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Machine learning coarse grained models for water
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An accurate and computationally efficient molecular level description of mesoscopic behavior

of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned

coarse-grained (CG) models (ML-BOP, ML-BOPdih, and ML-mW) that accurately describe

the structure and thermodynamic anomalies of both water and ice at mesoscopic scales, all

at two orders of magnitude cheaper computational cost than existing atomistic models. In

a significant departure from conventional force-field fitting, we use a multilevel evolutionary

strategy that trains CG models against not just energetics from first-principles and experi-

ments but also temperature-dependent properties inferred from on-the-fly molecular

dynamics (~ 10’s of milliseconds of overall trajectories). Our ML BOP models predict both

the correct experimental melting point of ice and the temperature of maximum density of

liquid water that remained elusive to-date. Our ML workflow navigates efficiently through

the high-dimensional parameter space to even improve upon existing high-quality CG models

(e.g. mW model).
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I
ce nucleation and grain growth are ubiquitous phenomena. Ice
nuclei, when formed, are nanoscopic1—critical sizes start from
tens of molecules—and subsequently consolidate into larger

grains at the mesoscopic scale2. A molecular level picture of phase
transformations in water, especially at mesoscopic scales, is most
desirable but remains inaccessible to fully atomistic simulations3.
The underlying phase transitions and dynamical processes in
supercooled mesoscale systems are often inaccessible due to
system size and timescale limitations, which are further com-
pounded by their sluggish kinetics. While exascale computers
may cope with such mesoscopic length scales, time scale chal-
lenges will remain (Supplementary Figure 1). It is important to
have a water model that accurately captures the melting point,
liquid and solid densities, as well as other thermodynamic and
transport properties at modest computational cost. Numerous
atomistic4–6 and coarse-grained7 (CG) water models exist. They
differ in terms of predictive power and computational cost/effi-
ciency. The best performing non-polarizable atomistic model
is TIP4P/20055. However, it under-predicts the melting point by
20 K and is too computationally expensive for large-scale mole-
cular dynamics (MD) studies involving multi-million molecule
ice-water systems. Polarizable models such as MB-pol8 and
AMOEBA9 have comparable accuracy and can treat charged
species, but are computationally expensive (Tables 1 and 2). CG
models are computationally efficient, but often less accurate. The
monoatomic water (mW) model10 remains the best performing
CG model11, predicting the correct melting point and several
thermodynamic properties, but does not quantitatively capture
the density anomaly and over predicts density of ice (Supple-
mentary Figure 2).

A correct description of water’s complex properties with a
potential model, especially in CG form, is challenging. Here, we
introduce a machine-learning (ML) workflow (Fig. 1) that can be
used to train models that accurately describe the behavior of ice
and liquid water at mesoscopic scales. We develop a set of bond-
order CG models (ML-BOP and ML-BOPdih) that are up to two
orders of magnitude cheaper (Table 2, Supplementary Figure 3)
than the most accurate non-polarizable atomistic models (TIP4P
models and TIP5P) of comparable accuracy. As with the mW
model10, our models treat each water molecule as one bead; the
interactions between the beads are treated using a bond-order
potential (BOP) both with and without explicit four-body term,

i.e., on-the-fly dihedrals to describe tetrahedral solids. We
use a multi-level hierarchical global optimization strategy to
navigate the high-dimensional parameter space and train the ML
models. We introduce ML models that adequately describe the
thermodynamic and dynamical properties of water. Moreover,
we also demonstrate that our ML strategy can be used to re-
optimize existing high-quality water models, such as mW, and
improve their overall performance.

Results
Machine learning workflow for training CG water models. The
ML workflow to train CG models involves three main aspects:
Model selection, Training data generation, and Multi-level hier-
archical objective optimization to parameterize models against
target training data. The various stages involved in the ML
workflow are discussed below.

CG model of water. Water molecules are modeled using a 1:1 CG
model. The mapping of atomistic water molecules into CG water
beads is done via the removal of hydrogen atoms, such that the
CG beads are positioned at the positions of the oxygen atoms.
This representation of water molecules as monoatomic beads and
the use of the ML models can lead to a much more significant
speed-up in MD simulations than the naive factor of three from

Table 1 Performance of ML models compared to other popular water models

ML-BOP ML-BOP /dih ML-mW mW TIP4P /2005 MB-pol iAMOEBA SPC/E TIP3P

Neighbors3.3 Å, 298 K 9 9 9 10 9 9 9 9 10
resRDF, 298 K 3 4 8 8 7 9 7 6 0
resADF, 298 K 7 7 7 7 6 7 7 6 6
ln D298 K 5 5 0 0 8 9 8 8 0
ρ298K, 1atm

a 10 10 10 10 9 8 10 9 7
ρmax

a 10 10 10 9 10 7 10 8 2
TMDa 10 10 10 6 10 7 10 5 0
ΔHvap 8 8 9 9 4 8 8 6 10
Tm 10 10 8 10 7 9 7 1 0
TMD - Tm 10 10 7 4 6 8 7 6 4
ΔHmelt

a 7 7 9 8 6 – 7 0 0
ΔSmelt 7 7 8 7 7 – 7 3 0
ρliq at Tm

a 10 10 10 10 9 7 10 8 6
ρIh at Tm

a 7 7 8 0 9 9 7 3 3
ΔVmelt 7 7 7 0 8 8 7 4 6
(dp/dT)melt 9 10 9 0 10 – 9 8 0
Average score 8.1 8.2 8.1 6.1 7.8 8.1 8.2 5.6 3.4

Comparison of the performance of ML models with other popular polarizable8,19 and non-polarizable models26. The numerical scores and tolerance are assigned based on an established system by
Vega59. A list of ice and liquid water properties relevant to the capability of ML-BOP models are selected for comparison
aProperties that are included in the training of ML models

Table 2 Comparison of the computational cost for water

models

Model Cost in core-sec for 10 ps

mW 3.6
ML-BOP 3.8
ML-BOPdih 5.9
ML-mW 2.5
TIP4P/2005 400.0
MB-pol 3213650.0
AMOEBA 1550.0
TIP4P/Ew 410.4
SPC/E 185.6
TIP3P 184.4

The benchmark system is liquid water (256 molecules) at 298 K
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Fig. 1 Machine learning protocol to train water potentials and comparison with experiments. a Workflow depicting force field parameterization. One

novelty is a direct fitting to dynamically-inferred properties through long time scale MD simulations. Np refers to population size and Δ(i) refers to errors

computed for the ith parameter set in the Np population using hierarchical objective. b Diagrams illustrating the 2-stage technique for locating the global

minimum of the objective landscape. (The actual optimization involves up to 17 parameters but here we indicate just two generic parameters, α1 and α2.)

Table 3 has the optimized ML-BOP and ML-BOPdih parameters. In (c–f) the experimental (Exp) melting point (T= 273 K), maximum density temperature

(T= 277 K), and room temperature (T= 298 K) are vertical solid black, dotted black, and solid green lines, respectively. c ML-BOP models accurately

reproduce the density anomaly of water within 1.4% as shown by comparison with experimental densities55 of ice and liquid water at pressure 1 bar.

Melting point of ML-BOP models is 273 ± 1 K. d ML-BOP models predict the experimental diffusion coefficients of water20,56 over a wide temperature

range. e ML-BOP models reproduce the experimental radial distribution functions of ice at T= 77K57 and liquid water at T= 254 K23. f ML-BOP models

capture the experimental heat capacity of water58 relative to the value at T= 309 K

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-018-08222-6 ARTICLE

NATURE COMMUNICATIONS |          (2019) 10:379 | https://doi.org/10.1038/s41467-018-08222-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the spatially reduced number of atoms. This is a result of larger
simulation time steps being possible due to the absence of fast
O–H vibrations, a significantly reduced number of pairwise
interactions due to the reduced number of atoms, and the very
simple CG potential form. A 1:1 CG model of water achieves both
simplicity and computational efficiency.

Machine learned bond-order potential for CG water. The ML-
BOP model is based on the Tersoff-Brenner formalism12 (Pauling
bond-order concept), which is used here to describe the short-
range directional interactions between CG water beads. The pair
potential function Vpair is given by

Vpair ¼ fC rij

� �

fR rij

� �

þ bijfA rij

� �h i

ð1Þ

where fC(rij), fR(rij), and fA(rij) are the cutoff, repulsive, and
attractive pair interactions, respectively, between bead i and j
separated by a distance rij, and bij is a bond-order parameter
which modifies the pair interaction strength between bead i and j
depending on their local chemical environment.

The cutoff function limits the range of interaction mainly to
improve computational efficiency. The function is given by

fC rð Þ ¼

1; r < R� D

1
2 �

1
2 sin

πðr�RÞ
2D

� �

; R� D< r <Rþ D

0; r > Rþ D

8

>

<

>

:

ð2Þ

where R and D are free parameters that are chosen to include only
the first nearest neighbors, such that their pair interactions are
smoothly reduced starting from the distance R−D and are
completely turned off beyond the distance R+D.

The repulsive and attractive pair interactions between CG
water beads are modeled using exponential decay functions given
by

fR rð Þ ¼ Ae�λ1r ð3Þ

fA rð Þ ¼ �Be�λ2r ð4Þ

where A, B, λ1, and λ2 are free parameters that control the overall
strength and length scale of the repulsive and attractive potentials.
Furthermore, the strength of fA(r) between beads i and j is scaled
by a bond-order term bij which is given by

bij ¼ ð1þ βnξnijÞ
� 1

2n ð5Þ

ξij ¼
X

k≠i;j
fC rikð Þg θijk

� �

ð6Þ

g θð Þ ¼ 1þ
c2

d2
�

c2

½d2 þ ðcos θ � cos θ0Þ
2�

ð7Þ

where β, n, c, d, and cosθ0 are free parameters. ξij defines the
effective coordination of bead i, taking into account the relative
distances rik and interatomic angles θijk of its neighboring beads.
The three-body angular dependence is described by the function g
(θ), which has minima defined by cosθ0 and the strength and
sharpness of its effect controlled by c and d.

Machine learned bond-order potential with on-the-fly dihe-
drals. Typical potentials (e.g., Stillinger-Weber or bond-order
based such as Tersoff as described above) are based on first
nearest neighbor interactions and hence the functional forms do
not explicitly distinguish (energetically) between cubic and hex-
agonal ice structures. To address this limitation, we extend the

Tersoff bond-order potentials to include on-the-fly dihedral cal-
culations similar to that implemented in AIREBO type models13.
The dihedral potential function is described by

VdihedralðφÞ ¼ kdih sin3p
φ

2

� �

� cospφ
h i

ð8Þ

where kdih is the minimum well-depth, p controls the steepness of
the well, and φ is the dihedral angle. In contrast to the dihedral
potential functions typically used in rigid-bond models, the well-
depth (and number of minima) of this potential changes
depending on the number and local coordination of water beads.
To improve computational efficiency and to handle any dis-
continuities due to this reactive characteristic, the Tersoff cutoff
function, fC(r), is applied to every pair of water beads constituting
a dihedral angle and an angular cutoff function, fD(θ), is applied
to every triplet of those water beads.

fD θð Þ ¼

1; cos θ2a � cos θ � cos θ1b
t21 3� 2t1ð Þ; cos θ1b< cos θ< cos θ1a

1� t22 3� 2t2ð Þ; cos θ2b< cos θ< cos θ2a
0; cos θ1a � cos θ � cos θ2b

8

>

>

>

<

>

>

>

:

ð9Þ

t1 ¼
cos θ � cos θ1a
cos θ1b � cos θ1a

; t2 ¼
cos θ � cos θ2a
cos θ2b � cos θ2a

ð10Þ

where cosθ1a and cosθ2b define the lower and upper bounds of the
angular cutoff analogous to R+D in fC(r), cosθ1b and cosθ2a
define the switching angle for the lower and upper bound angular
cutoffs analogous to R−D in fC(r).

Model parameterization. The parameterization of ML-BOP for
water requires simultaneous optimization of 11 free parameters
(R, D, A, B, λ1, λ2, β, n, c, d, cosθ0). Likewise, the parameterization
of ML-BOPdih for water requires optimization of 17 free para-
meters (R, D, A, B, λ1, λ2, β, n, c, d, cosθ0, cosθ1a, cosθ1b, cosθ2a,
cosθ2b, k, p), which makes independent fitting of the parameters
infeasible. Most of these parameters do not correspond to phy-
sical properties of the system, so they cannot be chosen based on
intuition. In this work, we employ global and local optimization
techniques and state-of-the-art machine learning principles to
search for an optimized parameter set for water as described
below.

Multi-level hierarchical objective machine learning workflow.
Our machine learning workflow to train the CG models is illu-
strated in Fig. 1. In our training scheme (Fig. 1a), we introduce a
multilevel evolutionary strategy (hierarchical objective genetic
algorithm—HOGA) to train the ML models against an extensive
training data set of energies and structural properties of ice and
liquid water derived from the best available atomistic model
(TIP4P/2005), supplemented by experimental data. The training
data in the case of ML-BOPdih also includes first principles
energetic differences reported for cubic and hexagonal ice pha-
ses14. This elaborate training data set ensures an adequate
representation of the diverse configurational space of ice and
liquid water while amply sampling the energy landscape. We use
HOGA to perform a global search followed by local optimization
to find the optimized model parameters (Fig. 1b). This circum-
vents problems encountered with the local minimizers often used
in force field fitting that rely on good starting guesses. An
important new aspect of our scheme is that the iterations involve
not just static evaluations of potential properties but also
temperature-dependent properties sampled dynamically from
several MD trajectories during the evolutionary process (10’s of
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milliseconds of overall MD trajectories). HOGA aids in an
accelerated evolutionary search by efficiently sampling the para-
meter landscape within a given GA generation, and overcoming
the limitation of assigning arbitrary weights within a single
objective thereby ensuring that all the properties (static or
dynamic) are equally well described.

Training data set. The machine learning workflow begins with
the preparation of an extensive data set, which is necessary for a
supervised training method. We build the training set from ato-
mistic MD trajectories of 1600 TIP4P/2005 water molecules,
simulated at pressure P= 1 bar over a wide range of temperatures
using the LAMMPS simulator15 with a 13 Å interaction cutoff,
the particle-particle particle-mesh method for long-range elec-
trostatic interactions, and a 1 fs time step. The training set con-
sists of various ice and liquid water configurations, which
includes hexagonal ice at 123 K < T < 273 K, supercooled liquid
water at 253 K < T < 273 K, normal condensed phase liquid water
at 273 K < T < 373 K, and ice-water interfaces. Unlike most typical
force field fitting procedures, we fit to the structure and energetics
of TIP4P/2005 water configurations in the training set but also go
beyond that by using the TIP4P/2005 training set as good starting
configurations for running MD simulations with ML models
during the fitting process. Properties including dynamical prop-
erties can be sampled from these simulations and be used to fit
directly to experimental values of thermodynamic properties.
Note that the main limitation of the TIP4P/2005 model is its
inability to get the correct melting point (Tm) and the relative
difference between temperature of maximum density (TMD) and
Tm. In such cases, we use known experimental values as targets.

All MD simulations performed during our force field fitting
workflow are run in an isobaric-isothermal ensemble at pressure
P= 1 bar and different target temperatures using the LAMMPS
simulator15. The equilibration time of these simulations varies
from 150 ps to 4 ns depending on the configuration and
temperature (e.g., shortest for ice and longest for supercooled
water). Note that the training set contains configurations of ice
and liquid water over a wide range of temperatures, static
properties as well as time-averaged properties such as ΔHm and ρi
sampled from MD simulations.

Hierarchical objective genetic algorithm (HOGA). The quality
of a proposed parameter set is evaluated based on a hierarchical
objective function (see pseudo code in Supplementary Note 1). In
the HOGA evolutionary scheme, we truncate the evaluation of a
parameter set which leads to large errors in hierarchical property
classes and assign it a penalty depending on which class it fails at.
The selection of hierarchical classes is at the discretion of the user.
In this case, the hierarchy of the property classes is as listed in
Supplementary Table 2. Note that a higher preference is given to
the temperature-dependent densities of ice, water and the melting
point to ensure that the models reproduce the density anomaly
and the relative locations of melting point and TMD. The hier-
archical approach aids in an accelerated evolutionary search by
efficiently sampling the parameter landscape within a given
generation, and overcoming the limitation of assigning arbitrary
weights within a single objective thereby ensuring that all the
properties (static or dynamic) are equally well described.

Given the objective function definition as described above, we
proceed to apply a two-stage optimization technique to search for
a suitable parameter set for water in the multi-dimensional
parameter space. The goal is to locate the global minimum in the
objective value landscape. We strategically start with a broad
survey of the landscape using global optimization methods
followed by a deeper refinement search using local optimization

methods. In principle, any combination of global and local opti-
mization methods should work for such a workflow. Here,
we choose to use the genetic algorithm16 (GA) for global
optimization and the Nelder-Mead simplex algorithm17 for local
optimization.

Using HOGA, the global optimization process begins with the
initialization of a population of Np random parameter sets. The
objective value Δ(i) for each of these parameter sets is evaluated
and their convergence is checked. If the convergence criteria are
not met, then a new list of Np parameter sets is derived using
genetic operations (selection, cross-over, mutation, etc.) from the
m old parameter sets having the lowest objective values. The
selection operation creates a list of best parameter sets based on
their objective values, which mimics the principle of “survival of
the fittest” in evolution. The crossover operation intermixes these
parameter sets to generate new potential good candidates,
analogous to how good traits are passed from biological parents
to their offspring. The mutation operation introduces sufficient
diversity into the population to avoid pre-mature convergence of
the GA run, which also provides the population the opportunity
to improve beyond those possible via inheriting traits from parent
structures (crossover). In this work, we used tournament selection
without replacement as the selection operation, the simulated
binary method as the crossover operation with an operation
probability of 0.9, and a polynomial of order 20 for the mutation
operation with an operation probability of 0.1. The objective
value is evaluated for the new parameter sets followed by
convergence test. This routine is iteratively performed until
convergence.

To effectively survey the objective landscape, we typically
perform at least 20 GA runs simultaneously (up to a total of 100
runs), where each GA run has a population size of 200 and run
for about 100 generations. The global optimization stage typically
returns a list of close-to-optimal parameter sets which we further
refine using local optimization techniques. In this work, we use
the Nelder-Mead simplex algorithm17 for local optimization, and
the final parameter set is chosen based on the performance in
validation tests. The best parameter sets for ML-BOP and ML-
BOPdih optimized through HOGA are provided in Table 3.

Model validation and performance of machine learned CG
water models. Figure 1c, d compares structural and dynamics-
inferred properties with experimental data. Our ML-BOP models
successfully capture the best-known thermodynamic anomaly,
the existence of a density maximum at 277 K (Fig. 1c); they
correctly describe the freezing/melting transition at 273 ± 1 K,
and densities of ice (140 K–273 K) and water (243 K–373 K)
within 1.4% of experiments. Capturing the correct value of the
TMD relative to the melting point has remained a challenge for
all water models10,18,19. TIP4P/2005 is the best atomistic model to
depict TMD but underestimates the melting point by 20 K.
Regarding transport properties (Fig. 1d), the room temperature
diffusivity, ML-BOP models is ~3 × 10−5 cm2 s−1 in close
agreement with experiment20 (2.3 × 10−5 cm2 s−1). Both ML
models slightly overestimate diffusivities in the supercooled range
but outperform other existing water models (Supplementary
Figure 2b).

Figure 1e compares the O–O radial distribution function
(RDF) for ice Ih at 77 K and (supercooled) liquid water at 254 K
derived from experiments. The location and intensities of the
peaks corresponding to first, second and third coordination shells
are in good agreement. ML-BOP models, however, over-structure
water, and underestimate the exchange of water molecules
between first and second coordination shell21,22 (deeper mini-
mum in the radial distribution function or RDF at ~3.4 Å). Our
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model is suitable for mesoscopic phenomena, such as ice
nucleation and grain growth as well as applications involving
polycrystalline ice, e.g., friction, mechanics of ice, melting of ice
crystals, or pollutant effects on nucleation and ice grain growth
(for example, see Supplementary Figure 4). The model captures
the temperature and pressure dependent (Supplementary Fig-
ure 6) trends of these peaks. The ML-BOP calculated number of
water neighbors in the first solvation shell, integrated out to the
predicted temperature independent isosbestic point (r= 3.25 Å),
is 4.7 in accordance with the experimental range of 4.3–4.723,24.
Also, the angular distribution function at 298 K agrees well with
TIP4P/2005 (Supplementary Figure 5b). The ML-BOP heat
capacities for liquid water, with respect to their values at 309 K,
reproduce the thermodynamic anomaly indicated by the sharp
increase in Cp of supercooled water (Fig. 1f). We also introduce
an ML-BOPdih which represents a modification of ML-BOP
model to include on-the-fly dihedrals. ML-BOPdih performs on
par with ML-BOP and additionally was trained using HOGA to
capture the DFT predicted free energy difference (~1.4 meV/atom
per water molecule) between ice polymorphs. The performances
of both ML-BOP and ML-BOPdih are detailed in Tables 4–6 and
Supplementary Figure 2-6. Overall, the trained ML models
perform better or on par with the best available water models in
several of the properties listed, but at a fraction of the
computational cost.

HOGA to retrain existing best performing CG models. Our
machine learning strategy is quite general and can be used to
improve a variety of existing material models. To demonstrate
this capability, we retrain the best available coarse grained model,
for water, i.e. the mWmodel10, against our training data-set using
the HOGA ML workflow. The new mW model trained using the
machine learning workflow (termed ML-mW and given in
Table 3) correctly captures the TMD, the density and structure of
ice in the supercooled regime (140–270 K) as well as improves
several thermodynamic and transport properties compared to

original mW while retaining the structure (e.g., RDF) of liquid
mW water. The limitation of the ML-mW is that the melting
point is slightly over-predicted (~289 K) and, in contrast with the
ML-BOP and ML-BOPdih models, is unable to get the relative
difference between Tm and TMD. Nevertheless, the overall pre-
dictions of ML-mW are better than the original mW in several
properties (see Fig. 2 and Tables 1 and 5).

Briefly, the ML trained mW improves upon several of the
properties compared to the original mW. For example, the
diffusion coefficient at 300 K is 4.8 × 10−5 cm2 s−1, which is
closer to the experimental value of 2.4 × 10−5 cm2 s−1. Likewise,
the density of ice at the melting point improves from 0.978 to
0.930 g cm−3, which is closer to the experimental ice density
(0.917 g cm−3). The volume change upon melting, the TMD as
well as the enthalpy of melting show an improvement over the
original mW model. Other properties such as (dp/dT)melt also
show a significant improvement as detailed in Table 5. Note that
these improved predictions come by sacrificing the melting point;
the ML-mW predicts the melting point to be 289 K which is 16 K
higher than the original mW and experimental melting point.

Table 4 Solid-liquid interfacial energies for hexagonal ice

γ (mJ m−2)

Exp 29–33a

ML-BOP 26.3
ML-BOPdih 26.8
ML-mW 29.3
mW 35b

TIP4P/2005 29b

TIP4P/Ice 30b

TIP4P-Ew 37c

TIP5P 42c

aref. 60
bref. 62
cref. 61

Table 3 Force field parameters of ML models optimized using our developed workflow

ML-BOP

m a Gamma a λ3 (Å−1) a

1.0 1.0 0.0
C d cosθ0 n β

77638.534354 16.148387 −0.471029 0.770018 1e-06
λ2 (Å−1) B (eV) R (Å) D (Å) λ1 (Å−1) A (eV)
2.199640 473.621419 3.282761 0.270511 2.750522 1684.301476
ML-BOPdih

m a Gamma a λ3 (Å−1) a

1.0 1.0 0.0
C d cosθ0 n β

77638.534354 16.148387 −0.471029 0.770018 1e-06
λ2 (Å−1) B (eV) R (Å) D (Å) λ1 (Å−1) A (eV)
2.199640 473.621419 3.282761 0.270511 2.750522 1684.301476
cosθ1a cosθ1b cosθ2a cosθ2b kdih (eV) p

0.156434 0.017452 −0.390731 −0.5 0.2e-3 8
ML-mW b

ϵ (eV) σ (Å) a λ γ cosθ0
0.297284 1.884015 2.124872 24.673877 1.207943 −0.279667
A B p q tol a

7.111598 1.991526 4.011214 0.0 0.0

aParameters that are not optimized in our ML workflow
bSee Supplementary Equation 1–3 for the functional form (Stillinger-Weber, same as mW10)
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The HOGA algorithm is able to efficiently sample the high-
dimensional parameter space and arrive at an optimal set of mW
parameters with an improved overall score for the properties
listed in Table 1.

Origin of the improvement in the ML model performance. To
elucidate the improvements of the ML-mW and ML-BOP mod-
els, we compare the pair-wise interaction energy curves of these
two models with the original mW model (Fig. 3a). As seen in
the energy curves representing only the 2-body interactions
(solid line style), there are two notable differences as we go from
mW to ML-mW to ML-BOP. There is a progressive steepening
of the repulsive wall at r < 2.7 Å, and the interaction cutoffs
become shorter (4.3 Å to 4.0 Å to 3.6 Å). A large increase in
repulsive interaction can also be inferred from the ~3.3 times
larger value of parameter B (coefficient of the repulsive term) in
the functional form of ML-mW vs. mW (Supplementary Table 1).
Furthermore, in contrast to a previous study that mW has the
shortest optimal interaction cutoff necessary for capturing the
anomalous properties of water25, HOGA is able to find a model
with a shorter cutoff that improves the original model. The
shorter cutoff of ML-mW also contributes to its improved effi-
ciency over mW (Table 2). ML-mW has a 3° deviation (left shift
of minimum in Fig. 3b) from the ideal tetrahedral angle of
109.47° (in mW), and has a larger 3-body energy penalty for
interatomic angles θ >130° but a smaller penalty for θ < 70°. The

dashed and dotted cross marks in Fig. 3b mark the interatomic
angles (~37°, ~72°, ~155°) at which the dashed and dotted energy
curves in (a) are evaluated. The overall effect of bond order in the
two models appears similar. We note that there have been prior
efforts by Molinero and co-workers at improving the para-
meterization of the mW model using relative entropy mini-
mization26 (REM) as well as using uncertainty quantification25

(UQ). Both of these studies provide useful insights into the effect
of model parameters on system properties. Note that while the
search spaces in UQ were localized around the already optimized
mW set, the parameter search in the REM procedure was global.
In both the cases, the overall performance of those re-
parameterized models were found to be poorer when compared
to the original mW. In the present case, the performance
improvements in ML-mW arise from a drastic deviation of
potential parameters from the already optimized mW parameter
set. This signifies the effectiveness of HOGA in navigating the
high-dimensional parameter space and arriving at a set of optimal
parameters that outperforms other optimization techniques such
as REM and UQ.

Although both ML-mW and ML-BOP have quantitively
improved the description of liquid density anomaly as well as
the density of ice in mW, only ML-BOP (in fact out of all
currently existing water models) is able to capture the correct
ordering and the relative temperature difference between the
melting point and TMD of water. A major difference is the use of
explicit cutoff by the Tersoff functional form (ML-BOP models)
as against the implicit cutoff functions employed by Stillinger-
Weber form (mW models). An explicit cutoff function provides
the flexibility to modify the tail portion of the pair interaction
energy curve independent of the rest of features such as the
repulsive wall, location and depth of minimum, etc. (see inset of
Fig. 3c). As the ML-BOP cutoff (R+D) becomes smaller, while
keeping the switching distance (R−D) fixed, the relative
separation between the melting point (cross marks) and TMD
(vertical dotted lines) reduces and their ordering eventually flips
(Fig. 3c). We further note that the tail portion of the interaction
energy curve also has a strong influence on other properties
including the liquid densities, ice densities close to the melting
point, enthalpy of melting, diffusion coefficients, etc., which
exemplifies the challenge in simultaneously optimizing many
properties (i.e., multi-objective) and the need of a ML workflow

Table 5 Properties of ML models compared to experiments and other popular water models

Exp ML-BOP ML-BOP/dih ML-mW mW TIP4P/2005 MB-pol iAMOEBA SPC/E TIP3P

Neighbors (3.3 Å cutoff) 4.51a 4.66 4.67 4.58 4.49 4.44 4.58 4.46 4.41 4.55
D298 K (×10−5 cm2 s−1) 2.3b 3.0 3.0 4.7 6.4 2.1 2.2 2.5 2.5 5.2
ρ298K,1atm (kg m−3)b 997.0 995.6 996.5 997.0 997.3 993 1007 997 994 982
ρmax (kg m−3)c 999.9 998.3 999.0 998.5 1003.8 1001 1014 999.9 1012 1038
TMD (K)c 277 276 278 279 251 278 258 277 241 182
ΔHvap (kcal mol−1) 10.52 10.01 10.01 10.30 10.66 11.98 10.1 10.94 11.69 10.49
Tm (K) 273 273 273 289 273d 252 264 261 215 146
TMD—Tm (K) 4 3 5 −10 −24 26 −6 16 26 36
ΔHmelt (kcal mol−1)c 1.44 1.23 1.23 1.40 1.26 1.16 – 1.19 0.74 0.30
ΔSmelt (cal mol−1K−1) 5.27 4.52 4.52 4.84 4.60 4.6 – 4.56 3.44 2.06
ρliq at Tm (kg m−3)c 999.8 997.95 998.0 998.5 1001.0 993 1013 999 1011 1017
ρIh at Tm (kg m−3)c 917 929 930 928 978 921 920 929 950 947
ΔVmelt (cm3 mol−1) −1.61e −1.35 −1.39 −1.38 −0.42 −1.42 −1.80 −1.36 −1.14 −1.31
(dp/dT)melt (bar K−1) −137f −141 −136 −146 −463 −135 – −141 −126 −66

aref. 23
bref. 20
cProperties that are included in the training of ML models
dref. 64
eref. 63
fref. 59

Properties comparison from experiments55, popular polarizable8, 19 and non-polarizable models26

Table 6 Mean enthalpy and free-energy of various ice

polytypes predicted by ML-BOPdih

Stacking Mean enthalpy

(eV/molecule)

Free energy, G

(eV/molecule)

G - GIh

(meV/molecule)

Ic(ABCABC) −0.39506 −0.50768487 0.959
Ih (ABABAB) −0.39528 −0.50864357 0.000
ABABCB −0.39526 −0.50809176 0.552
ABACBC −0.39511 −0.50790687 0.737
ABCACB −0.39509 −0.50793255 0.711
ABCBAB −0.39526 −0.50808043 0.563
ABCBCB −0.39523 −0.50810750 0.536

The mean enthalpy and free-energy (eV/molecule) are computed at 260 K. The free energy
difference relative to the most stable hexagonal ice phase is also given
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in place of the local optimization based fitting procedures and/or
driven by human intuition.

Simulations of ice nucleation in supercooled water. As a
representative test case, we perform MD simulations on multi-
million water molecules using ML-BOP models to understand at
the molecular level homogeneous nucleation of supercooled water
leading up to the formation and growth of grains of ice. Figure 4
summarizes the initial stages of nucleation leading up to the
formation of polycrystalline ice for one such trajectory when
water is slowly cooled from 275 to 210 K over 130.4 ns (cooling
rate ~0.5 K ns−1). Following the appearance of the first stable
nuclei at ~210 K, the temperature was held at 210 K for a further
100 ns to study the nucleation and growth processes in this
homogeneously nucleated water. Figure 4a shows the potential
energy variation as a function of time during the cooling phase
and constant temperature phase. We identify four distinct stages
during the freezing process: a long quiescent time period of ~130
nanoseconds before the first nucleation events; a period of slow
transformation with a limited number of nuclei (13 at t= 150 ns,
Fig. 4d); accelerated transformation driven by growth of a greater
number of nuclei (~185 at 200 ns); and completion of grain
growth to form a polycrystalline box of ice. Figure 4b shows the
corresponding snapshots during the initial quiescent period when
the system explores the relatively flat energy landscape before
entering the nucleation and growth period. The molecular level
illustration is consistent with classical nucleation theory; the
quiescent period is marked by pronounced fluctuations of many
subcritical nuclei which rapidly form, break and reform in the
supercooled liquid as shown in Fig. 4d. The post-quiescent period
shown by MD snapshots in Fig. 4c is marked by formation of
multiple stable nuclei which grow slowly followed by a rapid
growth phase when the grains begin to percolate through the

entire three-dimensional space. The completion of the growth
phase is characterized by the formation of a polycrystalline ice
with the nanoscopic grains separated by boundaries comprised of
amorphous ice. A local structure analysis (see Methods) of the
growing structure reveals that the grains are comprised of
stacking disordered ice (Isd) i.e., randomly mixed alternating
sheets of hexagonal and cubic ice (see Supplementary Figure 7 for
the local structure). Figure 4e shows that the evolving ice struc-
ture becomes increasingly rich in Ic phase compared to the more
stable Ih phase with the ratio of cubic to hexagonal to be ~1.85 at
the end of t= 350 ns. The observed preference for cubic ice
formation is consistent with multiple experimental results in the
past including a recent X-ray diffraction study27 and CG simu-
lations28 as well as atomistic simulations using forward-flux
sampling technique29.

Nature of polycrystalline ice and transformation of stacking
disordered ice to hexagonal ice. The final microstructure at 230
ns (Fig. 4c) is fine grained (average grain size ~9300 water
molecules) and is expected to anneal over long times (micro-
second to seconds) to naturally observed larger grains. We slowly
anneal the nanocrystalline sample by heating from 210 to 260 K
over 100 ns and then hold the sample at 260 K until the grains
coarsen. The polycrystalline sample evolves into a single grain at
the end of 1 microsecond of simulation (Fig. 5a). The internal
structure of the grains is ice Isd, i.e., randomly mixed alternating
sheets of hexagonal and cubic ice, comprised of stacking faults
that evolve over time (Fig. 5b). The ice Isd structure observed in
our simulations is rich in Ic phase compared to the more stable Ih
phase with the ratio of cubic to hexagonal being ~2 by 1200 ns
(Fig. 4e).

The preference for ice Isd formation during nucleation is
consistent with recent experiments and simulations27–30 but the
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stacking disorder in polycrystalline ice has been much debated27.
Kuhs et al.31 have analyzed neutron diffraction data and electron
microscopy images to study the extent of stacking disorder in ice
in the 170–190 K range. They tracked the evolution of cubicity as
a function of time and note that the fraction of cubic stacking
sequences is ~0.5. At temperatures > 180 K, cubicity decreases
slowly to approach pure Ih after annealing over 10–12 h. Molinero
and co-workers28 have analyzed the structure of ice that
crystallizes at 180 K and shown that the ratio of cubic to
hexagonal stacking sequences is ~2:1, which is similar to those
found in our work. Indeed, more recent studies by Amaya et al.32

using femtosecond wide-angle x-ray scattering confirm that ice
formed by nanodroplets that freeze rapidly at timescales of the
order of 1 microsecond indeed have much higher cubicity values
~0.78 ± 0.05. This value is much higher than that reported by
Kuhs et al.31. Nonetheless, these studies suggest that there can be
a range of stacking disordered ice with different cubicity. The
differences in the extent of stacking disorder were attributed to
the differences in freezing temperatures33, the size of droplets
(nanosized vs. micron sized) and the freezing rates34 (micro-
seconds vs. seconds) to name a few.

Capturing the energetic ordering and the subtle energetic
differences between ice phases within a molecular model remains

a major challenge. While the stable phase at weak undercooling is
Ih, the ice phase that nucleates from supercooled water is,
however, the stacking disordered ice. Free energy calculations
performed by Molinero and co-workers30, using the mW model,
show that the entropy of mixing of cubic and hexagonal layers
makes stacking-disordered ice the stable phase for crystallites
sizes up to 100,000 molecules. We note that the free energy cost of
producing a growth fault in ice Ih for the mW model is ~15.3 ±
2.3 J mol−1 (0.159 ± 0.024 meV), which is consistent with the
experimental value of 16.5 ± 1.7 J mol−1 (0.171 ± 0.018 meV)
reported by Hondoh et al.35. Depending on the experimental
conditions and the method of sample preparation, there is a range
of free energy or enthalpy reported for the transformation of
stacking disordered ice to pure hexagonal ice. For example,
Ghormley et al.36 report transformation of cubic to hexagonal
crystals to be ~22 J mol−1 (0.228 meV) in heating from 223 to
268 K. Differential scanning calorimetry of transformation of
cubic ice (prepared by rapid quenching of liquid water at 190 K)
to hexagonal ice report a slightly higher value ~56 J mol−1

(0.580 meV). On the other hand, McMillian et al.37 used
calorimetry measurements and report a heat of transformation
ΔH= 160 J mol−1 (1.658 meV) between ‘cubic’ and hexagonal
ice. Likewise, Shilling et al.38 prepared amorphous ices by vapor
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Fig. 4 Homogeneous nucleation simulations of ice performed using ML-BOPdih. System dynamics and evolution of structural motifs during the cooling

phase from homogeneous nucleation leading up to the grain boundary formation and grain growth (Supplementary Movie 1). a The total potential energy

variation of the 2 million-water molecule system during the cooling phase from 275 to 210.5 K and at longer times when the system temperature is kept

constant at 210.5 K. We identify four distinct stages: an initial quiescent time shown by the red line when no nucleation event occurs; the nucleation

followed by an initial slow transformation shown by the slow energy decreasing period in green; a fast transformation phase of the grains shown by the

rapid decrease in potential energy in blue; and a plateauing of potential energy shown in purple marks the completion of the phase transformation. b The

snapshots show the subcritical water nuclei during the long quiescent phase leading up to the nucleation. The first nucleation event for the 2 million-water

system occurs at t = 130 ns. Liquid water molecules are not shown for clarity. c MD simulation snapshots showing the various stages of grain growth and

grain boundary during the post-nucleation stage. Blue, brown and green spheres represent cubic, hexagonal and amorphous ice, respectively. Liquid water

is omitted for clarity. d The temporal evolution of the number of subcritical water nuclei (size <100 molecules) from the quiescent period and the initial

appearance of stable nuclei during the post-nucleation stage. e The corresponding temporal evolution of the fraction of cubic and hexagonal ice
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deposition at 90 K and transformed them to stacking disordered
ice by heating up to about 160 K. They report a free energy
change of 155 ± 30 J mol−1 (1.606 ± 0.31 meV) for transforming
Isd to Ih. This value is much higher than that reported by
Ghormley et al.36. Differential thermal analysis also suggests heat
release of similar order when Ic transforms to more thermo-
dynamically stable Ih39. Note that the mW predicted free energy
is lower than the experimental values of Shilling et al.38 and
McMillian et al.37. On the other hand, recent ab initio studies also
suggest a thermodynamic preference for Ih compared to Ic (~1.4
meV per H2O arising from the difference in anharmonicity
between cubic and hexagonal ice)14. While DFT-PBE may not be
the best method for estimating the energetics of ice, this high free
energy difference between Ic and Ih cannot be captured by nearest
neighbor interactions as is the case in ML-BOP, ML-mW and
mW. We, therefore, introduce an additional four-body term to
the ML-BOP in the form of on-the-fly dihedrals model and
retrained this ML-BOPdih model by including the average energy
difference between cubic and hexagonal ice (reported in ref. 14

using DFT-PBE) in the training data set. This 4-body term
essentially captures the energetics difference provided by the PBE

input data in ref. 14. One can retrain the 4-body term (Eqs. 8–10)
if new improved ab initio data becomes available.

To test the thermodynamic preference of our new ML-BOPdih
model, we calculate the free energies of various ice phases
(Fig. 6a) within the quasi-harmonic approximation (see Meth-
ods). Our model is able to capture the temperature-dependent
stability of cubic, stacking disordered and hexagonal phases;
hexagonal is the most stable phase and is ~1 meV per molecule
lower than the metastable cubic phase at 260 K (Table 6). Despite
Ih being energetically preferred compared to Isd, we do not
observe a transformation to a pure hexagonal phase even after
1.3 μs of simulations possibly due to sufficiently large activation
barrier. Indeed, climbing image Nudged Elastic Band (CI-NEB)
calculations within the framework of ML-BOPdih show that the
energetic barrier associated with elimination of a stacking fault
plane in hexagonal ice is ~170 meV (Fig. 6b). The atomic-scale
pathway governing the transformation of a representative Isd with
ABCBAB stacking to Ih (ABABAB) is shown in Fig. 6b. The
sliding of the molecules in the C-plane to their respective A-plane
positions entails a range of concerted molecular motions
involving stretching/rotation of hydrogen bonds. These

t = 364 ns t = 504 ns t = 844 ns t = 1030 ns

Grain growth

Evolution of stacking faults

In-plane transformation

10 nm 10 nm 10 nm 10 nm

a

b

c

Fig. 5 Post-nucleation ice grain growth simulations performed using ML-BOPdih. System dynamics and evolution of structural motifs of post-nucleation

phase after the slow heating from 210 to 260 K. a Snapshots from simulations showing the grain growth process of nanosized grains at 260 K evolving into

a single grain. (see Supplementary Movie 2 for a zoom-in view) b Snapshots from simulations (Supplementary Movie 3) showing the time evolution of

hexagonal layers in stacking disordered ice. Cubic type molecules are not shown for clarity. Note that the ML-BOP model considers only nearest neighbor

interactions but is able to reproduce the random stacking-disorder which is consistent with experimental observations31. c Snapshots from simulations

(Supplementary Movie 4) showing the in-plane transformation between cubic and hexagonal layers in stacking disordered ice, viewed along the direction

perpendicular to the basal plane of the largest stacking ice grain in the system
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coordinated movements result in localized strain in the vicinity
of the stacking fault plane and underlie the activation barrier
(~170 meV) associated with elimination of the fault. Thermal
fluctuations at 260 K (kT ~ 22 meV) are sufficiently small to
preclude observation of the Isd → Ih transformation within μs
timescales. In-plane Isd → Ih transitions have much lower barriers
(~5 meV per water) and are frequently observed at MD timescales
(see Fig. 5c and Supplementary Movie 3, 4). Indeed, this behavior
is consistent with the partial dislocation mechanism proposed by
Hondoh et al.40. It is also worth noting that the hexagonal ice
becomes thermodynamically more favorable as we approach the
melting point; hence the free energy difference between Ih and Ic
is expected to increase (as shown in Fig. 6a). The different
stacking-disordered ice configurations have much smaller free
energy difference (<0.2 meV per water), which can explain the
presence of random stacking disorder observed in previous
experiments41 and simulations27,28,31,41–43.

In summary, we introduced a machine learning strategy to
train CG models, namely ML-BOP, ML-BOPdih and ML-mW, for
water simulations. As proof-of-principle, we use the developed
ML CG models (ML-BOP and ML-BOPdih) to elucidate the
mesoscale mechanism of ice grain formation and growth from
supercooled water. In light of the accuracy and speed of our ML

potential models, we foresee their wide usage in problems
including phase transitions, homogeneous and heterogeneous
nucleation, interfacial properties, co-existent regimes, and
mechanical behavior, all at system sizes and times inaccessible
to current popular models such as the TIP5P and TIP4P models.

Methods
Molecular dynamics simulations. Using the final ML-BOP and ML-BOPdih
potentials, we perform massively parallel, long-time MD simulations of super-
cooled water to study the sequence of steps from nucleation to grain formation and
coarsening. We start with a simulation cell containing 2,048,000 molecules of water
at 275 K. Simulations with a larger sized cell containing ~8 million water molecules
are also performed. In both the cases, the structure is minimized and equilibrated
for 100 ps at 275 K in an NPT ensemble. Subsequently, the liquid water is cooled
down to 200 K over 150 ns under isobaric conditions. We observe the first stable
nuclei at ~210 K. Consequently, we stop the cooling at 210 K and hold the super-
cooled liquid at 210 K for 100 ns. Following nucleation and growth of nanocrys-
talline ice grains at this temperature, we anneal the structure to 260 K at a rate of
0.5 K ns−1 and then hold it at 260 K beyond a microsecond to study the temporal
evolution of grains.

Identification of ice polytypes and grains. Hexagonal (Ih), cubic (Ic), and
amorphous/liquid phases of ice are determined using a structure identification
algorithm44 implemented in the visualization software OVITO45. The molecules
are color coded according to their local environment (see Supplementary Figure 7).
A feature detection algorithm based on image processing and unsupervised
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machine learning (clustering) techniques46 is developed to identify individual
grains and their size distribution. The procedure involves voxelization (5 Å bin),
contrasting filters, thresholding, DBSCAN clustering47, refinement, and position-
based reverse mapping. All nearest neighbor searches are performed using a per-
iodic k-d tree. This grain identification procedure accurately identifies small and
large grains that are often irregularly shaped.

Energy barrier calculations of stacking faults. The activation energy associated
with the elimination of stacking fault plane in hexagonal ice is computed using
Climbing Image Nudged Elastic Band (CI-NEB) calculations within the framework
of ML-BOPdih as implemented in LAMMPS48–50. For these calculations, the
computational supercell consists of 6 layers (432 water molecules), with 72
molecules in the stacking fault plane.

Free energy calculations. Free energies of the cubic, hexagonal, and stacking
disorder ice polytypes are computed within the quasi-harmonic approximation51

using Phonopy52 to account for variation of phonon modes due to thermal
expansion. For each ice phase, we first optimize the geometry of the unit cell in the
framework of ML-BOPdih until the energy difference between consecutive steps is
<10−4 eV, and the atomic forces are within 10−3 eV Å−1. Next, we determine the
changes in volume owing to thermal expansion using 1 ns long MD simulations at
zero pressure and desired temperature. At each volume, phonon frequencies and
related vibrational properties are computed via finite displacement approach using
sufficiently large supercells (~ 88 Å × 70 Å × 66 Å) and displacement of 0.015 Å.
The computed volume-dependence of phonon frequencies are then used to com-
pute vibrational contribution to free energy at each temperature.

Ice-liquid surface tension calculations. The liquid-ice surface tension is calcu-
lated using the mold integration method53. The well depth is chosen to be 10 meV
based the value chosen for the original mW model54. The system consists of 1600
wells and a total of 6000 water molecules. The temperature for this calculation was
chosen to be the freezing temperature for each of the respective models. The slab is
2 unit cells in thickness in the Z-direction which is the interfacial direction. To
obtain the free energy vs well radius curve, a series of thermodynamic integrations
are performed by incrementing the well radius by 0.1 Å increments. This covers a
range from 0.4 Å up to 1.2 Å. These values were used to create a linear curve that
could be used to extrapolate back to the optimal well radius to obtain the correct
value for the surface tension. This is in line with the procedure outlined in ref. 53.
After the curve is obtained, the optimal well depth for both systems is determined
by running a simulation at each well radius and monitoring the crystallinity of the
system. Each simulation is run for 10 ns. Once an approximate range is identified a
set of intermediate radius values is examined to find the optimal well radius. We
first benchmarked our procedure for the original mW and validate that the ice-
liquid surface tension was 35 mJ/m2 consistent with that reported in refs. 53,54. For
the ML-BOP and ML-BOPdih it is found to be roughly 0.65 A while for the ML-
MW it is found to be 0.45 Å, which yields the values in Table 4.

Code availability. Code and workflow developed in this study are available from
the authors upon reasonable request.

Data availability
The data that support the findings of this study are available from the authors upon
reasonable request.
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