Computed weights after ℓ1 logistic regression.

Regarding AV engines, Fig. 6.5 displays the logistic regression weights assigned
to each engine and colored consistently with the category they contribute more,
namely adware (blue) vs harmful (red). Recall that positive weights indicate en-
gines detecting more harmful malware and negative weights are assigned to more

6.5. Summary and Conclusions 97

adware-focused engines. At a first glance, there are slightly more harmful-aware
AVs (31) than adware-aware ones (26). This suggest that most engines are focused
on detecting all types of malware, even though, there is a considerable amount of
mostly adware-focused engines.

The results observed in Fig. 6.5 are consistent with Fig. 6.4(a), where most AVs
contributing to adware belong to the adware class in the dendrogram of Fig. 6.4(a).
Indeed, examples include AV50 and AV2 in the adware category and AV8 and AV26
in the harmful class.

Zero contribution engines are interesting as well, since they appear to be per-
forming detections for both categories consistently. In fact, leader engines have
weights near zero, indicating that they detect both categories without sharp specifi-
cations, i.e. their detections target both adware and harmful and thus are not useful
for ML classification. This is consistent with their grouping patterns, as this group
has been shown to detect both adware and harmful samples. On the contrary, the or-
ange group, that had the larger proportion of unknown category samples, contains
some of the best weighted engines for the harmful category, like AV54 and AV61,
which indicates certain harmful tendency.

Finally, we have used the trained RF model to classify the apps in the unknown
malware category. As a result, we observe that 51.5% of the samples are classified
as harmful while the remaining 48.5% belong to adware. This result is in-line with
the correlation experiments of Section 5.2 which already pointed to a slightly larger
amount of unknown samples belonging to the harmful category.

TABLE 6.4: Amount of harmful samples detected at each family in the
unknown category

Family Virus Heur GEN PUA Reputation Artemis Other SINGLETON
Harmful 83.48% 47.87% 34.63% 50% 61.8% 41.66% 39.98% 38.77%

Moreover, Table 6.4 summarizes the classification results for each malware fam-
ily in the unknown category separately. Concisely, the percentage of apps that are
identified as harmful by the classifier are displayed. As shown, most apps tagged
as virus fall in the harmful category, whereas the gen family class is closer to ad-
ware. Within reputation more applications seem to belong to harmful while artemis,
SINGLETON and other are closer to adware. There are two signatures missing: ap-
plicunwt, which is not selected as target family in any case by majority voting and
unclassifiedMalware, which appears only once and is classified as adware.

6.5 Summary and Conclusions

Following the analysis of the 82, 866 suspicious samples dataset and their multi-scan
signatures started in Chapter 5, this chapter focuses on malware categorization and
family assignment. In this chapter, the previous disagreements among engines are
also observed in malware classification, incurring in extended name inconsistencies
and categorization disagreements.

98 Chapter 6. AV Label-based Analysis of Malware Families

Initially, SignatureMiner has been presented. SignatureMiner is a semi-supervised
threat intelligence tool based on min-hashing that helps users to mine information
regarding Antivirus detections. The tool has been used to normalize the 259, 608
signatures associated to each of the different applications into 41 malware families
which has enabled further categorization into three broader categories, namely ad-
ware, harmful and unknown.

Then, classes and categories have been analyzed and inspected through correla-
tion and graph community detection showing interesting patterns, in line with the
findings of Chapter 5 regarding followers and leaders. For instance, leader engines
in Chapter 5 belong to the same generalist darkgreen detection cluster in Fig 6.4
(Section 6.3).

Furthermore, correlation analysis has showed that the unknown category is typ-
ically present in controversial detections, that is, those where more than one cate-
gory is involved. This finding has motivated the hypothesis that unknown samples
should mainly belong to either adware or harmful and as a result, we have proposed
in Section 6.4 a ML classifier to determine whether any suspicious sample belongs
to adware or harmful based on the AVs detecting such sample.

By training the classifier with harmful and adware samples, we validate a model
with F-score up to 0.84, that has been later used to classify the aforementioned un-
known samples. This classifier has further demonstrated that unknown malware
classes are more likely to represent real threats to the users rather than regular ad-
ware.

The results from this chapter and the previous one have set a broad set of rules
and methods to detect AV engine trustworthiness. In our case, we have detected a
small group of AV engines formed by AV1, AV15, AV31 and AV42 that shows the
most consensual and successful detection scheme including all types of malware
samples and families.

99

Chapter 7

Android Meta-data for Repackaging
Detection

In this chapter, we present CloneSpot, our tool for repackaging detection based
on the clustering of similar textual meta-data from applications. Initially, Section 7.1
details the crawling methodology and methods. In Section 7.2 the CloneSpot method-
ology, capable of detecting application duplicates, is presented together with its web
application and validation in Section 7.3. Finally, Section 7.4 concludes and wraps
the chapter with a summary of the most relevant conclusions and achievements.

7.1 Meta-data Application Collection

In this chapter, we consider again the meta-data from applications collected from
Google Play. In this case, we develop a massive crawler that downloads application
information from the web version of Google Play market. This system follows the
next steps:

100 Chapter 7. Android Meta-data for Repackaging Detection

1. Google Play home page is downloaded to identify and recover as many appli-
cation links as possible.

2. Starting from the obtained links, this process is recursively repeated until no
new application link is obtained. This way, after some hours, the links for a
large part of the market are obtained.

3. Using a custom multi-machine parallel crawler capable of downloading, pars-
ing and storing each app meta-data, we collected nearly 1.3 Million apps meta-
information in a few days (using in the process an Intel Xeon E5-2630 server
with 24 cores 190 GB RAM memory). As of 2018, this number represents 61%
of the Google Play Store.

4. After removing different application versions and duplicates, the size of the
collection is reduced to exactly 1, 288, 643 applications.

We developed the above crawler with a twofold objective: (i) quickly retrieving
a list of URL links for a large proportion of applications in Google Play recursively
and (ii) downloading all the meta-information (not the APK packages) contained
in each application URL. The resulting dataset contains four elements of mainly
qualitative nature: application title, description, category and developer name.

Table 7.1 summarizes these meta-data items, their description and type of vari-
able (either categorical or free text). These features require a different approach than
that of Chapter 4, since they do not contain any numerical value to be used in an
ML setting. Moreover, the dataset lacks any type of detection label, which makes
supervised learning impossible.

TABLE 7.1: Summary of the features collected from Google Play. The
date of collection is 2017.

Name Description Value
1 Title The application title Free Text
2 Category Name Assigned Google Play Category Categoric
3 Description A textual description of the applica-

tion and its features. It can be written
in different languages and has a vari-
able extension

Free Text

4 Developer Name The associated local name of the de-
veloper account within the studied
market

Categorical

7.2 CloneSpot: Fast Detection of Application Duplicates

By design, the Java code in Android applications can be approximated through de-
compilation, modified with new functionalities, re-compiled and uploaded to any

7.2. CloneSpot: Fast Detection of Application Duplicates 101

application market. This design facilitates the generation of duplicated application
versions with altered behaviors very fast and with little effort. This process is known
as repackaging and has become the most popular method to hinder and distribute
malware applications within markets, including Google Play [204].

At present, repackaging is a very trending problem in the Android community;
for example, a repackaged version exists for 80% out of the top 50 most downloaded
applications in Google Play [205].

As a result the ability of cloning or repackaging any Android application from
a given market is within reach of anyone. It is worth noting that malware is not
the only incentive for repackaging: monetizing third-party applications by means
of introducing advertisement or simply plagiarizing application’s code code are im-
portant motivations to perform application cloning.

The main attractive for repackaging apps is that rather than requiring applica-
tion development from scratch, they can be used instead to introduce malicious code
components in existing applications and upload the newly created app to any mar-
ket. To this end, the application must be disguised as the legitimate app itself, with
the nearly same functionalities and meta-data then the original victim application.
Actually, meta-data features are the best presentation letter of an application to its
potential users.

Consequently, most repackagers should be reluctant to undertake major mod-
ifications to application’s meta-information that would reduce their chances to be
mistaken for the real application. Indeed, many cloners stick to minor changes to
one or more of these meta-data fields, such as changing some pixels in logos or sub-
tly modifying titles or descriptions in a way that clones are identical for the human
eye to make users install them believing they are installing the legitimate victim ap-
plication.

Thus, the most straightforward procedure to detect clones would be a brute-force
approach that computes the pairwise similarity of serialized meta-data entries and
rank them accordingly for manual inspection. However, this solution is computa-
tionally costly and unfeasible to do over a 1.3M application collection in a reasonable
time.

In this light, we propose CloneSpot, a comparative solution that relies on simi-
larity clustering to aggregate alike meta-data applications together into app-sets that
contain potentially cloned application candidates. Once within their app-sets, pair-
wise similarity is possible, since the number of pairwise comparisons is drastically
reduced to the app-set members. The similarity clustering algorithm selected is
min-hashing, due to its versatility, velocity and efficiency (see Section 3.1 for further
details).

7.2.1 Clustering Qualitative Meta-data through Min-hashing

The CloneSpot-based system works as follows: application meta-data is serialized
by joining each application’s title, category, description and developer name fields with
regular blank spaces. The resulting string is clustered using min-hashing with a

102 Chapter 7. Android Meta-data for Repackaging Detection

shingling key of k = 7 and the resulting min-hashes are used as keys for aggregating
applications into app-sets.

Single application app-sets are considered out of repackaging risk and there-
fore removed. Besides, app-sets which applications belong to the same developer
are removed under the assumption that a developer has no malicious incentive for
repackaging his own applications, even though he might be reusing the same base
code for different apps. Finally, too large app-sets make no sense, as their similarity
must be based on frequent words (i.e. stopwords). Consequently, app-sets contain-
ing more than 100 applications are removed from the analysis of duplicates as well.

7.2.2 Market-scale Detection of Application Duplicates

The CloneSpot methodology can be used to analyze entire application markets in
less than a day. The collected applications, contain app-sets with an average of 18.9
members, although the median value is two and the third quantile (75% percentile)
is 8. Therefore, app-set sizes are preeminently small, being those containing less
than 10 applications around 79% of the total. On the other side, there are 1, 273
groups containing more than 100 applications that have been removed.

As a result, there is a total of 54, 944 app-sets containing an overall amount of
419, 830 applications, which directly represent 32% of the original collection. The
remaining applications have fallen into single size app-sets and have thus been fil-
tered out. At this point, application inspection is easier at local level, even though
dataset-wide manual inspection is not scalable yet.

Instead, group-wide pairwise operations can be considered, since the potential
intra-group operations required are much less. In fact, performing all within app-
set comparisons requires roughly 1.5 million operations1, as compared to the 1.6
trillion operations required to complete the brute-force pairwise comparison of the
entire collection.

7.2.3 Intra-group Detection Scoring

Generally, some degree of meta-data plagiarism could be tolerated, even though it is
very unlikely that nearly-identical fields happen within two applications by chance.
Hence, app-set pairwise similarity metrics and experiments are designed following
the assumption that higher similarity scores are indicative of repackaging at each
app-set.

To score app-sets, we consider two metrics involving each a distinct field from
each application’s meta-data: title and description. Following, edit distance for appli-
cation titles and cosine distance for descriptions are detailed and combined to create
the Application Similarity Index local scoring metric (references for the distance met-
rics used can be found in Section 3.1).

1Assuming 8 apps per app-set: (8
2)× 54, 944

7.2. CloneSpot: Fast Detection of Application Duplicates 103

Edit Distance of Application Titles

Subtle changes in repackaged application titles are a common practice of repack-
agers to avoid detection by non-expert users. These changes typically range from
capitalization alterations to the addition of tiny or unnoticeable characters like dots,
which are really difficult to detect, even to the expert eye, and can be effective unless
the user is prevented.

Therefore, any two applications in the same app-set showing almost the same
title is a very clear indicator of potentially cloned or fraudulent application. To
detect such changes systematically, we compute the edit distance among the titles in
the same app-set. Recall that the Edit distance between two strings a and b accounts
the number of modifications to be made to a until it becomes b (for further reference
on edit distance the reader can return to Section

Cosine Similarity of Application Descriptions

Repackaged samples have a tendency to paraphrase or directly copy the descrip-
tion in their victims’ meta-data. Thus, description similarity is another indicator of
repackaged applications that can be sharper in some cases: When the descriptions of
two applications directly match, there is almost no doubt that both applications are
clones. To avoid detection, some clones may try to modify their cloned description
by altering the order of sentences and paragraphs in such a way the application still
makes sense, which is important to select an appropriate mechanism for plagiarism.

In this light and assuming descriptions are sequences of free text, which are lists
of words, we simplify them by transforming their text into Bag of Words (BoW) rep-
resentations. Then, cosine similarity is computed over each pair or application de-
scriptions’ BoW to produce an orderless and language-independent similarity score
for application descriptions.

The BoW representation of each description is obtained by tokenizing texts into
words, separating them using blank spaces and removing trailing characters. Af-
terwards, each token frequency of appearance is computed and BoW are converted
into vectors containing all the tokens appearing in any of the two applications. The
Cosine Similarity is computed with these vectors, being the value for each term di-
mension the number of times such word appears in their respective description.

In this case, Cosine Similarity is bounded between 0 and 1 and produces a broadly
accepted estimation of the proximity between two text descriptions. Moreover, thanks
to the BoW approach this similarity is language independent and robust against the
alteration of sentence or paragraph collocations.

Application Similarity Index

Intra app-set similarities of application titles and descriptions have been previously
proposed as indicators of application cloning. Both schemes can be merged together

104 Chapter 7. Android Meta-data for Repackaging Detection

into a single measurement that balances description similarity with proximate titles
in terms of edit distance.

For this purpose, we define the Application Similarity Index (ASI) between any two
applications a and b as the quotient between median cosine similarity of descriptions
and the average title edit distance:

ASI1(a, b) =
median(CS(~a,~b))

ε(ED(~a,~b))
(7.1)

where CS is the cosine similarity between vectorized BoW a and b and ED refers
to the edit distance metric. In short, this metric modulates application description
similarity by their title similarity: the more alike two titles are, the closer the ASI is to
the cosine similarity of descriptions. This way, near equal titles are very important,
even capable of neglecting a similar description provided titles are not similar.

Additionally, ASI could be modified to be more effective in detecting clones in
larger size app-sets. For that, the modulating edit distance would be changed to the
minimum between any two apps in the app-set:

ASI2(a, b) =
median(CS(~a,~b))

min(ED(~a,~b))
(7.2)

Both equations trade-off similarity in titles and descriptions to get a high ASI
score. In both cases, different descriptions reduce the ASI accordingly, while too
different titles drastically decrease ASI near to zero. Nonetheless, the first proposal
(Eq. 7.1) is more focused towards small sized app-sets which applications are all
clones while the second one (Eq 7.2) looks for a single pair of clones within any
app-set.

Anyway, the intuition behind these formulations is that two almost-identical ap-
plications are more likely to be clones than any other not so similar pair. Recall
that this metric can be computed locally over each app-set, enabling parallelization
to speed up the process. As a result, any of the ASI metrics defined above can be
used to sort app-sets into a ranked list of potentially cloned applications for malware
analysts to inspect. Thanks to this ranking, CloneSpot is not only capable of serv-
ing potentially repackaged applications together, but also including a quantitative
approximation to estimate how copied two applications are.

Fig. 7.1 provides a visualization of both ASI scoring distributions that shows in
both cases very little applications with high scores and larger and homogeneous
collections of low-score app-sets. Both figures clearly show the large impact title
distances have on the final score. Furthermore, this zipf-like pattern is driven by
many two-sized app-sets on top on the ranking with a high similarity (and thus a
very large likelihood of being clones) which increases its score.

In fact, the figure clearly shows that using the minimum in ASI2 (Fig. 7.1(b))
yields larger ASI values than using the mean in ASI1, suggesting that some larger
app-sets include a tuple of cloned applications among other similar but not-cloned
applications.

7.2. CloneSpot: Fast Detection of Application Duplicates 105

(a) ASI1 (b) ASI2

FIGURE 7.1: Histogram of the distributions for both ASI scoring
systems

FIGURE 7.2: Screen-shot of the top application in ASI1 ranking

As an example, consider app-set number one in the ASI1 ranking: Bhai dooj GIF
2017 and Bhai Dooj GIF 2017, which score 0.9979 in both ASI metrics, 1 in edit dis-
tance and 0.9979 in cosine similarity. Since it only contains two applications, ASI1
and ASI2 are exactly the same, even though the app is down to the 32nd position in
the ASI2 ranking. Fig. 7.2 shows the Google Play home pages of both applications.

This example illustrates very well a repackaging case for plagiarism. The only
difference is the capitalization of the word "Dooj" and both applications share the
exact same description with a small add-on. Moreover, the UIs of both applications
can be observed to follow the same structure, even though the images have been
changed. In spite of the differences and the possibility of them sharing the subject,

106 Chapter 7. Android Meta-data for Repackaging Detection

the suspicious degree of lookalike in title and description along with the structural
correspondence in UI structure indicates a fairly clear case of repackaging, probably
used for monetary gain through swapping the advertisement account.

CloneSpot workflow is described in Alg. 1, which provides a methodological
summary of the aggregation and ranking of app-sets from raw applications to the
final result.

Data: CloneSpot: Google Play meta-data from 1.3M applications
Result: Ranked List of app-sets
1. Min-Hashing Clustering;
forall app in allApplications do

Split in Shingles k = 7;
Compute Min-Hash;
Send app to Min-Hash Bucket;

end
2. Clean app-set list and Compute Local ASI;
forall app-set in groups do

if Single-sized app-set or Single developer app-set then
Remove app-set;

end
else

Compute Title Edit distance;
Compute BoWs and Cosine Similarity;
Compute ASI;

end

end
3. Sort app-sets according to ASI;

Algorithm 1: Summary of the repackaging detection pipeline

Next section validates the ability of CloneSpot to detect and rank clones in Google
Play and presents a PoC application to illustrate how this approach can be used in
real implementations to improve security and help analysts, application markets
and developers.

7.3 CloneSpot service: Fast Retrieval of Potential Clones

After applying CloneSpot methodology to our 1.3M dataset, there are a total of
54, 944 ranked app-sets containing potential victims or clones ordered according to
their local pairwise similarity. In this section the CloneSpot approach is validated
through the following experiments:

• Number of applications in app-sets that have been removed from Google Play
market: We measure the number of app-sets containing at least one application
that has been removed from market between September 2017, May 2018 and
October 2018.

7.3. CloneSpot service: Fast Retrieval of Potential Clones 107

• CloneSpot, a proof-of-concept web-service to demonstrate the applicability of
this approach through a real-time database of meta-data from 1.3 Million ap-
plications in Google Play.

7.3.1 Application Removal in Google Play

Generally, application markets and more specifically Google Play, perform continu-
ous and extensive reviews of their in-house applications that might end in market
removal for different reasons. Such causes range from application withdrawal by
its developer to flagrant cases of breaking market policies, for instance, plagiarism.
Whenever an application is removed from Google Play neither the application nor
its meta-data is available nor downloadable from the application market anymore.

Altogether, any of these reasons involve rare and uncommon behaviors for ap-
plication developers that makes them untrustworthy. In the case of policy noncom-
pliance or plagiarism, it is straightforward as the application was doing something
not tolerated by the market. Even in the case of developer removal, it seems strange
for any developer to remove their own applications on purpose without further re-
upload.

Hence, application removal is considered a proxy for CloneSpot validation. In
essence, application removal is a clear sign of suspiciousness and those app-sets
which contain removed application some time afterwards will have been able to
detect rare applications that probably should not be in the market.

To verify application removal, we downloaded again the pages from applica-
tions falling into suspicious app-sets to check their market availability. Whenever
an application is not found in Google Play, an HTTP 404 (not found) error code is re-
turned, so by comparing the correct (code 200) vs not found responses from Google
Play, we can easily infer which applications have been removed since September
2017.

We perform this experiment twice, in May 2018 and in October 2018 to keep
track of application removal rates over time. As a result, out of 419, 830 applications
discovered by CloneSpot in September 2017, we observe that 78, 164 have been re-
moved from the market by May 2018, being 341, 666 potential clones left at that
time. Nevertheless, by October 2018, the number of removed applications had risen
to 218, 621, leaving just a total of 198, 651 applications. This last figure indicates that
about one half of the applications detected by CloneSpot had been removed from
Google Play after a year, showing that CloneSpot was able to detect many conflict-
ing applications that have been eventually detected by Google Play afterwards.

Besides, it is worth noting that while application count has reduced to half its
size, the number of app-sets containing at least an application is still large, confirm-
ing that the removal of applications has occurred to different app-sets.

Actually, the number of applications per app-set has been drastically reduced, to
mainly one or two applications as compared to the three applications per app-set of
September 2017 and May 2018. Fig. 7.3 illustrates the boxplots for app-set size that
clearly shows this decrease by October 2018. Removed applications distribution is

108 Chapter 7. Android Meta-data for Repackaging Detection

0 5 10 15

Sept'17

May'18

Oct'18

Removed

FIGURE 7.3: Boxplots of the distribution of app-set sizes. It can be
observed a small reduction in May 2018 that becomes bigger as of

October 2018.

depicted as well, showing that most repackaged applications belong to small app-
sets (2-3 applications size).

In addition, approximately 50% of the app-sets (precisely 29, 145 groups out
of 54, 944) have suffered application removal by May 2018 and even more, 47, 887
(87%) by October 2018. These figures point to a removal trend that leaves legitimate
applications alone within their app-sets as the clones are eliminated.

Indeed, the regular outcome for legitimate applications is to be left alone within
their app-sets while potential clones or plagiarized copies slowly disappear from the
market. Although application removal cannot be directly associated to plagiarism
or repackaging, it can be observed that CloneSpot finds conflicting applications.

As an additional example, consider Fig. 7.4 which depicts another "potential
clone pair" (Their Min-Hash value is 0x21a62ee1184c08b3d8a9e f ba058338808cedaac),
in this case, it is clear that both applications are exact copies which have just changed
application logo and made slight modifications to the description and titles.

Indeed, the example belongs to a four application app-set which already lacked
two applications at the time of writing. Its ASI1 score is 0.223, its edit distance is
4 and its cosine similarity 0.892. This application is still in the top 100, at position

7.3. CloneSpot service: Fast Retrieval of Potential Clones 109

FIGURE 7.4: Example of two similar applications detected by Min-Hashing

76. Furthermore, this example illustrates how the min-hashing approach is able to
detect clones in different languages with no additional requirements.

Recall that results must still be manually inspected for verification, even though
the min-hashing approach is capable of grouping similar applications fast and ac-
curately. For further validation, we performed manual inspection over the unre-
moved cases in the top-100 applications in the ASI1 ranking. Out of 100 potential
clone groups, 71 have lost at least one application whereas 29 app-sets remain un-
altered. Hence, we performed visual inspection over the latter 29, finding 17 to
look very much like clones attending to similarities in UIs, application structures,
sizes and permissions. In other words, only 12 of the initial top-100 apps spotted by
CloneSpot appear false positives in the detection.

As a result, CloneSpot is able to quickly detect, rank and sort accurately potential
clones for manual inspection enhancing the analysis process by providing together
and orderly victims and clones in the same application groups.

7.3.2 Real-time Repackaging Detection through the CloneSpot Ser-

vice

The previous section has focused on the search for repackaged applications within
an entire market such as Google Play using only qualitative meta-data fields. Even
though this process is optimized and fast, it is not enough for online real-time appli-
cation analysis, not to mention the requirements in computing resources to complete
such operation.

However, the actual computation time of a min-hash, which is the basic require-
ment to index a single application, is really small, as the result of performing some
operations over a few kilobytes of data. Since market analysis can be effectively

110 Chapter 7. Android Meta-data for Repackaging Detection

undertaken separately in an offline fashion and stored in a highly efficient database
indexed by min-hash, it is possible to develop a near real-time clone retrieval sys-
tem.

Consequently, CloneSpot can be converted into an application duplicate search
engine that seeks for copies of incoming applications from a database that can be
updated and extended in the meantime. In this light, CloneSpot Poc is a real-time
querying engine of potential clones over their basic meta-data. When given any
application title, description, category and developer name, CloneSpot can compute
its min-hash and query the database by index to retrieve which applications, if any,
are potential clones. Such application can be used by different actors within the
Android ecosystem, for instance:

• From a market perspective, this PoC can be used to test newly updated appli-
cations at upload time and even require developers more details if meta-data
analysis retrieves other applications.

• For analysts, the CloneSpot PoC can serve as a fast recommendation engine
for applications to compare given a new sample.

• From an application developer perspective, CloneSpot PoC is a useful tool to
keep track of similar applications and whether any application is being copied.

Implementation Details

The CloneSpot PoC is a REST API service built on top of Java Servlets. The underly-
ing database is MongoDB due to its speed and high performance in largely loaded
scenarios. The service is designed to query applications to the database using each
app-set min-hash as an index for fast retrieval. The system is developed to return
applications by directly receiving the min-hash value or, instead, the required meta-
data fields to compute the min-hashing by itself. The methods implemented in the
system are the following:

• getDuplicates: HTTP GET method that receives a min-Hash value in the request
url and returns the app-set corresponding to that min-Hash.

• analyze: HTTP POST method that takes as input a JSON-encoded representa-
tion of application meta-data (title, description, category and developer name)
and returns the app-set associated to the computed min-Hash value (if any).

In addition, the service provides an info method containing the user guide and
usage considerations. The reader should bear in mind that this service is a Proof
of Concept of the CloneSpot approach and is not prepared for full-load operation.
Anyway, the service is publicly available for use over the dataset presented in this
chapter [206]

7.4. Summary and Conclusions 111

7.4 Summary and Conclusions

In this chapter, we have deepened in the utilization of meta-data for Android ap-
plication repackaging detection by proposing a more specific usage of two meta-
information features: title and description. Using advanced textual clustering meth-
ods, namely min-Hashing, we have grouped applications with similar meta-data
and ranked the resulting groups according to pairwise title and description similar-
ity indexes.

This approach, that we have called CloneSpot, has been presented in Sections 7.2
and 7.3. CloneSpot is capable of grouping applications according to the similarity
of their meta-data, so malware analysts can tackle their inspection in the correct
context. Furthermore, aiming at a larger contribution to the community, we have
opened the CloneSpot methodology to the Internet through a web service that given
an application meta-data returns its potential clones from Google Play.

In sum, this chapter has extended the potential capabilities and uses of Android
application meta-data in the context of malware as initiated in Chapter 4. Together,
both chapters show Android meta-data advantages and potentialities in the field of
malware detection that could improve Android security at scale.

113

Chapter 8

Optical WDM Networks
Configuration from an ML perspective

From well-known classification algorithms capable of mimicking traditional pro-
tocol behavior, to most state-of-the-art developments like DL that have the potential
of reinventing protocols and algorithms, AI technologies can be leveraged into more
efficient state-aware network management and planning systems.

In this chapter we overview the application of AI technologies to optical WDM
networks by methodologically defining an application framework with three main
steps: (i) data collection, generation and labeling; (ii) problem solution, typically
based on network protocol approximation with ML; and (iii) network implementa-
tion by means of novel networking technologies such as SDN.

Data collection and acquisition to support AI is a complex and difficult task in
any area. Quality data is a scarce resource that many organizations have unavailable
or are unable to manage adequately. In the case of networking data, data streams
are only available to some few players, typically network operators and equipment
vendors, who have not gained interest on its collection until very recently. Thus,

114 Chapter 8. Optical WDM Networks Configuration from an ML perspective

correctly acquiring, labeling and using networking data is a complex step that needs
an inexistent systematization hitherto.

Once enough quality data has been amassed, network problems can be tackled
from a data analysis perspective. Usual ML approaches are very restricted to classi-
fication and regression and, therefore, require domain expertise and advanced mod-
eling capabilities to properly emulate network protocols. Besides, many networking
problems are profoundly complex and require much effort just to define the correct
classification/regression target along with performance metrics and expectations.

Finally, after modeling and training, ML models must be implemented into net-
works so they can actually be useful for the networking community. In this sense,
the advent of technologies such as SDN and NFV has propitiated the use of ML to
support quick decision-making and network modification at runtime. Hence, the
natural evolution for a validated ML model is the implementation via these tech-
nologies.

Each of these phases presents its own problems and challenges. Through this
Chapter, we provide PoC solutions to the two first modeling steps, that is, data gen-
eration and model definition. In Section 8.1 we introduce Netgen, our solution for
generating and labeling network information at scale that relies on the well-known
network planner Net2Plan. Then in Section 8.2 we propose a DL-based approach to
solve well-known Routing and Wavelength Assignment (RWA) problem that can be ap-
plied to small networks. Section 8.3 details the results, specially in time and network
efficiency of these approaches and Section 8.4 summarizes finding and remarks the
most relevant conclusions.

8.1 Netgen: Automated Tool for Network Data Gener-

ation

The first step for applying ML to network problems consists on the acquisition and
labeling of training datasets. Examples of useful data might include network topol-
ogy observations, link loads, hop counts or Traffic Matrices (TMs) in any networking
context. Such data can be either collected from real networks or synthetically gen-
erated following a mathematical traffic model. In any case, all these observations
require a label to be useful which depends on the specific details of the network
protocol or problem.

To generate these labels, there exist different tools supporting network modeling
and ILP/heuristics solving. Regardless, most of these tools are conceived to be used
by a human expert that needs to plan and manage the resources of a network using
estimates based on expectation models. Due to this, many of them are not prepared
to deal with the solutions of tons of combinations of traffic matrices and network
topologies. In this light, we propose Netgen to overcome this problem and enable
the generation of quality labeled data. Netgen is conceived a wrapper management
system of a very well-known planning tool: Net2Plan.

8.1. Netgen: Automated Tool for Network Data Generation 115

8.1.1 Net2Plan: An Open-source Network Planner

Net2Plan [157] is a Java-based open-source tool designed for planning, optimization
and performance evaluation of communication networks that provides a singular
framework to solve many popular algorithms, including different types of routing,
path protection or even RWA algorithms. Such framework facilitates the definition
optimization routines over different network elements, the management of well-
known solvers, such as GLPK or CPLEX, or even sub-optimal approximations by
means of heuristic methods.

In its Graphical User Interface (GUI) version, Net2plan provides users with tools
that aid in the design, modification and storage of network representations includ-
ing topologies, traffic matrices, characteristics, etcetera. In addition, the tool ships
with a Command Line Interface of the program to be interacted directly by a computer.

Given a topology and traffic matrix, Net2Plan can solve a number of classical net-
working problems, such as IP routing, Routing and Wavelength Allocation (RWA)
in IP over optical WDM networks or optimal configuration of physical-layer in wire-
less networks, either using ILP formulations assisted by different well-known im-
plementations or even custom-made heuristic algorithms developed with the help
of the tool. This way, Net2Plan supports the development of customized optimiza-
tion solutions that are either ILP-based or heuristic-based.

Net2Plan can be fed with topology and TM information through .n2p files fol-
lowing a schema-like XML syntax. Once in the application, solutions to the required
algorithm are computed and results can be stored as a new n2p or an excel file.

8.1.2 Netgen Architecture

Netgen is developed around the command line interface of Net2Plan: Net2Plan-CLI,
which enables the execution of multiple instances for solving TMs at scale. Fig 8.1
drafts the basic Netgen workflow and components. In what follows, each of these
components will be described and summarized. Netgen source code is publicly
available at Github [207].

Traffic Matrix Generation

The first Netgen module is the Traffic Matrix generator, which is coded in the python
script TMGenerator.py. This script takes as input a canonical Net2plan file, containing
the network topology and demands, and generates random traffic matrices with
different features to be applied on such network topology. The module corresponds
to the initial phase (Data generation) in the workflow diagram in Fig 8.1.

When invoked, the program reads the topology and traffic matrix from the in-
put file, modifies the canonical matrix as many times as required and stores the
resulting matrices in a new n2p file interpretable by Net2Plan. Random noise is in-
troduced through statistical distributions centered in the given canonical value and

116 Chapter 8. Optical WDM Networks Configuration from an ML perspective

FIGURE 8.1: Netgen diagram overview: Data generation, labeling and
result compression

configurable parameters. At present Gaussian and Uniform noise distributions are
supported.

Netgen also provides an interface to load user-specific traffic matrices in Comma
Separated Value (CSV) format. This component is encoded in the TMLoader.py script
file.

Net2Plan Solver Wrapper

The Net2plan Wrapper manages a pool of Net2Plan instances that are invoked upon
need to solve sample traffic matrices passed as input. Every time a TM is solved, it
is stored into a new n2p file in the output directory. Specific algorithmic parameters
required by Net2Plan are specified in a separate configuration file.

In fact, this module has the ability to invoke several instances of Net2plan in par-
allel to speed up algorithm resolution. The parallelization parameters of Net2plan
are configurable in the program depending on the computing capabilities of the host
system. The python script is N2PSolveMulti.py.

Net2Plan Result Parser

After resolution, Net2Plan results are stored in a folder in n2p file format. The final
stage of Netgen comprises the collection of all output .n2p files and production of
a tabular dataset more usable in ML algorithms. This is accomplished by the Re-
sultParser.py script. Essentially, this python module collects the input and output
n2p files and combines them into a single CSV file which columns include the input
features (Traffic Matrix, etc) along with the output values depending on the specific
networking algorithm executed. Each row in the file refers to a different n2p file.

8.2. Modeling RWA as an ML classifier 117

Each solver requires its own parser due to the particularities of the underlying
algorithm. For instance, if the algorithm executed in the second phase is the classical
RWA algorithm, then the parser should collect the wavelength and sequence of links
traversed by each lightpath.

The current version of Netgen includes parsers for three Net2Plan algorithms:
Routing and Wavelength Allocation, Path Formulations (Routing) and Link Disjoint Path
Protection routing.

8.2 Modeling RWA as an ML classifier

1 Madrid

5 Zaragoza

2 Barcelona

3 Valencia

4 Sevilla

e14

e34

e12

e23

e15
e25

e13

FIGURE 8.2: Depiction of the basic 5 Node network used for this
problem

In this section we demonstrate the second phase of our framework by the exam-
ple. Concisely we focus on a very complex problem: The Routing and Wavelength
Allocation problem (RWA for short), which attempts to optimally assign lightpaths
(routes and wavelengths) to each of the demands within a network.

Routing and Wavelength Assignment in optical networks is typically modeled
as a multi-commodity flow problem, where a directed graph is used to represent
the optical network topology. Given a set of demands in traffic matrices (TMs) for
the given topology, the resolution of the RWA consists on determining the optimal
route and wavelength combination that to satisfies every given demand.

Generally, RWA formulations include a set of constraints the resolution must be
subject to, usually regarding flow conservation, capacity constraints or wavelength usage,
notwithstanding other elements like wavelength continuity or maximum reach.

Typical objective functions are varied, ranging from minimizing the number of
wavelengths used, the number of transponders or the energy consumption. In the

118 Chapter 8. Optical WDM Networks Configuration from an ML perspective

past, RWA has been solved either through complex, non-scalable exact mathemat-
ical models based on Integer Linear Programming (ILP) or different heuristic algo-
rithms proposed to speed up resolutions specially in large networks. ILPs have been
proved NP-hard, meaning the problem is computationally costly to solve and can
take way too long. To alleviate this, heuristic functions that provide sub-optimal so-
lutions have been designed. For a more comprehensive overview of RWA solution
approaches, the reader may refer to [208].

In this light, we propose an ML approach that relies on ILP-solved data to train a
sub-optimal heuristic-like model capable of learning from ILP patterns, minimizing
the suboptimality of heuristic approaches whilst reducing the computation times
of both ILP and heuristic approaches. For this problem, we consider a version of
RWA with no wavelength conversion and unconstrained route length. Concerning
the optimization target for the ILP, we attempt to reduce overall network cost, that
mainly takes into account network transponders.

8.2.1 Methodology

For illustration purposes, consider the 5-node network topology of Fig. 8.2 with five
nodes and seven bidirectional links and assume a number of W wavelengths per
link, each one operating at C Gb/s (i.e. W lambdas @ C Gb/s).

Let us also consider a 5 × 4 traffic matrix collecting the traffic demands dij (in
Gb/s) from source i to destination node j (i 6= j). The RWA algorithm maps each
traffic demand dij to a list of link sequences (routes) and wavelengths (lambdas).
For example the network could contain a formulation like the following:

d12 → (e12, λ1)

d13 → (e13, λ1)
...

d24 → (e23, e34, λ2) (8.1)
...

d54 → (e52, e23, e34, λ3)

which provides different network routes and wavelengths for each demand. In this
case, demand d12, going from source node 1 to destination node 2 and is provisioned
with direct link e12 and the first wavelength λ1. Also, demand d54 goes through
the route defined by links e52 e23 e34 and uses the third wavelength λ3. We
call this formulation a Routing and Wavelength Configuration (RWC) and is suited
for a particular demand matrix. In other words, the RWA solver receives as input
a serialized traffic matrix with all source-destination traffic demand requests and
outputs its optimal RWC list.

When the ILP is given a sample traffic matrix (TM1), it will produce a similar
set of links, y1 = RWC1. Similarly, upon another new matrix TM2, the ILP will

8.2. Modeling RWA as an ML classifier 119

produce a different configuration y2 = RWC2, and so on for all available matrices.
Consequently, the RWA problem can be transformed into a multi-class classification
problem where the input variables are the elements of a serialized traffic matrix and
the output labels are network RWCs obtained from solving the ILP.

In many cases, a given RWC can correctly satisfy different TM demands at the
expense of a minimal penalty on some link loads and hop counts producing slightly
suboptimal results. Additionally, reducing the total number of classes involved in a
classification problem is key to boost performance. Hence, aiming at the reduction
of complexity, a threshold of 30% average hop count will be introduced to facili-
tate the reduction of classes. For that purpose, we combine TMs and RWCs over
a forward-pass over the latter to compress the number of classes involved in the
solutions.

To perform such pass, we verify that the RWCs assigned to new TMs comply
with the previously defined tolerance condition as well as with producing a feasible
RWC for the new TM. In this context, any RWC is considered feasible for any TM
provided the following conditions are met:

• All traffic demands are allocated meeting the wavelength continuity constraint,
that is, every lightpath traverses the network in the optical domain, without
changing the wavelength

• All link occupations (link loads) are possible, that means having an occupation
of 100% at most.

• Each slot formed by a link and a wavelength is used only once.

The outcome of these transformations may be used to train a classical supervised
ML that learns how to replicate the ILP behavior forming a heuristic algorithm that
is trained over optimal and reliable output data to make faster predictions over new
TMs. Furthermore, in case no ILP solution was available, such a model could also
learn from RWC datasets solved using heuristics, since the class scheme would be
similar.

8.2.2 Dataset Generation and Labeling

The experiments in this section are carried over the two networks, a simple 5-node
Spanish topology as a the proof of concept and the well-known Abilene network
topology to illustrate real-data and scalability.

The 5-network topology proposed in Fig. 8.2 is composed by 5 nodes and 7 bidi-
rectional links (14 links in total). Transponders are the assumed equal in all nodes
and the number and capacity of wavelengths is the same. Each node is located in
one of the biggest cities in Spain, namely Madrid, Barcelona, Valencia, Zaragoza
and Sevilla; the distance (in kilometers) is computed from the real coordinates and
the population associated to each node is that of their home cities. We have gen-
erated 10, 000 TM samples for this network following a well-known traffic model:
population-distance.

120 Chapter 8. Optical WDM Networks Configuration from an ML perspective

The population-distance model (aka gravity) assumes that the traffic demands
between each two cities depend on their size and distance [209]. This base model is
altered with random white Gaussian noise centered at 100 times the average popu-
lation distance model µdist and with a standard deviation of 0.15 times such average
for generating the required TMs. In short:

Noise ≈ N (µdist, 0.15 × µdist) (8.2)

FIGURE 8.3: Schematic of the Abilene Network

In addition, we consider the Abilene network topology aiming at validating the
model with real network data and and verifying the scalability of the approach. The
Abilene topology, depicted in Fig 8.3, is composed by 12 nodes and 15 bidirectional
links (30 in total), which makes it a larger and more complex network setting for the
ILP. Furthermore, we make use of 48, 096 real traffic matrices collected in a timespan
of six months and available online through the SNDlib project [159].

Then, we solve the available traffic matrices using Netgen for both topologies
with different configurations. Concisely in the 5-node topology, we consider four
different transponder configurations, namely 8 and 10 wavelengths at 40 Gbps and 5
wavelengths at both 100Gbps and 400Gbps (namely, 5@400, 5@100, 8@40 and 10@40
datasets).

In the case of Abilene, the network configurations are 20 wavelengths at 400
Gbps and 20 and 40 wavelengths at 100 Gbps (that is, 20@400, 40@100 and 20@100
datasets). In addition, we solve the same cases of Abilene for the heuristic algo-
rithm provided with Net2Plan, which is a frist-fit algorithm. As ILP solver, we have
configured Net2Plan to work with IBM’s CPLEX implementation [210].

8.2. Modeling RWA as an ML classifier 121

8.2.3 Machine Learning Classification Models

Classification algorithms might be used to estimate the probability of an RWC to be
feasible for an specific TM. This way, rather than predicting a single RWC, we can
create a ranking for most likely suited RWCs given a TM and keep the 10 topmost
to minimize the number of unfeasible RWCs at a limited time cost. In other words,
ML models are set up to produce class probability estimates and consider the top 10
most likely RWCs. In the case where no result provides a feasible solution for a TM
as defined above, that particular sample is marked as unfeasible.

This way, ML algorithms will predict the scores of the 10 most probable RWCs
and the resulting system will choose from the list in order the first feasible case. In
this light, we choose Logistic regression and Feed-forward Deep Neural Networks
as classifiers, as they are both good at estimating probabilities. Moreover, the LR
classifier can deliver a baseline performance estimation whereas the DNN can work
on classification with state-of-the-art performance.

Logistic Regression Architecture

Logistic Regression classifiers are very fast to train and interpret but prone to under-
fitting due to their simple linear nature. We train two logistic regression models with
different regularization schemes each: lasso (ℓ1) and ridge (ℓ2). The regularization
constant (C) of each model is determined with the help of 10-fold cross-validation,
where train data is split into 10 chunks and each is used once as testing set with
different candidate parameters. A hold-out validation set is kept aside for final vali-
dation.

Deep Neural Net Architecture

The proposed DNN configuration comprises six fully connected layers, with dropout
in the first and fourth layers and ℓ2 regularization in the third and fifth layers. Activa-
tion is performed using the well-known rectified linear unit (ReLU) and hyperbolic
tangent (tanh) functions. The model has been trained using the Tensorflow frame-
work, concisely the Stochastic Gradient Descent implementation.

The optimization target is the minimization of the output’s cross-entropy over
16, 000 training steps that perform an optimization batch of 400 datapoints ran-
domly sampled. The learning rate is 0.02. In this case, regularization, dropout and
the rest of hyper-parameters have been set by heuristics, validated through a hold-
out set reported separately (validation). In addition, we have studied the number of
steps and overall architecture validation by testing the training of the model through
several steps.

Indeed, Fig. 8.4 depicts the evolution of accuracy and cross-entropy over training
steps for training and test sets for the two network scenarios (5-node and Abilene).
Each of the points in the horizontal axis represents a group of 2, 000 training steps
The figure demonstrates how the test curve plateaus in between 13, 000 and 19, 000

122 Chapter 8. Optical WDM Networks Configuration from an ML perspective

0 5 10 15 20 25 30 35

0
.3

0
.4

0
.5

0
.6

0
.7

Training Steps (2000)

A
c
c
u

ra
c
y

ABI-40@100 ABI-20@100 5N-10@40 5N-8@40

train test

(a) Accuracy

0 5 10 15 20 25 30 35

1
.0

1
.5

2
.0

2
.5

Training Steps (2000)

L
o

s
s

ABI-40@100 ABI-20@100 5N-10@40 5N-8@40

train test

(b) Cross-entropy loss

FIGURE 8.4: Accuracy and Cross-entropy loss for the 5-node and
Abilene network topologies.

steps while the training accuracy curve continues growing, suggesting that using
more steps would incur in overfitting.

This figure further shows that the proposed DNN is valid and useful for both
topologies and all the proposed configurations, which in turn suggests good gener-
alization capabilities for the case of RWA.

Performance Assessment

Throughout experiments, F-score values are collected for train, test and validation
sets to evaluate performance in terms of ML classification metrics. However, the
RWA problem is not strict and different solutions may be applied to different TMs
provided they satisfy demands and requirements correctly.

Thus, the account of feasible results which may not be necessarily identical to
the given result, is collected. Furthermore, the average link load and hop count of
the proposed solution is also registered for reference. This way, each model’s gen-
eralization abilities can be measured in terms of ML and also its specific network
parameters. At the end, network performance metrics are useful to determine the
capabilities of classification algorithms to produce a similar RWC to the one com-
puted by the ILP that leverages ML for better approximations than heuristics.

8.3 Results

8.3.1 Dataset Generation Efficiency of Netgen

Using Netgen, six 100, 000 sample datasets have been solved for the three network-
ing problems currently supported by Netgen, namely (i) conventional shortest path
IP Routing, (ii) shortest path IP routing with 1+1 link-disjoint protection, and (ii)

8.3. Results 123

RWA. For completeness, we compute such values in two networks: (i) a small 5-
node Spanish topology and (ii) the bigger NSFnet topology. Table 8.1 shows time
figures separated by component1. These results have been measured from the exe-
cution of Netgen in an Intel Xeon E5-2630 server with 24 cores and 190 GB of RAM
memory.

TABLE 8.1: Netgen in action: Time performance for labeling datasets

Algorithm IP Routing 1+1 Prot RWA IP Routing 1+1 Prot RWA
Topology NSFNet NSFNet NSFNet 5Spain 5Spain 5Spain

Data Generation 454 secs 454 secs 454 secs 180 secs 180 secs 180 secs
Data Labeling ∼15 hours ∼94 hours ∼10 hours ∼4 hours ∼14 hours ∼3 hours

Result Compression 126 secs 250 secs 178 secs 19 secs 22 secs 39 secs
Average per sample 0.54 secs 3.38 secs 0.35 secs 0.12 secs 0.91 secs 0.109 secs

As shown, most of the time spent in the generation of the dataset corresponds to
the actual optimization solution of the algorithm, which takes several seconds for
complex formulations and large network topologies.

8.3.2 ML-based Heuristic to Solve RWA (Spanish 5 Node topology)

TABLE 8.2: Ml and networking metrics of the proposed solution for
the different datasets and algorithms

DATASET d1: 5@400
Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ

¯hops maxhop Ftrain Fval RWC
ILP - - - 0.1302 0.5097 2.05 4 100 - -
ℓ1 0.613 0.604 0.606 0.1288 0.5092 2.05 4 99.9 99.9 15
ℓ2 0.616 0.600 0.604 0.1292 0.5097 2.05 4 99.9 99.9 15

NN 0.799 0.809 - 0.130 0.510 2.05 4 100 100 15
DATASET d2: 5@100

Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ
¯hops maxhop Ftrain Fval RWC

ILP - - - 0.358 1 1.775 3 100 - -
ℓ1 0.549 0.540 0.542 0.316 1 1.6 3 99.05 99.30 69
ℓ2 0.545 0.511 0.542 0.369 1 1.775 3 62.22 61.30 69

DNN 0.954 0.949 0.952 0.36 1 1.77 3 99.98 99.88 69
DATASET d3: 10@40

Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ
¯hops maxhop Ftrain Fval RWC

ILP - - - 0.503 1 1.895 4 100 - -
ℓ1 0.399 0.327 0.361 0.496 1 1.87 3 85.37 83.80 215
ℓ2 0.395 0.318 0.295 0.4925 1 1.855 4 80.10 81.00 215

DNN 0.815 0.801 0.808 0.49 1 1.86 3 99.45 97.16 215
DATASET d4: 8@40

Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ
¯hops maxhop Ftrain Fval RWC

ILP - - - 0.554 1 1.648 3 100 - -
ℓ1 0.400 0.330 0.350 0.450 1 1.871 3 81.45 82.00 197
ℓ2 0.390 0.329 0.319 0.506 1 1.777 3 85.32 85.80 197

DNN 0.851 0.837 0.854 0.52 1 1.63 3 99.63 96.88 197

1The resulting datasets are publicly available at: ❤tt♣s✿✴✴♦s❢✳✐♦✴❡t✷❣❛✴

https://osf.io/et2ga/

124 Chapter 8. Optical WDM Networks Configuration from an ML perspective

Tab. 8.2 provides a detailed summary of experimental results for each dataset in
the 5-node network. The Net2Plan ILP result metrics are reported as well. Train,
test and validation F-score values are given along with networking metrics such as
average link load (ρ̄) and hops (¯hops), bottleneck link load (maxρ) and maximum
hop count (maxhop) and the amount of feasible solutions produced for the training
(Ftrain) and validation (Fval) sets.

As expected, machine learning scores are not optimal, with the exception of the
neural network, which provides acceptable F-score values, being very good in some
cases. Anyway, network metrics indicate very performance in terms of feasibility, as
most of the assigned RWCs are possible even in many cases where the classification
fails in a strict sense. Here, the DNN is also the clear winner, showing very high
feasibility and with comparable link load and hop count with respect to the optimal
solutions from the ILP. Indeed, neural networks achieve almost complete feasibility,
reaching above 95% in all cases.

On the other side, LR results are worse, specially in terms of ML scores (F-score).
Despite, feasibility is high as well, with ℓ1 regularization usually beating ℓ2. This re-
sults suggest that RWA can be approximated with ML, being more complex models
better than simple formulations.

8.3.3 ML-based Heuristic to Solve RWA (Abilene topology)

TABLE 8.3: Numerical results obtained for the Abilene network
topology

DATASET d5: 20@400
Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ

¯hops maxhop Ftrain Fval RWC
ILP - - - 0.025 0.421 2.64 6 100 - -
heur - - - 0.029 0.422 3.007 8 100 - -

DNNILP 0.886 0.883 0.884 0.025 0.416 2.643 6 97.77 98.08 1,470
DNNHeur 0.987 0.984 0.979 0.028 1 3.007 8 99.92 99.86 133
DATASET d6:40@100

Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ
¯hops maxhop Ftrain Fval RWC

ILP - - - 0.059 1 3.064 7 100 - -
heur - - - 0.047 1 2.503 5 97.25 - -

DNNILP 0.748 0.706 0.712 0.057 1 3.05 7 94.67 94.65 1,775
DNNHeur 0.456 0.423 0.422 0.047 1 2.503 5 85.07 84.38 5,868
DATASET d7:20@100

Algo. TrainFsc TestFsc ValFsc ρ̄ maxρ
¯hops maxhop Ftrain Fval RWC

ILP - - - 0.111 1 3 6 100 - -
heur - - - 0.093 1 2.503 5 84.33 - -

DNNILP 0.771 0.731 0.725 0.110 1 3.003 6 95.55 94.87 1,462
DNNHeur 0.425 0.389 0.389 0.09 1 2.503 5 71.33 71.41 11,128

Table. 8.3 shows the results obtained for the DNN in the Abilene network topol-
ogy assuming different capacity and wavelength configurations. In this case, we
illustrate the possibility of training a DNN with the output result of both optimal
ILP and first-fit heuristic algorithms. We observe that in all ILP cases, the number of
RWC classes is about 1, 500 for 48, 096 training points, and the results are very good

8.3. Results 125

both in terms of F-score and network-related metrics (link load and hop count).
Concerning feasibility, values around 95% are obtained in all DNNILP cases.

Therefore, results illustrate how using ILP-based data as training ground truth
is better than using heuristic-based data, since the solutions achieved by the former
are more compact than those of the latter. Interestingly, learning from heuristic-
based solutions in harder, since the number of classes is not easily reduced and
therefore the correct training of the DNN is not easy. Nonetheless, feasibility is still
high and above 70% in all cases, indicating than any of the two approaches can yield
acceptable performance.

In conclusion, this experiment shows that DNN models can learn from both data
sources, even though ILP-based solutions appear to be more appropriate for obtain-
ing improved results. However, it is worth noting that the final number of classes is
relevant and affects the requirements for data samples.

8.3.4 Complexity and Time Impact of ML Predictions

The time complexity and impact of the proposed solution is highly dependent on
the classification time, the comparison with the ILP and the number of attempts each
TM requires to get the correct solution. Whenever any ML solution is not feasible
and cannot be used, it is necessary to extract the RWC from an alternative method,
such as the ILP or increasing the top ranking.

Hence, aiming at estimating the time impact of the system, we compare ML com-
pletion times with the ILP computation times, using as ML times upon failure the
completion time of the ILP. This way, when the ML solution fails, it gets penalized
to the full time required to obtain the ILP solution.

As a result, this system comprises a hybrid ML-ILP solution that always assigns
an appropriate solution. Average completion time of an ML estimation is below
15 ms for any model, whilst the time required by Net2Plan solver for the ILP or
even the first-fit heuristic accounts for hundreds of ms on average. Then, the time
improvement over the ILP solution can be computed as follows:

Impr =
tILP (Nfeasible ∗ tML + Nunfeasible ∗ tILP)

tILP
(8.3)

where tILP and tML correspond to the time used by the ILP and the ML classifier
respectively and Nfeasible and Nun f easible determine the amount of unfeasible cases.

Table 8.4 illustrates the specific completion times for model training and pre-
diction, along with an estimate of the time cut produced by ML. Besides, the time
proportion imputed on average to feasible (ML) and unfeasible (ILP) solutions is
displayed as well. Figures in the table do show that higher link load network set-
tings take more time to train and predict. Additionally, the reader should note that
more complex ML models are more accurate, but slower, even though they are still
way faster than traditional heuristic of ILP approaches.

The table indicates that LR models are fast to train and query for prediction,

126 Chapter 8. Optical WDM Networks Configuration from an ML perspective

TABLE 8.4: Training and prediction times for the ML solution. In
addition, the improvement of a hybrid ML-ILP solution with respect

to pure ILP is shown as well.

5-Node ℓ1 LR
Dataset Train. tML tILP Impr.(ILP)
5@400 2.0 s 0.6 µs 478 ms 99.89%
5@100 8.4 s 1.6 µs 393 ms 99.29%
10@40 21.0 s 2.6 µs 436 ms 83.79%
8@40 19.6 s 2.3 µs 470 ms 81.99%

5-Node ℓ2 LR
Dataset Train. tML tILP Impr.(ILP)
5@400 2.2 s 0.7 µs 478 ms 99.89%
5@100 2.8 s 8.1 µs 393 ms 61.22%
10@40 2.8 s 3.7 µs 436 ms 80.99%
8@40 3.7 s 2.2 µs 470 ms 85.79%

5-Node ILP DNN
Dataset Train. tML tILP Impr.(ILP)
5@400 15.1 mins 1.1 ms 478 ms 99.81%
5@100 15.5 mins 1.6 ms 393 ms 99.63%
10@40 16.5 mins 3.3 ms 436 ms 96.74%
8@40 16.3 mins 1.8 ms 470 ms 96.65%

Abilene ILP DNN
Dataset Train. tML tILP Impr.(ILP)
20@400 17.2 mins 8.8 ms 861.8 ms 97.08%
40@100 16.5 mins 10 ms 1382.1 ms 93.96%
20@100 18.2 mins 3.5 ms 1899.2 ms 94.69%

Abilene Heuristic DNN
Dataset Train. tML theur Impr.(heur)
20@400 12.3 mins 2.6 ms 256 ms 98.90%
40@100 21.5 mins 5.9 ms 237 ms 82.28%
20@100 33.6 mins 14 ms 262 ms 67.60%

while the DNN models require some minutes to train and milliseconds for predic-
tion. Still, both approaches are below the hundreds of milliseconds required by the
ILP to optimally solve a given traffic matrix. Moreover, linear ML models may be
faster than DNN but they often report more unfeasible cases that require a full ILP
cycle for a feasible RWC penalizing the models’ time performance. Hence, DNN
models achieve better results mainly due to their higher feasibility scores.

Specifically, LR produces results with feasibility around 70-80% and a potential
time cut with respect to the ILP of 80% whilst the DNN is able to achieve complete
feasibility in almost every case and producing time improvements of, at worst, 94%
with respect to the ILP. In the case of Abilene topology, linear models have not been
attempted due to the increase in complexity of the network, which would produce
worse performance.

8.4. Summary and Conclusions 127

Finally, it is worth noting that the proposed ML solution is also faster than the
reported times of the first-fit heuristic, making it an interesting replacement for both
alternatives. In fact, while ML can be trained from any of the solutions, it is clear
that ILP-based ML is better in terms of feasibility. Thus, an appropriate approach
to produce ML-based RWA would be to use ILP as often as possible and using the
heuristic-based training when ILP solution is not available or computationally fea-
sible.

8.4 Summary and Conclusions

Through this chapter, we propose and validate an ML application framework in
the context of optical WDM networks driven by an example problem: Routing and
Wavelength configuration assignment. The framework for ML application is formed
by three main stages: data generation and labeling, modeling and validation and system
implementation. This chapter focuses on the development of the former two, while
the latter is future work currently undergoing as a collaboration of our UC3M team
with Politecnico de Milano.

Moreover, we have investigated solutions for the data collection and model val-
idation phases as proofs of concept. For data generation and labeling, we pre-
sented Netgen which interfaces the Net2plan network planner tool to generate or
label training datasets for networking. Regarding modeling and validation, we at-
tempted the approximation of the complex problem of Routing and Wavelength Al-
location through ML. Modeling was developed to adjust the problem statement to a
classification problem where entire routing and wavelength configurations (RWCs)
are classes to be assigned from different TMs as input.

Concisely, we used logistic regression and Deep Neural Networks with a ground
truth dataset of thousands of traffic matrices and their associated RWA solutions
provided by the RWA ILP or first-fit heuristic. Results indicate great potential for
this approach, specially in terms of time reduction and improved resource manage-
ment.

In particular, the proposed DNN architecture has shown useful learning non-
linear structures successful in identifying the relations between TMs and RWCs.
Actually, the feasibility provided by DNNs is over 90% for the ILP-based cases and
over 70% with heuristic-based data. Moreover, the algorithm achieves a time cut of
at least 93% with respect to classic ILP approaches. The data used in the analysis has
been synthetic in the case of the 5-node network and collected in the case of Abilene
network.

In sum, this chapter has demonstrated the viability of approximating network
protocols like RWA using ML to create ILP-mimicking algorithms that provide sub-
optimal solutions better than those of heuristics and much faster than both alterna-
tives.

129

Chapter 9

Conclusions and Future Work

This chapter recaps the main contributions and advancements of the thesis and
concludes the work summarizing conclusions, lessons learned and future work. In
Section 9.1 we summarize conclusions and results from the different contributions
from each chapter while in Section 9.2 the main future lines are enumerated. Finally,
in Section 9.3 we facilitate a detailed list of the publications arisen during the PhD
period.

9.1 Summary of Main Contributions

The aim of this thesis is the advancement in the adoption of AI and ML through
applying techniques from these technologies into two distinct fields related to the
Internet, namely cybersecurity and pptical WDM networks. Along different lines
and incremental contributions, this thesis has proposed various enhancements, typ-
ically software components, which improve the detection of Android malware, the

130 Chapter 9. Conclusions and Future Work

knowledge and combination of multi-scanner AV detections and the usage of ML in
optical networks.

In Chapter 4 we have presented meta-data, that is, that information not present
in binaries but describing application functionalities and features. Meta-data has
been proposed in the chapter as a detection vector for Android malware. Using
different meta-information fields, we have developed malware detection systems
using Machine Learning over labeled Android samples. This classification has been
successful, achieving up to 0.89 F-score in general malware detection. Specifically,
this chapter reaches the following conclusions:

• The analysis of application permissions in the context of Android malware
detection is useful, but can only offer moderate results.

• Other features publicly available in application markets, such as developer
or issuer names, are more relevant to detect malware, being reputation-based
features the most effective ones.

• Using meta-data alone it is possible to create compact and efficient classifiers
to detect Android malware from each app market information.

In the light of the problems arising from AV engine detections in malware analy-
sis, we studied in Chapter 5 the outputs of multi-scanner tools coming from a large
collection of suspicious applications with the aim of clarifying the concept of mal-
ware. This analysis demonstrated different behaviors observable in engines with
a clear detection pattern structure and resulted in contributions useful for the en-
hancement of malware risk assessment. In detail, the main contributions from this
chapter are the following:

• We hypothesized and unveiled through data-driven analysis three patterns
that can be found in AV engines performing detections, namely leaders, follow-
ers and eccentrics.

• AV engines have been shown to have surprisingly low correlation values and,
therefore, many engines have been needed to inspect all possible behaviors
and patterns.

• A new method to estimate malware risk of a sample based on each sample’s
AV detection was proposed. Such method relies on SEM and the logistic func-
tion to weight AV engines according to their inter-relations.

Moreover in Chapter 6, the SignatureMiner tool has been proposed for detection
signature normalization. SignatureMiner has enabled further family-based analy-
sis leading to a category classifier solely relying on AV binary detections. In sum,
Chapter 6 has contributed to this thesis with the following:

• The SignatureMiner tool for normalizing AV engine detection signatures has
been developed and shows performance similar to that of its competitors in
performance whilst lightweight and versatile. The tool has been shared pub-
licly and is available at Github.

9.1. Summary of Main Contributions 131

• Using SignatureMiner, the most relevant malware families have been extracted
from a collection of 80K applications and their detection signatures. From
there, applications have been aggregated into three possible categories, namely:
adware, harmful and unknown. Further analysis on families and categories has
provided inter-relation insights and indicators of consistent category informa-
tion to unknown samples.

• Using the above scheme, an ML classifier is proposed to determine whether
a sample application belongs to adware or harmful categories. This classifier
uses a random forest classifier over AV detections and achieve an F-score of
0.92. This classifier has been used to unveil the actual category of the unknown
category samples.

The last contribution regarding cybersecurity, in Chapter 7, has demonstrated
how meta-data can be used to unveil repackaged applications by solely using appli-
cation titles and descriptions. Concisely, CloneSpot has been able to identify nearly
420K application clones out of 1.3M apps. From these 420K applications approxi-
mately 200K have disappeared from Google Play a year after analysis following a
removal of clones pattern. The main remarks from this chapter are the following:

• The CloneSpot methodology to analyze applications’ similarity at market level
is proposed and utilized. Such methodology relies on min-hashing over appli-
cation’s meta-data to cluster similar applications together.

• CloneSpot performance is evaluated through removal statistics, showing that
a year after 50% of the applications detected by CloneSpot have been removed
from Google Play.

• As a Proof of Concept, we produced CloneSpot PoC, a service that is capable
of returning potential application duplicates on real time using the CloneSpot
methodology. This application is running at the time of writing and can be
accessed online.

On the network side, Chapter 8 proposes and explains in detail a three-stage
framework for the application of ML to network problems that comprises labeled
data generation, modeling and validation and system implementation by means of novel
technologies such as SDN. Concisely in this chapter, we focus on the first two stages.
For the first stage, we developed the Netgen system for data generation and labeling
at scale.

For the second stage, we addressed the classical problem of Routing and Wave-
length Assignment in optical networks as a PoC. While the proposed system is not
perfect in terms of ML, it shows an impressive performance by approximating the
RWA optimal ILP and producing RWCs that may may fit many input TMs at once
showing comparable performance. The last stage is left as future work and will re-
quire the implementation of previously trained models into real networks. To sum
up, Chapter 8 contributions are listed below:

• The proposal of a system-wide framework for the application of ML in com-
puter networks, specifically in the context of optical WDM networks.

132 Chapter 9. Conclusions and Future Work

• We develop a tool for data generation called Netgen, which leverages the plan-
ning tool Net2Plan to generate labeled networking datasets at scale.

• An ML-powered heuristic solution for RWL is proposed. This algorithm works
by emulating the optimal solution provided by an ILP using ML. Experiments
show such heuristic is comparable to ILP and well-known heuristics while
much faster to compute.

Contributions have demonstrated that AI has a large potential in these fields
and showed how difficult and complex problems can be simplified through AI and,
specially how AI technologies provide the tools to propose out-of-the-box solutions
different to anything seen before. Finally, part of the methodology applied through-
out different parts of this thesis can be used as the initial building block to apply AI
technologies similarly in other fields.

9.2 Future Work

Broadly, the main line of work for this thesis is to continue with the design and de-
velopment of intelligent components to apply AI and ML into these and other fields.
Regarding the specific contributions in the thesis, each one may be continued from
two perspectives: (i) incremental extension using larger datasets or more complex
models and (ii) functional extensions specific to each component. In this section we
briefly explore possible lines of work from both perspectives.

Meta-data has been proven useful in the detection of Android malware in Chap-
ter 4 and the identification of potential repackaged applications in Chapter 7. In
summary, the main lines for future work on meta-data could be summarized as fol-
lows:

• In Chapter 4 more complex models, such as neural networks, could be used
provided an increase in the size of analysis datasets.

• In Chapter 7 cross-market repackaging could be investigated, together with an
assessment of the quality of a Market according to the clones available in there
(along with other relevant observations).

• In both chapters, other meta-data fields could be inspected to obtain alterna-
tive or complementary items, useful for the aims of each of the chapters. Fur-
thermore, including more applications, either from Google Play or any other
market is another possibility.

The AV engine detection analysis proposed in Chapter 5 and Chapter 6 could
be extended with new analytic approaches, even supervised approaches provided
ground truth data was obtained. More specifically, contributions could be extended
as follows:

9.3. List of Publications during Thesis Period 133

• Obtain ground truth for suspicious applications that would be later labeled
by multi-scanner tools. For instance, manual inspection of applications is a
possibility, although hardly scalable.

• Increase the collection of AVs by including different multi-scanner systems
together with other expert systems in each application malware analysis.

Then, regarding optical WDM networks, the results from Chapter 8 encourage
different possibilities to extend the proposed framework and include new intelligent
network protocols. Concisely:

• The development of network protocol approximations as intelligent heuristics
that emulate optimal solutions through ML and thus, are faster and yield bet-
ter results than traditional heuristics.

• Future work should also complete the third stage of the proposed framework
and contribute to the development of ML-powered SDN protocols that can
leverage the flexibility and capabilities of the combination of both disciplines.

Finally, some of the lessons learned together with the methodological approaches
and procedures conform with other related works the basis for a new paradigm
in the AI/ML field: AIaaS or MLaaS (AI or ML as a Service respectively). Such
paradigms should work towards the design, definition and development of AI tools,
methodologies and components that can help inexperienced users from different
backgrounds to systematically leverage the advantages of AI into their expertise
areas.

9.3 List of Publications during Thesis Period

These dissertation results and conclusions are supported by a set of articles pub-
lished in different conferences and journals during the thesis period. In what fol-
lows, academic publications supporting this thesis are listed together with non-
academic contributions and other relevant merits achieved during the PhD:

• Chapter 4. Android Meta-data for Malware Detection.

C1 Android malware detection from Google Play meta-data: selection of
important features; A. Muñoz, I. Martín, A. Guzmán, J. A. Hernández in
IEEE Conf. Communications and Network Security (CNS’15). Florence,
Italy. Sep 2015; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❈◆❙✳✷✵✶✺✳✼✸✹✻✽✾✸

J1 Android Malware Characterization using Metadata and Machine Learn-
ing Techniques; I. Martín, A. Muñoz J. A. Hernández, A. Guzmán in Secu-
rity and Communication Networks, Hindawi, June 2018, vol 2018; doi:
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✺✺✴✷✵✶✽✴✺✼✹✾✹✽✶

• Chapter 5. Data-driven Interrelation Analysis of AV Engines.

https://doi.org/10.1109/CNS.2015.7346893
https://doi.org/10.1155/2018/5749481

134 Chapter 9. Conclusions and Future Work

C2 Insights of Antivirus Relationships when Detecting Android Malware:
A Data Analytics Approach; I. Martín, J. A. Hernández, S. Santos, A. Guzmán
in ACM Conf. Computer and Communications Security (CCS’16). Viena,
Austria. Oct 2016, pages 1778-178; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✷✾✼✻✼✹✾✳
✷✾✽✾✵✸✽

C3 Analysis and Evaluation of Antivirus Engines in Detecting Android
Malware: A Data Analytics Approach, I. Martín, J. A. Hernández, S. San-
tos, in European Intelligence and Security Informatics Conference (EISIC’18).
Karlskrona Sweden, Oct 2018

• Chapter 6. AV Label-based Analysis of Malware Families.

C4 SignatureMiner: A fast Anti-Virus signature intelligence tool; I. Martín,
J. A. Hernández, S. Santos in IEEE Conf. Communications and Network
Security (CNS’18). Beijing, China. Apr 2018 Best Poster Award; doi: ❤t
t♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❈◆❙✳✷✵✶✽✳✽✹✸✸✶✹✶

J2 Machine Learning based analysis and Classification of Android Mal-
ware Signatures; I. Martín, J. A. Hernández, S. Santos, in Elsevier Future
Generation Computer Systems, August 2019, vol 97, pages 295-305; doi:
❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❢✉t✉r❡✳✷✵✶✾✳✵✸✳✵✵✻

• Chapter 7. Android Meta-data for Repackaging Detection.

J3 CloneSpot: Fast detection of Android Repackages; I. Martín, J. A. Hernán-
dez, in Elsevier Future Generation Computer Systems, May 2019, vol 94,
pages 740-748, doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❢✉t✉r❡✳✷✵✶✽✳✶✷✳✵✺✵

• Chapter 8. Optical WDM Networks Configuration from an ML perspective.

C5 Is Machine Learning Suitable for Solving RWA Problems in Optical
Networks? I. Martín, J. A. Hernández, S. Troia, F. Musumeci, G. Maier, O.
González de Dios, in European Conference on Optical Communications
(ECOC’18). Rome, Italy, Sept 2018; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❊❈

❖❈✳✷✵✶✽✳✽✺✸✺✺✻✷

C6 Netgen: A Fast and Scalable Tool for the Generation and Labeling of
Networking Datasets, I. Martín, J. A. Hernández, O. González de Dios, un-
der review.

J4 Machine-Learning-Based Routing and Wavelength Assignment in Software-
Defined Optical Networks, I. Martín, S. Troia, J. A. Hernández, Alberto Ro-
dríguez, F. Musumeci, G. Maier, Rodolfo Alvizu, O. González de Dios, under
review.

• Other Publications

J5 Salary Prediction in the IT Job Market with Few High-Dimensional
Samples: A Spanish Case Study; I. Martín, A. Mariello, R. Batitti, J. A.
Hernández in International Journal of Computational Intelligence Systems,
Atlantic Press, June 2018, vol 11, Issue 1, pages 1192-1209, doi: ❤tt♣s✿

✴✴❞♦✐✳♦r❣✴✶✵✳✷✾✾✶✴✐❥❝✐s✳✶✶✳✶✳✾✵

https://doi.org/10.1145/2976749.2989038
https://doi.org/10.1145/2976749.2989038
https://doi.org/10.1109/CNS.2018.8433141
https://doi.org/10.1109/CNS.2018.8433141
https://doi.org/10.1016/j.future.2019.03.006
https://doi.org/10.1016/j.future.2018.12.050
https://doi.org/10.1109/ECOC.2018.8535562
https://doi.org/10.1109/ECOC.2018.8535562
https://doi.org/10.2991/ijcis.11.1.90
https://doi.org/10.2991/ijcis.11.1.90

9.3. List of Publications during Thesis Period 135

C7 Machine-Learning-Assisted Routing in SDN-based Optical Networks
S. Troia, A.Rodríguez, I. Martín, J. A. Hernández, O. González de Dios, R.
Alvizu, F. Musumeci, G. Maier, in European Conference on Optical Com-
munications (ECOC’18). Rome, Italy, Sept 2018; doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴
✶✵✳✶✶✵✾✴❊❈❖❈✳✷✵✶✽✳✽✺✸✺✹✸✼

J6 Meeting the traffic requirements of residential users in the next decade
with current FTTH standards: how much? how long?; J. A. Hernández,
R. Sánchez, I. Martín, D. Larrabeiti, in IEEE Communications Magazine,
2018, early access, pages 2-7, doi: ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴♠❝♦♠✳✷✵✶✽✳
✶✽✵✵✶✼✸

C8 Machine Learning-assisted Planning and Provisioning for SDN/NFV-
enabled Metropolitan Networks, S. Troia, D. Eugui, I. Martín, L. M. Mor-
eira, Guido Maier (1) , J. A. Hernández, O. González de Dios, M. Garrich, J. L.
Romero-Gázquez, F.J. Moreno-Muro, P. Pavón, R. Casellas, in European Con-
ference on Networks and Communications (EUCNC’19), Valencia, Spain,
June 2019.

J7 Expanding the Measurement of Human Culture, N. Obradovich, O. Özak,
I. Martín, I. Ortuño-Ortín, E. Awad, M. Cebrián, R. Cuevas, K. Desmet, I.
Rahwan, and A. Cuevas, under review.

• Non-academic publications

G1 SignatureMiner [Github repository]. Available at: ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠
✴✐❣♥♠❛rt✐✴❙✐❣♥❛t✉r❡▼✐♥❡r

G2 Netgen [Github repository]. Available at: ❤tt♣s✿✴✴❣✐t❤✉❜✳❝♦♠✴✐❣♥♠❛rt
✐✴♥❡t❣❡♥

P1 [PRESS] Un estudio sitúa a Cataluña como la quinta comunidad menos
semejante al resto [Spanish]. Available at ❤tt♣s✿✴✴✇✇✇✳❡❢❡✳❝♦♠✴❡❢❡✴❡s
♣❛♥❛✴s♦❝✐❡❞❛❞✴✉♥✲❡st✉❞✐♦✲s✐t✉❛✲❛✲❝❛t❛❧✉♥❛✲❝♦♠♦✲❧❛✲q✉✐♥t❛✲❝♦♠✉♥

✐❞❛❞✲♠❡♥♦s✲s❡♠❡❥❛♥t❡✲❛❧✲r❡st♦✴✶✵✵✵✹✲✸✹✻✾✻✷✷

P2 [PRESS] SignatureMiner, nuestra herramienta de análisis y la homo-
geneización de firmas de antivirus [Spanish]. Available at: ❤tt♣s✿✴✴❜❧♦❣
✳❡❧❡✈❡♥♣❛t❤s✳❝♦♠✴✷✵✶✽✴✵✻✴s✐❣♥❛t✉r❡♠✐♥❡r✲❤❡rr❛♠✐❡♥t❛✲❛♥❛❧✐s✐s✲❛♥t

✐✈✐r✉s✲❝✐❜❡rs❡❣✉r✐❞❛❞✳❤t♠❧

https://doi.org/10.1109/ECOC.2018.8535437
https://doi.org/10.1109/ECOC.2018.8535437
https://doi.org/10.1109/mcom.2018.1800173
https://doi.org/10.1109/mcom.2018.1800173
https://github.com/ignmarti/SignatureMiner
https://github.com/ignmarti/SignatureMiner
https://github.com/ignmarti/netgen
https://github.com/ignmarti/netgen
https://www.efe.com/efe/espana/sociedad/un-estudio-situa-a-cataluna-como-la-quinta-comunidad-menos-semejante-al-resto/10004-3469622
https://www.efe.com/efe/espana/sociedad/un-estudio-situa-a-cataluna-como-la-quinta-comunidad-menos-semejante-al-resto/10004-3469622
https://www.efe.com/efe/espana/sociedad/un-estudio-situa-a-cataluna-como-la-quinta-comunidad-menos-semejante-al-resto/10004-3469622
https://blog.elevenpaths.com/2018/06/signatureminer-herramienta-analisis-antivirus-ciberseguridad.html
https://blog.elevenpaths.com/2018/06/signatureminer-herramienta-analisis-antivirus-ciberseguridad.html
https://blog.elevenpaths.com/2018/06/signatureminer-herramienta-analisis-antivirus-ciberseguridad.html

137

Bibliography
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-
cessing systems, 2012, pp. 1097–1105.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in Acoustics, speech and signal processing (icassp),
2013 ieee international conference on. IEEE, 2013, pp. 6645–6649.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Master-
ing the game of go with deep neural networks and tree search,” nature, vol.
529, no. 7587, p. 484, 2016.

[4] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware detection
methods,” in Proceedings of the 3rd Hackers’ Workshop on Computer and Internet
Security (IITKHACK’09), 2009, pp. 74–79.

[5] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A
survey,” Journal of Information Security, vol. 5, no. 02, p. 56, 2014.

[6] R. Mohandas, “Hacking the malware–a reverse-engineer’s analysis,” 2007.

[7] A. Epishkina and S. Zapechnikov, “A syllabus on data mining and machine
learning with applications to cybersecurity,” in Digital Information Processing,
Data Mining, and Wireless Communications (DIPDMWC), 2016 Third Interna-
tional Conference on. IEEE, 2016, pp. 194–199.

[8] T. Mahmood and U. Afzal, “Security analytics: Big data analytics for cyberse-
curity: A review of trends, techniques and tools,” in 2013 2nd National Confer-
ence on Information Assurance (NCIA), Dec 2013, pp. 129–134.

[9] O. Lysne, Static Detection of Malware. Cham: Springer International
Publishing, 2018, pp. 57–66. [Online]. Available: https://doi.org/10.1007/
978-3-319-74950-1_7

[10] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, Dec 2007, pp. 421–430.

[11] J. Devesa, I. Santos, X. Cantero, Y. K. Penya, and P. G. Bringas, “Automatic
behaviour-based analysis and classification system for malware detection.” in
ICEIS (2), 2010, pp. 395–399.

[12] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic malware
analysis using cwsandbox,” IEEE Security Privacy, vol. 5, no. 2, pp. 32–39,
March 2007.

https://doi.org/10.1007/978-3-319-74950-1_7
https://doi.org/10.1007/978-3-319-74950-1_7

138 BIBLIOGRAPHY

[13] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis based
on sandboxing,” in 2014 RoEduNet Conference 13th Edition: Networking in Edu-
cation and Research Joint Event RENAM 8th Conference, Sept 2014, pp. 1–6.

[14] C. Guarnieri, A. Tanasi, J. Bremer, and M. Schloesser, “The cuckoo sandbox,”
2012.

[15] “Meet virustotal droidy, our new android sandbox,” http://blog.virustotal.co
m/2018/04/meet-virustotal-droidy-our-new-android.html, accessed: April
2019.

[16] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis,
“Rage against the virtual machine: Hindering dynamic analysis of android
malware,” in Proceedings of the Seventh European Workshop on System Security,
ser. EuroSec ’14. New York, NY, USA: ACM, 2014, pp. 5:1–5:6. [Online].
Available: http://doi.acm.org/10.1145/2592791.2592796

[17] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, “A
comparison of static, dynamic, and hybrid analysis for malware detection,”
Journal of Computer Virology and Hacking Techniques, vol. 13, no. 1, pp. 1–12,
2017.

[18] B. Baskaran and A. Ralescu, “A study of android malware detection tech-
niques and machine learning,” 2016.

[19] D. Gavrilut, M. Cimpoesu, D. Anton, and L. Ciortuz, “Malware detection us-
ing machine learning,” in Computer Science and Information Technology, 2009.
IMCSIT ’09. International Multiconference on, Oct 2009, pp. 735–741.

[20] “Vx heaven,” http://83.133.184.251/virensimulation.org/, accessed: April
2019.

[21] J. Sahs and L. Khan, “A machine learning approach to android malware detec-
tion,” in Intelligence and Security Informatics Conference (EISIC), 2012 European,
Aug 2012, pp. 141–147.

[22] S. Y. Yerima, S. Sezer, and G. McWilliams, “Analysis of bayesian classification-
based approaches for android malware detection,” IET Information Security,
vol. 8, no. 1, pp. 25–36, 2014.

[23] K. O. Elish, X. Shu, D. D. Yao, B. G. Ryder, and X. Jiang, “Profiling user-trigger
dependence for android malware detection,” Computers & Security, vol. 49, pp.
255 – 273, 2015.

[24] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, and S. Furnell, “An-
drodialysis: Analysis of android intent effectiveness in malware detection,”
Computers & Security, vol. 65, pp. 121 – 134, 2017.

[25] S. Huda, J. Abawajy, M. Alazab, M. Abdollalihian, R. Islam, and J. Yearwood,
“Hybrids of support vector machine wrapper and filter based framework for
malware detection,” Future Generation Computer Systems, vol. 55, pp. 376 – 390,
2016.

http://blog.virustotal.com/2018/04/meet-virustotal-droidy-our-new-android.html
http://blog.virustotal.com/2018/04/meet-virustotal-droidy-our-new-android.html
http://doi.acm.org/10.1145/2592791.2592796
http://83.133.184.251/virensimulation.org/

BIBLIOGRAPHY 139

[26] N. Peiravian and X. Zhu, “Machine learning for android malware detection
using permission and api calls,” in Tools with Artificial Intelligence (ICTAI), 2013
IEEE 25th International Conference on, Nov 2013, pp. 300–305.

[27] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android malware de-
tection using ensemble learning,” IET Information Security, vol. 9, no. 6, pp.
313–320, 2015.

[28] H. Fereidooni, V. Moonsamy, M. Conti, and L. Batina, “Efficient classification
of android malware in the wild using robust static features,” Protecting Mobile
Networks and Devices: Challenges and Solutions, vol. 1, pp. 181–209, 2016.

[29] H.-S. Ham and M.-J. Choi, “Analysis of android malware detection perfor-
mance using machine learning classifiers,” in ICT Convergence (ICTC), 2013
International Conference on, Oct 2013, pp. 490–495.

[30] M. Mas’ud, S. Sahib, M. Abdollah, S. Selamat, and R. Yusof, “Analysis of fea-
tures selection and machine learning classifier in android malware detection,”
in Information Science and Applications (ICISA), 2014 International Conference on,
May 2014, pp. 1–5.

[31] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis: Android malware under the mag-
nifying glass,” Vienna University of Technology, Tech. Rep. TR-ISECLAB-0414-
001, 2014.

[32] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. v. d.
Veen, and C. Platzer, “Andrubis – 1,000,000 apps later: A view on current an-
droid malware behaviors,” in 2014 3 Int. Workshop on Building Analysis Datasets
and Gathering Experience Returns for Security (BADGERS), Sept 2014, pp. 3–17.

[33] Z. Wang, C. Li, Z. Yuan, Y. Guan, and Y. Xue, “Droidchain: A novel android
malware detection method based on behavior chains,” Pervasive and Mobile
Computing, vol. 32, pp. 3 – 14, 2016, mobile Security, Privacy and Forensics.

[34] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and C. Siemens,
“Drebin: Effective and explainable detection of android malware in your
pocket,” Proc. of Symp. Network and Distributed System Security, 2014.

[35] S. N. Hanumanthegowda, “Automated machine learning-based detection of
malicious Android applications using Google Play Metadata,” Master’s the-
sis, Northeastern University, Illinois, USA, 2013.

[36] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. Bringas, and G. Álvarez,
“PUMA: Permission usage to detect malware in Android,” in Proc. Int. Confer-
ence CISIS’12-ICEUTE’12-SOCO’12, ser. Advances in Intelligent Systems and
Computing, 2013, vol. 189, pp. 289–298.

[37] A. Aswini and P. Vinod, “Droid permission miner: Mining prominent per-
missions for android malware analysis,” in Applications of Digital Information
and Web Technologies (ICADIWT), 2014 Fifth International Conference on the, Feb
2014, pp. 81–86.

140 BIBLIOGRAPHY

[38] C. L. P. M. Hein, “Permission based malware protection model for android ap-
plication,” in Proceedings of International Conference on Advances in Engineering
and Technology (ICAET’2014)(March 2014). doi, vol. 10, 2014.

[39] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A methodol-
ogy for empirical analysis of permission-based security models and its appli-
cation to android,” in Proceedings of the 17th ACM conference on Computer and
communications security. ACM, 2010, pp. 73–84.

[40] V. Moonsamy, J. Rong, and S. Liu, “Mining permission patterns for contrasting
clean and malicious android applications,” Future Generation Computer Sys-
tems, vol. 36, pp. 122–132, 2014.

[41] Z. Aung and W. Zaw, “Permission-based android malware detection,” Int. J.
Scientific and Technology Research, vol. 2, no. 3, pp. 228–234, 2013.

[42] A. Egners, U. Meyer, and B. Marschollek, “Messing with android’s permission
model,” in Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2012 IEEE 11th International Conference on. IEEE, 2012, pp. 505–514.

[43] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android permissions
demystified,” in Proceedings of the 18th ACM conference on Computer and com-
munications security. ACM, 2011, pp. 627–638.

[44] S. Rastogi, K. Bhushan, and B. Gupta, “Android applications repackaging de-
tection techniques for smartphone devices,” Procedia Computer Science, vol. 78,
pp. 26–32, 2016.

[45] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro,
“Understanding android app piggybacking: A systematic study of malicious
code grafting,” IEEE Transactions on Information Forensics and Security, vol. 12,
no. 6, pp. 1269–1284, 2017.

[46] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of semanti-
cally similar android applications,” in European Symposium on Research in Com-
puter Security. Springer, 2013, pp. 182–199.

[47] Q. Guan, H. Huang, W. Luo, and S. Zhu, “Semantics-based repackaging detec-
tion for mobile apps,” in International Symposium on Engineering Secure Software
and Systems. Springer, 2016, pp. 89–105.

[48] H. Gonzalez, A. A. Kadir, N. Stakhanova, A. J. Alzahrani, and A. A. Ghorbani,
“Exploring reverse engineering symptoms in android apps,” in Proceedings of
the Eighth European Workshop on System Security. ACM, 2015, p. 7.

[49] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han, “Migdroid: Detecting
app-repackaging android malware via method invocation graph,” in Com-
puter Communication and Networks (ICCCN), 2014 23rd International Conference
on. IEEE, 2014, pp. 1–7.

BIBLIOGRAPHY 141

[50] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability simultane-
ously in detecting application clones on android markets,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014, pp. 175–186.

[51] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and P. Liu,
“Finding unknown malice in 10 seconds: Mass vetting for new threats at the
google-play scale,” in USENIX Security Symposium, 2015, pp. 659–674.

[52] C. Soh, H. B. K. Tan, Y. L. Arnatovich, and L. Wang, “Detecting clones in
android applications through analyzing user interfaces,” in Proceedings of the
2015 IEEE 23rd International Conference on Program Comprehension. IEEE Press,
2015, pp. 163–173.

[53] S. Yue, W. Feng, J. Ma, Y. Jiang, X. Tao, C. Xu, and J. Lu, “Repdroid: an auto-
mated tool for android application repackaging detection,” in Program Com-
prehension (ICPC), 2017 IEEE/ACM 25th International Conference on. IEEE, 2017,
pp. 132–142.

[54] P. Teufl, M. Ferk, A. Fitzek, D. Hein, S. Kraxberger, and C. Orthacker, “Mal-
ware detection by applying knowledge discovery processes to application
metadata on the android market (google play),” Security and Communication
Networks, vol. 9, no. 5, pp. 389–419, 2016.

[55] I. Gurulian, K. Markantonakis, L. Cavallaro, and K. Mayes, “You can’t touch
this: Consumer-centric android application repackaging detection,” Future
Generation Computer Systems, vol. 65, pp. 1–9, 2016.

[56] S. M. Kywe, Y. Li, R. H. Deng, and J. Hong, “Detecting camouflaged applica-
tions on mobile application markets,” in International Conference on Information
Security and Cryptology. Springer, 2014, pp. 241–254.

[57] M. Lindorfer, S. Volanis, A. Sisto, M. Neugschwandtner, E. Athanasopoulos,
F. Maggi, C. Platzer, S. Zanero, and S. Ioannidis, “Andradar: fast discovery
of android applications in alternative markets,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
2014, pp. 51–71.

[58] A. Kohli, “Decisiondroid: a supervised learning-based system to identify
cloned android applications,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. ACM, 2017, pp. 1059–1061.

[59] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting mil-
lions of android apps for the research community,” in Mining Software Repos-
itories (MSR), 2016 IEEE/ACM 13th Working Conference on. IEEE, 2016, pp.
468–471.

[60] C. Ren, K. Chen, and P. Liu, “Droidmarking: resilient software watermark-
ing for impeding android application repackaging,” in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering. ACM,
2014, pp. 635–646.

142 BIBLIOGRAPHY

[61] W. Zhou, X. Zhang, and X. Jiang, “Appink: watermarking android apps for
repackaging deterrence,” in Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security. ACM, 2013, pp. 1–12.

[62] F. Kanei, Y. Takata, M. Akiyama, T. Yagi, and T. Yada, “Poster: Protecting
android apps from repackaging by self-protection code,” 2017.

[63] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient decentralized android
application repackaging detection using logic bombs,” in Proceedings of the
2018 International Symposium on Code Generation and Optimization, ser. CGO
2018. New York, NY, USA: ACM, 2018, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/3168820

[64] J. Song, M. Zhang, C. Han, K. Wang, and H. Zhang, “Towards fast repackaging
and dynamic authority management on android,” Wuhan University Journal of
Natural Sciences, vol. 21, no. 1, pp. 1–9, 2016.

[65] P. Berthome, T. Fecherolle, N. Guilloteau, and J.-F. Lalande, “Repackaging an-
droid applications for auditing access to private data,” in Availability, Reliabil-
ity and Security (ARES), 2012 Seventh International Conference on. IEEE, 2012,
pp. 388–396.

[66] J.-H. Jung, J. Y. Kim, H.-C. Lee, and J. H. Yi, “Repackaging attack on android
banking applications and its countermeasures,” Wireless Personal Communica-
tions, vol. 73, no. 4, pp. 1421–1437, 2013.

[67] S.-W. Park and J. H. Yi, “Multiple device login attacks and countermeasures
of mobile voip apps on android.” J. Internet Serv. Inf. Secur., vol. 4, no. 4, pp.
115–126, 2014.

[68] T. Cho, G. Na, D. Lee, and J. H. Yi, “Account forgery and privilege escala-
tion attacks on android home cloud devices,” Advanced Science Letters, vol. 21,
no. 3, pp. 381–386, 2015.

[69] V. Rastogi, Y. Chen, and X. Jiang, “Catch me if you can: Evaluating android
anti-malware against transformation attacks,” IEEE Transactions on Information
Forensics and Security, vol. 9, no. 1, pp. 99–108, Jan 2014.

[70] J. Haffejee and B. Irwin, “Testing antivirus engines to determine their effec-
tiveness as a security layer,” in Information Security for South Africa (ISSA),
2014. IEEE, 2014, pp. 1–6.

[71] D. Maier, T. Müller, and M. Protsenko, “Divide-and-conquer: Why android
malware cannot be stopped,” in 2014 Ninth International Conference on Avail-
ability, Reliability and Security, Sept 2014, pp. 30–39.

[72] H. Huang, K. Chen, P. Liu, S. Zhu, and D. Wu, “Uncovering the dilemmas
on antivirus software design in modern mobile platforms,” in International
Conference on Security and Privacy in Communication Systems. Springer, 2014,
pp. 359–366.

http://doi.acm.org/10.1145/3168820

BIBLIOGRAPHY 143

[73] S. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and W. Sanders, “Secloud:
A cloud-based comprehensive and lightweight security solution for smart-
phones,” Computers & Security, vol. 37, pp. 215 – 227, 2013.

[74] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ““andromaly”:
a behavioral malware detection framework for android devices,” Journal of
Intelligent Information Systems, vol. 38, no. 1, pp. 161–190, 2012.

[75] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features for
robust malware detection in android,” in Security and Privacy in Communication
Networks. Springer, 2013, pp. 86–103.

[76] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: Scalable and
accurate zero-day android malware detection,” in Proc. of the 10th Int. Conf. on
Mobile Systems, Applications, and Services, ser. MobiSys ’12, 2012.

[77] G. Vasiliadis and S. Ioannidis, “Gravity: a massively parallel antivirus en-
gine,” in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2010, pp. 79–96.

[78] Z. Yang and M. Yang, “Leakminer: Detect information leakage on android
with static taint analysis,” in Software Engineering (WCSE), 2012 Third World
Congress on. IEEE, 2012, pp. 101–104.

[79] K. Shaerpour, A. Dehghantanha, and R. Mahmod, “Trends in android mal-
ware detection,” Journal of Digital Forensics, Security and Law, vol. 8, no. 3, pp.
21–40, 2013.

[80] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: Behavior-
based malware detection system for android,” in Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, ser.
SPSM ’11. New York, NY, USA: ACM, 2011, pp. 15–26. [Online]. Available:
http://doi.acm.org/10.1145/2046614.2046619

[81] M. Zheng, M. Sun, and J. C. S. Lui, “Droid analytics: A signature based an-
alytic system to collect, extract, analyze and associate android malware,” in
Trust, Security and Privacy in Computing and Communications (TrustCom), 2013
12th IEEE International Conference on, July 2013, pp. 163–171.

[82] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning for automatic
malware signature generation and classification,” in Neural Networks (IJCNN),
2015 International Joint Conference on. IEEE, 2015, pp. 1–8.

[83] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu, and D. Wu, “Towards discover-
ing and understanding unexpected hazards in tailoring antivirus software for
android,” in Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ser. ASIA CCS ’15. New York, NY, USA: ACM,
2015, pp. 7–18.

[84] M. I. Al-Saleh, A. M. Espinoza, and J. R. Crandall, “Antivirus performance
characterisation: system-wide view,” IET Information Security, vol. 7, no. 2, pp.
126–133, 2013.

http://doi.acm.org/10.1145/2046614.2046619

144 BIBLIOGRAPHY

[85] D. Uluski, M. Moffie, and D. Kaeli, “Characterizing antivirus workload
execution,” SIGARCH Comput. Archit. News, vol. 33, no. 1, pp. 90–98, Mar.
2005. [Online]. Available: http://doi.acm.org/10.1145/1055626.1055639

[86] W. Yan and E. Wu, Complex Sciences: First International Conference, Complex
2009, Shanghai, China, February 23-25, 2009. Revised Papers, Part 1. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, ch. Toward Automatic
Discovery of Malware Signature for Anti-Virus Cloud Computing, pp. 724–
728. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02466-5_70

[87] C. A. Martínez, G. I. Echeverri, and A. G. C. Sanz, “Malware detection based
on cloud computing integrating intrusion ontology representation,” in Com-
munications (LATINCOM), 2010 IEEE Latin-American Conference on, Sept 2010,
pp. 1–6.

[88] J. Oberheide, E. Cooke, and F. Jahanian, “Cloudav: N-version antivirus in the
network cloud,” in USENIX Security Symposium, 2008, pp. 91–106.

[89] M. Schweiger and S. C. B. Endicott-Popovsky, “Malware analysis on the cloud:
Increased performance, reliability, and flexibilty,” in Proceedings of the Inter-
national Conference on Cloud Security Management: ICCSM 2013. Academic
Conferences Limited, 2013, p. 127.

[90] “Virus total,” https://www.virustotal.com, accessed: April 2019.

[91] “Metascan online,” https://metadefender.opswat.com, accessed: April 2019.

[92] “Jotti malware scanner,” https://virusscan.jotti.org, accessed: April 2019.

[93] M. Cukier, I. Gashi, B. Sobesto, and V. Stankovic, “Does malware detection
improve with diverse antivirus products? an empirical study,” in 32nd Inter-
national Conference on Computer Safety, Reliability and Security. IEEE, 2013.

[94] P. Bishop, R. Bloomfield, I. Gashi, and V. Stankovic, “Diverse protection sys-
tems for improving security: a study with antivirus engines,” 2012.

[95] ——, “Diversity for security: A study with off-the-shelf antivirus engines,”
in 2011 IEEE 22nd International Symposium on Software Reliability Engineering,
Nov 2011, pp. 11–19.

[96] I. Gashi, B. Sobesto, S. Mason, V. Stankovic, and M. Cukier, “A study of the
relationship between antivirus regressions and label changes,” in 2013 IEEE
24th International Symposium on Software Reliability Engineering (ISSRE), Nov
2013, pp. 441–450.

[97] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz, R. Bachwani, R. Faizullab-
hoy, L. Huang, V. Shankar, T. Wu, G. Yiu et al., “Back to the future: Malware
detection with temporally consistent labels,” 2015.

[98] A. Mohaisen and O. Alrawi, AV-Meter: An Evaluation of Antivirus Scans and
Labels. Cham: Springer International Publishing, 2014, pp. 112–131. [Online].
Available: https://doi.org/10.1007/978-3-319-08509-8_7

http://doi.acm.org/10.1145/1055626.1055639
http://dx.doi.org/10.1007/978-3-642-02466-5_70
https://www.virustotal.com
https://metadefender.opswat.com
https://virusscan.jotti.org
https://doi.org/10.1007/978-3-319-08509-8_7

BIBLIOGRAPHY 145

[99] D. Quarta, F. Salvioni, A. Continella, and S. Zanero, “Toward systematically
exploring antivirus engines,” in Detection of Intrusions and Malware, and Vul-
nerability Assessment. Cham: Springer International Publishing, 2018, pp.
393–403.

[100] H. Huang, C. Zheng, J. Zeng, W. Zhou, S. Zhu, P. Liu, S. Chari, and C. Zhang,
“Android malware development on public malware scanning platforms: A
large-scale data-driven study,” in 2016 IEEE International Conference on Big
Data (Big Data), Dec 2016, pp. 1090–1099.

[101] E. Willems, “The good and the bad about av multi scanner services,” 2017.

[102] M. Hurier, K. Allix, T. Bissyandé, J. Klein, and Y. L. Traon, “On the lack of con-
sensus in anti-virus decisions: metrics and insights on building ground truths
of android malware,” in Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2016, pp. 142–162.

[103] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding non-trivial mal-
ware naming inconsistencies,” in International Conference on Information Sys-
tems Security. Springer, 2011, pp. 144–159.

[104] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco, “Dendroid: A
text mining approach to analyzing and classifying code structures in android
malware families,” Expert Systems with Applications, vol. 41, no. 4, Part 1, pp.
1104 – 1117, 2014.

[105] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and evo-
lution,” in Proc. of Symp. Security and Privacy, May 2012, pp. 95–109.

[106] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis of cur-
rent android malware,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, M. Polychronakis and M. Meier, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 252–276.

[107] M. Alazab, V. Moonsamy, L. Batten, P. Lantz, and R. Tian, “Analysis of ma-
licious and benign android applications,” in Distributed Computing Systems
Workshops (ICDCSW), 2012 32nd International Conference on. IEEE, 2012, pp.
608–616.

[108] J. Canto, M. Dacier, E. Kirda, and C. Leita, “Large scale malware collection:
lessons learned,” in IEEE SRDS Workshop on Sharing Field Data and Experiment
Measurements on Resilience of Distributed Computing Systems. Citeseer, 2008.

[109] A. Kantchelian, M. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani,
A. Joseph, and J. Tygar, “Better malware ground truth: Techniques
for weighting anti-virus vendor labels,” in Proceedings of the 8th ACM
Workshop on Artificial Intelligence and Security, ser. AISec ’15. New
York, NY, USA: ACM, 2015, pp. 45–56. [Online]. Available: http:
//doi.acm.org/10.1145/2808769.2808780

http://doi.acm.org/10.1145/2808769.2808780
http://doi.acm.org/10.1145/2808769.2808780

146 BIBLIOGRAPHY

[110] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for mas-
sive malware labeling,” in International Symposium on Research in Attacks, In-
trusions, and Defenses. Springer, 2016, pp. 230–253.

[111] M. Hurier, G. Suarez-Tangil, S. Dash, T. Bissyandé, Y. Traon, J. Klein, and
L. Cavallaro, “Euphony: Harmonious unification of cacophonous anti-virus
vendor labels for android malware,” in Proceedings of the 14th International Con-
ference on Mining Software Repositories, ser. MSR ’17, 2017, pp. 425–435.

[112] A. Mestres, A. Rodriguez-Natal, J. Carner, P. Barlet-Ros, E. Alarcón, M. Solé,
V. Muntés-Mulero, D. Meyer, S. Barkai, M. J. Hibbett et al., “Knowledge-
defined networking,” ACM SIGCOMM Computer Communication Review,
vol. 47, no. 3, pp. 2–10, 2017.

[113] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-
Solano, and O. M. Caicedo, “Machine learning for cognitive network manage-
ment,” IEEE Communications Magazine, vol. 56, no. 1, pp. 158–165, 2018.

[114] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “State-of-the-art deep learning: Evolving machine intelligence toward
tomorrow’s intelligent network traffic control systems,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 4, pp. 2432–2455, 2017.

[115] J. Mata, I. de Miguel, R. J. Durán, N. Merayo, S. K. Singh, A. Jukan, and
M. Chamania, “Artificial intelligence (ai) methods in optical networks: A com-
prehensive survey,” Optical Switching and Networking, 2018.

[116] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and
M. Tornatore, “A survey on application of machine learning techniques in
optical networks,” arXiv preprint arXiv:1803.07976, pp. 1–21, 2018.

[117] N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, and K. Mizu-
tani, “The deep learning vision for heterogeneous network traffic control:
Proposal, challenges, and future perspective,” IEEE wireless communications,
vol. 24, no. 3, pp. 146–153, 2017.

[118] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, and O. M. Caicedo, “A comprehensive survey on machine learning
for networking: evolution, applications and research opportunities,” Journal
of Internet Services and Applications, vol. 9, no. 1, p. 16, 2018.

[119] L. Cui, F. R. Yu, and Q. Yan, “When big data meets software-defined network-
ing: Sdn for big data and big data for sdn,” IEEE network, vol. 30, no. 1, pp.
58–65, 2016.

[120] P. Wang, S.-C. Lin, and M. Luo, “A framework for qos-aware traffic classifica-
tion using semi-supervised machine learning in sdns,” in Services Computing
(SCC), 2016 IEEE International Conference on. IEEE, 2016, pp. 760–765.

[121] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Communications Surveys & Tutori-
als, vol. 10, no. 4, pp. 56–76, 2008.

BIBLIOGRAPHY 147

[122] T. Glennan, C. Leckie, and S. M. Erfani, “Improved classification of known and
unknown network traffic flows using semi-supervised machine learning,” in
Australasian Conference on Information Security and Privacy. Springer, 2016, pp.
493–501.

[123] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network traffic
classification using correlation information,” IEEE Transactions on Parallel and
Distributed systems, vol. 24, no. 1, pp. 104–117, 2013.

[124] J. Zhang, X. Chen, Y. Xiang, W. Zhou, and J. Wu, “Robust network traffic clas-
sification,” IEEE/ACM Transactions on Networking (TON), vol. 23, no. 4, pp.
1257–1270, 2015.

[125] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia, “Net-
work traffic classification techniques and comparative analysis using machine
learning algorithms,” in Computer and Communications (ICCC), 2016 2nd IEEE
International Conference on. IEEE, 2016, pp. 2451–2455.

[126] T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic
classification using machine learning,” IEEE Communications Surveys & Tutori-
als, vol. 10, no. 4, pp. 56–76, 2008.

[127] P. Poupart, Z. Chen, P. Jaini, F. Fung, H. Susanto, Y. Geng, L. Chen, K. Chen,
and H. Jin, “Online flow size prediction for improved network routing,” in
Network Protocols (ICNP), 2016 IEEE 24th International Conference on. IEEE,
2016, pp. 1–6.

[128] Z. Chen, J. Wen, Y. Geng et al., “Predicting future traffic using hidden markov
models,” in 2016 IEEE 24th International Conference on Network Protocols (ICNP).
IEEE, 2016, pp. 1–6.

[129] N. Nikaein, M. Laner, K. Zhou, P. Svoboda, D. Drajic, M. Popovic, and S. Krco,
“Simple traffic modeling framework for machine type communication,” in
Wireless Communication Systems (ISWCS 2013), Proceedings of the Tenth Inter-
national Symposium on. VDE, 2013, pp. 1–5.

[130] B. Mao, Z. M. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “Routing or computing? the paradigm shift towards intelligent com-
puter network packet transmission based on deep learning,” IEEE Transactions
on Computers, vol. 66, no. 11, pp. 1946–1960, 2017.

[131] F. Tang, B. Mao, Z. M. Fadlullah, N. Kato, O. Akashi, T. Inoue, and K. Mizu-
tani, “On removing routing protocol from future wireless networks: A real-
time deep learning approach for intelligent traffic control,” IEEE Wireless Com-
munications, 2017.

[132] J. Shaikh, M. Fiedler, and D. Collange, “Quality of experience from user and
network perspectives,” annals of telecommunications-annales des telecommunica-
tions, vol. 65, no. 1-2, pp. 47–57, 2010.

148 BIBLIOGRAPHY

[133] M. S. Mushtaq, B. Augustin, and A. Mellouk, “Empirical study based on ma-
chine learning approach to assess the qos/qoe correlation,” in 2012 17th Euro-
pean Conference on Networks and Optical Communications, June 2012, pp. 1–7.

[134] L. Amour, M. I. Boulabiar, S. Souihi, and A. Mellouk, “An improved qoe es-
timation method based on qos and affective computing,” in 2018 International
Symposium on Programming and Systems (ISPS), April 2018, pp. 1–6.

[135] V. Menkovski, G. Exarchakos, and A. Liotta, “Machine learning approach for
quality of experience aware networks,” in 2010 International Conference on In-
telligent Networking and Collaborative Systems, Nov 2010, pp. 461–466.

[136] X. Luo, J. Liu, D. Zhang, and X. Chang, “A large-scale web qos prediction
scheme for the industrial internet of things based on a kernel machine learn-
ing algorithm,” Computer Networks, vol. 101, pp. 81 – 89, 2016, industrial Tech-
nologies and Applications for the Internet of Things.

[137] S. Aroussi and A. Mellouk, “Survey on machine learning-based qoe-qos cor-
relation models,” in 2014 International Conference on Computing, Management
and Telecommunications (ComManTel), April 2014, pp. 200–204.

[138] T.-K. Hui and C.-K. Tham, “Adaptive provisioning of differentiated services
networks based on reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 33, no. 4, pp. 492–
501, 2003.

[139] A. Yu, H. Yang, W. Bai, L. He, H. Xiao, and J. Zhang, “Leveraging deep learn-
ing to achieve efficient resource allocation with traffic evaluation in datacenter
optical networks,” in 2018 Optical Fiber Communications Conference and Exposi-
tion (OFC). IEEE, 2018, pp. 1–3.

[140] M. Hayashi, “Machine learning-assisted management of a virtualized net-
work,” in 2018 Optical Fiber Communications Conference and Exposition (OFC).
IEEE, 2018, pp. 1–3.

[141] W. Mo, C. L. Gutterman, Y. Li, S. Zhu, G. Zussman, and D. C. Kilper,
“Deep-neural-network-based wavelength selection and switching in roadm
systems,” Journal of Optical Communications and Networking, vol. 10, no. 10, pp.
D1–D11, 2018.

[142] C. L. Gutterman, W. Mo, S. Zhu, Y. Li, D. C. Kilper, and G. Zussman, “Neural
network based wavelength assignment in optical switching,” in Proceedings of
the Workshop on Big Data Analytics and Machine Learning for Data Communication
Networks. ACM, 2017, pp. 37–42.

[143] D. Barman and I. Matta, “Model-based loss inference by tcp over heteroge-
neous networks,” in Proceedings of WiOpt, vol. 4, 2004.

[144] I. El Khayat, P. Geurts, and G. Leduc, “Enhancement of tcp over
wired/wireless networks with packet loss classifiers inferred by supervised
learning,” Wireless Networks, vol. 16, no. 2, pp. 273–290, 2010.

BIBLIOGRAPHY 149

[145] A. Jayaraj, T. Venkatesh, and C. S. R. Murthy, “Loss classification in optical
burst switching networks using machine learning techniques: improving the
performance of tcp,” IEEE Journal on Selected Areas in Communications, vol. 26,
no. 6, pp. 45–54, 2008.

[146] B. Hariri and N. Sadati, “Nn-red: an aqm mechanism based on neural net-
works,” Electronics Letters, vol. 43, no. 19, pp. 1053–1055, 2007.

[147] D. H. Hagos, P. E. Engelstad, A. Yazidi, and O. Kure, “A machine learning ap-
proach to tcp state monitoring from passive measurements,” in 2018 Wireless
Days (WD), April 2018, pp. 164–171.

[148] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning approach
to tcp throughput prediction,” IEEE/ACM Transactions on Networking (TON),
vol. 18, no. 4, pp. 1026–1039, 2010.

[149] Y. Edalat, J.-S. Ahn, and K. Obraczka, “Smart experts for network state esti-
mation,” IEEE Transactions on Network and Service Management, vol. 13, no. 3,
pp. 622–635, 2016.

[150] J. Barron, M. Crotty, E. Elahi, R. Riggio, D. R. Lopez, and M. P. de Leon,
“Towards self-adaptive network management for a recursive network ar-
chitecture,” in Network Operations and Management Symposium (NOMS), 2016
IEEE/IFIP. IEEE, 2016, pp. 1143–1148.

[151] M. Zorzi, A. Zanella, A. Testolin, M. D. F. De Grazia, and M. Zorzi, “Cognition-
based networks: A new perspective on network optimization using learning
and distributed intelligence,” IEEE Access, vol. 3, pp. 1512–1530, 2015.

[152] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine learning for net-
working: Workflow, advances and opportunities,” IEEE Network, vol. 32,
no. 2, pp. 92–99, 2018.

[153] K. Zheng, Z. Yang, K. Zhang, P. Chatzimisios, K. Yang, and W. Xiang, “Big
data-driven optimization for mobile networks toward 5g,” IEEE network,
vol. 30, no. 1, pp. 44–51, 2016.

[154] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research challenges
for traffic engineering in software defined networks,” IEEE Network, vol. 30,
no. 3, pp. 52–58, 2016.

[155] “iPerf- the ultimate speed test tool for tcp, udp and sctp,” https://iperf.fr/,
accessed: 2019-01-02.

[156] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation of realistic
network workload for emerging networking scenarios,” Computer Networks,
vol. 56, no. 15, pp. 3531–3547, 2012.

[157] P. Pavon-Marino and J.-L. Izquierdo-Zaragoza, “Net2plan: an open source
network planning tool for bridging the gap between academia and industry,”
IEEE Network, vol. 29, no. 5, pp. 90–96, 2015.

https://iperf.fr/

150 BIBLIOGRAPHY

[158] S. Uhlig, B. Quoitin, J. Lepropre, and S. Balon, “Providing public intradomain
traffic matrices to the research community,” ACM SIGCOMM Computer Com-
munication Review, vol. 36, no. 1, pp. 83–86, 2006.

[159] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proceedings of the 3rd International
Network Optimization Conference (INOC 2007), Spa, Belgium, April 2007,
http://sndlib.zib.de, extended version accepted in Networks, 2009.

[160] C. Rottondi, L. Barletta, A. Giusti, and M. Tornatore, “Machine-learning
method for quality of transmission prediction of unestablished lightpaths,”
IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 2, pp.
A286–A297, 2018.

[161] S. Shahkarami, F. Musumeci, F. Cugini, and M. Tornatore, “Machine-learning-
based soft-failure detection and identification in optical networks,” in 2018
Optical Fiber Communications Conference and Exposition (OFC). IEEE, 2018, pp.
1–3.

[162] E. Seve, J. Pesic, C. Delezoide, S. Bigo, and Y. Pointurier, “Learning process for
reducing uncertainties on network parameters and design margins,” Journal
of Optical Communications and Networking, vol. 10, no. 2, pp. A298–A306, 2018.

[163] F. Morales, M. Ruiz, L. Gifre, L. M. Contreras, V. López, and L. Velasco, “Vir-
tual network topology adaptability based on data analytics for traffic predic-
tion,” IEEE/OSA Journal of Optical Communications and Networking, vol. 9, no. 1,
pp. A35–A45, 2017.

[164] T. A. Eriksson, H. Bülow, and A. Leven, “Applying neural networks in optical
communication systems: possible pitfalls,” IEEE Photonics Technology Letters,
vol. 29, no. 23, pp. 2091–2094, 2017.

[165] H. Zang, J. P. Jue, B. Mukherjee et al., “A review of routing and wavelength as-
signment approaches for wavelength-routed optical wdm networks,” Optical
networks magazine, vol. 1, no. 1, pp. 47–60, 2000.

[166] F. Martinelli, N. Andriolli, P. Castoldi, and I. Cerutti, “Genetic approach for
optimizing the placement of all-optical regenerators in wson,” IEEE/OSA Jour-
nal of Optical Communications and Networking s, vol. 6, no. 11, pp. 1028–1037,
2014.

[167] Y. Pointurier and F. Heidari, “Reinforcement learning based routing in all-
optical networks,” in 2007 Fourth International Conference on Broadband Commu-
nications, Networks and Systems (BROADNETS’07). IEEE, 2007, pp. 919–921.

[168] X. Chen, J. Guo, Z. Zhu, R. Proietti, A. Castro, and S. Yoo, “Deep-rmsa: A
deep-reinforcement-learning routing, modulation and spectrum assignment
agent for elastic optical networks,” in 2018 Optical Fiber Communications Con-
ference and Exposition (OFC). IEEE, 2018, pp. 1–3.

BIBLIOGRAPHY 151

[169] F. S. Abkenar and A. G. Rahbar, “Study and analysis of routing and spectrum
allocation (rsa) and routing, modulation and spectrum allocation (rmsa) al-
gorithms in elastic optical networks (eons),” Optical Switching and Networking,
vol. 23, pp. 5 – 39, 2017.

[170] C. Pennachin and B. Goertzel, “Contemporary approaches to artificial general
intelligence,” in Artificial general intelligence. Springer, 2007, pp. 1–30.

[171] D. J. Hand, “Principles of data mining,” Drug safety, vol. 30, no. 7, pp. 621–622,
2007.

[172] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg,
“Feature hashing for large scale multitask learning,” in Proceedings of the
26th Annual International Conference on Machine Learning, ser. ICML ’09.
New York, NY, USA: ACM, 2009, pp. 1113–1120. [Online]. Available:
http://doi.acm.org/10.1145/1553374.1553516

[173] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association rules,” in
Proc. 20th int. conf. very large data bases, VLDB, vol. 1215, 1994, pp. 487–499.

[174] J. Leskovec et al., Mining of massive datasets. Cambridge university press, 2014.

[175] G. James, D. Witten, T. Hastie, and R. Tibshiran, An introduction to statistical
learning with applications in R. Springer Texts in Statistics, 2015.

[176] D. R. Cox, “The regression analysis of binary sequences,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 215–242, 1958.

[177] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis. John Wiley
& Sons, 2011, vol. 40.

[178] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric
regression,” The American Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[179] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, Sep 1995. [Online]. Available: https:
//doi.org/10.1007/BF00994018

[180] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier method-
ology,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp.
660–674, May 1991.

[181] T. K. Ho, “Random decision forests,” in Document analysis and recognition,
1995., proceedings of the third international conference on, vol. 1. IEEE, 1995,
pp. 278–282.

[182] J. J. Hopfield, “Neural networks and physical systems with emergent col-
lective computational abilities,” Proceedings of the national academy of sciences,
vol. 79, no. 8, pp. 2554–2558, 1982.

[183] R. C. Dubes and A. K. Jain., Algorithms for Clustering Data. Prentice Hall, 1988.

http://doi.acm.org/10.1145/1553374.1553516
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018

152 BIBLIOGRAPHY

[184] I. Jolliffe, Principal component analysis. Springer, 2011.

[185] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[186] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of
deep neural network architectures and their applications,” Neurocomputing,
vol. 234, pp. 11 – 26, 2017.

[187] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[188] K. Sato, C. Young, and D. Patterson, “An in-depth look at google’s first tensor
processing unit (tpu),” Google Cloud Big Data and Machine Learning Blog, vol. 12,
2017.

[189] B. Thompson, Exploratory and confirmatory factor analysis: Understanding con-
cepts and applications. American Psychological Association, 2004.

[190] J. J. Hox and T. M. Bechger, “An introduction to structural equation model-
ing,” 1998.

[191] M. Girvan and M. Newman, “Community structure in social and biological
networks,” Proceedings of the national academy of sciences, vol. 99, no. 12, pp.
7821–7826, 2002.

[192] M. S. Granovetter, “The strength of weak ties,” in Social Networks, S. Leinhardt,
Ed. Academic Press, 1977, pp. 347 – 367.

[193] F. Chollet, Deep learning with python. Manning Publications Co., 2017.

[194] T. Raykov and G. A. Marcoulides, A first course in structural equation modeling.
Routledge, 2012.

[195] D. B. West et al., Introduction to graph theory. Prentice hall Upper Saddle River,
2001, vol. 2.

[196] “Mobile os market share in 2018,” https://www.statista.com/statistic
s/266136/global-market-share-held-by-smartphone-operating-systems/, ac-
cessed: April 2019.

[197] “White paper: Kaspersky security network,” Tech. Rep. [Online]. Avail-
able: https://media.kasperskycontenthub.com/wp-content/uploads/sites
/43/2017/06/20080315/KESB_Whitepaper_KSN_ENG_final.pdf

[198] “Google play web site,” https://play.google.com, accessed: April 2019.

[199] “Tacyt site at elevenpaths,” https://www.elevenpaths.com/es/tecnologia/ta
cyt/index.html, accessed: April 2019.

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/06/20080315/KESB_Whitepaper_KSN_ENG_final.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/06/20080315/KESB_Whitepaper_KSN_ENG_final.pdf
https://play.google.com
https://www.elevenpaths.com/es/tecnologia/tacyt/index.html
https://www.elevenpaths.com/es/tecnologia/tacyt/index.html

BIBLIOGRAPHY 153

[200] W. Tesfay, T. Booth, and K. Andersson, “Reputation based security model for
android applications,” in Trust, Security and Privacy in Computing and Commu-
nications (TrustCom), 2012 IEEE 11th International Conference on, June 2012, pp.
896–901.

[201] M. Hahsler, C. Buchta, B. Gruen, and K. Hornik, arules: Mining Association
Rules and Frequent Itemsets, 2016, r package version 1.4-1. [Online]. Available:
http://CRAN.R-project.org/package=arules

[202] Y. Rosseel, “lavaan: An R package for structural equation modeling,” Journal
of Statistical Software, vol. 48, no. 2, pp. 1–36, 2012. [Online]. Available:
http://www.jstatsoft.org/v48/i02/

[203] “Signatureminer: An av intelligence tool,” https://github.com/ignmarti/Si
gnatureMiner, accessed: April 2019.

[204] T. Vidas and N. Christin, “Sweetening android lemon markets: measuring and
combating malware in application marketplaces,” in Proceedings of the third
ACM conference on Data and application security and privacy. ACM, 2013, pp.
197–208.

[205] “A look into repackaged apps and its role in the mobile threat landscape,”
https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-into-r
epackaged-apps-and-its-role-in-the-mobile-threat-landscape/, accessed:
April 2019.

[206] “Clonespot proof of concept,” http://163.117.192.31:8080/CloneSpot/comm
ands/info, accesed: April 2019.

[207] “Netgen: A network data generation tool,” https://github.com/ignmarti/Ne
tgen, accessed: April 2019.

[208] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength as-
signment approaches for wavelength-routed optical WDM networks,” Optical
Networks Magazine, vol. 1, pp. 47–60, 2000.

[209] M. D. Vaughn and R. Wagner, “Metropolitan network traffic demand study,”
in Lasers and Electro-Optics Society 2000 Annual Meeting. LEOS 2000. 13th An-
nual Meeting. IEEE, vol. 1. IEEE, 2000, pp. 102–103.

[210] I. I. CPLEX, “V12. 1: User’s manual for cplex,” International Business Machines
Corporation, vol. 46, no. 53, p. 157, 2009.

http://CRAN.R-project.org/package=arules
http://www.jstatsoft.org/v48/i02/
https://github.com/ignmarti/SignatureMiner
https://github.com/ignmarti/SignatureMiner
https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-into-repackaged-apps-and-its-role-in-the-mobile-threat-landscape/
https://blog.trendmicro.com/trendlabs-security-intelligence/a-look-into-repackaged-apps-and-its-role-in-the-mobile-threat-landscape/
http://163.117.192.31:8080/CloneSpot/commands/info
http://163.117.192.31:8080/CloneSpot/commands/info
https://github.com/ignmarti/Netgen
https://github.com/ignmarti/Netgen

	Acknowledgements
	Abstract
	Introduction and Motivation
	Brief History of Artificial Intelligence
	Motivation and Overview
	Thesis Objectives and Goals
	Thesis Structure and Contributions

	State of The Art
	Security in the Android Ecosystem
	Android Malware Detection
	Repackaging Detection

	Antivirus Analysis and their Detections
	ML Applied to Optical WDM Networks
	Conclusions and Progress Beyond the State of the Art

	Methodology and Tools
	Data Mining
	Distances and Item Similarity
	Locality-Sensitive Hashing Methods
	Market Basket Analysis and Frequent Itemset Mining

	Machine Learning
	Supervised Problems
	Unsupervised Problems
	Machine Learning Workflow
	Machine Learning Performance Measurement
	Feature Selection
	Deep Learning

	Other Statistical Methods
	Latent Variable Models
	Graph Modeling

	Summary and Conclusions

	Android Meta-data for Malware Detection
	Android Application Meta-data
	Meta-data Collection for Malware Detection
	Intrinsic Application Features
	Social-related Features
	Entity-related Features: Developers and Certificate Issuers
	Malware Detection Attributes
	Dataset Benchmark

	Analysis of Meta-data Features in Legitimate and Malware Applications
	Predictive Power of Permissions
	Feature Importance and Selection: A Machine Learning Approach

	Malware Detection Model
	Determining Model Size
	Solution Modeling and Results
	Robustness of the Models
	Performance and Computational Time

	Summary and Conclusions

	Data-driven Interrelation Analysis of AV engines
	Detection Matrix and Dataset Insights
	Peer Relations among AV Engines
	Followers and Eccentrics
	Principal Component Analysis
	Correlation between Engines
	Association Rule Learning

	Latent Variable Modeling for Malware Risk Assessment
	Summary and Conclusions

	AV Label-based Analysis of Malware Families
	SignatureMiner: A fast Anti-Virus Signature Intelligence Tool
	SignatureMiner Performance

	Malware Categorization and Classes using SignatureMiner
	Malware Family Classes and Categories Interdependences
	Correlation of Malware Categories
	Graph Community Clustering to Detect Class Redundancies
	Grouping AVs by their Detection Schemes

	Identifying Unknown Malware
	Summary and Conclusions

	Android Meta-data for Repackaging Detection
	Meta-data Application Collection
	CloneSpot: Fast Detection of Application Duplicates
	Clustering Qualitative Meta-data through Min-hashing
	Market-scale Detection of Application Duplicates
	Intra-group Detection Scoring

	CloneSpot service: Fast Retrieval of Potential Clones
	Application Removal in Google Play
	Real-time Repackaging Detection through the CloneSpot Service

	Summary and Conclusions

	Optical WDM Networks Configuration from an ML perspective
	Netgen: Automated Tool for Network Data Generation
	Net2Plan: An Open-source Network Planner
	Netgen Architecture

	Modeling RWA as an ML classifier
	Methodology
	Dataset Generation and Labeling
	Machine Learning Classification Models

	Results
	Dataset Generation Efficiency of Netgen
	ML-based Heuristic to Solve RWA (Spanish 5 Node topology)
	ML-based Heuristic to Solve RWA (Abilene topology)
	Complexity and Time Impact of ML Predictions

	Summary and Conclusions

	Conclusions and Future Work
	Summary of Main Contributions
	Future Work
	List of Publications during Thesis Period

	Bibliography

