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Polymer solar cells admit numerous potential advantages including low energy payback

time and scalable high-speed manufacturing, but the power conversion efficiency is

currently lower than for their inorganic counterparts. In a PCBM-based blended

polymer solar cell, the optical gap of the polymer and the energetic alignment of the

lowest unoccupied molecular orbital (LUMO) of the polymer and the PCBM, are

crucial for the device efficiency. Searching for new and better materials for polymer

solar cells is a computationally costly affair using density functional theory (DFT)

calculations. In this work we propose a screening procedure using a simple string

representation for a promising class of donor-acceptor polymers in conjunction with

a grammar variational autoencoder. The model is trained on a dataset of 3989

monomers obtained from DFT calculations and is able to predict LUMO and the

lowest optical transition energy for unseen molecules with mean absolute errors of 43

and 74 meV respectively without knowledge of the atomic positions. We demonstrate

the merit of the model for generating new molecules with the desired LUMO and

optical gap energies which increases the chance of finding suitable polymers by more

than a factor of five in comparison to the randomised search used in gathering the

training set.
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I. INTRODUCTION

Polymer solar cells have numerous advantages over their inorganic counterparts including

mechanical flexibility, lower energy payback time, low or nonexisting ecotoxicity, and fully

scalable high-speed manufacturing. However, for organic solar cell technology to become

competitive their power conversion efficiency must be increased. So far, the highest reported

power conversion efficiency for polymer solar cells are around 10%1 which is significantly

lower than commercial inorganic cells such as silicon, CdS or CIGS (CuInGaS).

Synthetic chemistry offers a high degree of flexibility to the design polymers with tailored

energy levels optimized to the solar spectrum. One particularly promising strategy is to use

donor-acceptor (D-A) polymers, which allows for efficient and selective tuning of the highest

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) by

varying the D and A units, respectively.2–7 The HOMO and LUMO energies, as well as

other relevant properties, can be determined, at least semi-quantitatively, using ab-inito

calculations such as density functional theory (DFT). However, while such calculations are

faster to perform than the experimental synthesis and characterization, the large size and

complex structure of D-A polymers relevant to photovoltaics still pose a challenge, and in

practice it is not possible to exhaust the search space by brute force calculations. In practical

computational screening different design choices can be imposed to restrict the search space

and the pool of promising candidates is then filtered through one or several low-cost filtering

steps. For example the computational screening of organic photovoltaic materials have been

performed by, using genetic algorithm sampling and PM6 simulations,8 using artificial neural

network trained on existing data to filter out candidate materials based on their fingerprint,9

using an automatic generation-scheme on thiophene-based D-A polymers to evaluate the

photovoltaic characteristics with the Hückel models.10 For small molecules, machine learning

algorithms applied to big databases of density functional theory (DFT) calculations, have

already shown promising results towards achieving DFT-level accuracy at a fraction of the

computational cost.11 Recent work in deep generative models12,13 has demonstrated the ability

to generate new molecular structures based on “simplified molecular-input line-entry system”

(SMILES)14 string representation. This leads us towards a machine learning guided screening

strategy in which the model learns to generate and score new D-A polymers. The best

suggested candidate polymers can then be assessed with DFT calculations and subsequently
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synthesized if deemed suitable. In this work we propose a simplified string representation

for donor-acceptor polymers and demonstrate the success of this screening strategy for the

search for better polymer solar cells.

The paper is organised as follows: In section II we first discuss the basic principles of

polymer solar cells and identify the key performance limiting parameters used to score the

molecules. In section III we introduce the dataset of polymers and describe three ways of

representing the data for the machine learning algorithms. This is followed by section IV

with a summary of the recent developments in machine learning methods for prediction of

molecular properties. In section V, five different machine learning algorithms are described

and each of them are assessed through numerical experiments. Finally, we demonstrate the

use of GrammarVAE to guide the DFT-screening effort towards high-performance polymers.

II. BACKGROUND

A. Basics Principles of Polymer Solar Cells

In most organic solar cells, the polymer is used as the active photoabsorber. Bound

electron-hole pairs, i.e. excitons, created in the polymer diffuse to the acceptor, usually

Phenyl-C˙61-Butyric-Acid-Methyl-Ester (PCBM), where the exciton dissociates into an

electron in the LUMO of the PCBM and a hole in the polymer HOMO/valence band. The

dielectric constants of organic polymers are generally quite low (ǫ ∼ 2-4). Consequently,

the excitons have rather large binding energies of 0.4–1.4 eV and small excitonic radii15 so

that the electron and hole are mostly localized on the same monomer of the polymer. This

implies that the energy of the exciton can be deduced from a calculation of the monomer

only – a fact that is exploited in the present work to obtain the onset of absorption (optical

gap, εopt) of the polymer by calculating the energy of an electron-hole pair on a monomer.

To harvest sufficient solar energy, the optical gap of the polymer should be in the range

of 1.1-1.7 eV. This condition provides a critical criterion for the design of polymers for solar

cells.

Polymers consisting of donor-acceptor (D-A) units have shown particular promise for

high-efficiency organic photovoltaics.16–20 In such polymers, the energy and spatial form of

the HOMO is mainly controlled by the donor, while the LUMO is governed by the acceptor
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unit. The D-A construction entails a natural separation of the electron and the hole thereby

minimizing recombination losses. Moreover, tuning of the donor and acceptor units represents

an effective way to improve the efficiency of organic solar cells via optimization of the polymer

HOMO-LUMO gap (and thus the optical gap).21

The correlation between DFT calculated and experimental HOMO and LUMO energies

for model D-A compounds has been explored by Blouin and coworkers.22 This study reveals

that the alternating copolymer HOMO energy level is controlled by the electron-donating

carbazole moiety, whereas the LUMO energy level mainly depends on the nature of the

electron-withdrawing comonomer. The electronic and optical properties of six selected

homopolymers have been studied by Zhang et. al.23 using two differnet methods namely

the oligomer method and DFT with periodic boundary conditions. Using the oligomer

method, the HOMO-LUMO gap of the polymer can be estimated by 1/n extrapolation of the

oligomer gaps. Their calculations show that PBC-DFT is most suited for weakly conjugated

homopolymers while the oligomer approach provides a more accurate description for more

strongly conjugated polymers. In this work we focus on the lowest optical transition, i.e.

the exciton energy, rather than the HOMO-LUMO gap. The localized nature of the exciton

allows us to obtain realistic estimates for the polymer from calculations on a single D-A

monomer.

B. Descriptors and Machine Learning Models

In the last few years several descriptors and models for predicting DFT-calculated proper-

ties have emerged. Faber et al.11 benchmark different feature representations and regression

algorithms on the QM924,25 dataset. Representations include the Coulomb matrix26, bag-of-

bonds27, bonding angular machine learning (BAML)28, extended-connectivity fingerprints

(ECFP)29, molecular graphs and the author’s distribution based representations such as

histogram of distances (HD), angles (HDA,MARAD) and dihedrals (HDAD). The graph

convolution on molecular graphs outperforms the other algorithms in terms of accuracy, partic-

ularly for the properties that are most important for our application: the HOMO and LUMO

energy, HOMO-LUMO gap, and lowest optical transition energy (εHOMO, εLUMO, εgap, εopt).

Similar results have been found for other variations of graph convolution/message-passing

neural networks on molecular graphs.30,31
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The feature representations mentioned above are all based on knowing the spatial arrange-

ment of the atoms. The spatial information however is not readily available when searching

for new materials and we shift our focus towards algorithms not relying on this information. A

generative approach based on variational autoencoders32,33 is proposed by Gómez-Bombarelli

et al.12 The proposed method consist of using character-based variational autoencoder on

SMILES14 strings to embed the molecules into a continuous vector space. The autoencoder

learns a probabilistic encoder and decoder that maps SMILES strings to/from the vector

space. The model is trained on 250,000 drug-like molecules from the ZINC database34 and

100.000 OLED molecules35. Then a regression model based on Gaussian processes is trained

on the embedding and it is used to find new proposals for molecules that exhibits the desired

property (water-octanol partition coefficient for drug-like molecules). One of the problems

with this approach is that the generative model sometimes produces invalid SMILES strings

or invalid molecules (with syntactically valid SMILES strings).

The generation of invalid SMILES strings problem has been alleviated by the introduction

of the grammar variational autoencoder (GrammarVAE)13. The SMILES strings can be

parsed using a context free grammar and the parse tree is used as a representation for the

molecules. The grammar rules are enforced during decoding, and therefore the generative

model can only generate syntactically valid strings. The molecules may still be semantically

invalid, e.g. one of the atoms violates valence constraints by having too many bonds.

Avoiding these errors in generative models is an area of active research.36,37 Arguably the

GrammarVAE learns a more coherent latent representation in which nearby points decode to

similar strings.13 We employ the GrammarVAE model on a different context free grammar

formulation, tailored to describe the class of molecules we are interested in for designing

polymer solar cells. By using the more specific grammar we further reduce the problem of

generating invalid molecules. We describe the GrammarVAE and how we use it in more details

in section IVE. Our grammar formulation and SMILES can both be seen as domain specific

encodings of molecular graphs. Encoding and generation of general graphs is an avenue

of active research with promising recent developments.38–40 Simonovsky and Komodakis38

propose a model that generates a probabilistic graph adjacency matrix and node strengths

while You et al.39 and Li et al.40 pose graph generation as a sequence of graph construction

operations. Both Simonovsky and Komodakis38 and Li et al.40 successfully demonstrate

generation of small molecules based on the QM9 dataset, but scaling of the models to larger
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molecules is problematic in both cases.38,40 The largest molecules of QM9 consist of 29 atoms

including hydrogen, while the monomers in our dataset have up to 161 atoms. We therefore

approach the problem using simpler encodings of the molecular graphs.

Many researchers are trying to model the HOMO-LUMO gap of organic polymers. Wu

et al. have proposed the infinite chain descriptor to predict the polymer properties from

small units using support vector machine and linear models with feature selection.41 Pereira

et al. has benchmarked a range of connectivity-based descriptors for organic molecules for

prediction of HOMO and LUMO energies.42 Their Random forest model predicts HOMO and

LUMO energies with MAE of 0.15 eV and 0.16 eV respectively using PubChem43 fingerprints.

Here we study several machine learning methodologies to predict the DFT-calculated HOMO,

LUMO and the ∆SCF lowest optical transition energy in donor-acceptor type monomers as

described in the following section.

III. DATASET OF DONOR-ACCEPTOR POLYMERS

The aim of the present work is to establish a computationally efficient methodology to

identify promising D-A molecules for use in polymers solar cells based on the basic electronic

and optical properties of the monomers. Quantitative predition of the performance of a

given polymer is an outstanding and presently unsolved challenge that inevitably involves

the modeling and coupling of various processes taking place at very different time and length

scales, e.g. photoexcitation, energy and charge transport, charge separation. Rather then

venturing into a full fledged multi-scale description, we follow a different strategy by focusing

on a few necessary conditions which can be imposed on the monomers and which can be

predicted with high accuracy using ab-initio calculations.

To this end we have constructed a computational repository of donor-acceptor monomers

whose backbone is generated from a set of 13 acceptor and 10 donor submonomer moieties.

Introducing nine possible side-chains and atomic substitutions, more than 1014 potential

monomer structures can be generated. The donor and acceptor units are shown in FIG. 1.

Although it is required for an efficient chemical synthesis to have as few substitutions as

possible, we do not pay attention to the number of different side groups and their relative

positions on the backbone when designing the new structures by machine learning; that is,

we do not penalize high complexity of the molecules. All the active sites of the monomers
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FIG. 1: Donor and acceptor units of the molecules.

are attached to a functional group randomly chosen from a set of possible side groups. Initial

structure of the donor-acceptor monomers are generated and pre-optimized using Merck

Molecular Force-Field (MMFF94)44 within the software Open Babel45. We relax the initial

geometries further using DFT46 with the hybrid functional B3LYP47 and a TZVP basis set48

all implemented within the Gaussian09 software package49.

One way to calculate the lowest optical transition energy is to use the ∆SCF (∆-Self

Consistent Field) method. In this method the occupation of the molecular orbitals are

constrained to simulate the electronic configuration of an electron excited from the HOMO to

the LUMO. The optical gap can then be obtained as the difference between the ground state

energy and the excited state energy, εopt = E1 − E0. To obtain the lowest optically active

transition energy the excited state should be a singlet, i.e. the total spin of the ground and

excited states should be equal. A practical problem with this approach is that the SCF cycle
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for the excited state configuration can be difficult to converge and often requires tweaking

of numerical parameters. This makes is difficult to apply the ∆SCF in a high-throughput

context.

A technically simpler approach is to use the lowest triplet excitation energy as an approx-

imation to the singlet. In practice, the triplet is much easier to calculate (the SCF cycle

converges faster and is more stable) because it can be obtained by constraining the total

spin magnetic moment rather than the individual occupation numbers. Using a test set of

104 monomers we have found50 that the difference in energy between the triplet and singlet

excited states typically is below 0.3 eV, which is in agreement with results obtained for other

organic compounds7. In view of the smallness of the energy difference between the triplet

and singlet excited states, we have used the triplet excitation energy for the optical gap.

In this work, our primary goal is to distinguish efficient machine-learning methodologies

that are relevant for predicting polymer properties. The success of such approaches undoubt-

edly depends on how extensive the training set is. Our training set consists of high-level DFT

calculations of monomer structures spanning a set of promising solar cell polymer materials,

which in principle can be combined with the results of dimer, trimer, etc. extrapolating to

polymer. The chain length saturation depends on the system itself particularly the size of

the monomer, for instance, in ref 51 the saturation length is shown to occur at approximately

6 and 4 repeat units for homo and D-A type conjugated polymers respectively. In the recent

literature there are several examples of the methods to extrapolate properties from single

units to infinite chains, e.g. ref 52,53, however we do not apply any kinds of extrapolation

in this work because the required oligomer DFT-simulations are highly time consuming for

our D-A systems (in a future work we will address oligomers preferably using less expensive

DFT methods). Indeed we expect that the successful machine-learning methods trained on

monomer data to be also valid on polymers as well. Here the machine learning is performed

on a data-set consisting of 3989 monomers split into 5 folds for cross-validation.

A. Feature Representation

The monomers defining the polymer structures are composed by a number of smaller

building blocks, namely an acceptor and donor backbone each of which may have none or

several X and Y side groups (see FIG. 2). We use three different representations to build our
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Position Coding Features

Acceptor One-hot A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13

Acceptor side groups X Count OCH3, CH3, SCH3, F, H

Acceptor side groups Y Count S, Se, NCH3, O

Donor One-hot D1, D2, D3, D4, D5, D6, D7, D8, D9, D10

Donor side groups X Count SCH3, F, H, O, OCH3, S, CH3, Se

Donor side groups Y Count S, O, C, Si, Ge, Se, NCH3

TABLE I: Description of features

machine learning methods: (a) Fixed length vector representation, (b) string representation

using context free grammar, (c) atomic species and their position (XYZ-coordinates).

a. Fixed length vector representation The encoding as a fixed length feature vector is

described in TABLE I. The feature vector is expanded by including all products between

the one-hot encoded and the count features, yielding a total of 599 features. Notice that

in this representation we simply count the number of times each side group appears as

acceptor/donor X/Y side group in the monomer. Thus the order of the side groups is ignored.

b. String representation The GrammarVAE13 is based on encoding context free grammar

parse trees x to/from a latent vector space z. The original work uses SMILES14 strings

to represent molecules. As we are not interested in the space of all possible molecules we

use a simpler string representation than SMILES. The string representation refers to the

building blocks as described above. An example is shown in FIG. 2. The full context free

grammar formulation of the string representation is shown in FIG. 9 (Appendix B). The use

of a simpler grammar instead of SMILES makes it easier for the GrammarVAE model to

encode/decode without discrepancies between the encoded and decoded string. However, it

also means that the model is unable to generalise to molecules that do not adhere to the

grammar rules. The SMILES grammar is designed to encode any molecule, but this does

not necessarily mean that training the GrammarVAE model with SMILES representation

will generalise well. As the text representation does not contain any information about

the physical properties of different elements one cannot expect the GrammarVAE model
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Donor
D4

Acceptor
A1

A1-H_OCH3-S + D4-H_F-O_S_S

X groups

Y group

X groups

Y groups

FIG. 2: String representation of one of the molecules of the solar cell dataset: “Acceptor

backbone“-“X groups“-“Y groups“+“Donor backbone“-“X groups“-“Y groups“. Whenever

no side groups are present “*” character is used instead.

to reliably encode/decode molecular structures that are vastly different from those in the

training set.

c. XYZ-coordinates Note that the two feature descriptors above do not use any spatial

information about the molecules and have no information of which atoms constitute an

acceptor or donor structure. The third feature representation includes this information, i.e.

the atomic species and cartesian coordinate of each atom of the molecule. The coordinates

are obtained through costly DFT calculations, the operation we would like to avoid by using

machine learning in the first place. However, we include this feature to serve as a comparison

benchmark, to assess how much the accuracy of the machine learning algorithms can be

improved by including the DFT-relaxed molecular geometries as input.
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FIG. 3: Data flow of linear regression, multilayer perceptron, deep tensor network, and

grammar variational autoencoder.

IV. MACHINE LEARNING ALGORITHMS

In the following we consider several machine learning approaches: As a baseline we

include three classical algorithms: linear ridge regression, multi-layer perceptron, and random

forest regression. Then, we move on to discuss two deep neural network approaches, which

we consider the state of the art: The Deep Tensor Neural Network54 and the Grammar

Variational Autoencoder13. The data flow for linear ridge regression, multi-layer perceptron

and the deep learning models is illustrated in FIG. 3.

A. Linear Model

We employ a linear ridge regression model using the fixed length vector representation of

the molecules as input. With linear regression predictions can be computed as the dot product
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of the input x and the weight vector ŵ. The weight vector is determined by minimising the

cost function:

flin(w) = ||Xw − y||22 + β ||w||22 . (1)

where y is a column vector containing the target property of the training data and X is a

matrix where each row corresponds to one training data input and each column is an input

feature. We perform the minimisation using Scikit-learn’s55 ridge regression with built-in

cross-validation (RidgeCV) for the regularisation parameter β ∈ [10−4, 102].

B. Multilayer Perceptron

Using the fixed length vector representation of the molecules as input we use a multilayer

perceptron, also known as a feedforward neural network. In essence we replace the linear

predictor of the linear ridge regression with a non-linear g
w
(·) neural network model, thus

the cost function is

fmlp(w) =
∑

i

[

(g
w
(xi)− yi)

2
]

+ β ||w||22 . (2)

For g
w
(·) we use a 3-hidden-layer (100, 100, 50 hidden units) multilayer perceptron (MLP)

neural network with tanh activation functions. Unlike linear ridge regression there is no

closed form solution that minimises the cost function and therefore the model is trained

using Scikit-learn’s L-BFGS algorithm with early stopping (using 10 percent of the training

data for validation). Again the input feature is the fixed length vector representation. The

weight regularisation parameter β is set to 10−4.

C. Random Forest

The random forest algorithm is also using the fixed length vector input. A random forest

is an ensemble of decision trees, each trained on a subset of the data, and it uses averaging

to make predictions and reduce overfitting. We use the Scikit-learn implementation with

default parameters.
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D. Deep Tensor Neural Network

The deep tensor neural network (DTNN)54 is a deep learning based method that uses the

atomic numbers and interatomic distances as input features and maps to a scalar output.

The mapping contains two main components, a message passing step followed by a readout

step. Each atom is represented as a vector that represents the atom and its local chemical

environment. The local environment information is updated by exchanging information with

the other atoms, which can be seen as passing messages between the atoms. The readout

step maps the set of local environments to a scalar target property. How the atoms interact

with each other and the mapping from local environments to the target property is defined by

(trainable) neural networks. We expand upon the original architecture54 to make the model

suitable for predicting orbital energies rather than the atomization energy. See Appendix A

for a detailed description of the architecture.

E. Grammar Variational Autoencoder

In an autoencoder, the goal is to learn a representation of the data in terms of an encoder

and a decoder which maps input data x to and from values z in a continuous vector space.

We use the string representation as input and learn a mapping from this variable-length

discrete input to a continuous vector representation. After learning an efficient representation,

we can do regression and optimisation in the learned vector space. We use a variational

autoencoder (VAE)32,33, which enables regularisation of the problem by imposing a prior

probability density on the distribution of the data in the (latent) vector space. This in

turn leads to smoother encoder and decoder functions. We use the GrammarVAE13, which

extends the VAE such that the decoder always produce syntactically valid output strings. In

Appendix B we describe the architecture, its parameters and show an example of encoding

and decoding the string representation of a polymer.
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Model Val. set Hyper-parameters

GrammarVAE 10% Early stopping

dim(z) ∈ {16, 32}

α ∈ {0.02, 0.04, 0.08}

λ ∈ {10−5, 10−7}

dp ∈ {0.1, 0.2, 0.3}

Linear 10-fold β ∈ {0.0001, 0.00072, 0.00518,

0.0373, 0.268, 1.93, 13.9, 100}

MLP 10% Early stopping

Random Forest 0% —

Deep Tensor 0% —

TABLE II: Amount of training data used for hyper-parameter optimisation for each model.

V. NUMERICAL RESULTS

A. Predicting Molecular Properties

For each of the presented models we want to estimate the generalisation error for predicting

εHOMO, εLUMO, εgap and εopt of unseen molecules. We use 5-fold cross-validation using the

data and folds described in section III. For some of the models we use some of the training

data for hyper-parameter selection through another “inner loop” of cross-validation. The

fraction of the data used for hyper-parameter search and the parameters are shown in

TABLE II.

The mean absolute errors (meV) for the regression models are shown in TABLE III. The

Deep Tensor Neural Network outperforms the other models, as could be expected since it is

the only model using the spatial information of the molecules. The accuracy of the remaining

methods are quite similar, but the GrammarVAE model achieves the lowest MAE across all

four properties.

The MAE for εLUMO and εopt for the different methods versus training set size is shown

in FIG. 4. We notice that the GrammarVAE performs worse than other models for small

training set sizes, but its learning curve is steeper and the other methods, which do not use
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FIG. 4: Mean absolute error in 5-fold cross-validation for different training set sizes

Model Input Feature εHOMO εLUMO εgap εopt

GrammarVAE String 66 43 74 70

Linear Fixed Length 78 51 89 84

MLP Fixed Length 76 46 87 85

Random Forest Fixed Length 82 52 94 77

Deep Tensor XYZ 45 31 56 51

TABLE III: Test mean absolute errors (meV) for the models using 5-fold cross-validation.

atomic positions as input, are outperformed when using the full data set.

B. Generating Molecules with Desired Properties

We now test whether we can guide the search for better materials by using the Grammar-

VAE generative model combined with latent space regression. To generate new candidate

molecules we train a GrammarVAE model using the whole data set as the training set (10%

of the training set is still used for hyperparameter selection).

For each setting of hyperparameters we obtain a set of model parameters for the Gram-

marVAE and the latent space regression model. We select the model for which the average

MAE for predicting εLUMO and εopt is minimised on the validation set. The resulting model

has a 32-dimensional latent space which is visualized in FIG. 5. Although the embedding

has been created using unsupervised model training, it is clear that the model has learned

some structure in the data which is correlated with the optical transition energy. This is

15



what can be exploited by the regression model.

Given the latent space embedding and the regression model, the question is now how to

choose new molecules to use as candidates. In ref. 12 and 13 a Gaussian process regression

model is trained on the latent space representation and they use Bayesian optimisation to

choose new points in the latent space. Bayesian optimisation avoids sampling new points

that are close to the training data. As noted in ref. 12 this may lead to sampling from the

latent space where the generative model is not well-behaved. Instead they train a neural

network on the latent space. Then they start from the embedding corresponding to a “good”

known molecule and take a few gradient steps in the direction that improves the property as

predicted by the neural network. We tried this approach, but the model was unable to move

away from the region corresponding to the “good” training samples. Instead we sample 106

samples from the latent space prior p(z) and alternate between decoding using the mode

of pθ(x|z) (the true mode is approximated by selecting the production rule that maximises

(B9) for each time step) and encoding using the mode of qφ(z|x). This can be seen as an

approximation of iterated conditional modes56, where we use the variational approximation

qφ(z|x) instead of the true posterior p(z|x) to find modes of p(x, z). After a fixed number of

iterations we evaluate the embedded samples using the neural network regression functions

and select the best 100. To speed up the computations, after each iteration we eliminate

duplicates (points that decode to the same string) and points that decode to strings that are

in the training set. The algorithm is summarised with pseudo code in Algorithm 1.

We choose the 100 best molecules as predicted by the model and perform DFT calculations

on these. Out of the 100 calculations 3 did not converge. The DFT-calculated εopt and εLUMO

of the suggested molecules are shown in FIG. 6. The fraction of the suggested molecules that

are within the εopt target is 66% versus 22% for the training set. For the εLUMO target the

fractions are 92% and 22% for the generated molecules and the training set respectively. The

fraction for which both εopt and εLUMO are within the target range is 61% for the suggested

molecules and 11% for the training set.

VI. CONCLUSION

Discovery of new materials for polymer solar cells might enable cheaper sustainable energy

solutions in the future. Random screening with density functional theory calculations alone
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Algorithm 1 Iterated Conditional Modes
Input: target εLUMO tL, target εopt tO

εLUMO regression function fL, εopt regression function fO

ẑ← N (0, I)

for i=1. . . 20 do

x̂← greedy argmax
x

pθ(x|ẑ)

x̂← RemoveDuplicates(x̂)

ẑ← argmax
z

qφ(z|x̂)

end for

P ← argmin
{I⊂N:|I|=100}

∑

I(tL − fL(zi))
2 + (tO − fO(zi))

2

return x̂P
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(b) The bright points are the ones within the

target range for both εLUMO and εopt.

FIG. 5: Projection of the 32-dimensional latent space into the plane defined by the two first

principal components. Each point corresponds to the mean value of the embedding

distribution q(z|x) and the grey circles shows the contour corresponding to 0.5 standard

deviation of the variational distribution. The plot shows all the samples in the data set

except those for which the triplet calculations did not converge.
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FIG. 6: Histogram for targeted properties (εopt top, εLUMO bottom) for training set (left)

and new suggested molecules (right). The shaded area denotes target range.

is computationally costly. We have demonstrated the use of machine learning algorithms

to predict the lowest unoccupied molecular orbital (LUMO) energy and the lowest optical

transition energy calculated using the triplet ∆SCF method. All the considered models

achieve mean absolute prediction errors for the LUMO and gap below 52 meV and 85 meV

respectively. Using a Grammar Variational Autoencoder with a simple application specific

context free grammar we create a vector space embedding of the data points from which

new molecules can be generated. By using a neural network regression model we select only

molecules that are likely to have properties within the target ranges. This guided search

yields a success rate of 61% versus 11% for the random exploration employed in generating

the training set.

Our variant of the Deep Tensor Neural Network shows higher predictive accuracy than

doing predictions based on the Grammar Variational Autoencoder embedding, but it uses

the atomic positions as inputs. The atomic positions are calculated using DFT calculations

and the Deep Tensor Neural Network is therefore not immediately applicable to new unseen
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molecules. Future work should look into whether we can achieve accurate predictions using

atomic positions approximations or perhaps the positions can also be estimated with machine

learning.

It is important to note that the LUMO position and the optical absorption edge are

only two among several parameters that determine the efficiency of a particular polymer

in an organic photovoltaic cell. Particularly influential factors include charge transport

within and between polymer chains or the electron-hole recombination probability. We saw

that only 11% of the polymers in the random poll studied here would be suitable polymers

for solar cells according to their LUMO position and optical edge. This percentage would

drastically decrease with the inclusion of other requirements, such as the ones mentioned above.

Furthermore, charge mobility and electron-hole recombination probability are quantities

much more demanding to calculate than the LUMO or the optical edge. This points towards

the enormous potential that machine learning has in this area, both for guiding the search

of suitable candidates and for avoiding prohibitive computations. Further work along these

lines is now undergoing.
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Appendix A: Deep Tensor Neural Network Implementation

The Deep Tensor Neural Network (DTNN) model can be interpreted as a message passing

algorithm operating on a molecular graph.31 Each atomic species has its own embedding

of trainable parameters ca ∈ R
30 and each atom is represented by its embedding, which

corresponds to the node features of the graph. We draw an edge between all pairs of nodes

in the graph. The edge feature is a radial basis function expansion of the distance between

two atoms. Denoting the distance between atom i and j as di,j , the edge between node i and
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j in the graph has feature vector

(ri,j)k = exp

(

−
(di,j − (−µmin + k∆))2

2∆2

)

, (A1)

where for our application we have chosen µmin = −1,∆ = 0.2, k = 0 . . . 49. In each step of

the message-passing algorithm the nodes are updated in parallel by summing over all the

incoming messages

c
(t+1)
i = c

(t)
i +

∑

j 6=i

m(c
(t)
j , ri,j). (A2)

The message-function is given by

m(cj, ri,j) = tanh
[

Wfc((Wcfcj + bf1) ◦ (Wdfri,j + bf2))
]

, (A3)

where ◦ denotes element-wise multiplication and
{

Wfc ∈ R
30×60,Wcf ∈ R

60×30,Wdf ∈ R
60×50

}

and
{

bf1 ∈ R
60,bf2 ∈ R

60
}

are trainable parameters of the model. After a number of these

interaction steps (we use 2) the nodes are combined into a single entity for the entire graph.

We do this with a per node fully connected layer after which all the nodes are summed,

followed by three fully connected layers. The network structure is shown in FIG. 7. The

model is implemented in Theano57 and trained using stochastic gradient descent with a

squared error cost function.

Appendix B: GrammarVAE Implementation

We want to learn an encoder and a decoder which maps input data x to and from values z

in a continuous vector space. In variational autoencoders32,33 z is treated as a latent variable

of a generative model. The likelihood function pθ(x|z) parameterised by θ can be interpreted

as a probabilistic decoder, which maps a latent vector representation z into a probability

distribution over data x. To train the model we seek to maximise the model (log-)evidence,

log p(x) = logEp(z) [pθ(x|z)] . (B1)

Computing the expectation is intractable so we instead turn to a cost function based on the

evidence lower bound

log p(x) ≥ ℓ(x) = Eqφ(z|x)

[

log pθ(x|z)− α log
qφ(z|x)

p(z)

]

, (B2)
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FIG. 7: Flow of (forward-pass) computations in our variation of Deep Tensor Neural

Network (DTNN). The operations marked with “FC” are fully connected neural network

layers where the number denotes the number of hidden units followed by the name of the

activation function used.

where qφ(z|x) is the variational approximation of the posterior p(z|x) with parameters

φ which constitutes a probabilistic encoder. The parameterised functions log pθ(x|z) and

log qφ(z|x) are implemented as deep neural networks. The evidence lower bound is maximised

using stochastic gradient ascent with respect to {θ,φ} where the expectation in (B2) is

approximated using a few samples from qφ(z|x). We have introduced a temperature parameter

α ∈ [0 : 1], which is set to 1 when evaluating the lower bound, but is adjusted during

training to trade off between the reconstruction term Eqφ(z|x) [log pθ(x|z)] and the encoder

complexity penalty term Eqφ(z|x)

[

− log
qφ(z|x)

p(z)

]

= −kl [qφ(z|x)||p(z)], where kl [q||p] denotes

the Kullback-Leibler divergence from p to q. Consistent with other variational autoencoder

applications58–60 we also found that without the temperature parameter the encoding function

qφ(z|x) would converge to the prior p(z) yielding poor reconstruction performance. Others

have handled this issue by annealing the α parameter during training59,60 or by employing
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FIG. 8: The grammar variational autoencoder maps strings to/from vector space in a

number of steps. (1) Form parse tree. (2) Convert tree to a sequence of production rules. (3)

Convert rules into 1-hot encoded vectors. (4) Embed sequence into vector space using

recurrent neural network. (5) Output logit vector (p(x(1)|z)) conditioned on embedding using

recurrent neural network. (6) Mask invalid production rules conditioned on non-terminal

popped from top of the stack. If stack is empty, goto (9). (7) Sample production rule and

push non-terminals to stack. (8) Output logit vector (p(x(t)|x(t−1) · · ·x(1), z)) conditioned on

embedding and sampled production rules using recurrent neural network and go to step (6).

(9) Convert sampled production rules to molecule description string.

a different objective function58, which effectively ignores the KL-term when it is below a

certain threshold. In this work we keep the α parameter fixed during stochastic gradient

descent training, but select the value using cross-validation.

The grammar VAE encodes to and decodes from the latent space as illustrated in FIG. 8

See the original paper13 for a detailed description. In contrast to the original grammarVAE13

we employ “teacher forcing” for the decoding recurrent neural network, i.e. the sampled

(output) production rule at time n is fed as input to the recurrent neural network at time step

n+1. We found that this reduces the number of required training steps to reach convergence

significantly. To reduce notational clutter, in the following x refers to the sequence of 1-hot

encoded production rules and we use x(t) to refer to the t’th production rule of the sequence.

As in the original Grammar VAE13 we choose a fully factorised normal distribution as

variational distribution:

qφ(z|x) = N
(

z|µφ(x),σ
2
φ(x)

)

, (B3)
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where the mean and (log-)variance are parameterised by a neural network consisting of

256 gated recurrent units (GRU)61, followed by a 128-unit fully connected layer with linear

rectifier activation function and separate linear layers for the mean and log-variance, i.e.

d(y) = Dense(GRU(y)), (B4)

µθ(y) = Linear (d (y)) , (B5)

σ2
θ
(y) = exp (Linear (d (y))) . (B6)

Similarly the probabilistic decoder model can be written as:

p(z) = N (z|0, I) , (B7)

pθ(x
(1)|z) = C

(

x(1)|πθ(z)
)

, (B8)

pθ(x
(t)|x(t−1) · · ·x(1), z) = C

(

x(t)|πθ(z,x
(t−1) · · ·x(1))

)

(B9)

where C(·|π) is the categorical distribution with parameter π. The function π(·) assigns

probability to each production rule and is implemented by a 256-unit GRU followed by a

linear layer unit, which is then normalised to produce a probability distribution by a softmax

layer, i.e.

πθ(z,x
(t−1) · · ·x(1)) = softmax

(

Linear
(

GRU(z,x(t−1) · · ·x(1))
))

(B10)

During testing the GrammarVAE masks and renormalises (B10) for each step, such that no

probability mass is assigned to invalid production rules.

Once the GrammarVAE model has been trained we can use it to map the molecular

string representation to the latent vector space. We then perform regression in the latent

space using a 512-512-256-1 MLP with tanh activation function. The model is trained using

stochastic gradient descent and in each epoch we obtain a new sample for each training data

point using the probabilistic encoder qφ(z|x). In addition to the regularisation achieved

through this sampling scheme we also add dropout62 with dropout probability dp after the

second and third hidden layers as well as ℓ2-regularisation of the weights with regularisation

parameter λ. We train a separate MLP regression model for each property of interest, but

the same embedding is used for all the properties.

The context free grammer used in our Grammar VAE is defined by the production rules

shown in FIG. 9. The coloured symbols denote non-terminals, i.e. symbols that are replaced

using the rules of the grammar. There are 41 production rules including a NULL-rule that is

used for padding sequences of production rules to the same length.
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m → A - OPTG - OPTG + D - OPTG - OPTG

A → A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13

D → D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10

OPTG → * | GS

GS → G | GS G

G → Ge | CH3 | OCH3 | H | C | O | SCH3 | NCH3 | S | F | Si | Se

FIG. 9: Production rules for the context free grammar of donor-acceptor polymers

In the following we go through the example of encoding the string A1-H OCH3-S+D4-H F-O S S

to a vector z and decoding it back to the original string. The parse tree for the string is

shown in FIG. 10. The tree is converted into a sequence by traversing the tree depth first

left-to-right, yielding the sequence of production rules shown in FIG. 11. The 23 production

rules are 1-hot-encoded into a binary matrix shown in FIG. 12 (top). The recurrent neural

network reads the matrix one row at a time and when it reaches the end of the sequence its

256-dimensional state vector is mapped to the mean and log-variance, from which we can

sample using qφ(z|x) = N
(

z|µφ(x),σ
2
φ(x)

)

. This gives a 32-dimensional vector z which

is fed as input to the decoding recurrent neural network. The neural network outputs a

vector of probabilities for the first production rule, which corresponds to the first row of the

bottom left matrix in FIG. 12. After applying the mask only one production rule is valid

and production rule 0 is therefore sampled with probability 1. The non-terminals of the right

hand side of the production rule are pushed to the stack from right to left, such that A is now

on top of the stack. In the next time step the recurrent neural network gets production rule

0 as well as z as input and outputs another vector of probabilities (second row of the bottom

left matrix in FIG. 12. We take the first item from the stack (A) and therefore mask out all

the production rules that do not have A on the left hand side. We thus sample A→ A1 with

high probability. The production rule is used as input to the recurrent neural network in the

next time step and the procedure continues until the stack is empty. In this example we

successfully restore the original sequence of production rules and the decoder thus reproduce

the original input string from the embedding z.
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FIG. 10: Parse tree for A1-H OCH3-S+D4-H F-O S S

m → A - OPTG - OPTG + D - OPTG - OPTG

A → A1

OPTG → GS

GS → GS _ G

GS → G

G → H

G → OCH3

OPTG → GS

GS → G

G → S

D → D4

OPTG → GS

GS → GS _ G

GS → G

G → H

G → F

OPTG → GS

GS → GS _ G

GS → GS _ G

GS → G

G → O

G → S

G → S

FIG. 11: Sequence of production rules for A1-H OCH3-S+D4-H F-O S S
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