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Machine learning-based approaches are now able to examine functional magnetic

resonance imaging data in a multivariate manner and extract features predictive of group

membership. We applied support vector machine (SVM)-based classification to resting

state functional connectivity (rsFC) data from nicotine-dependent smokers and healthy

controls to identify brain-based features predictive of nicotine dependence. By employing

a network-centered approach, we observed that within-network functional connectivity

measures offered maximal information for predicting smoking status, as opposed to

between-network connectivity, or the representativeness of each individual node with

respect to its parent network. Further, our analysis suggests that connectivity measures

within the executive control and frontoparietal networks are particularly informative in

predicting smoking status. Our findings suggest that machine learning-based approaches

to classifying rsFC data offer a valuable alternative technique to understanding large-scale

differences in addiction-related neurobiology.
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INTRODUCTION

Conventional univariate methods of fMRI analysis have been

used to identify differences in neural processing between vari-

ous diseased populations and healthy controls over a plethora of

tasks. However, not all such group differences are guaranteed to

be predictive; there may be significant overlap between the two

group distributions of the pertinent metric. Further, traditional

univariate approaches to fMRI analysis by definition overlook

multivariate patterns in the data. Machine learning offers a variety

of tools to address the above limitations. Support vector machine

(SVM)-based algorithms (Vapnik, 2000), for example, have been

used successfully to identify neural patterns of activation (Haxby,

2012) as well as for group-level differences (Craddock et al.,

2009).

Attempts to apply machine learning-based approaches to clas-

sify individuals based on various disease states has gained sig-

nificant traction for screening and diagnosis (Vemuri et al.,

2008; Stonnington et al., 2010), and monitoring disease trajec-

tory (Hobbs et al., 2010). Applications of machine learning to this

end include classification of schizophrenia from task activation

maps (Demirci et al., 2008), using structural images to classify

individuals as addicted or not (Zhang et al., 2005), and using

task activation maps to classify schizophrenia, Alzheimer’s, and

mild traumatic brain injury (Ford et al., 2003). Depending on the

specific method involved, and the neurobiological disease in ques-

tion, such attempts have been met with moderate to high success,

i.e., ranging from 60 to 100% classification accuracy (Orrù et al.,

2012).

Addiction in particular stands to benefit from the applica-

tion of machine learning-based approaches. Multiple gene ×

environment interactions go into determining susceptibility to

addiction at various stages—initiation of drug use, transition to

repeated drug use and then on to compulsive use (Kreek et al.,

2005). Aside from this, the drug of abuse itself interacts with

neural systems to modulate drug-related circuitry and resulting

cognition (Volkow et al., 2009). Not surprisingly, multiple brain

networks have been implicated in this complex disease, and, to

date, very few neural biomarkers have been identified for predict-

ing vulnerability to addiction and treatment outcome (Pariyadath

et al., 2013). Importantly, with rare exceptions (Zhang et al.,

2005), the search for such biomarkers through neuroimaging has

thus far been restricted to univariate approaches. Through a mul-

tivariate approach, we can begin to identify complex interactions

within and between brain networks, and some day explore par-

allel contributions from genetic and environmental sources to

neural function.

When comparing groups, differences in task performance can

sometimes confound the interpretation of differences in neural

activation patterns. Of late, resting state functional connectiv-

ity (rsFC) analysis has proven immensely valuable for extract-

ing differences in neural function in the absence of an explicit

task. Functional connectivity analyses indicate that there are sig-

nificant differences in neural architecture and functioning in

substance dependent individuals (Sutherland et al., 2012). This

analysis approach has been combined with machine learning

tools to extract a neural metric for maturity (Dosenbach et al.,

2010) within a healthy cohort. Of relevance here, SVM-based

approaches have been shown to be successful in classifying major

depressive disorder (Craddock et al., 2009) and schizophrenia

(Shen et al., 2010) from rsFC data. To date, however, rsFC

data has not been explored using machine learning in addicted

individuals.
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In this study, we sought to identify neural features that may

explain addiction in a multivariate fashion—those that speak to

addiction when examined in tandem as opposed to in isolation—

and that are predictive of the addicted state. To this end, we

applied a linear SVM-based method to rsFC data from nicotine-

dependent individuals and controls. Linear SVM algorithms have

been shown to be an effective approach for large-dimensional

problems, especially those where the number of features exceeds

the number of samples (Hsu et al., 2003). We employed a

network-centered approach, capitalizing on a previous attempt

at reducing neural activity to resting state networks (Smith

et al., 2009). Recent research suggests that cognition, and psy-

chopathologies thereof, may be better understood as involving

distributed brain areas that function as part of large-scale net-

works, as opposed to a single, focal brain region (Bressler and

Menon, 2010). Other complex diseases, such as Alzheimer’s,

major depression, schizophrenia, and autism have benefited from

parcellating the brain in terms of large-scale functional networks

(Bressler and Menon, 2010). Further, this approach permit-

ted us to explore differences in functional connectivity without

constraint only to regions that have previously been identified

through univariate approaches to be relevant to addiction. We

compare three different network-centered measures to assess

the—(1) the extent to which each node within a network is rep-

resentative of the parent network, (2) functional connectivity

between different nodes within a network, and (3) functional

connectivity between different networks.

MATERIALS AND METHODS

PARTICIPANTS

Participants included 21 smokers (9 female) and 21 non-

smoking controls (11 female), whose details are shown in

Table 1. All smokers scored at least 6 on the Fagerstrom Test

for Nicotine Dependence (FTND). Individuals with a history of

pre-morbid neurological disease, major medical, or axis I psy-

chiatric diagnosis other than substance use disorder, assessed by

the computer-administered Structured Clinical Interview (SCID)

for the Diagnostic and Statistical Manual of Mental Disorders IV

Table 1 | Demographic characteristics of study population.

Smokers Controls P-value

Number 21 21

Age (mean ± SD) 38.19 ± 9.79 39.90 ± 10.82 0.60a

Gender

Male 12 10 0.38b

Female 9 11

Race/Ethnicity

White 11 7 0.33b

Black 8 12

Hispanic 1 1

Unknown 1 1

FTND 6.86 ± 1.04 –

aP-values were obtained by a two-sample two-tailed t-test.

bP-values were obtained by a two-tailed chi-squared test.

(DSM-IV) screening version and clinician interview, or who had

current substance dependence other than nicotine or cannabis,

based on DSM IV criteria, were excluded from the study. Smokers

were allowed to smoke ad libitum prior to the scan session.

Participants gave written informed consent to this study approved

by the Institutional Review Board at the National Institute on

Drug Abuse-Intramural Research Program.

fMRI ACQUISITION AND PRE-PROCESSING

During resting state scans, participants were instructed to rest and

keep their eyes open but not to think about anything in particular.

Functional MRI data were collected on a 3-T Siemens Allegra MR

scanner (Siemens, Erlangen, Germany) equipped with a quadra-

ture volume head coil. Thirty-nine slices were acquired positioned

at 30◦ to the AC-PC line and were prescribed to cover the whole

brain. The data were acquired using a single-shot gradient-echo

echo-planar imaging (EPI) sequence with repetition time (TR)

of 2 s, echo time (TE) of 27 ms, flip angle (FA) of 78◦, field

of view (FOV) of 220 × 220 mm, and an in-plane resolution

of 3.44 × 3.44 mm with thickness 3.5 mm. For registration pur-

pose, high-resolution anatomical images were acquired using a

3D magnetization prepared rapid gradient-echo (MPRAGE) T1-

weighted sequence with TR of 2.5 s, TE of 4.38 ms, FA of 7◦, and

a voxel size of 1 × 1 × 1 mm.

Data processing and analyses were conducted in AFNI (Cox,

1996). Preprocessing included slice-timing and motion correc-

tion. Data were inspected for motion using censor.py (http://

brainimaging.waisman.wisc.edu/∼perlman/code/censor.py), em-

ploying a censoring threshold of 0.3 mm for translation and

0.3◦ for rotation between consecutive TRs. Data were then

spatially normalized to the standard Talairach space. Spatial

smoothing to a 6 mm FWHM Gaussian kernel was performed

to increase spatial signal to noise ratio. Global fluctuations,

originating presumably from such systemic effects as respiration

and cardiac-induced pulsations, were accounted for individually

by orthogonalizing the time-courses with respect to the first three

principal components from the white matter voxel time course

ensemble and the first three principal components from the time

course ensemble of the cerebrospinal fluid (CSF) voxels (Behzadi

et al., 2007). In addition to these physiological regressors, par-

ticipants’ time courses were also orthogonalized with respect to

the six motion parameters. Time courses were band-pass filtered

(0.01–0.15 Hz) to retain only the low frequency components

in the signal. Although it is common to use a more narrow

frequency band (e.g., cutoff frequency = 0.08 Hz), many studies

do employ a higher cutoff frequency, such as 0.15 Hz, and in some

rsFC analysis methods, a broader frequency band might even

be preferable (Wu et al., 2008; Braun et al., 2012). We therefore

chose to employ a broad frequency range for our network-based

analysis. To address any concerns that findings here may be

driven by physiological noise (stemming from the use of this

frequency range), we tested the classifier after band-pass filtering

the signal with a lower cutoff frequency (0.1 Hz). We did not

observe any significant difference in classifier performance.

Recently, there has been some concern regarding motion-

related artifacts in rsFC computation, specifically manifesting as

decreases in estimated long-distance connectivity as a result of
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increased head motion (Power et al., 2012). To ensure that our

results were not artifacts induced by head motion, we were careful

to remove volumes with head motion above a stringent thresh-

old during the pre-processing stage (0.3 mm for translation and

0.3◦ for rotation between consecutive TRs), and time courses were

orthogonalized with respect to the participant’s motion parame-

ters. Additionally, we computed the root mean squared (RMS)

head position change or for smokers and controls, and also the

final number of volumes that were included in the computation

of correlation coefficients.

RSN NODE SELECTION

Sixteen resting state networks (RSNs) were selected from a 20-

component ICA decomposition of task fMRI data from the

BrainMap database and resting data from 36 participants carried

out in a previous study (Smith et al., 2009). Four RSNs were dis-

carded from the original 20 as they had previously been identified

as artifactual. Of the 16 spatial maps, four were not categorized in

the original study. Three of them were speculated to overlap with

multiple other RSNs—specifically sensorimotor, frontoparietal,

and executive control networks (ECNs); we refer to these three

here as Higher Order Networks or HONs (Figure 1). The fourth

one comprises the cuneus and surrounding occipital regions, and

is categorized here as Visual-4 (Figure 1). The 16 spatial maps

were reduced to 56 node regions by thresholding at Z = 6 with

a minimum cluster size restriction of 50 (1 × 1 × 1 mm3) voxels

(Figure 1; Table 2) using the AFNI program 3dROIMaker (Taylor

and Saad, 2013). This level of thresholding was chosen so as to

qualitatively capture the networks observed in Smith et al. (2009),

as these networks consistently appear in the literature and are

temporally stable (Damoiseaux et al., 2006; Chen et al., 2008).

Three separate classifiers were built that each focused on a

separate functional connectivity-based feature.

REPRESENTATIVENESS OF RSN (REP)

The dual regression method (Zuo et al., 2010) was used, with the

thresholded RSN map as a template, to extract participant-level

component maps. The participant-level component maps were

then standardized into Z-score maps. As a measure of RSN rep-

resentativeness, the average Z-score was calculated for each node

region in the 16 RSNs, for each participant. This resulted in 56

REP features.

BETWEEN-RSN CONNECTIVITY (B-RSN)

To obtain a measure of functional connectivity between networks,

each group-ICA map was regressed against each participant’s 4D

dataset to extract the time-course corresponding to that com-

ponent. Functional connectivity was computed as the temporal

correlation between each pair of RSN time-courses. We employed

this procedure, as opposed to calculating the correlation between

every pair of nodes within any two RSNs and using the aver-

age correlation, to extract the time-course corresponding to the

network as a whole. In this way, we are able to avoid extract-

ing correlations that may arise from components in a node’s

FIGURE 1 | The 16 resting state networks and their corresponding node

regions. Resting state networks were selected and thresholded from a

20-component ICA decomposition of task fMRI data from the BrainMap

database and resting data from 36 participants carried out in a previous study

(Smith et al., 2009) (DMN, Default Mode Network; ECN, Executive Control

Network; HON, Higher Order Network).
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Table 2 | The 16 RSNs and their corresponding node regions.

Node # RSN X Y Z Volume

(# of voxels)

SENSORIMOTOR

1 Right postcentral gyrus 41 −27 44.0 7312

2 Bilateral paracentral gyrus 1.5 −13.9 43.5 4016

3 Left postcentral gyrus −38.6 −28.2 44.3 3752

AUDITORY

4 Left superior temporal gyrus −56.3 −2.3 −0.3 144

5 Right superior temporal gyrus 59.7 −3.4 −0.2 120

6 Left superior temporal gyrus −60.8 −23.2 10.6 72

THALAMUS/CAUDATE

7 Thalamus/Caudate 3.4 −24.9 −8.4 29,552

8 Left culmen −15.7 −26.3 −29.3 208

EXECUTIVE CONTROL NETWORK

9 Right anterior cingulate 1.7 33.3 13.3 18920

10 Left superior frontal gyrus −26.4 44 19.2 5960

11 Right middle frontal gyrus 30.1 45.6 18.6 4696

12 Right caudate 15.4 16.3 0.8 728

13 Left caudate −14.6 16 0.9 384

14 Bilateral thalamus 3.9 −11.4 4.3 1888

DEFAULT MODE NETWORK

15 Bilateral posterior cingulate 1.2 −57 21.6 25376

16 Left middle temporal gyrus −44.2 −64.7 24.6 3432

17 Right superior temporal gyrus 51.4 −59.1 19.7 2472

18 Bilateral anterior cingulate 2 50.7 −0.9 1984

VISUAL-1

19 Bilateral lingual gyrus 2.1 −74.5 4.1 45072

VISUAL-2

20 Right inferior occipital gyrus 42.4 −70.5 −3.1 10,785

21 Left inferior occipital gyrus −39.2 −76.3 −2.5 5685

VISUAL-3

22 Bilateral lingual gyrus 2.4 −88.8 −7.8 25,952

VISUAL-4

23 Bilateral cuneus 4.5 −88.3 22.4 12,208

FRONTAL

24 Left medial frontal gyrus −10.9 26.3 −12.0 337

25 Right medial frontal gyrus 20.3 32.1 −13.5 519

26 Left middle frontal gyrus −24.9 34.7 −14.1 73

CEREBELLUM

27 Bilateral cerebellar

tonsil/Culmen

2.4 −45.5 −28.2 34,938

28 Right culmen 10.5 −36.1 −16.1 160

FRONTOPARIETAL (L)

29 Left angular gyrus −39.7 −57.7 37.1 17,128

30 Left middle frontal gyrus −42.3 25.7 22.0 13,348

31 Left middle temporal gyrus −58.2 −49.8 −9.5 577

32 Left cingulate gyrus −4 22.8 37.3 152

FRONTOPARIETAL (R)

33 Right supramarginal gyrus 51.8 −51.2 34.4 18,758

34 Right middle frontal gyrus 46.1 23.8 27.6 10,309

35 Right middle temporal gyrus 67 −40.8 −3.7 365

36 Right medial frontal gyrus 6.6 29.9 36.2 264

HIGHER ORDER NETWORK-1

37 Bilateral medial frontal gyrus −2.2 38.6 34.5 9556

38 Left inferior frontal gyrus −45.9 24.9 −9.1 266

(Continued)

Table 2 | Continued

Node # RSN X Y Z Volume

(# of voxels)

HIGHER ORDER NETWORK-2

39 Left precuneus 0.4 −56.5 48.1 19,104

40 Right inferior parietal lobule 60.3 −34.5 26.0 4480

41 Left inferior parietal lobule −57.8 −37.2 27.1 3312

42 Left middle frontal gyrus −30.2 35.8 29.5 1464

43 Right middle temporal gyrus 58.2 −58.4 1.4 542

44 Right middle frontal gyrus 32.8 42.4 25.0 448

45 Left inferior temporal gyrus −53.2 −66 −0.4 163

46 Left middle occipital gyrus −38.2 −82.7 20.8 88

47 Left cingulate gyrus −10.8 −32.5 31.9 88

48 Right middle temporal gyrus 48.9 −72.7 14.4 72

HIGHER ORDER NETWORK-3

49 Right precuneus 32.6 −70.2 33.3 8336

50 Left superior occipital gyrus −29.8 −78.9 26.3 2736

51 Right posterior cingulate 15.4 −55.9 7.7 2048

52 Right middle frontal gyrus 28.8 8.3 47.5 368

53 Left precuneus −9.2 −72.6 39.3 208

54 Left lingual gyrus −10.7 −58 5.1 120

55 Right culmen 25.3 −38.3 −16.1 80

56 Left posterior cingulate −15.9 −62.5 11.3 72

time-course that do not correspond to its parent network. This

procedure resulted in 120 B-RSN features.

WITHIN-RSN CONNECTIVITY (W-RSN)

To compute functional connectivity within an RSN, reference

time courses from each of the node regions within a network

were generated by averaging the time courses of all voxels within

the region. Subsequently, correlation coefficients were computed

between each pair of node time-courses within each RSN. As we

wanted to analyze node pair connectivity merely in the context

of a given RSN, only pairs of nodes within the same network were

analyzed. Two RSNs contained only a single node each (Visual-

1 and Visual-3), and were therefore excluded from this classifier.

This resulted in 119 correlation W-RSN features.

SUPPORT VECTOR MACHINE (SVM) CLASSIFIER

SVM training and testing were carried out using the Scikit-learn

package in Python (Pedregosa et al., 2011), which is an implemen-

tation of the LIBSVM package (Chang and Lin, 2011). A linear

SVM was employed in all models (with soft margin parameter

C = 1). Classification performance was tested using leave-one-

out cross-validation (LOOCV). On each run, training data was

first scaled, and the corresponding scaling transformation was

repeated on the test dataset. Feature selection was carried out

prior to classifier-training through recursive feature elimination

(Guyon et al., 2002) with either 0, 50, or 90% feature elimination;

this provided a comparison of performance with no, medium,

and high degree of feature elimination. Features deemed criti-

cal by this method were carried forward to the classifier-training

stage (Figure 2). Without feature elimination, even with supe-

rior classification performance, it would be impossible to make

any meaningful inferences about the underlying neurobiology
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FIGURE 2 | Classification algorithm for predicting smoking status using SVM-Adaboost.

owing to the large number of features involved. Narrowing the

set of features to 10% of the original set permits a more detailed

understanding of the key circuits involved.

AdaBoost

The linear SVM classifier was supplemented by a boosting

algorithm—AdaBoost (Freund and Schapire, 1995). This algo-

rithm involves an iterative process of training the SVM classifier

on a weighted set of samples, where the weights are determined

by the accuracy of the classifier for those samples on the previous

iteration. The final classification is obtained through a linear com-

bination of individual classifiers, where the classification of each

SVM classifier is weighted by its performance accuracy. In this

manner, AdaBoost builds a non-linear classifier ensemble from a

weighted combination of multiple linear SVM classifiers.

CLASSIFICATION PERFORMANCE

To ascertain the performance of a classifier, we calculated accuracy

and precision, defined as below:

Accuracy = (number of true positives

+ number of true negatives)/(number of all samples)

Precision = (number of true positives)/

(number of true positive + number of true negatives)

To test whether classification performance was significantly above

chance, we randomly classified each participant as a smoker or

non-smoker, and trained and tested each classifier on this dataset.

This process was executed 1000 times to obtain random distri-

butions of accuracy and precision. Z-tests were then performed

between the actual accuracy/precision values and the gener-

ated random distributions to determine statistical significance.

Additionally, we tested whether actual accuracy and precision

scores were 2 standard deviations above the mean of the generated

random distribution.

To identify features maximally contributing to improved

classification performance with the within-RSN classifier, we

extracted features that were utilized in the classifier following 90%

feature elimination on 15 or more runs of LOOCV. Each feature

had a chance of 1/119 of appearing in the critical 12 on each run.

Features that showed up in 15 or more runs of LOOCV were

therefore appearing far more frequently than would be predicted

by chance (p < 0.000007).

RESULTS

Smokers and controls did not differ statistically in age, gender, or

ethnicity (Table 1), reducing the probability that the classifier’s

performance was biased by demographic features irrelevant to

nicotine addiction. After applying the SVM-AdaBoost algorithm

to 21 smokers and 21 controls, accuracy and precision were calcu-

lated for the REP, between-RSN, and within-RSN classifiers with

and without feature elimination.

Based on the above metrics, we concluded that the within-

RSN and REP classifiers can reliably be used to classify smokers

from non-smokers (Table 3). On the other hand, the between-

RSN classifier’s performance was not consistently above chance.

This suggests that there is limited predictive information for nico-

tine addiction in the functional connectivity between RSNs, at

least based on the current method of defining network nodes.

As can be observed from Table 3, classification performance

significantly improved with feature elimination for the within-

RSN classifier. To identify the features maximally contributing to
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this improved classification performance, we extracted the fea-

tures that were utilized in the classifier following 90% feature

elimination on 15 or more runs of LOOCV (Figure 3). This

process revealed that connectivity within HON-3 (6 circuits),

HON-2 (4 circuits), executive control (2 circuits), and frontopari-

etal (1 circuit) networks specifically were predictive of smoking

status. These circuits involved parts of the middle and supe-

rior frontal gyri, posterior cingulate cortex, precuneus, middle

temporal gyri, and inferior parietal gyri.

To confirm that our results were not artifacts induced by head

motion, we computed the RMS displacement change for smok-

ers and controls and verified that the two groups did not differ

Table 3 | Performance (accuracy and precision) of the three SVM-AdaBoost Classifiers.

No feature elimination 50% feature elimination 90% feature elimination

Between-RSN NF† = 120 60 12

Accuracy Precision Accuracy Precision Accuracy Precision

52.4%* 52.6%* 47.6% 47.6% 40.5% 38.9%

Within-RSN 119 60 12

61.9%* 61.9%* 71.4%*‡ 71.4%*‡ 78.6%*‡ 83.3%*‡

REP 56 28 6

76.2%*‡ 73.9%*‡ 73.8%*‡ 70.8%*‡ 61.9%* 60.8%*

Best performance for a classifier is highlighted in gray.

†NF, number of features.

*indicates classification performance was significantly above chance (p < 0.0001).

‡indicates classification performance was over 2 standard deviations above chance.

FIGURE 3 | Features maximally contributing to SVM classification

performance. Features that were utilized in the within-RSN classifier

following 90% feature elimination on 15 or more runs of LOOCV were

identified, and these consisted of circuits within the (A) ECN, (B) FP, (C)

HON-2, and (D) HON-3. Red and blue lines indicate circuits in which

connectivity was greater and lower, respectively, in smokers relative to

controls. Thick lines indicate circuits that were individually statistically

different between smokers and controls, as inferred from t-tests. Inset brains

indicate the orientation of the larger configuration (ECN, Executive Control

Network; FP, Frontoparietal Network; HON, Higher Order Network).
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statistically on this measure for translational [t(40) = −0.58;

p = 0.564] or rotational [t(40) = 0.86; p = 0.394] head motion.

Further, the two groups did not differ statistically in the final

number of volumes that were included in the computation of cor-

relation co-efficients [t(40) = −1.97; p = 0.056. Meansmokers =

173.67 ± 9.67; Meannon-smokers = 178.19 ± 3.43].

DISCUSSION

We employed a machine learning-based approach to identify

functional connectivity measures that are predictive of nicotine

dependence. A comparison of three network-centered functional

connectivity measures revealed that the functional connectivity

between nodes within resting state networks is most informative

in predicting nicotine dependence. Classification based on func-

tional connectivity between these networks, on the other hand,

resulted in performance accuracy not consistently above chance

levels. It should be noted, however, that classification perfor-

mance of the within-network classifier improved when many fea-

tures were eliminated; this suggests that specific within-network

circuits, or a combination thereof, warrant further investiga-

tion in the context of nicotine addiction. We are not imply-

ing that within-network connectivity in general would be more

informative about the disease.

The REP assessments were comparably successful in predict-

ing smoking status vis-à-vis the within-RSN classifier. However,

a similar examination of the critical nodes is difficult as classi-

fication performance did not improve with feature elimination,

suggesting that all 56 nodes (Figure 1; Table 2) need to be con-

sidered when predicting smoking status. As the REP measure

indicates the extent to which a specific node behaves like the

network in general, strong classification performance here might

reflect differences in within-network connectivity in smokers.

On further examination of the within-network connectivity

classifier, we found that HON RSNs, including the frontopari-

etal and ECNs, were critical to the classification process. Within

these networks, functional connectivity of the middle/inferior

frontal gyrus, posterior cingulate cortex, and precuneus were

especially informative regarding nicotine dependence, i.e., were

utilized in the classification processes following 90% feature elim-

ination on 15 or more runs of LOOCV. That predictive features

were observed in frontal regions is not surprising. Multiple lines

of research suggest impairments in this area as being critical

to addiction (Goldstein and Volkow, 2002; Volkow et al., 2002;

Hester and Garavan, 2004; Kober et al., 2010). The differences

observed here may reflect impairments in frontal disinhibition, a

deficit thought to be critical to the disease (Goldstein and Volkow,

2011).

Network-centered approaches have identified several large

scale networks whose functional connectivity patterns at rest

strongly correspond with network activity during various cogni-

tive processes (Smith et al., 2009). Of these, two sets of networks

have been implicated in task performance—task-positive net-

works which are engaged during task performance, such as the

ECN, and the task-negative “default mode network” (DMN).

The DMN decreases in activity during task performance relative

to its baseline at rest (Greicius et al., 2003). These task-positive

and task-negative networks exhibit an anti-correlated relationship

(Fox et al., 2005). Importantly, the degree to which activity

between these networks is anti-correlated predicts variability in

performance on cognitive tasks (Kelly et al., 2008), suggesting

that the integrity of this between-network coordination is criti-

cal to efficient cognitive function. Our data suggests a breakdown

of normal connectivity patterns within the ECN and DMN RSNs.

This difference in functional connectivity could have two impor-

tant implications: (1) it could influence the manner in which each

network responds to a cognitive task or pharmacological manip-

ulation (e.g., Cole et al., 2010), and consequently the observed

interaction between the two networks; (2) similarly the within-

network connectivity differences could affect ECN-DMN home-

ostasis under high-craving states. In support of such a possibility,

DMN-ECN connectivity is weakened during smoking abstinence

(Lerman et al., 2014). In other words, although the differences

observed here are within a network, under various manipulations,

they could manifest as between-network effects. (It is tempting to

infer that the PCC-related circuits that showed up frequently as

critical features speak to a DMN involvement along exactly these

lines. However, in our hands, the DMN RSN itself does not appear

to be a key player in the classification process, and the PCC-

related circuits observed here were located in other higher order

RSNs.) Here, the data were from smokers who were allowed to

smoke ad libitum and were thus unlikely to be experiencing with-

drawal. To address whether the connectivity disruptions reflect

frontal disinhibition problems or DMN-ECN antagonism differ-

ences, classification performance needs to be compared between

abstinent and sated smokers. Frontal disinhibition problems are

seen to predate addiction (De Wit, 2009; Ersche et al., 2010, 2012),

and are exacerbated by chronic drug use (Volkow et al., 2009),

but are unlikely to be affected by acute effects of nicotine (Bekker

et al., 2005). Thus, middle/inferior frontal circuits should still

provide important information for classification in both sated

and abstinent states. On the other hand, DMN-ECN dynamics

should be markedly different in the two states, and thus func-

tional connectivity within the ECN in one state should not be

particularly informative to the other.

It is important to note that some of the features critical to the

classification performance may be changes induced by chronic

nicotine consumption, while others are likely pre-existent. Parts

of the middle frontal gyrus, for example, have been shown to

decrease in gray matter volume as a function of lifetime exposure

to cigarette smoke (Brody et al., 2004; and is suggested in Gallinat

et al., 2006). Importantly, classification performance in this study

was guided by a combination of different neural features, and not

driven by any one feature in particular. In support of this asser-

tion, within-network classification dropped in performance when

the number of features was limited to 1 (accuracy = 57.14%,

precision = 56.0%). Nicotine addiction is likely an interaction

of pre-existing vulnerabilities and nicotine-induced impairments;

while machine learning allows us to uncover such interactions,

future work will need to disentangle individual contributions

from both these sources.

Classification performance here was not as high as has some-

times been reported from rsFC data (see Dosenbach et al., 2010,

for example, in which the authors achieved classification accu-

racy over 90% when classifying individuals as either children or
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adults); there may be a couple of reasons for this. Firstly, great

care was taken here to eliminate head motion-induced artifacts

that have previously been shown to influence functional connec-

tivity estimates (Power et al., 2012). Efforts included removal of

time points where head motion was above a stringent thresh-

old, inclusion of head motion parameters as nuisance regressors,

and a comparison of head motion data between the two groups.

By diminishing head motion-related confounds, we have likely

reduced any artificial enhancement of classification performance

from irrelevant motion artifacts. Secondly, we followed an agnos-

tic approach of including networks/nodes that are involved in a

wide range of cognitive processing, and not merely those shown

to be distinguishing features within the same sample set. In this

way, we have avoided any inadvertent enhancement of classifica-

tion performance through “double dipping” (Kriegeskorte et al.,

2009). Finally, the sample sizes used here, although standard for

machine-learning approaches to fMRI data (Zhang et al., 2005;

Yang et al., 2010), may have been less sufficient for probing neu-

ral differences more subtle than those seen in schizophrenia or

Parkinson’s disease.

To obtain a more complete picture of disruptions in func-

tional connectivity as a consequence of nicotine addiction, it

would be illuminating to examine such data on a continuum of

addiction severity. Although we analyzed the data here as binary

classes of “high severity of nicotine addiction” and “no nicotine

addiction,” additional insight could be gleaned by using sup-

port vector regression, for example, to extract features predictive

of the FTND (Fagerström et al., 2012). Such a regression-based

approach would allow for a more nuanced understanding of indi-

vidual differences in the severity of addiction, especially when

partnered with different treatment strategies. However, as this is

a relatively crude measure of disease severity, it is likely that a

much larger sample size and variance in FTND would be nec-

essary for such a regression approach. Similarly, support vector

regression with a focus on lifetime smoking exposure could pro-

vide valuable insights into the consequences of chronic nicotine

consumption.

One potential concern regarding our findings is that, cur-

rently, there is limited data supporting the value of within-RSN

centered analysis in nicotine addiction research. As already men-

tioned, a previous publication from our lab (Sutherland et al.,

2012) approached the consequences of nicotine-related changes

in within- (and between-) DMN and ECN connectivity. Prior to

this, Cole et al. (2010) examined the effects of nicotine replace-

ment therapy within- (and between-) DMN and ECN connec-

tivity. However, although studies like these that focus on RSNs

as defined in Smith et al. (2009) are not common, it is not

unusual for addiction studies to focus on within-network con-

nectivity in pre-specified networks. For example, many rsFC

studies in addiction have limited their analyses to frontal and

mesocorticolimbic circuits (see Sutherland et al., 2012, for a

review).

Machine learning based approaches offer both basic and clini-

cal applications for addiction research: the capability to identify

neural features critical to predicting addiction, and the poten-

tial for using such a classifier in clinical settings to predict

treatment outcome or future substance dependence. For the

latter, classification performance need approach 95–100% accu-

racy (Orrù et al., 2012). Although, for screening future substance

dependence, high sensitivity (the true positive rate) is likely

more important, even at the expense of specificity (true nega-

tive rate), than overall accuracy. In any case, a potential limitation

to this study is that rsFC by itself may not be powerful enough

to predict smoking status with close to perfect performance.

Perhaps by including task-based data, or features involving other

modalities—e.g., genetics—we may obtain superior predictive

capabilities. It has been shown that by combining fMRI and

genetics information, classification of schizophrenics from con-

trols can be significantly enhanced (Yang et al., 2010). Similarly,

by including genetic information that has previously been shown

to differentiate smokers from non-smokers (Kreek et al., 2005;

Hong et al., 2010), perhaps the predictive power of such classifiers

can be augmented to the extent required for clinical applica-

tions. Nevertheless, our data suggests that there is tremendous

potential in combining rsFC data with machine learning-based

techniques for advancing our understanding of network-level

predictive differences critical to addiction.
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