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Machine Learning-Based Short-Term GPS TEC
Forecasting During High Solar Activity and Magnetic
Storm Periods

Yi Han ", Lei Wang

Abstract—Precise ionospheric total electron content (TEC) is
critical for many aerospace applications, and forecasting iono-
spheric TEC is of great significance to it. Besides, short-term pre-
diction of TEC values fills the gap between the TEC product latency
and the precision. The machine learning-based approaches are
promising in solving the nonlinear prediction issues, particularly
suitable for short-term global positioning system TEC forecasting
due to its complex temporal and spatial variation. In this arti-
cle, four different machine learning models, i.e., artificial neural
network, long short-term memory networks, adaptive neuro-fuzzy
inference system based on subtractive clustering, and gradient
boosting decision tree (GBDT) are applied for forecasting
ionospheric TEC in three IGS GNSS monitoring stations at the low-
latitude region (16°S to 10°S). The performance of these approaches
in extreme conditions is investigated, including the high solar
activity and magnetic storm, which are the most challenging sce-
nario for TEC prediction. The results show that the machine learn-
ing algorithms outperform the global ionospheric map prediction
model. The prediction accuracy during the high solar activity
period was improved from 37.93 % to 49.28 %. During the magnetic
storm period, the prediction accuracy was improved from 28.16 %
to 67.39%. Among the machine learning algorithms, the GBDT
model outperforms the rest three algorithms in ionosphere predic-
tion scenarios, which improves the prediction accuracy by 5.6 %
and 12.7% than the rest three approaches on average during high
solar activity (2012-2015) and magnetic storm periods respectively.

Index Terms—Gradient boosting decision tree (GBDT),
ionosphere prediction, machine learning, neural network (NN),
total electron content (TEC).

1. INTRODUCTION

ONTINUOUS monitoring of the ionosphere layer has
been carried out using many geodesy techniques due to
significant effects on both communications and global naviga-
tion satellite systems (GNSSs) [1]-[4]. The ionosphere changes
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fast and complex over different times and places, which limited
the precise ionosphere acquisition capacity. The ionosphere
working group of the International GNSS Service (IGS) has been
continuously providing reliable global ionospheric maps (GIMs)
since 1998 [5]. The nominal precision for the final product is
about 2-8 TECU, while it comes with about 3-day latency [6].
The Center for Orbit Determination in Europe (CODE) also
published the prediction product C1PG and C2PG for real-time
applications [7]. However, its prediction accuracy largely de-
pends on solar activity. During the high solar activity period,
the ionosphere prediction is still challenging and the C1PG
accuracy is about 4-16 TECU [8]. In addition, International
Reference Ionosphere 2016 (IRI-2016) model is a standard
empirical model, whose goal is to develop and improve inter-
national standards for the parameters of the Earth’s ionosphere
[9]. In low-latitudes, the accuracy of IRI-2016 model is about
7-15 TECU during high solar activity period, when compared
to IGS GIM [10]. Thus, precise TEC prediction in the extreme
conditions is a big new challenge to deal with.

The ionosphere prediction is an important way to obtain the
real-time ionosphere TEC and there have been a few researches
on this topic using the classical time-series analysis approaches,
such as the auto-regressive moving average (ARMA) model
and auto-regressive integrated moving average (ARIMA) model
are widely applied for short-term TEC forecasting in different
latitudes [11]-[13]. The machine learning algorithms can auto-
matically learn the implicit nonlinear relationship between the
TEC value and the external indicators, which helps to improve
the prediction performance in extreme environments. A few
machine learning approaches have been used in the ionosphere
prediction, such as the standard neural network (NN) approach
[14]-[16], long short-term memory (LSTM) [17]-[19], adaptive
neuro-fuzzy inference system (ANFIS) [20], etc. Their perfor-
mance has been evaluated and has been compared with the GIM
and IRI-2016 models and the results show that these machine
learning algorithms outperform the existing models. However,
the performance between different machine-learning algorithms
has not been evaluated so far, and the optimal machine learning
algorithms have not been identified.

In this study, a new machine learning algorithm named gradi-
ent boosting decision tree (GBDT) was introduced for the iono-
sphere prediction problem. Four machine learning algorithms
are selected, such as the NN approach, the LSTM approach, the
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ANFIS approach, and the GBDT approach, to compare their
performances in extreme conditions, which aim to find the best
machine learning algorithm during the high solar activity and
magnetic storm period. Three monitoring stations from the IGS
network at low-latitude regions were selected, and four-year
data (2012-2015) during the high solar activity and magnetic
storm period (46 d) are used in this study. Then, many accuracy
indicators to compare their overall performance are chosen in
detail.

The rest of this article is organized as follows. Section II
describes the vertical TEC (VTEC) values calculation, and the
models used in the TEC prediction are presented in Section I1I. In
Section IV, experiment setups are presented. The comparisons
of the nonlinear models and results with related researches are
discussed in Section V. Finally, Section VI concludes this article.

II. VTEC EXTRACTION FROM GNSS OBSERVATIONS

To accurately forecast the TEC time series, the TEC values
need to be extracted from dual-frequency GNSS receivers. The
code and phase of the carrier wave observations are provided by
the dual-frequency global positioning system (GPS) receivers in
the L band at frequencies of L1 (1575.42 MHz) and L2 (1227.60
MHz), and these observations are most used to estimate the slant
TEC (STEC). The ionosphere time delays can be extracted from
pseudoranges and carrier phase observations, respectively. The
GNSS observations can be expressed as follows:

P, =D +T + I+b5 + by + (At — At,)+ep

0, = ﬁ(ps +T° — I + B} + B,; + c¢(At° — At,))
C

+ N;+eg (1)

where denotes pseudorange between receiver r and satellite s at
the ¢th frequency; Dis the geometric distance between the satel-
lite and receiver; T', Irepresents the tropospheric path delay and
the ionospheric delay; At* and At, are the P?satellite-specified
and receiver-specified clock biases; b] and b,. ; are the satellite-
specified and receiver-specified code biases for ith frequency;
B? and B, ; are the satellite-specified and receiver-specified
uncalibrated initial fractional carrier phase biases. is the carrier
phase observations expressed in the cycle; Nis the carrier phase
ambiguity bias. f; and c are the frequency of the observation and
the light speed, respectively.

The ionospheric delay in GNSS observations is frequency-
dependent due to ionospheric dispersive nature; hence, the total
GPS ionosphere delay can be estimated with dual-frequency
GNSS observations. The STEC can be derived according to
the total ionosphere delay. GPS STEC can be estimated with
either the phase smoothing pseudorange method or the precise
point positioning (PPP) method [21], [22]. The phase smoothing
pseudorange method is the most widely used method, which is
also used to generate the global ionospheric map product; hence,
we adopt this method to estimate the STEC. This STEC can be
derived from the following equation:

Pi=P - P

Ly =101 — Aooo
Iif3
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(P, — ¢-DCB, — ¢-DCB*) (2)

where P, and L, are the geometry-free code and carrier phase
combination, respectively, which canceled all the frequency-
independent terms in (1). The remaining frequency-dependent
terms can be further decomposed into three parts: the STEC,
the satellite-specified, and receiver-specified differential code
biases (DCB). DCB is the interfrequency code biases. For dual-
frequency case, DCB can be defined as DCB, = b, 1 — b, 2,
DCB?® = bj — b3. In order to mitigate the pseudorange noise
impact in STEC estimation, a carrier phase smoothed pseudor-
ange observations is adopted, given as follows:

-~ 1 :
Py =Lf——> (Li+P)) 3)
k=1

where ]54 is the carrier phase smoothed pseudorange observa-
tions, n is the number of epochs. According to the ionosphere
thin shell model, the STEC can be converted to VTEC at the
ionosphere pierce point (IPP). Finally, the TEC in the zenith
direction can be calculated as follows:

VTEC=cos(Z') x STEC with sin(Z') = 7 fH sinZ (4)
where R is the mean Earth radius, Z’ and Z are the zenith angles
of the satellite at the receiver and at the ionospheric pierce point,
respectively. The estimated VTEC of 1 hresolution is considered
as the dataset for machine learning models, which are separated
into training and testing datasets. The three low-latitude IGS
stations are selected for this study. Besides, a training dataset
is used to train models and the k-fold validation method is also
applied [23]. This step can estimate the generalization ability of
the machine learning models, and can be used to identify whether
the network is overfitting and underfitting. The testing dataset is
used to evaluate the predicting capacity of these models.

III. MACHINE LEARNING MODELS FOR TEC PREDICTION

In this section, the four machine learning methods and their
usage are presented.

A. Artificial NNs

Artificial NNs are well known as a powerful and elegant
technique to approximate a complex nonlinear function as a
composition of elementary nonlinear functions [24]. This model
has been successfully applied in TEC modeling and forecasting.
The NN establishes the nonlinear relationship between the inputs
and the outputs by adjusting the weight between the nodes of
the network. A trained network contains the implicit nonlinear
relationship between the input and the output, and can be used
for the ionosphere prediction with only input features. Taking X
as the input vector in the NN, the output of the network can be
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Fig. 1. NN structure with one hidden layer.
expressed as follows:
n
y=k Z (wjz; + b) (5)

Jj=1

where k() is the activation function; wdenotes the weight of
each neuron, and bis the bias; xis the input feature. Particularly,
activation function determines the relationship between inputs
and outputs of a NN, which introduces a certain degree of
nonlinearity. In this study, rectified linear unit (ReL.U) is used
as activation function [25]. An illustration of the NN structure
is presented in Fig. 1.

In TEC forecasting, X is the input features related to VTEC
value, and y is the predicted TEC value. The backpropagation
algorithm is chosen in this study to construct the NN model [26].

B. LSTM Networks

The single station VTEC prediction can be taken as the time
series prediction problem. The LSTM network is a specially
designed network for sequential data processing [27]. LSTM
has the capacity of learning the long-term dependency and the
short-term dependency at the same time. With new input data
accumulated, the network is evolutionary, while the long-term
dependency was preserved with the hidden state vector, so that
the predicted data can benefit from both historical and the latest
input data. The flowchart of LSTM is shown in Fig. 2.

The output of LSTM is presented as follows [28]:

hy = o tanh(c;) (6)

where h, represents the hidden state vector as well as the output
vector of the LSTM unit; o, is the activation vector of output
gate, and ¢, is the cell state vector. VAR 1 and VAR?2 are the input

Output
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Architecture of the LSTM model.

Fig. 2.

Crisp Input | Fuzzification ‘ Rule

Fig. 3. ANFIS structure with two inputs.

features related to VTEC value in the LSTM model, which uses
the sequential data to predict 1 h ahead TEC values. See [17]
and [27] for details about algorithms and their usage.

C. Adaptive Neuro-Fuzzy Inference System

ANFIS is a combination of NNs and the fuzzy inference
system (FIS), which gains their advantages of using numerical
and linguistic power [29]. Since it introduces fuzziness into the
NN, the combination of this model can increase the accuracy of
results. Existing research reveals that the ANFIS shows better
performance than the classical NN in TEC modeling at the low
solar activity [30]. Thus, this model is most likely to be used
in TEC forecasting under severe weather conditions in terms of
its fuzziness characteristic. The simple structure of an ANFIS
network is shown in Fig. 3.

Like the NN, ANFIS consists of at least five layers. In the first
layer, the two crisp inputs are put in this system, and they are
fuzzified into values by a fuzzy set described as neurons, which
has its membership function with adjustable premise parameters.
In the rule layer, each node in this layer receives signals from
the fuzzification layer, while the degree of activation of the
premises is calculated. Each node of this layer represents the
firing strength of a fuzzy rule. The normalization is done in
this rule firing layer. In the next layer, the adjusted consequent
parameters are contained in each neuron. Lastly, the summation
of received signals of previous nodes is calculated in this layer
as the final output value of the ANFIS system.

According to the number of input variables, the ANFIS
can be established using different methods, which include grid
partitioning and clustering techniques [31]. Regarding the grid
partitioning method, as the number of input variables increases,
the number of fuzzy rules increases exponentially. Therefore,
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large fuzzy rules pose a threat to the application of ANFIS, and
this method is suitable for datasets with a small number of input
variables (e.g., less than 6) [32]. However, the inputs in this work
are more than six, and so this grid method is not considered. To
enable this system to be able to solve the multi-input problem, the
clustering technique is applied as an effective tool to classify the
inputs to reduce the fuzzy rules, while the number of clusters is
equal to the fuzzy rules. So, in this study, the ANFIS subtractive
clustering (ANFIS-SC) network is used to establish forecasting
model.

D. Gradient Boosting Decision Tree (GBDT)

The GBDT approach combines regression trees with a gradi-
ent boosting technique, which has been widely used to solve
regression and classification problems such as soil moisture
estimation [33], GNSS positioning accuracy improvement [34],
and GPS signal reception classification [35]. It achieves the best
performance when comparing with the other classic machine
learning techniques [35], [36]. The GBDT approach is high
efficiency and has an excellent capacity to automatically detect
nonlinear interactions, which is quite promising for accurately
forecast TEC time series under severe weather conditions.

The detail of this algorithm is described as follows. In this
algorithm, each sample is represented as z; (i = 1,2,3,..., N),
and N is the number of samples. The training set can be
expressed as T' = {(x1,y1)(x2,92), ..., (zn,yn)}, while y is
the TEC predicted value of each sample. The GBDT mini-
mizes the value of some specified loss function to obtain the
optimal model, and loss function is used to obtain residuals
at each iteration [37]. The most used function is the square
function and absolute error. In this study, the square loss function
L(y;, f(x;)) = $(yi — f(=;))? is used, and the GBDT model
structure is shown in Fig. 4.

The main steps of the method are as follows [35], [37]:

IV. EXPERIMENTS SETUP

To evaluate the forecasting performance of these models,
several experiments are to be performed. In this section, the

Algorithm

1) For the training set, initialize a weak learner fo(z):
folw) = argmin, SN | L(yi, )
fo(x) is a regression tree, and according to the square
loss function, fo(2) becomes:
folz) =7y
2)Form =1to M :
a) Compute the negative gradient

y— _[M]
m OF(x;)  Af=Fm
b) Replace y; of the training dataset with 7,,; to obtain a
new dataset {(x1, 7m1) (T2, "m2), -+, (TN, T"mN) T

fm/(2)is the new regression tree, and R,,,;is its areas of
leaf nodes, where 7 = 1,2,3...,J. Jdenotes the
number of leaves in a given regression tree, and
calculate the optimal fitting values:

Ymj = argmin, > L(ys, frm-1(x;) +7)

z,€ER,, j
c¢) Update the strong learner:

Fn(@) = fn1(2) + p 277 Ymg I € Riny)
where pis the learning rate to prevent overfitting issues.
3) When the iteration is terminated, the final output

becomes:

Far(@) = fo(@) + pSom—y S0 Yl (@ € Tinj)

90°N
45°N
00
45°S
90°S

180° 120°W  60°W 0° 60°E 120°E 180°

BT variation range
10 20 30 40 50 60 70 80
Fig. 5. Distribution of the IGS stations and the ionosphere variation range.

description of the experiment setup, which includes the descrip-
tion of the datasets, evaluation metrics and parameters setting
are introduced.

A. Datasets

In order to capture the ionosphere variation characteristics,
the dataset used in this study is carefully selected. At first, three
continuous monitoring stations from IGS network are selected.
As known, the ionosphere changes the most dramatically in
the low latitude belt region around the magnetic equator. We
checked the mean daily variation of the global TEC using the
GIM products from CODE and then three IGS stations at the
low magnetic latitude was selected as the target. Th mean daily
TEC variation and selected IGS stations are presented in Fig. 5.
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TABLE I
TEC AND FEATURE CHARACTERISTICS IN 2012-2015

Dataset Station Maximum Minimum Median Mean Std
TEC AREQ Training set 108.5974 1.4303 33.3057 35.8694 19.7417
(TECU) (16.466°S, 71.493°W)  Testing set 101.9865 2.4708 31.3346 34.1138 19.3158
DARW Training set 124.3451 4.8 28.2067 31.5464 17.6207
(12.844°S, 133.133°E) ~ Testing set 111.4639 3.9733 23.4522 27.5892 16.6845
XMIS Training set 124.1335 0.0362 29.0292 33.3563 23.025
(10.450°S, 105.688°E)  Testing set 120.0678 0.3405 24.7426 29.7139 21.9752
F10.7 Training set 2533 86.8 127.1 129.4493 249712
Testing set 255 79.5 115.5 117.6025 19.8364
Kp Training set 8 0 13 1.5779 1.231
Testing set 83 0 2 2.1075 1.375
Dst Training set 77 -145 -8 -10.9685 17.961
Testing set 56 -223 -10 -14.31 21.6968
| T
20 | | Trainning set AREQ iTeinng set
|
220 : |
| |
190 | |
| |
S 160 | |
w |
130 I |
|
100 |
| |
70 | |
2008 20‘09 20‘10 20‘11 2012 20‘13 20‘14 20‘15 20115 20‘17 20‘13 20‘19
Year
Fig. 6. F10.7 value time series for the recent 12 years.
In the temporal dimension, the solar activity has a period of
about 11 years and its activity can be reflected with the F10.7
index. We checked the F10.7 index time series for the recent 12
years and selected the period 2012 to 2015 as the target since
this period has the highest solar activity in the recent 12 years,
which is shown in Fig. 6. In practice, the data from 2012 to 2014
are used for model training and the data from 2015 are used to
testing the ionosphere prediction performance.
For the machine learning-based algorithm, the selection of the
features is quite critical. The variation of TEC is associated with .
the season, day, hour, geomagnetic activity, and solar activity. 30 :
The solar zenith angle (SZA) contains characteristics of season, - :;g [ |
day, and hour. In addition, the geomagnetic activity and solar S 120t :
activity can be characterized by the Dst, Kp, and F10.7 index :;;g I - ; |
[38], [39]. In this study, five features are considered, namely, 2012 2013 2014 2015
SZA, F10.7, Dst, Kp, and TEC value. The detailed statistical
Fig. 7. TEC and feature time series in 2012-2015.

characteristics of these datasets are listed in Table I. It should
be mentioned that the variation and range of the SZA dataset
is periodically variation in the interval [—90, 90], and so its
statistical data is no need to be presented. The TEC variation in
the selected period is up to 120 TECU for the three IGS stations,
which can be considered as a typical high solar activity period.
The time series for the selected features over the four years are
presented in Fig. 7. The figure gives an overall description of
the data. The VTEC value time series on the three stations is
presented in the figure.

It indicates that the VTEC has certain periodical patterns, and
two peaks are observed each year at this station. F10.7 index is a

measure of the noise level generated by the sun at a wavelength
of 10.7 cm at the earth’s orbit. A higher F10.7 value means more
active ionosphere activity [40], [41]. The Kp and Dst indexes are
used as indicators of the geomagnetic activity. Kp index presents
the index of 3-h range in magnetic activity relative to a quiet
day. Thus, a higher Kp index means the geomagnetic is more
active. Generally, Kp > 4 means high geomagnetic activity. The
Dst index smaller —50 nT can be considered as the moderate
storms.
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TABLE II
DEFINITION OF THE PERFORMANCE METRICS

Criteria Definition Equation
N
RMSE Root mean square value of the errors RMSE = %x Z( v.- 7 )2
i=l
1&
MAE Mean absolute error MAE = WZ‘)’, -3
i=l
L3,
MAPE Mean absolute percentage error MAPE = ﬁz ——{x100%
=Y
P s . 1 )2 1 S 2 1 v 82
TIC Theil inequality coefficient TIC = EZ(y, -5)/ v Dyi+ e >
=) =1 =
N
> -3
R? Cocfficient of determination R =1-5——
> -y
i=l

Var Variance of the forecasting error

Var = E(e— E(e))*

B. Performance Metrics

To evaluate the performance of these machine-learning-based
models, different performance metrics are considered in this
study. The prediction quality of a model is generally examined
with two aspects of the prediction residuals. 1) Bias, which is
the deviation from the true value distribution. 2) Variance, which
reflects the stability and the robustness of the model prediction
capacity.

It should be noticed that single criteria cannot fully measure
the performance of these forecasting models. Hence, a compre-
hensive evaluation system should compose of more performance
indices, which includes the root mean square error (RMSE), the
mean absolute error (MAE), the mean absolute percentage error
(MAPE), the Theil inequality coefficient (TIC), the correlation
coefficient (CC), and forecasting error variance (VAR) is used
in this article.

Based on the forecasting and actual value, the RMSE, MAE,
MAPE, and TIC are calculated to assess the forecasting accu-
racy. The RMSE can efficiently evaluate the forecasting accu-
racy. In addition, since the forecasting error can be positive
and negative, the MAE is the average of the absolute error,
which can better reflect the actual situation of the predicting
value error, and MAPE is applied to measure the relative error
between the average test value and the actual value. The TIC is
calculated using forecasting error, while the lower the TIC, the
better forecasting performance. Besides, R? indicates the degree
of linear correlation between forecast value and actual value.
The VAR is applied to evaluate the nonlinear model stability.
Definitions of these metrics are listed in Table II.

C. Configuration of the Machine Learning-Based Models

The performance of the machine learning-based models de-
pends on the configurations of the models. Typical machine
learning procedures involve a training procedure and a testing
procedure. The training procedure extracts the implicit rela-
tionship using the input features and the “true” TEC values.
Then the trained network is used to predict the TEC value
with given input features. The quality of the training process
is measured by the RMSE of the fitting residuals. However,

the smallest RMSE of the fitting residuals does not necessarily
imply better prediction accuracy due to the overfitting issue.
In this study, 75% of the training dataset is used for training
the models and the rest 25% are used for testing the model. In
the training process, a five-fold validation method is used to
avoid the overfitting problem [42]. The training set is randomly
divided into five groups equally. Four groups are involved in the
training and the rest group is used for the validation procedure
in each round and five rounds of the training process are carried
out until all groups are used as the validation group to find the
optimal intrinsic parameters. Then, the rest 25% testing dataset
is used to further evaluate the predicting performance of these
models. Since the testing dataset was not involved in the training
procedure, it is reasonable to evaluate the performance of the
machine learning-based approach with the testing dataset.

The parameter setting for these models is described as follows.
In NN and LSTM models, the number of neurons is between 1
and 100, and the learning rate is within 0.005 and 0.05. Their
hidden layers are set to 1, while the iterations are set to 1000.
For ANFIS-SC models, the range of influence is between 0.4
and 0.6, and iteration is set to 100. Finally, for GBDT models,
the learning rate is between 0.01 and 0.1, and the number of
estimators is between 500 and 1500. The number of depths is
between 3 and 9. All parameter definitions for each machine
learning model are summarized in Table III.

V. PERFORMANCE EVALUATION
A. Optimal Window Length Determination

In the machine learning-based approaches, the VTEC for the
next hour is modeled as a function of the features in the past
few hours, which is also known as the window length of the
ionosphere prediction. In this study, number of hours ahead
prediction of ionospheric TEC is one hour, and window length
represents the data of the previous few hours.

The window length has an impact on the prediction precision,
so how to optimally determine the window length should be
investigated first. We use the MAPE indicator as the prediction
performance measure and compared different window lengths
using the four machine learning algorithms with the data from
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TABLE III
INTRINSIC PARAMETERS USED IN EACH MACHINE LEARNING-BASED MODELS

Model Main parameter definitions
NN learning rate=0.005, number of neurons=80

Station

LSTM learning rate=0.01, number of neurons=98
AREQ  ANFIS&SC Range of influence=0.4
learning rate=0.07, n_estimators=109,
GBDT max_depth=14
NN learning rate=0.005, number of neurons=97
LSTM learning rate=0.005, number of neurons=97
DARW  ANFIS&SC  Range of influence=0.4
GBDT learning rate=0.03, n_estimators=1310,
max_depth=4
NN learning rate=0.005, number of neurons=96
LSTM learning rate=0.01, number of neurons=83
XMIS ANFIS&SC  Range of influence=0.4
GBDT learning rate=0.01, n_estimators=1500,
max_depth=7
- LSTM ANFIS-SC GBDT
<
=
2 3 4

Widow length (h)

Fig. 8. MAPE values for different window length in AREQ station.

the AREQ station, and the results are presented in Fig. 8. The
results indicate that different machine learning algorithms have
different window length dependencies and the LSTM presents
the strongest window length dependency. It also shows that as
the window length increases, the MAPE becomes smaller in all
models. Generally, longer window length implies better predic-
tion accuracy, while the improvement of window length longer
than 3 h becomes negligible. In order to balance the prediction
precision and the computation complexity, 3 h window length
is used in this study for the ionosphere prediction.

B. Performance Comparison Evaluation in High Solar
Activity Period

In order to evaluate the prediction performance of machine
learning-based approaches in the high solar activity period, we
tested their performance with the TEC time series derived from
the three stations (AREQ, DARW, and XMIS) with 1 h temporal
resolution from 2012-2015.

In this study, the data in 2012-2014 is used for model training
and the data in 2015 is used as the testing dataset. As stated,
this period is the highest solar activity period in recent 12
years. The ionosphere prediction results of these models are
listed in Table IV. For the AREQ station, the MAPE values
vary from 8.4% to 8.7% for the four machine learning models,
and vary from 13.6% to 28.7%, which is shown in Table IV.
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Fig. 9. Monthly MAPE values of the four machine learning-based models.

The prediction accuracy of the four machine learning-based
approaches is about 8%, while the rest two global models are
higher than 10%. The table also indicates that the GIM model
achieves better accuracy than the IRI-2016 model in the highest
solar activity period. The four machine learning-based models
outperform the GIM and IRI-2016 models in terms of other
performance indicators as well.

In addition, the GBDT model also outperforms the other
models in all stations in terms of the rest performance indicators.
Particularly, the smallest VAR indicator indicates that the GBDT
also achieves the most stable prediction performance over the
high solar activity period. In terms of the RMSE, the prediction
accuracy of the GBDT model is better than the rest three models
by 5.6% on average. Thus, it can be concluded that the GBDT
model outperforms the rest three machine learning-based models
in the high solar activity period, although some researchers have
achieved fairly good ionosphere prediction accuracy in relatively
low solar activity period [17]. The LSTM may not be the best
choice for ionosphere prediction in the high solar activity period.

Even in the high solar activity period, the ionosphere ac-
tivity also varies with the season. In order to investigate the
impact of season on the machine learning-based approaches,
we analyzed the monthly mean MAPE of the four approaches
and the results are presented in Fig. 9. The figure shows that
the MAPE of the four approaches has different characteristics.
Generally, the four approaches perform similarly from October
to next February, while the discrepancy increases from March to
September. The performance of the different approaches is also
station specified, but the GBDT achieves the smallest MAPE
in most cases. Although the station DRAW and XMIS are
geographically close to each other, their prediction error did
not present similar behavior. The largest discrepancy between
the four models presents in June for all three stations and the
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TABLE IV
OVERALL PERFORMANCE OF THE FOUR MACHINE LEARNING-BASED ALGORITHMS DURING THE TESTING PERIOD

Station RMSE MAE MAPE (%) R? TIC VAR

AREQ GIM 5.2694 3.7972 13.6394 0.9259 0.066 26.5263
IRI-2016 13.8511 10.2522 28.7071 0.4879 0.2062 111.1209
NN 3.3401 2.3446 8.6769 0.9702 0.0427 11.1557
LSTM 3.3024 2.3244 8.5387 0.9709 0.0423 10.9032
ANFIS-SC 3.4658 2.386 8.8061 0.9679 0.0443 12.0079
GBDT 3.2707 2.2887 8.4144 0.9714 0.0418 10.6851

DRAW GIM 5.7268 3.8478 15.849 0.8823 0.0891 32.7513
IRI-2016 10.8644 8.0071 30.7649 0.5762 0.1854 95.5641
NN 3.0022 2.0697 8.4973 0.9676 0.0467 9.0107
LSTM 3.0236 2.015 8.1757 0.9672 0.0472 9.1358
ANFIS-SC 3.4079 2.0222 8.3817 0.9583 0.0529 11.5852
GBDT 2.9757 1.9761 7.9992 0.9682 0.0461 8.7672

XMIS GIM 7.4888 5.1338 23.9058 0.8844 0.1019 56.0809
IRI-2016 14.2453 9.6448 36.5121 0.5818 0.2181 175.814
NN 3.8383 2.5922 11.8452 0.9696 0.0518 14.6144
LSTM 4.0301 2.634 11.209 0.9665 0.0546 16.1853
ANFIS-SC 4.7503 2.9298 12.8272 0.9535 0.0643 22.5436
GBDT 3.7979 2.5157 10.7162 0.9703 0.0514 14.4005
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Fig. 10. Correlation between observed GPS TEC and predicted TEC value
using the four machine learning-based models during the 2016 period.

GBDT approach did not perform well in September for both
AREQ and DRAW. Generally, the ANFIS and NN perform not
as good as the LSTM and GBDT. Although the LSTM performs
well, GBDT still slightly outperforms, especially in the middle
of the year.

The correlation between the predicted VTEC value and the
observations for all six approaches is also examined and the
results are presented in Fig. 10. The figure shows the four

AT b
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Fig. 11.  Relationship between the absolute [dTEC| prediction error and the

season/local time in the AREQ station.

machine learning-based approaches can perfectly capture the
variation of the ionosphere VTEC and the R? values of the four
models are generally higher than 0.97. The GIM model also
presents perfect correlation, but its precision is still not as good
as the machine learning-based approach. The IRI-2016 model
presents certain biases in the ionosphere VTEC computation and
also presents the poorest correlation. The figure also indicates
that the ionosphere VTEC predicted with the IRI-2016 model
presents a strong bias in high VTEC scenarios, which indicates
the model still can be improved to cope with the high solar
activity scenarios.

The ionosphere activity is also related to the SZA, and hence
we further investigated the relationship between local time and
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the ionosphere prediction error. The |[dTEC]| distribution for the
AREQ station in 2015 is presented in Fig. 11.

This figure shows the prediction error is related to the local
time and the season for all six approaches. The ionosphere
prediction error is smallest from June to September and the pre-
diction error achieves the maximum during February to May. In
the first half-year, there are two prediction error peaks presented
in each day, while the prediction error is more homogeneous
in the second half-year. Generally, all these approaches achieve
the smallest prediction error in the night (Local time 0-6 h) due
to relatively peaceful ionosphere activity. The prediction error
for the four machine learning-based approaches are very similar,
which indicates the ionosphere VTEC can be quite unpredictable
at some times.

C. Performance Evaluation in the Geomagnetic Storm Period

A more extreme weather condition for the ionosphere pre-
diction is the geomagnetic storm. The ionosphere activity is
strongly correlated to the magnetic disturbance, which may be
affected by many external factors. The magnetic storm may
cause power outages, satellite communication failure, and satel-
lite damages, and so it is taken as hazardous space weather [43],
[44]. In this study, we also introduce two magnetic disturbance
indices to help predict the ionosphere VTEC in the model
training phase. The geomagnetic storm is empirically defined
as Dst < = =50 nT and Kp > = 4 in this study [45]. Different
from solar activities, a geomagnetic storm is a short-term event,
which typically lasts a few hours to several days. To investigate
the performance of the machine learning-based algorithms in
the magnetic storm, we selected 46 d in 2015, which meet the
magnetic storm criteria.

We compared the impact of the magnetic storm on the iono-
sphere prediction and the results are presented in Fig. 12. The
figure compared the VTEC value and the prediction error in the
magnetic peace and storm period. The magnetic storm happened
on the day-of-year (DOY) 077, 2015 and the right panel shows

9 13 17 21 1 5
Hour(h)

Tonosphere prediction accuracy comparison of the four machine learning-based algorithms in magnetic peace (left) and storm (right) period during

the maximum VTEC reaches 100 TECU in the storm. The left
panel shows the VTEC and prediction error at the same time
as the previous day. Although the magnetic storm has not been
started, the maximum VTEC also reaches about 70 TECU. The
figure indicates the magnetic storm has a significant impact on
ionosphere prediction. The prediction error increases from a
few TECU to about 20 TECU during the magnetic storm. In
the magnetic peace period, all the machine learning approaches
perform quite similarly, but in the storm, the ionosphere becomes
quite unpredictable. Within the four approaches, the LSTM and
the ANFIS approaches are more apt to affect by the storm.
The NN and GBDT perform slightly better than the other two
approaches.

We further investigated the impact of the magnetic storm
on the ionosphere TEC prediction residuals and the results on
AREQ are presented in Fig. 13. The figure shows that the impact
of the magnetic storm is obvious. The storm leads to larger
prediction residuals for all six approaches and the RMSE of
the prediction residuals is increased by 2—4 TECU. The RMSE,
MAE, and R2 values in the storm time are all larger than those
in nonstorm time. Particularly, the magnetic storm increases the
probability of large prediction residuals, which makes the iono-
sphere prediction in the magnetic storm less reliable. Comparing
the four machine learning-based approaches, it concludes that
the GBDT outperforms the rest three approaches in terms of R2,
MAE, and RMSE during the magnetic storm period. While the
superiority becomes less significant in the nonmagnetic storm
period, it also performs well.

The overall performance of the six approaches during the
geomagnetic storm is compared and the results are listed in
Table V. The table shows that the prediction accuracy of all six
models is lower than that of the whole high solar activity period.
The main reason for this difference may be that the TEC variation
becomes more complex and unpredicted during the geomagnetic
storm period. Specifically, the MAPE values of four machine
learning models for forecasting GPS TEC time series are all
smaller than GIM and IRI-2016 models. The GBDT and NN
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Fig. 13.  TEC prediction residuals comparison during the magnetic storm and nonstorm period.
TABLE V
OVERALL PERFORMANCE OF THE IONOSPHERE PREDICTION MODELS DURING THE GEOMAGNETIC STORM PERIOD
Station RMSE MAE MAPE (%) R? TIC VAR
AREQ GIM 7.3373 5.0974 18.2581 0.8677 0.0947 52.3991
IRI-2016 15.0533 11.2243 32.1916 0.4431 0.2236 140.0641
NN 5.3955 3.3828 12.2011 0.9284 0.0682 29.0872
LST™M 5.4105 3.5515 13.8649 0.9281 0.0688 29.2576
ANFIS-SC 6.4876 3.7198 14.4714 0.8966 0.0821 42.0815
GBDT 5.2713 34119 13.1647 0.9317 0.0666 27.7051
DARW GIM 10.1576 5.9671 24.9775 0.6382 0.1656 102.8332
IRI-2016 11.9214 8.6817 35.4189 0.5017 0.2089 127.0952
NN 3.4301 2.5503 12.3594 0.9587 0.0553 11.7367
LST™M 3.8787 2.7815 13.2137 0.9473 0.0624 14.6465
ANFIS-SC 6.0793 2.6485 11.9094 0.8704 0.0965 36.5193
GBDT 3.3065 2.4211 11.572 0.9617 0.0527 10.1007
XMIS GIM 12.3853 7.5434 33.1579 0.716 0.1697 153.1346
IRI-2016 14.1275 8.8322 33.5509 0.6305 0.2135 190.2025
NN 4.0396 2.8004 13.5088 0.9698 0.0552 16.2769
LST™M 5.053 3.2034 14.0506 0.9527 0.0698 25.5314
ANFIS-SC 4.4499 2.925 15.0634 0.9633 0.0607 19.7402
GBDT 4.0719 2.742 12.4267 0.9693 0.0555 16.3566

models obtain slightly better prediction accuracy. For prediction
stability, the four proposed models are generally more stable
than GIM and IRI-2016 models, while the VAR values of GBDT
and NN models are better than that of the other models, which
shows the good prediction stability of the two models in the three
IGS stations. In the magnetic storm period, the proposed GBDT
still achieves about 12.7% RMSE improvement on average
comparing to the rest three machine learning-based approaches.

VI. CONCLUSION

Real-time precise ionosphere TEC monitoring is critical for
many aerospace applications, while the classical prediction
methods based on time series analysis cannot meet the re-
quirement. The machine learning-based approach can learn the
implicit relationship between the ionosphere TEC value and
the external features, which can be used to improve the pre-
cision of short-term ionosphere TEC prediction. A few machine
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learning-based approaches have been proposed, while how to
optimally select the machine learning approach has not been
addressed, especially in severe space weather conditions.

In this article, three existing machine learning-based models,
namely NN, LSTM, ANFIS, and a new model namely the GBDT,
are adopted to predict the GPS VTEC time series. Three stations
from the low geomagnetic latitude are selected and 4 years of
data in the highest solar activity period are used to evaluate the
performance of the machine learning-based models. The TEC
prediction accuracy and stability are evaluated by six different
indicators, and the performance of these models under extreme
space weather conditions is assessed. The numerical results indi-
cate that the ionosphere prediction accuracy in high solar activity
is not as good as in the low solar activity period, but the ma-
chine learning-based approaches still significantly outperform
the GIM and IRI-2016 models. The machine learning-based ap-
proach achieves about 2.9—-4.7 TECU prediction accuracy during
the high solar activity period and the newly introduced GBDT
approach achieves the best performance out of the four models.
The mean prediction accuracy improvement of GBDT subject to
the rest three models is about 5.6%. The ionosphere prediction
accuracy presents dependency on the season and the local time.
The performance of the machine learning-based approach in
the magnetic storm is also evaluated. The results indicate that
the magnetic storm further deteriorates the ionosphere VTEC
prediction accuracy by about 2 TECU. The magnetic storm
makes the ionosphere prediction less reliable. However, the
GBDT approach still achieves the best performance in the mag-
netic storm and the mean RMSE improvement reaches 12.7%
comparing to the rest three models. In addition to the prediction
accuracy, the variance of the prediction error of the four machine
learning-based models presents better stability than GIM and
IRI-2016. Overall, in the challenging space weather scenario,
machine learning-based methods outperform the existing GIM
and IRI-2016 models, and the GBDT models perform better than
the other models in terms of prediction accuracy and stability
under severe space weather conditions.
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