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Abstract

Background: Early diagnosis of schizophrenia could improve the outcome of the illness. Unlike classical between-
group comparisons, machine learning can identify subtle disease patterns on a single subject level, which could
help realize the potential of MRI in establishing a psychiatric diagnosis. Machine learning has previously been
predominantly tested on gray-matter structural or functional MRI data. In this paper we used a machine learning
classifier to differentiate patients with a first episode of schizophrenia-spectrum disorder (FES) from healthy controls
using diffusion tensor imaging.

Methods: We applied linear support-vector machine (SVM) and traditional tract based spatial statistics between
group analyses to brain fractional anisotropy (FA) data from 77 FES and 77 age and sex matched healthy controls.
We also evaluated the effects of medication and symptoms on the SVM classification.

Results: The SVM distinguished between patients and controls with significant accuracy of 62.34% (p = 0.005).
Participants with FES showed widespread FA reductions relative to controls in a large cluster (N = 56,647 voxels,
corrected p = 0.002). The white matter regions, which contributed to the correct identification of participants with
FES, overlapped with the regions, which showed lower FA in patients relative to controls. There was no association
between the classification performance and medication or symptoms.

Conclusions: Our results provide a proof of concept that SVM might help differentiate FES patients early in the
course of illness from healthy controls using white-matter fractional anisotropy. As there was no effect of
medications or symptoms, the SVM classification seemed to be based on trait rather than state markers and
appeared to capture the lower FA in FES participants relative to controls.

Keywords: First-episode schizophrenia spectrum disorders, Diffusion tensor imaging, Support vector machines,
Magnetic resonance imaging
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Background

Neuroimaging has the unique ability to noninvasively in-

vestigate brain structure and function. Yet, the diagnos-

tic promise of brain imaging in psychiatry has not been

fully realized. Machine learning techniques, which allow

for identification of subtle disease patterns on a single

subject level, could help realize the diagnostic potential

of MRI in psychiatry.

Schizophrenia significantly contributes to the global

burden of the diseases [1] and is among the most costly

disorders [2]. It is frequently associated with brain im-

aging alterations, already early in the course of illness.

Early diagnosis of schizophrenia may improve prognosis

and treatment outcomes [3–5]. Thus, studies applying

machine learning to brain imaging data from partici-

pants with first episode of schizophrenia-spectrum disor-

ders (FES) are needed.

Previous brain imaging applications of machine learn-

ing in schizophrenia have mostly used gray-matter struc-

tural or functional MRI data. These studies yielded

promising results [6]. Other modalities, such as whole

brain diffusion tensor imaging (DTI) have not yet gained

comparable attention [7]. Fractional anisotropy (FA) is a

widely used DTI measure of diffusivity, which has gained

popularity in clinical applications, such as differentiating

between ischemic and haemorrhagic stroke [8]. In

psychiatry, the FA is used to describe the properties of

tissue microstructure [9]. Participants with FES show al-

terations in microstructural properties of diffuse white

matter tracts [10–12].

The previously documented FA differences between

FES and control participants, may suggest that FA might

be of diagnostic use on an individual level. Yet, there is

only a single previous DTI machine learning study [7]

in19 pairs of FES and control participants, which re-

ported a 65.79% classification accuracy. More and larger

studies are needed to investigate the diagnostic potential

of DTI in early stages of schizophrenia [13]. Here, we in-

vestigated whether machine learning applied to brain

DTI data would differentiate between 77 FES and 77

control participants.

Materials and methods

Subjects

This project was a part of ongoing Early Stages of

Schizophrenia (ESO) study [10]. The patients with FES

were recruited during their first psychiatric

hospitalization according to the following inclusion cri-

teria: 1) the diagnosis of schizophrenia, or acute and

transient psychotic disorders according to the ICD-10,

2) less than 24 months of untreated psychosis. We ex-

cluded patients with psychotic mood disorders, includ-

ing schizoaffective disorder, bipolar disorder, and

unipolar depression with psychotic symptoms. The

diagnosis was made by a board certified psychiatrist

using the Mini-International Neuropsychiatric Interview

[14]. We were primarily interested in individuals at the

early stages of illness, in order to limit the effects of

medications, co- morbid conditions and previous psych-

otic episodes. The patients who did not meet the dur-

ation criteria for schizophrenia received the working

diagnosis of acute and transient psychotic disorders,

which is compatible with the brief psychotic disorder ac-

cording to DSM-IV.

We acquired the MRI scans during the hospitalization,

as soon as participants were able to understand and

undergo the study procedures. We rated the symptoms

at the time of scanning using the Positive and Negative

Syndrome Scale (PANSS) [15] and collected information

about current treatment. Most patients took medication

at the time of scanning, including olanzapine N = 29, ris-

peridone N = 24, quetiapine N = 5, amisulprid N = 3, ari-

piprazole N = 4, clozapine N = 2, ziprasidone N = 1,

haloperidol N = 3, flupenthixol N = 1, medication naive

N = 1, n/a N = 4.

We recruited the healthy control subjects (HC)

through an advertisement from a similar sociodemo-

graphic background. We matched the healthy and FES

participants individually by age and sex. We applied the

following exclusion criteria for the healthy controls: 1) a

personal lifetime history of any psychiatric disorder

established by the Mini International Neuropsychiatric

Interview, 2) family history of a psychiatric illness in first

or second degree relatives.

Exclusion criteria common to both groups included:

Any current neurological disorders, a lifetime history of

seizures, or a head injury, stroke or intracranial haemor-

rhage, mental retardation, history of substance depend-

ence, and any contraindication of MRI scanning.

Image acquisition and quality control

We performed the MRI scanning in the Institute of

Clinical and Experimental Medicine in Prague on a 3 T

Siemens scanner with a Spin-Echo EPI sequence with 2

acquisitions in 30 diffusion gradient directions, TR =

8300 ms, TE = 84 ms, 2 × 2 × 2 mm3 voxel size, b-value

900 s/mm2. DWI data were first visually inspected to

check their quality. Subjects with excessive image dis-

tortion due to B0 inhomogeneity were excluded. Indi-

vidual DWI volumes of each subject were inspected

and when containing artifacts (k-space spikes, signal

void due to movement) were excluded from further

processing. If the number of volumes with artifacts

per subject was greater than 11, the subject was ex-

cluded completely. There was no difference in the

mean dislocation parameter between the two groups

(t(152) = 0.711, p = 0.727).
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Data preprocessing

As described in our previous study [10], we preprocessed

the DWI data using FSL tools [16]. Movement and eddy

current distortions were corrected by affine registration

using FLIRT. The mean dislocation estimated by FLIRT

was checked and one subject with excessive value (6.

4 mm) was replaced. Maximal value of mean dislocation

per subject included in the study was 3.2 mm. The skull-

strip was done by BET. The eigenvalues, eigenvectors

and subsequent fractional anisotropy, axial and radial

diffusivity were estimated by DTIFIT.

To foster compatibility with other studies, we chose

an established method of FA preprocessing – the Tract

Based Spatial Statistics, implemented in the FMRIB’s

Software Library (FSL) [7, 17–22]. We used the standard

protocol, as described in the TBSS manual. All of the

subjects’ FA data were registered to a pre-defined target

FMRIB58_FA using nonlinear registration FNIRT [23].

Next, we created a common skeleton representing all

major white matter tracts. As it is necessary to maintain

the train/test data separation in machine learning ana-

lyses, we did not use the study-specific skeleton option.

Instead, we used the standard skeleton derived from the

FMRIB58_FA template, as recommended by the manual.

The white-matter skeleton was thresholded at recom-

mended 0.2 FA threshold. Finally, all FA data were pro-

jected onto this skeleton. As a result, each subject was

represented by a single 3D skeletonized FA image.

Machine learning analyses

We examined the diagnostic utility of the most standard

and widely used ML paradigm, the support vector ma-

chines (SVM). Specifically, we applied a linear SVM im-

plemented in the PRONTO toolbox v 2.0 to pre-

processed skeletonized FA images from 77 FES patients

and 77 controls. A common mask was applied to ex-

clude voxels, which were not present in all subjects [24].

The common mask contained 129,154 voxels.

A linear SVM is suitable for analysing high dimen-

sional data such as whole-brain scans while keeping the

computational pipeline relatively simple with low com-

putational requirements [25, 26]. This makes it superior

for potential clinical setting over complex machine

learning pipelines. We used a linear kernel SVM, which

is less prone to overfitting than non-linear SVMs. Simi-

lar to other studies, we used the default parameter C = 1

[26–28]. The C parameter controls the trade-off between

having zero training errors and allowing misclassifica-

tions. The performance of the SVM does not change for

a large range of C values and only degrades with very

small values of C [25]. Modification of the C may be

more relevant when the dimensionality of the data is

smaller than the sample size [29]. Although a sample-

dependent optimization of the C parameter might

improve the performance of the model, such approach

would contradict our research intentions. Our goal was

to reduce the methodological heterogeneity and use a

simple, ‘out of the box’ approach potentially applicable in

clinical setting [26]. Optimization of the C parameter

would introduce methodological heterogeneity, would

require nested-cross validation, would make it more dif-

ficult to compare the results to other studies and there-

fore would reduce the potential for a clinical use.

Therefore in keeping with other studies and our objec-

tives, we decided to use C = 1.

We used one-to-one matching with regards to age and

sex, the most relevant demographic covariates which may

affect the FA. The classification itself was performed in a

leave-two-out manner. On each run, one patient and one

control of the same age and sex were assigned to a testing

set. Therefore the classification itself was always per-

formed on participants, who did not differ in relevant

demographic variables, but only differed in the presence

or absence of psychiatric diagnosis. The resulting cross-

validation procedure comprised 77 folds.

We calculated the classification accuracy as the total

number of correctly classified test subjects divided by

the total number of subjects (154). We tested the statis-

tical significance of the resulting classification accuracy

on 1000 randomly permuted datasets, in which all sub-

jects were randomly assigned to a group. The p-value of

the accuracies was calculated using a resulting null-

hypothesis distribution, i.e. as the proportion of the per-

mutations that yielded a greater accuracy than the accur-

acy found for the classification models.

Effects of medication and symptoms

We applied 3 different approaches to assess the effect of

medication and symptoms. We used an independent-

sample t-test to compare the correctly and incorrectly

classified subjects. We used the Platt scaling to convert

the SVM prediction function values to posterior probabil-

ity estimates which provide optimal probabilistic inter-

pretation of the SVM output [30] and investigated the

association between these estimates and clinical variables.

Finally, in order to explore the effects of clinical variables

on the FA data itself, we used another machine learning

approach – the kernel ridge regression (KR) implemented

in PRONTO Toolbox v. 2.0 [24, 31]. KR utilizes multivari-

ate information to predict a continuous variable. We

tested whether KR could predict chlorpromazine dose and

symptom levels, from the multivariate patterns of FA data.

Discriminating maps (SVM weight vector)

A weight vector and an offset describe the SVM decision

hyperplane. The weight vector corresponds to the most

discriminating direction between the groups and is the

spatial representation of the decision boundary. We
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plotted the weight map as a brain image in order to il-

lustrate the relative contribution of the brain regions to

differentiation of FES participants from controls.

TBSS between groups comparisons

In order to indirectly compare the ability of SVM to

make prediction about the individual subjects with the

actual between-group differences in FA, we compared

the skeletonized FA data between FES and HC. This was

performed using the Randomise tool [32, 33], with the

threshold free cluster enhancement (TFCE) for the

family-wise error (FWE) correction at p < 0.05 [34]. The

regions with significant differences in FA were labelled

according to JHU ICBM-DTI-81 White Matter Labels

and Tractography Atlas provided within the FSLView

package.

Results

Demographic data

Our sample consisted of 77 FES patients and 77 age-

matched healthy controls without a personal or a family

history of psychiatric disorder. For a detailed description

of the samples please see Table 1.

Classification of patients and controls

The SVM classification yielded statistically significant ac-

curacy of 62.34% (p = 0.005) and specificity of 64.94% (p

= 0.005). The sensitivity of 59.74% did not reach statis-

tical significance (p = 0.053). In other words, 46 out of

77 patients were correctly classified as cases, whereas 50

out of 77 healthy controls were correctly classified as

controls. The anatomical regions with the highest contri-

bution to the differentiation of FES from controls were

diffusely spread along the major white matter tracts, see

Fig. 1a.

The correctly and incorrectly classified patients did

not differ in PANSS score, subscale scores or medication

dose on the day of scanning (PANSS Total t(75) = 1.39,

p = 0.17; PANSS Positive, t(75) = 0.96, p = 0.34; PANSS

Negative, t(75) = 1.52, p = 0.07; PANSS General, t(75) =

1.08, p = 0.14; CPZ equivalent t(74) = 0.8, p = 0.43).

There was no association between the probabilistic esti-

mates of the prediction function value and medication

or symptoms CPZ r(74) = 0.09, p = 0.42; PANSS Total

r(75) = 0.13, p = 0.25; PANSS Positive r(75) = 0.072, p = 0.

54; PANSS Negative r(75) = 0.13, p = 0.25; PANSS Gen-

eral r(75) = 0.12, p = 0.29). Kernel ridge regression failed

to predict either of the clinical variables from the FA

(CPZ r(74) = 0.02, p = 0.29; PANSS Total r(75) = − 0.15,

p = 0.7; PANSS Positive r(75) = − 0.34, p = 0.97, PANSS

Negative r(75) = 0.03, p = 0.25; PANSS General r(75) = −

0.15, p = 0.69).

Statistical analyses of FA differences

Participants with FES showed widespread FA reductions

relative to controls (Fig. 1b). These were contained in a

single cluster localized to bilateral tracts of anterior and

posterior limbs of the internal capsule, inferior and su-

perior longitudinal fasciculus, inferior fronto-occipital

fasciculus, hippocampus, anterior, posterior and superior

corona radiata, corpus calossum, cerebral peduncles, in-

ferior, middle cerebellar peduncles and medial lemnisci

(size = 56,647 voxels, maximum differences at x = 78, y =

84, z = 32, corrected p = 0.002). We identified no areas

where FA was significantly greater in patients than con-

trols. The localization of the between-group differences

in FA overlapped with the regions, which contributed to

differentiation of FES from control participants on the

individual level, see Fig. 1a and b.

Discussion

Machine learning applied to the whole brain FA maps

differentiated patients with FES and healthy controls

with above chance accuracy of 62.34% (p = 0.005). The

Table 1 Demographic and clinical data of the healthy controls and the FES participants in our sample

Controls (n = 77) FES participants (n = 77) Note

Sex – female N (%) 34 (44%) 34 (44%) NS

Age, mean (S.D.) 28.32 (7.02) 28.51 (7.03) t = 0.16; p = 0.87

Diagnosis (Schizophrenia/Acute polymorphic
psychotic disorder) (%)

n/a 46 (59.7%) / 31 (40.3%) n/a

Median duration of illness, months (SD) n/a 3 (7.1)a n/a

Drug dose upon MRI – median chlorpromazine
equivalent (SD)

n/a 337 (234.8)a n/a

PANSS positive mean (SD) n/a 13.9 (4.9) n/a

PANSS negative mean (SD) n/a 15.7 (6.1) n/a

PANSS general mean (SD) n/a 32.8 (8.5) n/a

PANSS total mean (SD) n/a 62.4 (16.7) n/a

S.D. Standard Deviation, MRI Magnetic Resonance Imaging, PANSS Positive and Negative Syndrome Scale
aData from 1 patient missing
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classification was mostly based on voxels diffusely spread

over the major white-matter tracts, rather than localized

into specific subregions, see Fig. 1a. The white matter re-

gions, which contributed to the correct identification of

participants with FES, overlapped with the regions show-

ing lower FA in patients than controls (Fig. 1b).

Although the accuracy was significantly above chance

level, it was relatively low. This could be due to MRI

modality, i.e. the use of DTI, or the clinical characteris-

tics, i.e. FES, who may show a lower extent of abnormal-

ities than participants with chronic, long standing

illness. We obtained comparable prediction accuracy as

the previous study in FES using FA (65.79%) [7]. Previ-

ous studies showed greater accuracies between 80 and

90.62% for differentiating participants with chronic

schizophrenia from controls [35, 36]. A previous metaa-

nalysis [6] reported accuracies of 80.3% for 38 MRI and/

or rsfMRI studies combined. Recent studies in patients

with chronic schizophrenia using MRI or fMRI reported

prediction accuracies from 85 to 93% [33–35]. Overall,

there seems to be a general trend towards higher predic-

tion accuracies in chronic stages of disease, which might

reflect the higher prevalence of structural/functional

changes due to the disease progression. Although direct

comparison is not possible due to methodological het-

erogeneity, the available studies show that relative to

other modalities, DTI gives lower accuracies in both FES

and chronic schizophrenia.

Interestingly, we found marked and diffuse differences

in FA between FES and controls when using standard

methods of between group comparisons. The discrep-

ancy between the large effect size and significance of

between-group differences and a relatively low predic-

tion accuracy obtained by machine learning was surpris-

ing. It may be related to the type of ML analyses, feature

selection, SVM settings, which may affect the sensitivity

of the analyses. As our intentions were clinical, we used

a simple, standardized approach potentially suitable for

clinical application. Having to fine tune the analyses to

specific sample would complicate clinical utility. The

“out of the box” approach appears to work well for other

MRI modalities, such as MRI or fMRI [4, 26]. In our

previous study using resting state fMRI data, SVM ana-

lyses with default settings were more sensitive than be-

tween group comparisons [4]. Perhaps DTI analyses

require different default settings or different machine

learning algorithms, such as random forest or discrimin-

ant analyses. Fine-tuning the SVM models to DTI or

finding a ML algorithm better suited for DTI analyses, is

beyond the scope of this article, but would be a rich

topic for future methodological research.

We replicated previous findings showing that white

matter alterations in FES are diffuse and not localized

[37, 38]. In keeping with this, the machine learning al-

gorithm used diffuse patterns of white matter changes

to identify FES participants. In all instances lower FA

a

b

Fig. 1 Relative contributions of white-matter regions to the SVM classification and localization of between group differences in FA. a SVM weight
maps for classification of FES and controls. Maximum weights were diffusely distributed across the main white-matter tracts. b Significant
FA differences between FES and controls (patients<controls test) (p < 0.05 FWE corrected, MNI template). The between group differences
in FA overlapped with regions which contributed to classification of FES and control participants on individual level
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values were associated with the diagnosis of FES. Lower

FA may indicate that white matter tracts are less orga-

nized, have lower density, lower degree of myelination,

more crossing fibers or that the membranes are more

permeable [9]. Overall, these findings support the grow-

ing evidence suggesting disruption of white matter

microstructure in FES, which could possibly be used

diagnostically.

This study has several limitations. The participants

were receiving medications and experiencing moderate

symptoms at the time of scanning. Previous studies sug-

gested that there is no association between antipsychotic

treatment or symptoms and reduced FA in FES [39].

This is in fact one of the advantages of using DTI rela-

tive to fMRI. In keeping with this, we found no effect of

medications or symptoms on the classification accuracy.

A common limitation of machine learning studies is

overfitting. In order to minimize its risk we used the lin-

ear SVM. The relatively low classification accuracy ar-

gues against overfitting. SVMs are among the most used

ML classifiers in psychiatric neuroimaging [40]. By using

SVM we aimed to reduce the methodological heterogen-

eity and make our analyses better comparable to other

studies. For the same reason we used the linear SVM

with default parameters. Our results show, that even a

relatively simple classifier with linear decision boundary

could accurately differentiate patients from controls.

With regards to limitations, in a clinical inpatient set-

ting, where all patients present with marked symptoms,

it is more relevant to differentiate between psychiatric

diagnoses than between patients and controls. We did

not recruit a comparison group of participants with for

example first episode of mania. Only few studies have

addressed differential diagnosis between major classes of

psychosis [41, 42]. More future studies should focus on

this important and clinically relevant issue, specifically

among participants early in the course of illness.

Conclusions

In summary, this is a proof of concept that machine

learning applied to the whole brain FA values may help

differentiate FES from healthy controls on an individual

level, even when using a relatively simple machine learn-

ing classifier. As there was no effect of medications or

symptoms, the SVM classification is likely based on trait

rather than state markers. Given the marked differences

in FA between FES and controls obtained by the TBSS

analyses the classification accuracy was relatively low.

Due to this discrepancy, it is possible that a different ML

algorithm might improve the classification accuracy.
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