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Abstract

Various coronary artery segmentation methods have
been proposed and most of them are based on shortest path
computation given one or two end points on the artery. The
major variation of the shortest path based approaches is
in the different vesselness measurements used for the path
cost. An empirically designed measurement (e.g., the widely
used Hessian vesselness measurement) is by no means op-
timal in the use of image context information. In this paper,
a machine learning based vesselness measurement is pro-
posed by exploiting the rich domain specific knowledge em-
bedded in an expert-annotated dataset. For each voxel, we
extract a set of geometric and image features. The proba-
bilistic boosting tree (PBT) is then used to train a classifier,
which assigns a high score for voxels inside the artery and
a low score to those outside. The detection score can be
treated as a vesselness measurement in the computation of
the shortest path. To speed up the system, we perform clas-
sification only for voxels around the heart surface, which
is achieved by automatically segmenting the whole heart
from the 3D volume in a preprocessing step. Experiments
demonstrate that the proposed learning based vesselness
measurement outperforms the conventional Hessian vessel-
ness in both speed and accuracy.

1 Introduction
Cardiovascular diseases are the leading cause of death

in western countries and coronary artery disease (CAD) is
the most popular among them. Automatic extraction of the
coronary artery tree will facilitate physicians in diagnosing
CAD. However, coronary artery segmentation is a difficult
problem because of the irregularity of coronaries, imaging
artifacts, and variations of contrast, etc. Various coronary
artery segmentation methods have been proposed. Recently,
MICCAI conference held a competition for coronary artery

tracking (CAT) [1]. Most of the top performed approaches
are based on shortest path computation given one or two
end points on the artery. Since the shortest path computa-
tion is standard, the major variation is in the different ves-
selness measurements used for the path cost. The classical
method by Frangi et al. [2] assumes that a vessel has an ap-
proximately tubular structure. The eigenvalues of the Hes-
sian matrix at any point give us a measure of the tubularity
around that region. A similar approach has also been pro-
posed by Sato et al. [3]. Hessian vesselness measures were
used in a few submissions for the MICCAI CAT compe-
tition [4–6]. Detailed analysis of the 2D cross section of a
vessel provides another family of vesselness measurements.
For example, the medialness measurement [4, 7, 8] uses the
circularity assumption of the 2D cross section and edge re-
sponses obtained from multi-scale filters. Friman et al. [9]
presumes a model for ideal intensity distribution in a vessel
cross section. Intensity should be the greatest at the ves-
sel centerline and exponentially decrease toward the artery
wall. Their vesselness measures how well actual intensity
values fit the model. Alternatively, Zambal et al. [10] used
two concentric cylinders for vessel tracking. Intensity is
sampled along both the exterior and the interior cylinders.
The vesselness response depends on how well the exterior
intensity histogram can be separated from the interior. The
inherent disadvantage of the existing vesselness measure-
ments is that they introduce strong assumptions about the
structure of the coronary. It is clear, however, that coro-
nary arteries are very erratic. To make matters worse, some
CT volumes may lack sufficient contrast or contain artifacts.
Therefore, an empirically designed measurement is by no
means optimal in the use of image context information.

In this paper, a machine learning based vesselness mea-
surement is proposed by exploiting the rich domain spe-
cific knowledge embedded in an expert-annotated dataset.
We use machine learning techniques to train a classifier
that assigns a high score for voxels inside the artery and
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Figure 1. Coronary artery mask (which is
used to constrain the detection of coronary
artery voxels) is generated from the coronary
ostia and the whole heart surface. Two or-
thogonal views are shown here.

a low score to those outside. The classification score can
be treated as a vesselness measurement in the computation
of the shortest path. Two kinds of features (geometric and
image features) are extracted to train the classifier. For ex-
ample, as a geometric feature, the position of a voxel in the
heart-oriented coordinate system (which is defined by three
landmarks, namely, the aortic valve center, the mitral valve
center, and the left ventricle endocardium apex) provides a
priori knowledge about how likely this voxel lies inside a
coronary artery. Normally, a coronary artery is a bright thin
structure when contrast agent is applied. Therefore, we also
extract a set of image features using the flexible framework
of steerable features [11]. To speed up the system, we per-
form classification only for voxels around the detected coro-
nary ostia and the heart surface, which is achieved by auto-
matically segmenting the whole heart from the 3D volume
in a preprocessing step [12]. By constraining the classifi-
cation, we can also reduce the false positives (a non-artery
voxel getting a high vesselness score). Experiments demon-
strate the accuracy and efficiency of the proposed approach,
compared to the widely used Hessian vesselness [2]. At the
same detection rate, it can reduce the false positive rate by
a half. It only requires approximately 3.5 seconds to pro-
cess a large volume (e.g., 512 × 512 × 200 voxels), which
is significantly faster than the Hessian vesselness.

2 Learning-Based Vesselness Measurement
In this section, we present our learning-based vesselness

measurement. The main goal is to train a classifier that as-
signs a high score to voxels inside the coronary and a low
score to those outside.

2.1 Coronary Artery Mask
Normally, a cardiac CT volume has a high resolution

(less than 0.5 mm inside a slice). It often contains approxi-
mately 512×512×200 voxels. As a consequence, it is very
time consuming to test every voxel using the classifier. Fur-
thermore, there is a strong constraint on the distribution of

the coronary arteries. Starting from the coronary ostia, the
arteries emerge quickly to the heart surface. By constrain-
ing the voxel classification to a region with high occurrence
probability of the coronary arteries, we can significantly re-
duce the computation time and effectively reduce the false
positive rate.

In the preprocessing step of our system, we automati-
cally segment the whole heart from the 3D volume [12] and
detect the two coronary ostia [13], too. Our preprocessing
step is very fast and takes about 1.5 seconds to finish both
tasks. Given the heart surface mesh, we expand it by 5 mm
and shrink it by 10 mm to generate a coronary mask. The
arteries go deep into the heart to connect to the coronary
ostia, they are not close to the heart surface around that re-
gion. We add a band of ±10 mm around the coronary ostia
to the mask. The band widths are empirically tuned on a
few datasets to make sure all coronary arteries are within
the mask. Since we only care about the arteries around the
ventricles, we can cut the part above the detected coronary
ostia (above of the ostia band). An example of the coronary
mask is shown in Fig. 1.

2.2 Vesselness Classifier Training

We collected 54 expert-annotated volumes. Among
them, 40 were randomly selected for training and the re-
maining 14 were reserved for testing. The method takes
advantage of the precision of the annotations in the data
set. For every volume, the whole coronary tree is annotated.
Each annotation of a coronary branch consists of densely
placed cross sections of the vessel. The coronary lumen on
each cross section is delineated with a polygon. All voxels
inside the labeled coronary arteries are regarded as positive
training samples. The negative samples are those voxels
within the coronary artery mask, but with a distance of at
least 5 mm away from the artery. We randomly sample five
million negative samples for training.

For each sample, we extract a set of features for the clas-
sification purpose. Two groups of features (namely, geo-
metric and image features) are extracted. The geometric
relation of the coronary arteries and the heart chambers are
well constrained, which is helpful for automatic detection.
However, the pose of the heart inside a volume varies a
lot. We need to project the sample position into the heart-
oriented coordinate system. Our heart coordinate system is
defined by three landmarks (namely, the aortic valve center,
the mitral valve center, and the left ventricle endocardium
apex). As shown in Fig. 2, the z axis is defined as the direc-
tion pointing from the aortic valve center to the left ventricle
apex. The x axis is defined as the vector perpendicular to
the z axis and lies inside the plane formed by three land-
marks. The y axis is the cross product of the z and x axes.
In the preprocessing step, we need to segment the whole
heart surface from the CT volume, which is composed with
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Figure 2. Heart coordinate system defined by
the aortic valve center, the mitral valve cen-
ter, and the left ventricle apex.

two steps [12]. In the first step, we estimate the pose of
the heart. After that, a mean shape is aligned with the es-
timated pose, following by non-rigid boundary refinement.
We use the above heart coordinate system to define the pose
of the heart. Therefore, the estimate of the heart coordi-
nate system is a by-product of heart segmentation, without
demanding any extra computation efforts. Suppose the po-
sition of voxel in the heart coordinate system is (X, Y, Z)
and the angles between vector (X, Y, Z) and the three axes
of the heart coordinate system are α, β, and θ, respectively.
The following seven geometric features are extracted: X ,
Y , Z,

√
X ×X + Y × Y + Z × Z, α, β, and θ.

We also extract a set of image features. Steerable fea-
tures are an efficient framework, which is capable of cap-
turing complicated image patterns [11]. Around a given po-
sition, we sample 5 × 5 × 5 points using the regular sam-
pling pattern of the steerable features. The distance between
neighboring sampling point is set to 3 mm. On each sam-
pling point, we extract 24 local features based on the image
intensity and gradient. To be specific, the following features
are extracted. Suppose a sampling point (x, y, z) has inten-
sity I and gradient g = (gx, gy, gz). The three axes of the
volume coordinate system are nx, ny , and nz . The angle
between the gradient g and the z axis is α = arccos(nz.g),
where nz.g means the inner product between two vectors nz

and g. The following 24 features are extracted: I ,
√

I , 3
√

I ,
I2, I3, log I , ‖g‖,

√
‖g‖, 3

√
‖g‖, ‖g‖2, ‖g‖3, log ‖g‖, α,√

α, 3
√

α, α2, α3, log α, gx, gy , gz , nx.g, ny.g, nz.g. In to-
tal, we have 24 local features for each sampling point. The
first six features are based on intensity and the remaining 18
features are transformations of gradients. Feature transfor-
mation, a technique often used in pattern classification, is a
process through which a new set of features is created. We
use it to enhance the feature set by adding a few transfor-
mations of an individual feature. In total, we get 125 × 24
image features.

Figure 3. Two examples of the detected coro-
nary arteries.

Figure 4. Detection rate vs. false positive rate
of the learning based vesselness and Hes-
sian vesselness.

Probabilistic boosting tree (PBT) [14] is used to train a
classifier to distinguish voxels inside the coronary arteries
from those outside. The PBT classifier is equivalent to a
classification tree with an AdaBoost classifier at each node.
Cross validation has shown that a tree of level four achieves
good balance between speed and classification accuracy. In
order to speed up the classification, we want to use as few
weak classifiers as possible at the tree root node to reject
a significant number of negative samples. Therefore, easy
negative samples can be rejected quickly without the need to
compute too many features. The training performance goal
of the root node is set to achieve a detection rate no less
than 99% and a false positive rate no more than 50%. We
find an AdaBoost classifier with five features is enough to
achieve this accuracy level. Since the classification problem
is becoming harder and harder along the tree structure, we
gradually increase the number of weak classifiers toward
the tree leaves. To be specific, the following parameters are
used to train the PBT: 5, 10, 20, and 30 for levels 1 to 4,
respectively.

2.3 Vesselness Evaluation

Vesselness evaluation phase consists of two steps. First,
the the whole heart is segmented from the volume [12] and
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the coronary ostia are detected [13]. A coronary artery mask
is generated, as described in Section 2.1. Then, voxels in-
side the mask are evaluated by the PBT classifier. The score
output by the PBT classifier (in the range of [0, 1]) is treated
as a vesselness measurement. Fig. 3 shows two examples of
the detected coronary arteries (using 0.7 as a threshold).

In Fig. 4, we quantitatively compare the proposed learn-
ing based vesselness and Hessian vesselness on the test set
(14 volumes). The curves show the detection rate vs. false
positive rate. Please note that the coronary mask is also
applied to the Hessian vesselness to exclude non-artery tis-
sues. Otherwise, the false positive rate of the Hessian ves-
selness is significantly higher since the pulmonary arteries
in the lung are enhanced by the filter too. The Hessian ves-
selness cannot achieve a high detection rate (no higher than
88%). At the same detection rate, our learning based ves-
selness can reduce the false positive rate by a half. Average
computation time for the voxel classification procedure is
about 3.5 seconds on a computer with 3.2 GHz CPU and 3
GB memory. This is also significantly faster than the Hes-
sian vesselness.

3 Conclusion
In this paper, we proposed a learning based vesseleness

measurement for coronary artery segmentation. Instead of
using an empirically designed vesseleness measurement,
we exploit the rich domain-specific knowledge embedded in
an expert-annotated dataset. For each voxel, we extract a set
of geometric and image features. The probabilistic boosting
tree (PBT) is used to train a classifier, which assigns a high
score for voxels inside the artery and a low score to those
outside. To improve the efficiency of the proposed method,
we constrain the detection to voxels inside a coronary artery
mask, which is generated based on the whole heart surface
and the detected coronary ostia. The system can be applied
as pre-filtering tool and a Dijkstra-like approach can be used
for extraction the whole coronary tree out of the detected
voxels.
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