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Abstract—An increasing number of Internet of Things (IoT)
devices are connecting to the Internet, yet many of these devices
are fundamentally insecure, exposing the Internet to a variety
of attacks. Botnets such as Mirai have used insecure consumer
IoT devices to conduct distributed denial of service (DDoS)
attacks on critical Internet infrastructure. This motivates
the development of new techniques to automatically detect
consumer IoT attack traffic. In this paper, we demonstrate
that using IoT-specific network behaviors (e.g., limited number
of endpoints and regular time intervals between packets) to
inform feature selection can result in high accuracy DDoS de-
tection in IoT network traffic with a variety of machine learning
algorithms, including neural networks. These results indicate
that home gateway routers or other network middleboxes could
automatically detect local IoT device sources of DDoS attacks
using low-cost machine learning algorithms and traffic data
that is flow-based and protocol-agnostic.
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I. INTRODUCTION

The number of Internet of Things (IoT) devices is pro-

jected to grow from 8 billion in 2017 to 20 billion in 2020

[1]. Yet, many of these IoT devices are fundamentally inse-

cure. One analysis of 10 currently popular IoT devices found

250 vulnerabilities, including open telnet ports, outdated

Linux firmware, and unencrypted transmission of sensitive

data [2], [3].

The proliferation of insecure IoT devices has resulted

in a surge of IoT botnet attacks on Internet infrastructure.

In October 2016, the Mirai botnet commanded 100,000

IoT devices (primarily CCTV cameras) to conduct a dis-

tributed denial of service (DDoS) attack against Dyn DNS

infrastructure [4]. Many popular websites, including Github,

Amazon, Netflix, Twitter, CNN, and Paypal, were rendered

inaccessible for several hours. In January 2017, the Mirai

source code was publicly released; DDoS attacks using

Mirai-derived IoT botnets have since increased in frequency

and severity [5].

This growing threat motivates the development of new

techniques to identify and block attack traffic from IoT

botnets. Recent anomaly detection research has shown the

promise of machine learning (ML) for identifying malicious

Internet traffic [6]. Yet, little effort has been made to engi-

neer ML models with features specifically geared towards

IoT device networks or IoT attack traffic. Fortunately, how-

ever, IoT traffic is often distinct from that of other Internet

connected devices (e.g. laptops and smart phones) [7]. For

example, IoT devices often communicate with a small finite

set of endpoints rather than a large variety of web servers.

IoT devices are also more likely to have repetitive network

traffic patterns, such as regular network pings with small

packets at fixed time intervals for logging purposes.

Building on this observation, we develop a machine learn-

ing pipeline that performs data collection, feature extraction,

and binary classification for IoT traffic DDoS detection. The

features are designed to capitalize on IoT-specific network

behaviors, while also leveraging network flow characteristics

such as packet length, inter-packet intervals, and protocol.

We compare a variety of classifiers for attack detection, in-

cluding random forests, K-nearest neighbors, support vector

machines, decision trees, and neural networks.

Given the lack of public datasets of consumer IoT attack

traffic, we generate classifier training data by simulating a

consumer IoT device network. We set up a local network

comprised of a router, some popular consumer IoT devices

for benign traffic, and some adversarial devices performing

DoS attacks. Our classifiers successfully identify attack

traffic with an accuracy higher than 0.999. We found that

random forest, K-nearest neighbors, and neural net classifiers

were particularly effective. We expect that deep learning

classifiers will continue to be effective with additional data

from real-world deployments.

Our pipeline is designed to operate on network mid-

dleboxes (e.g. routers, firewalls, or network switches) to

identify anomalous traffic and corresponding devices that

may be part of an ongoing botnet. The pipeline is flow-

based, stateless, and protocol-agnostic; therefore, it is well

suited for deployment on consumer home gateway routers

or ISP-controlled switches. To our knowledge, this is the

first network anomaly detection framework to focus on IoT-

specific features, as well as the first to apply anomaly

detection specifically to IoT botnets at the local network

level.
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II. BACKGROUND AND RELATED WORK

In this section, we present a brief background on network

anomaly detection and middlebox limitations.

A. Network Anomaly Detection

Anomaly detection aims to identify patterns in data that

do not conform to expected behavior. In the context of our

work, anomaly detection techniques may be used to discern

attack traffic from regular traffic. Simple threshold-based

techniques are prone to incorrectly classifying normal traffic

as anomalous traffic and are unable to adapt to the evolving

nature of attacks [6]. More sophisticated anomaly detection

algorithms, particularly those using machine learning, can

help minimize false positives. Such approaches include deep

neural networks, which promise to outperform traditional

machine learning techniques for sufficiently large datasets.

Anomaly detection has long been used in network in-

trusion detection systems (NIDS) for detecting unwanted

behavior in non-IoT networks. The NIDS literature can

therefore inform the choice of anomaly detection methods

for IoT networks. In particular, the literature suggests near-

est neighbor classifiers [8], support vector machines [9],

and rule-based schemes like decision trees and random

forests [10], [11] as promising approaches.

Although there are parallels between NIDS and IoT

botnet detection, there has been little work tailoring anomaly

detection specifically for IoT networks. Our underlying

hypothesis is that IoT traffic is different from other types

of network behavior. For example, while laptops and smart

phones access a large number of web endpoints due to web

browsing activity, IoT devices tend to send automated pings

to a finite number of endpoints. IoT devices also tend to

have a fixed number of states, so their network activity is

more predictable and structured. For instance, a smart light

bulb could have three states: ”On,” ”Off”, and ”Connecting

to Wi-Fi,” each with distinctive network traffic patterns.

This hypothesis is supported by the literature. Apthorpe et

al. demonstrate how the finite states of consumer IoT devices

can actually be reflected in the repeated temporal structures

of send/receive traffic rates; this can even be used to in-

fer consumer usage behaviors [7]. Similarly, the SCADA

anomaly detection literature notes the unique network traffic

patterns of sensors and controllers in infrastructure systems

[12], [13]. Miettinen et al. further show how machine

learning techniques can leverage the unique patterns of IoT

network traffic for similar tasks, such as device identification

[14]. Therefore, we use network traffic features that capture

IoT-specific behaviors to better model IoT DoS attack traffic

for anomaly detection.

B. Network Middlebox Limitations

Network middleboxes have limited memory and process-

ing power, imposing constraints on the algorithmic tech-

niques used for anomaly detection. The literature contains

suggestions for how to meet these constraints. For example,

Sivanathan et al. investigated the use of software defined

networks to monitor network traffic at flow-level granular-

ity [15]. Their work suggests that using flow-based features

can be effective in detecting security threats without incur-

ring the high cost of deep-packet inspection. An anomaly

detection framework for a consumer smart home gateway

router should therefore have the following characteristics:

• Lightweight Features. Routers must handle high band-

width traffic, so any features generated must be

lightweight [16]. In order for an algorithm to scale

to high bandwidth application, a given algorithm must

rely on network flow statistics (how packets are sent) as

opposed to deep packet inspection (what is in a packet).

• Protocol Agnostic Features. Routers must process pack-

ets from a variety of protocols (e.g. TCP, UDP, HTTP,

etc.), so the algorithm must consider packet features

shared by all protocols.

• Low Memory Implementation. Routers are only able

to maintain limited state due to memory constraints;

caching adds latency and complexity. Thus, an optimal

algorithm is either stateless or requires storing flow

information over short time windows only [15].

III. THREAT MODEL

Our threat model (Fig. 1a) makes various assumptions

about consumer IoT networks. We assume the network

includes an on-path device, such as a home gateway router or

other middlebox, that can observe traffic between consumer

IoT devices on the local network (e.g. a smart home LAN)

and the rest of the Internet. The device at this observation

point can inspect, store, manipulate, and block any network

traffic that crosses its path. All traffic between WiFi devices

on the LAN or from devices to the Internet traverses this

middlebox.

Our goal is to detect and prevent DoS attack traffic

originating from devices within the smart home LAN. The

DoS victim may be another device on the LAN or elsewhere

on the Internet. Any device connected to the middlebox

can send both network and attack traffic within the same

time period. Each device is also capable of conducting a

variety of different DoS attacks in series, and successive

attacks can vary in duration. This reflects how a remote

botnet command and control (C&C) may change orders. We

assume that the time range of DoS attacks are roughly 1.5

minutes, a common duration for DoS attacks attempting to

avoid detection [5].

IV. ANOMALY DETECTION PIPELINE

In this section, we present a machine learning DDoS

detection framework for IoT network traffic. Our anomaly

detection pipeline has four steps (Fig. 2):

1) Traffic Capture. The traffic capture process records the

source IP address, source port, destination IP address,
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(a) Threat model

(b) Experiment setup

Figure 1: Consumer IoT network threat model and corre-

sponding experiment setup for collecting normal and DoS

attack traffic training data.

destination port, packet size, and timestamp of all IP

packets sent from smart home devices.

2) Grouping of Packets by Device and Time. Packets from

each IoT device are separated by source IP address.

Packets from each device are further divided into non-

overlapping time windows by timestamps recorded at

the middlebox.

3) Feature Extraction. Stateless and stateful features are

generated for each packet based on domain knowledge

of IoT device behavior. The stateless features are

predominantly packet header fields, while the stateful

features are aggregate flow information over very short

time windows, requiring limited memory to support

on-router deployment. (Section IV-B).

4) Binary Classification. K-nearest neighbors, random

forests, decision trees, support vector machines, and

deep neural networks can differentiate normal traffic

from DoS attack traffic with high accuracy (Sec-

tion V-A).

A. Traffic Collection

We set up a experimental consumer IoT device network

to collect realistic benign and malicious IoT device traf-

fic (Fig. 1b). We configured a Raspberry Pi v3 as a WiFi

access point to act as a middlebox. We then connected a YI

Home Camera [17] and Belkin WeMo Smart Switch [18] to

the Raspberry Pi’s WiFi network. A Withings Blood Pressure

Monitor was also connected by Bluetooth to an Android

smartphone associated with the WiFi network [19].

To collect normal (non-DoS) traffic, we interacted with

all three IoT devices for 10 minutes and recorded pcap
files, logging all packets sent during that time period. We

performed many interactions that would occur during regular

device use, including streaming video from the YI camera to

the server in HD and RD modes, turning the WeMo Smart

Switch on/off and installing firmware updates, collecting

blood pressure measurements from the Withing’s Blood

Pressure monitor, and sending the measurements to a cloud

server for storage. We then filtered out all non-IoT traffic

from the pcap recordings, including background traffic

from the Android phone.

Collecting DoS traffic was more challenging. To avoid

the security risks and complexity of running the real Mirai

botnet code, we simulated the three most common classes

of DoS attacks a Mirai-infected device will run: a TCP SYN

flood, a UDP flood, and a HTTP GET flood [5]. We used

a Kali Linux virtual machine running on a laptop as the

DoS source, and a Raspberry Pi 2 running an Apache Web

Server as the DoS victim. We connected both devices via

WiFi to our Raspberry Pi 3 access point. The DoS source

then targeted the victim’s IP address with each class of

DoS attack for approximately 1.5 minutes each. The access

point recorded PCAPs of the attack traffic using the Linux

dumpcap tool. The HTTP GET Flood was simulated using

the Goldeneye tool [20]. The TCP SYN Flood and UDP

Flood were simulated using Kali Linux’s hping3 utility [21].

We then combined the DoS traffic with the normal traffic,

spoofing source IP addresses, MAC addresses, and packet

send times to make it appear as if the IoT devices si-

multaneously produced normal traffic and conducted DoS

attacks. Each of the three IoT-devices appeared to execute

each of the three DoS attack classes once within a 10

minute internal. The attacks occurred in a random order for a

random duration ranging uniformly from 90 to 110 seconds

each. Thus, we collected roughly 300 seconds (5 minutes) of

attack traffic per device. The distribution of attacks between

devices was independent.

This process produced a dataset of 491,855 packets,

comprised of 459,565 malicious packets and 32,290 benign

packets.

B. Feature Engineering

We explore two classes of features and analyze why they

are relevant to differentiating normal and attack IoT traffic.

Stateless features can be derived from flow-independent

characteristics of individual packets. These features are

generated without splitting the incoming traffic stream by
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Figure 2: IoT DDoS detection pipeline.

IP source. Thus, these features are the most lightweight.

Stateful features capture how network traffic evolves over

time. There is inherent overhead in generating these features,

as we split the network traffic into streams by device

and divide the per-device streams into time windows. The

time windows serve as a simple time-series representation

of the devices’ evolving network behavior. These features

require aggregating statistics over multiple packets in a time

window; the middlebox performing classification must retain

state, but the amount of state can be limited by using short

(e.g. 10-second) time windows.

1) Stateless Features:
Packet Size: The distribution of packet sizes differs

significantly between attack and normal traffic (Fig. 3a).

Over 90% of attack packets are under 100 bytes, while

normal packets vary between 100 and 1,200 bytes. A device

conducting a DoS attack, such as a TCP SYN Flood, is

trying to open as many connection request as possible with

the victim to exhaust the victim server’s resources. Thus,

an attacker wants to keep the size of the packets as small

as possible in order to maximize the number of connection

requests per second. In comparison, normal traffic can range

from simple server pings indicating that the device is active

(small packets) to video streaming data (large packets).

Inter-packet Interval: Normal IoT traffic has limited

burstiness (Fig. 3b-d). Most packets are sent at regular inter-

vals with appreciable time between packets. This may reflect

IoT network pings or other automated network activities. In

contrast, a vast majority of DoS attack traffic has close to

zero inter-packet intervals (ΔT ) and high first and second

derivatives of inter-packet intervals. Using ΔT , dΔT
dt , and

d2ΔT
dt2 as features allows a classifier to capitalize on this

difference between normal and DoS traffic.

Protocol: Normal and DoS attack traffic also have

varying protocol distributions (Fig. 3e-f). UDP packets out-

number TCP packets in normal traffic by almost a factor

of three due to UDP video streaming. In comparison, TCP

packets outnumber UDP packets in attack trafic by almost

the same ratio. Attack traffic also includes fewer protocols

in total. We capture protocol differences in a feature with

a one-hot encoding of the three most popular attack proto-

cols (IS TCP, IS UDP, and IS HTTP) and another binary

indicator to reflect all other types of protocols (IS OTHER).

This captures the most popular protocols while minimizing

noise and unnecessary dimensionality associated with less

relevant protocols.

2) Stateful Features:

Bandwidth: The literature contains evidence that

bandwidth usage can be used to characterize network traffic

patterns of IoT devices. For example, Apthorpe et al. were

able to characterize consumer IoT device usage patterns

from send/receive rates, but dividing network traffic by

source device was necessary for the analysis [7]. Similarly,

our pipeline splits network traffic by source device and

calculates the average bandwidth within 10-second time

windows to measure the instantaneous bandwidth associated

with each device. There are minor distributional differences

in bandwidth usage between the normal and attack traffic

(Fig. 3g). We predict that a ML model will be able to

leverage these differences.

IP Destination Address Cardinality and Novelty:
IoT devices are characterized by the limited number of

endpoints with which they communicate [7]. For example, a

WeMo smart switch communicates with only four endpoints

for the purposes of activation/deactivation from the cloud,

retrieving firmware updates, and logging its status. Another

key characteristic of IoT device traffic is that the set of

destination IP addresses rarely changes over time.

We craft two features to reflect this behavior. First, a

count of distinct destination IP addresses within a 10-second

window; more endpoints may indicate attack traffic. Second,

we calculate the change in the number of distinct destination

IP addresses between time windows; new endpoints might

suggest that the device is conducting an attack. Fig. 3h

supports the importance of these two features. Packets

associated with attack traffic are in contact with, on average,

more endpoints. This minor distributional difference can be

leveraged in differentiating normal and attack traffic.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Comparison of feature statistics for normal versus DoS attack traffic. a) Packet sizes. b–d) Inter-packet intervals

(ΔT ), dΔT/dt, and d2ΔT/dt2. e–f) Protocol distributions. g) Average bandwidth over 10 second time windows. h) Number

of unique IP destinations in 10 second time windows.

V. RESULTS

A. Classification

We tested five machine learning algorithms to distinguish

normal IoT packets from DoS attack packets:

1) K-nearest neighbors “KDTree” algorithm (KN)

2) Support vector machine with linear kernel (LSVM)

3) Decision tree using Gini impurity scores (DT)

4) Random Forest using Gini impurity scores (RF)

5) Neural Network (NN): 4-layer fully-connected feed-

forward neural network (11 neurons per layer), trained

for 100 epochs with batch size 32 using binary cross-

entropy loss; hyperpameters chosen by optimization

on a validation set

We implemented these machine learning models using the

Scikit-learn Python library [22], except for the neural net-

work, which was implemented using the Keras library [23].

All hyper-parameters were the default values unless other-

wise noted.

We trained the classifier on a training set with 85%

of the combined normal and DoS traffic and calculated

classification accuracy on a test set of the remaining traffic

Table I: IoT Traffic Classification Results

KN LSVM DT RF NN
Precision (Normal) .998 .992 .996 .999 .983
Precision (Attack) .999 .991 .999 .999 .999
Recall (Normal) .993 .870 .993 .998 .989
Recall (Attack) .999 .999 .999 .999 .998
F1 (Normal) .995 .927 .994 .998 .986
F1 (Attack) .999 .995 .996 .999 .999
Accuracy .999 .991 .999 .999 .999

(Table I). The accuracies of our four classifiers ranged from

approximately 0.91 to 0.99. Note that there are almost 15

times as many attack packets as there are normal packets

due to the flooding nature of the DoS attacks. Thus, a naive

baseline prediction algorithm that predicts that all packets

are malicious would achieve a baseline accuracy of 0.93.

The linear SVM classifier performed the worst, suggesting

that the data is not linearly separable. The decision tree

classifier performed well, achieving an accuracy of 0.99,

suggesting that the data can be segmented in a higher fea-

ture space. The K-nearest neighbors classifier also achieved

the same accuracy, suggesting that the two different data
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Table II: Feature Importance using Gini Impurity Scores.

Feature Gini Score
Packet Size .510
is HTTP .177
ΔT .070
is TCP .068
is OTHER .043
is UDP .041
dΔT/dt .018
d2ΔT/dt2 .012
Bandwidth .006
# Destinations .004
Δ # Destinations .003

Table III: Classifier performance, with and without IoT-

specific stateful (temporal) features.

F1 (Normal) KN LSVM DT RF NN
Stateless Features .967 .920 .977 .981 .939
All Features .995 .921 .995 .998 .989

classes clustered well in feature-space. The neural network

performed surprisingly well despite having fewer than half

a million training samples from a 10-minute packet capture.

Given the nature of the algorithm, the neural network

is expected to scale its performance with the amount of

available training data.

B. Feature Importance

The stateless features greatly outperformed the stateful

features, as indicated by Gini impurity score (Table II). We

expected this result, since the differences in the cumulative

distributions of normal and attack traffic were more pro-

nounced than those of the stateless features (Fig. 3). This

result suggests that real-time anomaly detection of IoT attack

traffic may be practical because the stateless features are

lightweight and derived from network-flow attributes (e.g.

5-tuple and packet size).

Incorporating stateful features nonetheless improved ac-

curacy compared to classification with the stateless features

alone (Table III). All of the classifiers experienced a 0.01

to 0.05 increase in F1 score by including stateful features.

This demonstrates that applying domain knowledge about

IoT device behaviors to feature engineering can enhance

DoS detection performance.

VI. DISCUSSION & FUTURE WORK

This preliminary work demonstrates that simple classifica-

tion algorithms and low-dimensional features can effectively

distinguish normal IoT device traffic from DoS attack traffic.

This result motivates follow-up research to evaluate IoT DoS

detection in more real-world settings.

First, we would like to replicate the results of this study

with normal traffic from additional IoT devices and with

attack traffic recorded from a real DDoS attack. This could

involve using published code to create an IoT device botnet

on a protected laboratory network or collaborating with an

ISP to obtain NetFlow records or packet captures recorded

during a DDoS attack. This will be an essential test of the

method’s external validity.

Collecting a larger dataset would also allow us to see

how DoS detection accuracy is affected by the amount

and diversity of IoT traffic. The network behavior of IoT

devices varies widely by device type [7]. We are curious

whether certain types of devices are more amenable to

network anomaly detection, perhaps because their normal

traffic follows more regular patterns, or vice versa.

We would also like to experiment with additional features

and more complex machine learning techniques beyond

those discussed in this paper. We believe that there is great

potential for the application of deep learning to anomaly

detection in IoT networks, especially for detecting attacks

that are more subtle than DoS floods. We hope that this

work inspires further efforts to develop network protection

techniques specifically designed for IoT devices.

It is also an open question how best to intervene once

an IoT device is discovered to be part of a DDoS attack.

Simply cutting the device off from the network might not

be feasible, especially if the device is essential (e.g. a blood

sugar monitor or a home water pump), because many smart

devices do not retain basic functionality without network

connectivity [24]. Notifying the user is an option, but many

users of home IoT devices will be unequipped to perform

device maintenance beyond powering off or disconnecting

the device.

VII. CONCLUSION

In this work, we showed that packet-level machine learn-

ing DoS detection can accurately distinguish normal and

DoS attack traffic from consumer IoT devices. We used

a limited feature set to restrict computational overhead,

important for real-time classifcation and middlebox deploy-

ment. Our choice of features was based on the hypothesis

that network traffic patterns from consumer IoT devices

differ from those of well-studied non-IoT networked devices.

We tested five different ML classifiers on a dataset of

normal and DoS attack traffic collected from an experimental

consumer IoT device network. All five algorithms had a

test set accuracy higher than 0.99. These preliminary results

motivate additional research into machine learning anomaly

detection to protect networks from insecure IoT devices.
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