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Background

In December 2019, in the Wuhan Hubei province of China, a cluster of cases of pneu-

monia with an unknown cause was reported [1]. Eventually, it was discovered as severe 
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the potential to help improve diagnostic efficiency and accuracy for reading portable 

CXRs.

Purpose: The study aimed at developing an AI imaging analysis tool to classify COVID-

19 lung infection based on portable CXRs.

Materials and methods: Public datasets of COVID-19 (N = 130), bacterial pneumo-

nia (N = 145), non-COVID-19 viral pneumonia (N = 145), and normal (N = 138) CXRs 

were analyzed. Texture and morphological features were extracted. Five supervised 

machine-learning AI algorithms were used to classify COVID-19 from other conditions. 

Two-class and multi-class classification were performed. Statistical analysis was done 

using unpaired two-tailed t tests with unequal variance between groups. Performance 

of classification models used the receiver-operating characteristic (ROC) curve analysis.

Results: For the two-class classification, the accuracy, sensitivity and specificity were, 

respectively, 100%, 100%, and 100% for COVID-19 vs normal; 96.34%, 95.35% and 

97.44% for COVID-19 vs bacterial pneumonia; and 97.56%, 97.44% and 97.67% for 

COVID-19 vs non-COVID-19 viral pneumonia. For the multi-class classification, the com-

bined accuracy and AUC were 79.52% and 0.87, respectively.

Conclusion: AI classification of texture and morphological features of portable CXRs 

accurately distinguishes COVID-19 lung infection in patients in multi-class datasets. 

Deep-learning methods have the potential to improve diagnostic efficiency and accu-

racy for portable CXRs.
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acute respiratory syndrome coronavirus-2 (SARS-CoV-2, previously named as 2019 

novel coronavirus or COVID-19) which has then caused major public health issues 

and became a large global outbreak. According to the recent statistics, there are mil-

lions of confirmed cases in United States and India, and the number is still increasing. 

�e WHO also declared on January 13, 2020 that COVID-19 was the sixth public health 

emergency of international concern following H1N1 (2009), polio (2014), Ebola in West 

Africa (2014), Zika (2016) and Ebola in the Democratic Republic of Congo (2019) [2]. It 

was also found that the novel coronaviral pneumonia is similar to another severe acute 

respiratory syndrome caused by the Middle East respiratory syndrome (MERS) corona-

virus and that it was also capable of causing a more severe form known as acute res-

piratory distress syndrome (ARDS) [3, 4]. Consensus, criteria, and guidelines were being 

established with the aim to prevent transmission and facilitate diagnosis and treatment 

[2, 5, 6]. �e rapid incidences of infection are due in part by the relatively slow onset of 

symptoms, thus enabling widespread transmission by asymptomatic carriers [7]. Along 

with the global connectivity of today’s travel society, this infection readily spread world-

wide [7], giving rise to a pandemic [8, 9].

Radiological imaging of the COVID-19 pneumonia reveals the destruction of pulmo-

nary parenchyma which includes extensive consolidation and interstitial inflammation 

as previously reported in other coronavirus infections [10, 11]. In total, interstitial lung 

disease (ILD) comprises of more than 200 different types of chronic lung disorders that 

is characterized by inflammation of lung tissue, usually referred to as pulmonary fibrosis. 

�e fibrosis causes lung stiffness, and this reduces the ability of the air sacs (i.e., spaces 

within an organism where there is the constant presence of air) to carry out and deliver 

oxygen into the bloodstream. �is eventually can lead to the permanent loss of the abil-

ity to breathe. �e ILDs are also heterogeneous diseases histologically but mostly con-

tain similar clinical manifestations to each other or with other different lung disorders. 

�is makes determining the differential diagnosis difficult. In addition, the large quantity 

of radiological data that radiologists are required to scrutinize (with lack of strict clinical 

guidelines) leads to a low diagnostic accuracy and high inter- and intra-observer vari-

ability, which was reported as great as 50% [12].

�e most commonly used diagnosis for COVID-19 infections is through reverse 

transcription-polymerase chain reaction (RT-PCR) assays of nasopharyngeal swabs 

[13]. However, the high false-negative rate [14], length of test, and shortage of RT-PCR 

assay kits for the early stages of the outbreak can restrict a prompt diagnosis of infected 

patients. Computed tomography (CT) and chest X-ray (CXR) are well suited to image 

the lung of COVID-19 infections. In contrast to the swab test, CT and CXR reveals a 

spatial location of the suspected pathology as well as the extent of damages. �e hall-

mark pathology of CXR are bilateral distribution of peripheral hazy lung opacities 

include air space consolidation [15]. �e advantage of imaging is that it has good sensi-

tivity, a fast turnaround time, and it can visualize the extent of infection in the lung. �e 

disadvantage of imaging is that it has low specificity, challenging to distinguish different 

types of lung infection especially when there is severity in the lung infection.

Computer-aided diagnostic (CAD) systems can assist radiologists to increase diag-

nostic accuracy. Currently, researchers are using the hand-crafted or learning features 

which are based on the texture, geometry, and morphological characteristics of the lung 
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for detection. However, it is often crucial and challenging to choose the appropriate clas-

sifier that can optimally handle the property of the feature spaces of the lung. �e tradi-

tional image recognition methods are Bayesian networks (BNs), support vector machine 

(SVM), artificial neural networks (ANNs), k-nearest neighbors (kNN), and Adaboost, 

decision trees (DTs). �ese machine-learning methods [16, 17] require hand-crafted fea-

tures to compute such as texture, SIFT, entropy, morphological, elliptic Fourier descrip-

tors (EFDs), shape, geometry, density of pixels, and off-shelf classifiers as explained in 

[18]. In addition, the machine-learning (ML) feature-based methods are known as 

non-deep learning methods. �ere are many applications for these non-deep learning 

methods such as uses in neurodegenerative diseases, cancer detection, and psychiatric 

diseases. [17, 19–22]. However, the major limitations of non-deep learning methods are 

that they are dependent on the feature extraction step and this makes it difficult to find 

the most relevant feature which are needed to obtain the most effective result. To over-

come these difficulties, the use of artificial intelligence (AI) can be employed. �e AI 

technology in the field of medical imaging is becoming popular especially for the tech-

nology advancement and development of deep learning [23–32]. Recently, [33] used Inf-

net for automatic detection of COVID-19 lung infection segmentation from CT images. 

Moreover, [18] employed momentum contrastive learning for few shot COVID-19 diag-

nosis from chest CT images. �ere are vast applications of deep convolutional neural 

network (DCNN) and machine-learning algorithms in medical imaging problems [32, 

34–38]; however, this study is specifically aimed to apply machine-learning algorithms 

with feature extraction approach. �e main advantage of this method is the ability to 

learn the adaptive image features and classification, which are able to be performed 

simultaneously. �e general goals are to develop automated tools by employing and 

optimizing machine-learning models along with texture and morphological features to 

detect early, to distinguish coronavirus-infected patients from non-infected patients. 

�is proposed method will help the healthcare clinicians and radiologists for further 

diagnosis and tracking the disease progression. �e AI-based system, once verified, and 

tested can lead towards crucial detection and control of patients affected from COVID-

19. Furthermore, the machine-learning image analysis tools can potentially support the 

radiologists by providing an initial read or second opinion.

In this study, we employed machine-learning methods to classify texture features of 

portable CXRs with the aim to identify COVID-19 lung infection. Comparison of tex-

ture and morphological features on COVID-19, bacterial pneumonia, non-COVID-19 

viral pneumonia, and normal CXRs were made. AI-based classification methods were 

used for differential diagnosis of COVID-19 lung infection. We tested the hypothesis 

that AI classification of texture features of CXR can accurately detect the COVID-19 

lung infection.

Results

We applied five supervised machine-learning classifiers (XGB-L, XGB-Tree, CART, KNN 

and Naïve Bayes) to classify COVID-19 from bacterial pneumonia, non-COVID-19 viral 

pneumonia, and normal lung CXRs.

Table 1 shows the results of AI classification of texture and morphological features 

for COVID-19 vs normal utilizing five different classifiers: XGB-L, XGB-Tree, CART 
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(DT), KNN, and Naïve Bayes. All classifiers yielded essentially 100% accuracy by all 

performance measures along with top four ranked features (i.e., compactness, thin 

ratio, perimeter, standard deviation), indicating that there is significant difference 

between the two groups.

Table 2 shows the results of AI classification of texture and morphological features 

for COVID-19 vs bacterial pneumonia. All classifiers except KNN performed well by 

all performance measures. Specifically, the XGB-L and XGB-Tree classifier yielded 

the highest classification accuracy (96.34% and 91.46%, respectively), while KNN 

classifier performed the worst (accuracy of 71.95%). While with the top four ranking 

features, the XGB-L and XGB-tree classifiers yielded highest accuracy of 85.37% and 

86.59%, respectively.

Table 3 shows the results of AI classification of texture and morphological features 

for COVID-19 vs non-COVID viral pneumonia. All classifiers except KNN performed 

well by all performance measures. Specifically, the XGB-L and XGB-Tree classifier 

yielded the highest classification accuracy (97.56% and 95.12%, respectively), while 

KNN classifier performed the worst (accuracy of 79.27%).

Table 1 Performance of  AI classi�cation of  texture and  morphological features utilizing 

�ve di�erent classi�ers of COVID-19 (N = 130) vs normal (N = 138)

Classi�er Sensitivity (%) Speci�city (%) PPV (%) NPV (%) Accuracy (%) AUC (LB, UP) p value

XGB-L 100 100 100 100 100 1.00 2.00e−16

XGB-Tree 100 100 1003 100 100 1.00 2.00e−16

CART (DT) 100 100 100 100 100 1.00 2.00e−16

KNN 89.71 100 100 91.11 95 0.99 2.00e−16

Naïve Bayes 100 100 100 100 100 1.00 2.00e−16

Table 2 Performance of  AI classi�cation of  texture and  morphological features utilizing 

�ve di�erent classi�ers of COVID-19 (N = 130) vs bacterial pneumonia (N = 145)

Classi�er Sensitivity (%) Speci�city (%) PPV (%) NPV (%) Accuracy (%) AUC (LB, UP) p value

XGB-L 95.35 97.44 97.62 95.00 96.34 0.98 (0.96, 1.00) 2.19e−14

XGB-Tree 88.37 94.87 95.00 88.10 91.46 0.97 (0.93, 1.00) 2.19e−14

CART (DT) 74.42 97.44 96.97 77.55 85.37 0.92 (0.87, 0.98) 3.22e−10

KNN 86.05 56.41 68.52 78.57 71.95 0.83 (0.74, 0.92) 2.40e−04

Naïve Bayes 90.70 79.49 82.98 88.51 85.37 0.92 (0.85, 0.98) 3.22e−10

Table 3 Performance of  AI classi�cation of  texture and  morphological features utilizing 

�ve di�erent classi�ers of COVID-19 (N = 130) vs viral pneumonia (N = 145)

Classi�er Sensitivity Speci�city PPV NPV Accuracy AUC (LB, UP) p value

XGB-L 97.44 97.67 97.44 97.67 97.56 0.98 (0.96, 1.00) 2.00e−16

XGB-Tree 94.87 95.35 94.87 94.87 95.12 0.98 (0.95, 1.00) 2.00e−16

CART (DT) 94.87 93.02 92.50 95.24 93.90 0.94 (0.89, 0.99) 2.00e−16

KNN 69.63 88.37 84.38 76.00 79.27 0.85 (0.77, 0.94) 4.38e−07

Naïve Bayes 64.10 95.35 92.59 74.55 80.49 0.93 (0.88, 0.98) 1.20e−07
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Table  4 shows the two-class classification using the XGB-L classifier. �e result 

showed that model classified COVID-19 from normal patients most accurately, fol-

lowed by COVID-19 from bacterial pneumonia, and lastly by COVID-19 from viral 

pneumonia.

Table 5 shows the results of the multi-class classification using the XGB-L classifier. 

For multi-class classification problem, the average accuracy for classification of all four 

classes is used to measures the performance of the classifier (i.e., combined accuracy 

and AUC). Multi-class classification was able to classify COVID-19 amongst the four 

groups, with a combined AUC of 0.87 and accuracy of 79.52%. While with the top two 

ranked features, the combined AUC of 0.82 and accuracy of 66.27% was obtained. Sen-

sitivity, specificity, positive predictive value, and negative predictive value were similarly 

high. As reflected in Tables 1, 2, 3 and 4, the two-class classification performance (i.e., 

COVID-19 vs normal, COVID-19 vs bacterial pneumonia, COVID-19 vs viral pneumo-

nia) in terms of sensitivity and PPV was higher than 95%, while these measures using 

multi-class (COVID-19 vs normal vs bacterial vs viral pneumonia) could achieve perfor-

mance greater than 74% and 83% to detect COVID-19, respectively.

Feature ranking algorithms are mostly used for ranking features independently with-

out using any supervised or unsupervised learning algorithm. A specific method is used 

for feature ranking in which each feature is assigned a scoring value, then selection of 

features will be made purely on the basis of these scoring values [39]. �e finally selected 

distinct and stable features can be ranked according to these scores and redundant fea-

tures can be eliminated for further classification. We first extracted first extracted tex-

ture features based on GLCM and morphological features from COVID-19, normal, 

viral and bacterial pneumonia CXR images and then ranked them based on empirical 

receiver-operating characteristic curve (EROC) and random classifier slop [40], which 

ranks features based on the class separability criteria of the area between EROC and ran-

dom classifier slope. �e ranked features show the features importance based on their 

Table 4 Two-class classi�cation using XGB-linear with  texture + morphological features 

for COVID-19 (N = 130) vs bacterial pneumonia (N = 145), COVID-19 vs non-COVID-19 viral 

(N = 145) and COVID-19 vs normal (N = 138)

Classi�cation Sensitivity (%) Speci�city (%) PPV (%) NPV (%) Accuracy (%) AUC 

COVID-19 vs bacterial pneumonia 95.35 97.44 97.62 95.00 96.34 0.98

COVID-19 vs non-COVID-19 viral 
pneumonia

97.44 97.67 97.44 97.67 97.56 0.98

COVID-19 vs normal 100 100 100 100 100 1.00

Table 5 Multi-class classi�cation using XGB-linear with texture + morphological features

Dataset Sensitivity Speci�city PPV NPV Combined accuracy Combined AUC 

XGB-linear

 Bacterial pneumonia 74.42% 86.18% 65.31% 90.60% 79.52% 0.87

 COVID-19 74.49% 95.28% 83.78% 93.80%

 Normal 95.12 100 100 98.43

 Viral pneumonia 67.77% 91.06% 73.17% 89.60%
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ranking which can be helpful for distinguish these different classes for improving the 

detection performance and decision making by the radiologists.

Figure 1 shows the ranking features of COVID-19 vs bacterial infection, COVID-19 vs 

normal, and their multi-class features. �e top four features from COVID-19 vs bacte-

rial CXR based on AUC were: skewness, entropy, compactness, and thin ratio. �e top 

four features from COVID-19 vs normal CXR based on AUC were: compactness, thin 

ratio, perimeter, and standard deviation. �e top feature from the multi-class was by far 

perimeter.

Discussion

We employed an automated supervised learning AI classification of texture and mor-

phological-based features on portable CXRs to distinguish COVID-19 lung infections 

from normal, and other lung infections. �e major finding was that the multi-class clas-

sification was able to accurately identify COVID-19 from amongst the four groups with 

a combined AUC of 0.87 and accuracy of 79.52%.

�e hallmarks of COVID-19 lung infection on CXR are bilateral and peripheral hazy 

lung opacities and air space consolidation [15]. �ese features of COVID-19 lung infec-

tion likely stood out compared to other pneumonia, giving rise to distinguishable tex-

ture features. Our AI algorithm was able to distinguish COVID-19 vs normal CXR with 

100% accuracy, COVID-19 vs bacterial pneumonia with 96.34% accuracy, and COVID-

19 vs non-COVID-19 viral infection with 92.68% accuracy. �ese findings suggest that it 

is trivial to distinguish COVID-19 from normal CXR and the two viral infections were 

more similar than bacterial infection.

With the multi-class classification, all performance measures dropped significantly 

(except normal CXR) as expected. Nonetheless, the combined AUC and accuracy 

remained high. �ese findings are encouraging and suggest that the multi-class classifi-

cation is able to distinguish COVID-19 lung infection from other similar lung infections.

�e top four features from COVID-19 vs bacterial infection were skewness, entropy, 

compactness, and thin ratio. �e top four features from COVID-19 vs normal were: 

compactness, thin ratio, perimeter, and standard deviation. �e top feature from the 

multi-class was perimeter. Perimeter is the total count of pixels at the boundary of an 

image. It showed that the perimeter of COVID-19 lung CXRs differed significantly from 

other bacterial and viral infections as well as normal lung X-rays. �ese results together 

suggest that perimeter is a key distinguishable feature, consistent with a key observa-

tion that COVID-19 lung infection tends to be more peripheral and lateral together the 

boundaries of the lung.

A few studies have reported CNN analysis of CXR and CT for classification of COVID-

19 [41–45]. Li et al. performed a retrospective multi-center study using a deep-learning 

model to extract visual features from chest CT to distinguish COVID-19 from com-

munity acquired pneumonia (CAP) and non-pneumonia CT with a sensitivity of 90%, 

specificity 95%, and AUC 0.96 (p value < 0.001) [41]. Hurt et al. performed a retrospec-

tive study using a U-net (CNN), to predict pixel-wise probability maps for pneumonia 

only from a public dataset that comprised of 22,000 radiographs. For their classification 

of pneumonia, the area under the receiver-operator characteristic curve was 0.854 with 

a sensitivity of 82.8% and specificity of 72.6 [46]. Wang et al. developed a deep CNN to 
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Fig. 1 Ranking parameters: a COVID vs bacterial infection, b COVID-19 vs normal, and c multi-class feature 

ranking
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detect COVID-19 cases from non-COVID CXR. �is study used interpretable AI to visu-

alize the location of the abnormality and was able to distinguish COVID-19 from non-

COVID-19 viral infection, bacterial infection, and normal with a sensitivity of 81.9%, 

93.1%, and 73.9%, respectively, with an overall accuracy of 83.5% [38]. Gozes et al. devel-

oped a deep-learning algorithm to analyze CT images to detect COVID-19 patients from 

non-COVID-19 cases with 0.996 AUC (95% CI 0.989–1.00), 98.2% sensitivity and 92.2% 

specificity [43]. Apostolopoulos and Mpesiana [45] used deep learning with a transfer 

learning approach to extract features from X-rays to distinguish between COVID-19 and 

bacterial pneumonia, viral pneumonia, and normal with a sensitivity of 98.66%, speci-

ficity of 96.46%, and accuracy of 96.78%. Overall, most of these studies used two-class 

comparison (i.e., pneumonia vs COVID-19, or pneumonia vs normal) mostly on CT 

which is less suitable for contagious diseases. In these previous studies, two-class predic-

tion performance was computed and yielded fine results but could not achieve the high-

est performance as compared to our approach. �e aim of this research was to improve 

the prediction performance by extracting texture and morphological features from CXR 

images. As the machine-learning performance is still a challenging task to extract the 

most relevant and appropriate features by the researchers. �e results reveal that features 

extracted using our approach contain the most pertinent and appropriate hidden infor-

mation present in the COVID-19 lung infection which improved the two-class and multi-

class classification. �ese features are then used as input to the robust machine-learning 

classifiers. �e results obtained outperformed than these previously traditional methods.

�ere are several limitations of this study. �is is a retrospective study with a small 

COVID-19 sample size. Portable CXR is sensitive but not specific as the phenotypes of 

different lung infections are similar on CXR. We used only four classes (disease types). 

Future studies should expand to include additional lung disorders.

Conclusion

In conclusion, deep learning of texture and morphological-based features accurately dis-

tinguish CXR of COVID-19 patients from normal subjects and patients with bacterial 

and non-COVID-19 viral pneumonia. �is approach can be used to improve workflow, 

facilitate in early detection and diagnosis of COVID-19, effective triage of patients with 

or without the infectious disease, and provide efficient tracking of disease progression.

Limitation and future directions

�is study is specifically aimed to extract the texture features and apply the machine-

learning algorithms to predict the COVID-19 from multi-class. �e texture features cor-

rectly predict the COVID-19 from multi-class; however, in future, we will employ and 

optimize the deep convolutional neural network models including ResNet101, Goog-

leNet, AlexNet, Inception-V3 and use will use some other modalities, clinical profiles 

and bigger datasets.

Methods

Dataset

In this study, we used publicly available data of COVID-19 and non-COVID and normal 

chest CXR images. �e COVID-19 images were downloaded from https ://githu b.com/

https://github.com/ieee8023/covid-chestxray-dataset


Page 9 of 18Hussain et al. BioMed Eng OnLine           (2020) 19:88  

ieee8 023/covid -chest xray-datas et [47] on Mar 31, 2020. �e original download con-

tained 250 scans of COVID-19 and SARS of CT and CXR taken in multiple directions. 

Two board-certified chest radiologists (one with 20 + years of experience) and one 2nd 

year radiology resident evaluated the images for quality and relevance. Only CXR from 

COVID-19 taken at anterior–posterior (AP) direction was included in this study, result-

ing in a final sample size of 130. �e other dataset was taken from the Kaggle chest X-ray 

image (pneumonia) dataset (https ://www.kaggl e.com/pault imoth ymoon ey/chest -xray-

pneum onia) [42]. Although the Kaggle database has a large sample size, we randomly 

selected a sample size comparable to that of COVID-19. �e sample chosen for the bac-

terial pneumonia, non-COVID-19 viral pneumonia, and normal CXR were 145, 145, and 

138, respectively. We first split the dataset into training and testing data with a 70% and 

30% ratio using a stratified sampling method. �en for feature selection, we only used 

the training data instead of the whole dataset. Figure 2 below outlines the workflow and 

steps used in this study.

Figure 2 outlines the workflow with the initial input of lung CXRs going through fea-

ture extraction for texture + morphological analysis followed by the AI classifiers to 

determine the sensitivity, specificity, PPV, NPV, accuracy, and AUC of the four groups 

of interest (COVID-19, bacterial and viral pneumonia, and normal). �ese calcula-

tions are further outputted for data validation with fivefold cross-validation technique. 

Finally, data are statistically analyzed for significance using MATLAB 2018b and RStu-

dio 1.2.5001.

Texture features

�e texture features are estimated from the Grey-level Co-occurrence Matrix (GLCM) 

covering the pixel (image) spatial correlation. Each GLCM input image (u, v)th defines 

how often pixels with intensity value u co-occur in a defined connection with pixels 

with intensity value v . We extracted second-order features consisting of contrast, cor-

relation, mean, entropy, energy, variance, inverse different moment, standard deviation, 

smoothness, root mean square, skewness, kurtosis, and homogeneity previously used in 

[48–54].

Morphological features

Morphological feature plays an important role in the detection of malignant tissues. 

Morphological features convert image morphology into a set of quantitative values that 

can be used for classification [55]. Morphological feature-extracting method (MFEM) is 

a nonlinear filtering process and its basic purpose is to search and find valuable informa-

tion from an image and transform it morphologically according to the requirements for 

segmentation [56] and so on. �e MFEM takes binary cluster as an input and finds the 

associated components in the clusters having an area greater than a certain threshold. 

�ere are several features that can be extracted from an image and area can be calcu-

lated from the number of pixels of an image. Area and perimeter combined helps to cal-

culate the values of other different morphology features. �e following formulas in [50] 

can be used to calculate the values of morphological features.

https://github.com/ieee8023/covid-chestxray-dataset
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Classi�cation

We applied and compared five supervised machine-learning classification algorithms: 

XG boosting linear (XGB-L), XG boosting tree (XGB-tree), classification and regres-

sion tree (CART), k-nearest neighbor (KNN) and Naïve Bayes (NB). We used XGB 

ensemble methods in this study. In machine learning, ensemble is the collection of 

multiple models and is one of the self-efficient methods as compared to other basic 

models. Ensemble technique combines different hypothesis to hopefully provide best 

hypothesis. Basically, this method is used for obtaining a strong learner with the help 

of combination of weak learners Experimentally, ensembles methods provide more 

Fig. 2 Flow of data and analysis
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accurate results even there is considerable diversity between the models. Boosting is a 

most common types of ensemble method that works by discovering many weak clas-

sification rules using subset of the training examples simply by sampling again and 

again from the distribution.

XGBoost algorithms

Chen and Guestrin proposed XGBoost a gradable machine-learning system in 2016 

[57]. �is system was most popular and became the standard system when it was 

employed in the field of machine learning in 2015 and it provides us with better per-

formance in supervised machine learning. �e Gradient boosting model is the origi-

nal model of XGBoost, which combine and relates a weak base with stronger learning 

models in an iterative manner [58]. In this study, we used XGBoost linear and tree 

with following optimization parameters.

We used the following parameter of each model in this study. For XGB-linear we 

initialized the parameters as lambda = 0, alpha = 0 and eta = 0.3, where lambda and 

alpha are the regularization term on weights and eta is the learning rate. For XGB-

Tree, we initialized the parameters with maximum depth of tree i.e., max-depth = 30, 

learning rate eta = 0.3, maximum loss reduction i.e., gamma = 1, minimum child 

weight = 1, subsample = 1. �e nearest neighbor k = 5 was used. For CART, we initial-

ized parameters with minsplit = 20, complexity parameter, i.e., cp = 0.01, maximum 

depth = 30. For Naïve Bayes, we initialized the parameters with search method = grid, 

laplace = 0, and adjust = 1.

Classi�cation and regression tree (CART)

A CART is a predictive algorithm used in the machine learning to explain how the 

target variable values can be predicted based on the other values. It is a decision tree 

where each fork is a split in a predictor variable and each node at the end has a pre-

diction for the target variable. Decision tree (DT) algorithm was first proposed by 

Breiman in 1984 [59], is a learning algorithm or predictive model or decision support 

tool of Machine Learning and Data Mining for the large size of input data, which pre-

dict the target value or class label based on several input variables. In decision tree, 

the classifier compares and checks the similarities in the dataset and ranked it into 

distinct classes. Wang et al. [60] used DTs for classifying the data based on choice of 

an attribute which maximizes and fix the data division. Until the conclusion criteria 

and condition is met, the attributes of datasets are split into several classes. DT algo-

rithm is constructed mathematically as:

X = {X1,X2,X3, . . . ,Xm}T ,

Xi =

{

x1, x2, x3, . . . , xij , . . . , xin
}

,

S = {S1, S2, . . . , Si, . . . , Sm}.
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Here the number of observations is denoted by m in the above equations, n rep-

resent number of independent variables, S is the m-dimension vector spaces of the 

variable forecasted from X  in the above equation. Xi is the ith module of n-dimension 

autonomous variables xi1, xi2, xi3, . . . , xin are autonomous variable of pattern vector Xi 

and T is the transpose symbol.

�e purpose of DTs is to forecast the observations of X  . From X  , several DTs can 

be developed by different accuracy level; although, the best and optimum DT con-

struction is a challenge due to the exploring space has enormous and large dimension. 

For DT, appropriate fitting algorithms can be developed which reflect the trade-off 

between complexity and accuracy. For partition of the dataset X  , there are several 

sequences of local optimum decision about the feature parameters are used using 

the Decision Tree strategies. Optimal DT, Tk0 is developed according to a subsequent 

optimization problem:

In the above equation, R̂(T ) represents an error level during the misclassification of 

tree Tk , Tk0 represented the optimal DT that minimizes an error of misclassification in 

the binary tree, T represent a binary tree ∈ {T1,T2, . . . ,Tk , t1} , the index of tree is rep-

resented by k, tree node with t, root node by t1, resubstituting an error by r(t) which 

misclassify node t, probability that any case drop into node t is represented with p(t). 

�e left and right sets of partition of sub trees are denoted by TL
and T

R . �e result of 

feature plan portioning the tree T is formed.

Naïve Bayes (NB)

�e NB [61] algorithm is based on Bayesian theorem [62] and it is suitable for higher 

dimensionality problems. �is algorithm is also suitable for several independent vari-

ables whether they are categorical or continuous. Moreover, this algorithm can be 

the better choice for the average higher classification performance problem and have 

minimal computational time to construct the model. Naïve Bayes classification algo-

rithm was introduced by Wallace and Masteller in 1963. Naïve Bayes relates with a 

family of probabilistic classifier and established on Bayes theorem containing compact 

hypothesis of independence among several features. Naïve Bayes is most ubiquitous 

classifier used for clustering in Machine Learning since 1960. Classification probabili-

ties are able to compute using Naïve Bayes method in machine learning. Naïve Bayes 

is utmost general classification techniques due to highest performance than the other 

algorithm such as decision tree (DT), C-means (CM) and SVM. Bayes decision law is 

used to find the predictable misclassification ratio whereas assuming that true classifi-

cation opportunity of an object belongs to every class is identified. NB techniques were 

greatly biased because its probability computation errors are large. To overcome this 

task, the solution is to reduce the probability valuation errors by Naïve Bayes method. 

Conversely, dropping probability computation errors did not provide the guarantee 

R̂(Tk0) = min

{

R̂(Tk0)

}

, k = 1, 2, 3, . . . ,K ,

R̂(T ) =

k∑

t∈T

{r(t)p(t)}.
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for achieving better results in classification performance and usually make it poorest 

because of its different bias-variance decomposition among classification errors and 

probability computation error [63]. Naïve Bayes is widely used in present advance 

developments [64–67] due to its better performance [68]. Naïve Bayes techniques need 

a large number of parameters during learning system or process. �e maximum pos-

sibility of Naïve Bayes function is used for parameter approximation. NB represents 

conditional probability classifier which can be calculated using Bayes theorem: prob-

lem instance which is to be classified, described by a vector Y = {Y1,Y2,Y3, . . . ,Yn} 

shows n features spaces, conditional probability can be written as:

For each class Nk or each promising output, statistically Bayes theorem can be written 

as:

Here, S(Nk |Y ) represents the posterior probability while S(Nk) represents the preced-

ing probability, S(Y |Nk) represents the likelihood and S(Y ) represents the evidence. NB 

is represented mathematically as:

Here T = S
(

y
)

 is scaling factor which is depends upon (Y1,Y2,Y3, . . . ,Yn) , S(Nk) is a 

parameter used for the calculation of marginal probability and conditional probability 

for each attribute or instances is represented by S(Yi|Nk) . Naïve Bayes become most sen-

sitive in the presence of correlated attributes. �e existence of extremely redundant or 

correlated objects or features can bias the decision taken by Naïve Bayes classifier [67].

K-nearest neighbor (KNN)

KNN is most widely used algorithm in the field of machine learning, pattern recognition 

and many other areas. Zhang [69] used KNN for classification problems. �is algorithm 

is also known as instance based (lazy learning) algorithm. A model or classifier is not 

immediately built but all training data samples are saved and waited until new observa-

tions need to be classified. �is characteristic of lazy learning algorithm makes it better 

than eager learning, that construct classifier before new observation needs to be classi-

fied. Schwenker and Trentin [70] investigated that this algorithm is also more significant 

when dynamic data are required to be changed and updated more rapidly. KNN with 

different distance metrics were employed. KNN algorithm works according to the fol-

lowing steps using Euclidean distance formula.

Step I: To train the system, provide the feature space to KNN.

Step II: Measure distance using Euclidean distance formula:

S(Nk |Y1,Y2,Y3, . . .Yn).

S(Nk |Y ) =
S(Nk)S(Y |Nk)

S(Y )
.

S(Nk |Y1,Y2,Y3, . . . ,Yn) =
1

T
S(Nk)

n∏

i=1

S(Yi|Nk).

d
(

xi, yi
)

=

n
∑

i=1

√

(xi−yi)2.
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Step III: Sort the values calculated using Euclidean distance using 

di ≤ di + 1, where i = 1, 2, 3, . . . , k.

Step IV: Apply means or voting according to the nature of data.

Step V: Value of K (i.e., number of nearest Neighbors) depends upon the volume and 

nature of data provided to KNN. For large data, the value of k is kept as large, whereas for 

small data the value of k is also kept small.

In this study, these classification algorithms were performed using RStudio with typical 

default parameters for each of the classifiers (XGB-L, GXB-tree, CART, KNN, NB) with a 

fivefold cross-validation. As we divided our dataset into train and test sets, so while training 

a classifier on train data we used the K-fold cross-validation technique, which shuffles the 

data and splits it into k number of folds (groups). In general, K-fold validation is performed 

by taking one group as the test data set, and the other k − 1 groups as the training data, 

fitting and evaluating a model, and recording the chosen score on each fold. As we used 

fivefold cross-validation, so the train set is equally divided into five parts from which one is 

used as validation and the other four used for training of classifier on each fold.

Performance evaluation measures

�e performance was evaluated with the following parameters.

Sensitivity �e sensitivity measure also known as TPR or recall is used to test the propor-

tion of people who test positive for the disease among those who have the disease. Math-

ematically, it is expressed as:

i.e., the probability of positive test given that patient has disease.

Specificity �e TNR measure also known as specificity is the proportion of negatives that 

are correctly identified. Mathematically, it is expressed as:

i.e., probability of a negative test given that patient is well.

Positive predictive value (PPV) PPV is mathematically expressed as:

Sensitivity =

∑
True positive

∑
Condition positive

,

Sensitivity =
TP

TP + FN
,

Specificity =

∑
True negative

∑
Condition negative

,

Specificity =
TN

TN + FP
,

PPV =

∑
True positive

∑
Predicted condition positive

,
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where TP denotes that the test makes a positive prediction and subject has a positive 

result under gold standard while FP is the event that test make a positive perdition and 

subject make a negative result.

Negative predictive value (NPV) NPV can be computed as:

where TN indicates that test make negative prediction and subject has also negative 

result, while FN indicate that test make negative prediction and subject has positive 

result.

Accuracy �e total accuracy is computed as:

Receiver-operating characteristic (ROC) curve

Based on sensitivity, i.e., true-positive rate (TPR) and specificity, i.e., false-positive rate 

(FPR) values of COVID-19 and non-COVID subjects. �e mean values for COVID-19 

subjects are classified as 0 and for non-COVID subjects are classified as 1. �en obtained 

vector is passed through ROC function, which plots each value against sensitivity and 

specificity values. ROC is considered as one of the standard methods for computation 

and graphical representation of the performance of a classifier. ROC plots FPR against 

x-axis and TPR against y-axis, while part of a square unit is represented by area under 

the curve (AUC). �e value of AUC lies between 0 and 1 where AUC > 0.5 indicates the 

separation. Higher area under the curve represents the better and improved diagnostic 

system [71]. �e number of correct positive cases divided by the total number of positive 

cases represents TPR. While the number of negative cases predicted as positive cases 

divided by the total number of negative cases represent FPR [72].

Training/testing data formulation

�e Jack-knife fivefold cross-validation (CV) technique was applied for the training 

and testing of data formulation and parameter optimization. It is one of the most well 

known, commonly practiced, and successfully used methods for validating the accuracy 

of a classifier using fivefold CV. �e data are divided into fivefold in training, the four-

fold participate, and classes of the samples for remaining folds are classified based on 

the training performed on fourfold. For the trained models, the test samples in the test 

fold are purely unseen. �e entire process is repeated five times and each class sample is 

PPV =
TP

TP + FP
,

NPV =

∑
True negative

∑
Predicted condition negative

,

NPV =
TN

TN + FN
,

Accuracy =
TP + TN

TP + FP + FN + TN
.
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classified accordingly. Finally, the unseen samples classified labels that are to be used for 

determining the classification accuracy. �is process is repeated for each combination of 

each systems’ parameters and the classification performance have been reported for the 

samples as depicted in the Tables 1, 2, 3 and 4.

Statistical analysis and performance measures

Analyses examining differences in outcomes used unpaired two-tailed t tests with une-

qual variance. Receiver-operating characteristic (ROC) curve analysis was performed 

with COVID-19, normal, bacterial, and non-COVID-19 viral pneumonia as ground truth. 

�e performance was evaluated by standard ROC analysis, including sensitivity, specific-

ity, positive predictive value (PPV), negative predictive value (NPV), accuracy, area under 

the receiver-operating curve (AUC) with 95% confidence interval, and significance with 

the P value. AUC with lower and upper bounds and accuracy were tabulated. MATLAB 

(R2018b, MathWorks, Natick, MA) and RStudio 1.2.5001 were used for statistical analysis.
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