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Amyloid-beta (Aβ) 42/40 ratio, tau phosphorylated at threonine-181 (p-tau), and total-

tau (t-tau) are considered core biomarkers for the diagnosis of Alzheimer’s disease (AD).

The use of fully automated biomarker assays has been shown to reduce the intra-

and inter-laboratory variability, which is a critical factor when defining cut-off values.

The calculation of cut-off values is often influenced by the composition of AD and

control groups. Indeed, the clinically defined AD group may include patients affected

by other forms of dementia, while the control group is often very heterogeneous due

to the inclusion of subjects diagnosed with other neurological diseases (OND). In

this context, unsupervised machine learning approaches may overcome these issues

providing unbiased cut-off values and data-driven patient stratification according to the

sole distribution of biomarkers. In this work, we took advantage of the reproducibility of

automated determination of the CSF core AD biomarkers to compare two large cohorts

of patients diagnosed with different neurological disorders and enrolled in two centers

with established expertise in AD biomarkers. We applied an unsupervised Gaussian

mixture model clustering algorithm and found that our large series of patients could

be classified in six clusters according to their CSF biomarker profile, some presenting

a typical AD-like profile and some a non-AD profile. By considering the frequencies

of clinically defined OND and AD subjects in clusters, we subsequently computed

cluster-based cut-off values for Aβ42/Aβ40, p-tau, and t-tau. This approach promises

to be useful for large-scale biomarker studies aimed at providing efficient biochemical

phenotyping of neurological diseases.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative
disorder evolving to dementia (Goedert and Spillantini, 2006).
Increasing knowledge of the molecular mechanisms underlying
the pathogenesis of AD has progressively improved the protocols
employed for its diagnosis in clinical practice (Jack et al., 2018).
However, AD is also recognized as a heterogeneous disorder
that may occur under several distinct phenotypes which can
mimic other forms of dementias and other neurodegenerative
conditions (Di Fede et al., 2018). Such phenotypic heterogeneity
sometimes makes the differential diagnosis between AD and
other similar neurological diseases problematic (Sawyer et al.,
2017; de Souza et al., 2019; Villain and Dubois, 2019).
Cerebrospinal fluid (CSF) core biomarkers for AD – i.e., amyloid-
beta (Aβ) 42/40 ratio, tau phosphorylated at threonine-181
(p-tau), and total-tau (t-tau) – are largely used in clinical
settings, research, and drug trials (Paterson et al., 2018; Gaetani
et al., 2020). However, their clinical utility to differentiate AD
from non-AD neurodegenerative dementias, such as dementia
with Lewy bodies (DLB) or frontotemporal dementia (FTD), is
less established (Bartlett et al., 2012; Molinuevo et al., 2014).
For a long time, manual enzyme-linked immunosorbent assay
(ELISA) has been widely employed as the reference method
for the analysis of the CSF AD biomarkers. However, its
broad-scale use is critically hampered by the assay variability,
which influences the measurement of the analytes and the
interpretation of the outcome data, especially in the routine
clinical context (Mattsson et al., 2012; Le Bastard et al.,
2015). Due to these concerns, ELISA was recently replaced
in worldwide laboratories by fully automated assays – such
as chemiluminescence enzyme immunoassay (CLEIA) – which
offer grounds to cut sample manipulation steps and to reduce
the intra- and inter-laboratory variability for CSF biomarker
measurement (Kollhoff et al., 2018). Nevertheless, there is still a
need for harmonization of CSF biomarker assays across centers
involved in AD diagnostics (Mattsson-Carlgren et al., 2020).
For instance, the lack of established universal biomarker cut-
offs makes the calculation of internal reference values mandatory
for each laboratory both for clinical and research purposes.
This calculation is often critically influenced by the choice and
composition of AD and control groups; the clinically defined
AD group may include patients affected by other forms of
dementia (e.g., FTD and DLB) due to misdiagnosis, while the
control group is often very heterogeneous due to the inclusion
of subjects diagnosed with other neurological diseases (OND)
who underwent lumbar puncture (LP) for diagnostic purposes.
On the one hand, OND may better represent the real cases
afferent to neurology clinics compared to healthy subjects.
However, the heterogeneity of the inclusion criteria adopted in
each center for the definition of OND controls represents a
source of variability for the calculation of biomarkers cut-off
values. In addition, the absence of standardized methodological
and statistical approaches represents one of the most critical
issues to study the distribution of CSF core AD biomarkers in
different subgroups of patients and to validate in larger cohorts
the cut-off values able to discriminate between AD and other

AD-mimicking disorders (Simrén et al., 2020). In this context,
unsupervised machine learning approaches may overcome both
misdiagnosis and the lack of standardization of inclusion
criteria providing unbiased cut-off values and data-driven patient
stratification according to the sole distribution of biomarkers. In
this work, we took advantage of the reproducibility of automated
determination of the CSF core AD biomarkers to compare two
large cohorts of patients diagnosed with different neurological
disorders and enrolled in two centers with established expertise in
AD biomarkers. We applied an unsupervised Gaussian mixture
model (GMM) clustering algorithm and found that our large
series of patients could be classified in six clusters according
to their CSF biomarker profile, some presenting a typical AD-
like profile and some a typical non-AD profile. By considering
the frequencies of clinically defined OND and AD subjects in
clusters, we subsequently computed cluster-based cut-off values
for Aβ42/Aβ40, p-tau, and t-tau.

MATERIALS AND METHODS

Patients
A total of 616 prospectively collected CSF samples from patients
referring to the Neurology Clinic, University of Perugia (cohort
1), and from the Carlo Besta Neurological Institute, Milan
(cohort 2), were used in this study. All patients underwent a
standardized assessment including medical history, physical and
neurological examination, laboratory tests, neuropsychological
evaluation, and brain imaging (computed tomography or
magnetic resonance imaging, MRI). 18Fluoro-2-deoxyglucose
positron emission tomography (FDG-PET), dopamine
transporter single photon emission computed tomography
(DaT-Scan), and electroencephalogram were also performed in
selected cases, according to clinical suspicion. According to the
purposes of our investigation, clinical diagnoses were made by
consensus in a multidisciplinary meeting of neurologists with a
deep expertise in the field of neurodegenerative diseases, without
knowledge of CSF results. Therefore, we did not consider the
most updated criteria for AD diagnosis, based on A/T/(N)
classification (Jack et al., 2018), but rather we defined patients as
affected by AD or other neurological disorders only according
to the available clinical criteria, as follows. Patients with
neurodegenerative disorders included 257 patients with probable
AD (Dubois et al., 2007) both at dementia and prodromal (MCI)
stages, 50 frontotemporal dementia (FTD) patients (Faber, 1999),
56 patients with Parkinson’s disease (PD) (Postuma et al., 2015), 7
PD with dementia (PDD) patients (Emre et al., 2007), 21 patients
with dementia with Lewy bodies (DLB) (McKeith et al., 2017), 58
patients with atypical parkinsonism or parkinsonism of different
etiology (Gilman et al., 2008; Armstrong et al., 2013; Höglinger
et al., 2017; Rektor et al., 2018), 1 patients with amyotrophic
lateral sclerosis (ALS) (Traynor et al., 2000), 8 patients with
Creutzfeldt-Jakob disease (CJD) (Manix et al., 2015), 27 patients
with normal pressure hydrocephalus (NPH) (Relkin et al.,
2005), and 2 patients with genetically confirmed degenerative
spinocerebellar ataxia (SCA). Patients were classified as having
subjective cognitive decline (SCD) if they complained cognitive
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deficits but neuropsychological evaluation was normal or showed
subtle deficits not fulfilling criteria for mild cognitive impairment
(MCI) (8 patients). Patients with stable MCI (sMCI) showed
unchanged neuropsychological results after 1-year follow-up (20
patients). Other diagnostic groups included vascular dementia
(5 patients) (Román et al., 1993), cerebral amyloid angiopathy
(CAA) (Smith and Greenberg, 2003) (3 patients), autoimmune
encephalitis (8 patients) (Graus et al., 2016), encephalopathies
of different etiology (2 patients), relapsing-remitting multiple
sclerosis (MS) (Thompson et al., 2018) (6 patients), and
cognitively impaired late-onset epilepsy (1 patient) (Scheffer
et al., 2017). Patients categorized as having cerebrovascular
diseases (CVD) showed significant brain small vessel disease
at MRI (i.e., white matter changes, microbleeds, and lacunar
infarcts) without fulfilling diagnostic criteria for VaD and CAA (3
patients). Dementia of unknown origin (uDEM) was defined for
those subjects in which brain imaging including both MRI and
nuclear imaging excluded vascular and neurodegenerative origins
(3 patients). Cognitively unimpaired patients referring to our
centers for psychiatric disorders or neurological conditions like
headaches, seizures, mononeuropathies, and polyneuropathies,
in which brain imaging did not reveal gross abnormalities nor
underlying neurodegenerative diseases, were classified as control
subjects with other neurological diseases (OND) (71 patients).

Samples Collection and Analysis
Lumbar puncture was performed according to international
guidelines (Teunissen et al., 2009); 10–12mL of CSFwas collected
in sterile polypropylene tubes (Sarstedt R© tubes, code: 62.610.210)
and centrifuged for 10 min (2000 × g), at room temperature.
Aliquots of 0.5 mL were frozen at −80◦C in polypropylene tubes
(Sarstedt R© tubes, code: 72.730.007). CSF samples were analyzed
on the fully automated chemiluminescent platform Lumipulse
G600-II (Fujirebio Inc) for β-amyloid 1-42 (Aβ42), β-amyloid 1-
40 (Aβ40), t-tau and p-tau (Thr181) levels. For cohort 1, all the
CSF samples were analyzed directly in their 0.5 mL storage tubes,
while for cohort 2 samples were analyzed by transferring them
in Hitachi R© polystyrene sample caps (code: 80351). Throughout
this work, Aβ42/Aβ40 ratio was used since it represents a more
robust marker of amyloidosis with respect to the sole Aβ42
(Biscetti et al., 2019). Moreover, the use of Aβ42/Aβ40 can
also partially compensate the above-mentioned methodological
difference between the two centers, since the Aβ absorption due
to tube transfer (Toombs et al., 2014) is thought to act similarly
for the 1-40 and 1-42 Aβ isoforms (Lewczuk et al., 2006).

Cohorts Merging
A preliminary experiment was carried out to assess the inter-
center variability of the CSF biomarkers and the possibility
to merge the two cohorts. A total of 40 CSF samples (20
from each center) were measured with Lumipulse-G automated
platforms in the two laboratories by using kits originating from
the same batches. The composition of this validation cohort is
reported in Supplementary Table 1. The concordance between
the measurements was assessed by correlation analysis.

Statistical Methods
The data analysis was performed by using R software v 3.6
(R Core Team, 2013).

Correlation Analysis

Because of the known non-optimal normality of biomarker
data (Bellomo et al., 2020a), Passing Bablok regressions (Passing
and Bablok, 1983) were preferred to parametric least squares
regressions. Confidence intervals (CI) for the fitted parameters
were calculated with the bootstrap method (Carpenter and
Bithell, 2000). Principal component analysis (PCA) was then
applied to the whole dataset to graphically show the absence of
a significant separation among samples belonging to different
cohorts. The R-package mcr was used for these calculations
[mcr package | R Documentation (2021)].

Cluster Analysis

The GMM algorithm (Figueiredo and Jain, 2002) of the machine
learning Python package Scikit-learn v 0.23.2 (Pedregosa et al.,
2011) was used for the cluster analysis. Biomarker values
were all z-scored prior to the analysis. The optimal number
of clusters was chosen minimizing the Bayesian information
criterion (BIC) function (Schwarz, 1978). After the clustering,
all the samples biomarker values were back-transformed into the
original dimensions. Median biomarker values together with the
95% data range were calculated for each cluster. The prevalences
of diagnostic categories in each cluster were represented in
percentages in a heatmap. Both diagnostic groups and clusters
were grouped according to a hierarchical clustering (Rokach and
Maimon, 2005; Gu, 2021). Euclidean distance and average linkage
were used as parameters for clustering.

Calculation of Cut-Off Values

Cut-off values were calculated for OND vs. AD and among
clusters by maximizing Youden’s index with the p-ROC package
in R v3.6 (Robin et al., 2011). Cut-off CI were calculated by using
2000 bootstrap replicates.

Calculation of Cut-Off Values on Age- and

Gender-Matched Subsets

Age histogram matching was performed by random exclusion
of subjects within bins of 5 years width. Exclusion of
samples according to gender was subsequently conducted until
p-values> 0.25 were obtained by logistic regression (Dobson and
Barnett, 2018; glm function | R Documentation, 2021) both for
age and gender. Recalculation of cut-off values for the age- and
gender-matched subsets was performed as described in section
“Calculation of Cut-Off Values.”

RESULTS

Patients Demographical Data
A total of 616 patients whose CSF samples were tested for AD
biomarker by Lumipulse-G, were included in the study regardless
of age and clinical diagnoses. Among them, 257 were clinically
diagnosed as AD and 71 cognitively unimpaired subjects affected
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by minor neurological non-neurodegenerative disorders were
classified as OND. The whole cohort originated by merging
two sub-cohorts: 303 subjects referred to the biobank of the
Neurology clinic of the University of Perugia (cohort 1), while
313 referred to the biobank of the Carlo Besta Neurological
Institute of Milan (cohort 2). The demographical details of the
subjects included are reported in Supplementary Table 3.

Merging of the Two Cohorts
Assessment of CSF AD biomarkers with Lumipulse-G CLEIA
technology showed very low inter-center variability in external
quality control programs (Leitão et al., 2019; Paciotti et al., 2019).
However, we performed a small scale inter-center variability
study, measuring a total of 40 samples across the two centers
involved, to assess the possibility to merge the cohorts from
Perugia (cohort 1, 303 subjects) and Milan (cohort 2, 313
subjects). Patients’ diagnoses, mean biomarker values and inter-
assay/inter-laboratory coefficients of variations (CV) are reported
for all of these samples in Supplementary Table 1. As expected,

themean inter-assay CV of Aβ42/Aβ40 (7%) was lower compared
to the ones of Aβ42 (12%) and Aβ40 (9%). Mean inter-
assay CV of p-tau (4%) and t-tau (9%) were also relatively
low. Correlation and Passing-Bablok linear regression analyses
showed a good agreement between the measurements performed
in the two centers (Figures 1A–C). A Pearson’s correlation
coefficient above 0.9 was found for each of the tested biomarkers
and all the measured slopes were equal to 1 within their 95%
CI. Intercepts for Aβ42/Aβ40 and p-tau were null within their
95% CI, whereas a non-null negative intercept was obtained
for t-tau, although being small compared to usual nominal
t-tau values. The results of Passing-Bablok linear regression
analysis for Aβ42 and Aβ40 are shown in Supplementary

Table 2. As expected (Lewczuk et al., 2006), we found a
greater deviance from identity between the measurements of
these two peptides performed in the two laboratories with
respect to their ratio. We subsequently analyzed all the 616
samples included in the study by means of PCA. Projection
of the data into the principal components space (Figure 1D)

FIGURE 1 | (A–C) Passing-Bablok regression analyses of Aβ42/Aβ40, p-tau, and t-tau measured on 40 samples (20 from each cohort) in the two centers.

Correlations have been calculated in terms of Pearson’s correlation coefficients (r). Fitted slopes and intercepts with their 95% CI are also shown. (D) Plot (PC1 vs.

PC2) relative to the PCA performed on the whole dataset with samples belonging to different cohorts highlighted in different colors. The ellipses relative to the 95%

data range of each cohort are also shown together with the projections of Aβ42/Aβ40, p-tau and t-tau in the PC1-PC2 space.
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showed that the measurement from the two centers did not
show any significant grouping related to the site of analysis, as
shown by the ellipses representative of the 95% data range of
the two cohorts.

Both the regression and the PCA analysis showed that the
inter-center variability was negligible for Aβ42/Aβ40, p-tau and
t-tau. Cut-off values for Aβ42, Aβ42/Aβ40, p-tau and t-tau for
cohort 1, cohort 2 and for the two cohorts merged are also
reported in the Supplementary Table 4. The calculated cut-off
values did not significantly differ within their 95% CI between
cohort 1 and 2. Thus, we proceeded to merge the two cohorts for
subsequent analyses, without applying any correction factor for
Aβ42/Aβ40, p-tau and t-tau.

Clustering
For the unsupervised cluster analysis, we included all the
subjects who consecutively underwent LP in the two centers
and whose CSF was assayed for Aβ42/Aβ40, p-tau and t-tau
with Lumipulse-G (N = 616). Considering the results of the
PCA plotted in Figure 1D, we decided to apply GMM as
clustering algorithm (Pedregosa et al., 2011). Other clustering
algorithms such as K-means are known for not providing
good fittings for anisotropic data. In order to standardize
the dimensions of the three biomarkers considered, biomarker
values were substituted with the corresponding Z-scores before
the analysis and then back-transformed for plotting and data
interpretation. The optimal number of clusters was decided
according to BIC (Schwarz, 1978). A plot relative to the BIC

function is shown in Supplementary Figure 1. Accordingly,
the optimal number of clusters turned out to be 6. The
results of the unsupervised clustering analysis are shown in
Figure 2A, GMM centroids and covariance matrices are reported
in Supplementary Table 5. As it can be seen by comparing
the 3D scatter plots in Figures 2A,B, most AD and OND
samples were assigned to different clusters. In particular, most
OND were included in cluster 1 while most AD subjects (95%)
were comprised in clusters 3, 4, 5, and 6. Considering the
biomarker 95% data ranges of each cluster (Figure 2C), clusters
3–6 corresponded to low Aβ42/Aβ40 values and high values of
p-tau and t-tau, which, according to the A/T/(N) criteria (Jack
et al., 2018), correspond to the presence of amyloidosis, tauopathy
and tau-related neurodegeneration, respectively. These four
clusters mainly differed in p-tau and t-tau values (Figure 2C).
Among AD patients, for all the AD clusters, the prevalences
of demented subjects (N = 253) did not significantly differ
from the prevalences of subjects in the MCI phase (N = 53)
by applying Fisher’s exact test for count data. Cluster 1 was
instead characterized by higher values of Aβ42/Aβ40 and small
values of p-tau and t-tau. Biomarker values in cluster 2 were
instead highly variable with respect to the other clusters (wide
95% data ranges for all the three biomarkers). This cluster
was characterized by smaller Aβ42/Aβ40 median values with
respect to clusters 3–6 and higher p-tau and t-tau median values
compared to cluster 1.

The percentages of AD patients, OND and other sufficiently
represented (N > 6) clinical conditions in each cluster are

FIGURE 2 | (A) Samples distribution in the core AD biomarkers space. The colors indicate the cluster to which the sample is belonging, after GMM analysis.

(B) Samples belonging to AD patients and OND are highlighted in red and black, respectively. (C) Median biomarker values with the 95% data range of each cluster

represented in brackets.

Frontiers in Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 647783

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


Bellomo et al. Unsupervised Profiling of AD Biomarkers

reported in Figure 3. Interestingly, not only AD but also PDD,
DLB, and CBD had a relevant presence (>20%) in clusters
3–6. Conversely, MS, PSP, sMCI, and synucleinopathies without
dementia (PD and MSA) majorly colocalize with OND in
cluster 1. The composition of cluster 2 was instead highly
variable, consisting in the totality of CJD subjects and relevant
percentages (≥20%) of NPH, ENC, FTD, and VAD. Considering
the distribution of clinically defined OND and AD subjects in
the clusters together with the clusters data ranges with respect to
the calculated biomarkers cut-off values, we decided to indicate
cluster 1 as the “control” cluster and clusters 3–6 as “AD-
clusters”. Grouping of the clusters and of the clinical diagnoses
showed that cluster 1, the control cluster, was the most distant
from the others, followed by cluster 2 which was included in
a separated branch with respect to cluster 3–6. The clinical
diagnosis showed also a peculiar grouping, with AD, PDD,
and DLB in the same branch of the dendrogram, while the
other conditions (mostly included in clusters 1 and 2) in a
second large branch. CJD clustered separately from all the other
conditions being characterized by high Aβ42/Aβ40 ratios and
high t-tau values.

According to the prevalence of AD and OND in clusters 1–6,
we calculated cut-off values for each biomarker considering AD
vs. OND clinical diagnoses, control cluster vs. AD clusters and
cluster 2 vs. AD clusters. The results are shown in Table 1.

We noticed that the cut-offs of the comparison control
cluster vs. AD clusters were relatively similar to what obtained
using the clinical diagnosis grouping (OND vs. AD), being
mostly comprised within the 95% CI. Cut-off values for
control cluster vs. AD clusters remained unchanged also
by considering an age- and gender-matched subsets of the
population (Supplementary Figure 2).

TABLE 1 | Cut-off values for the three core AD biomarkers with their 95% CI were

calculated by maximizing the Youden’s index for AD vs. OND, between samples

belonging to the AD clusters (cluster 3, 4, 5, and 6) and “control” cluster (cluster 1)

and between samples belonging to the AD clusters and cluster 2.

Aβ42/Aβ40 p-tau (pg/ml) t-tau (pg/ml)

OND vs. AD 0.073 (0.063, 0.079) 53.5 (47.2, 57.5) 371 (332, 393)

Control cluster vs.

AD clusters

0.072 (0.070, 0.074) 50.0 (46.2, 52.3) 392 (359, 396)

Cluster 2 vs. AD

clusters

0.073 (0.072, 0.078) 71.6 (50.6, 82.8) 1403 (485, 1999)

On the other hand, the cluster 2 vs. AD clusters comparison
showed significant differences in the absolute values of cut-
offs for t-tau and p-tau, while the Aβ42/Aβ40 ratio did not
change significantly.

DISCUSSION

In the last decade, CSF Aβ42/Aβ40 ratio, p-tau and t-tau emerged
as reliable markers of brain amyloidosis, tauopathy and tau-
related neurodegeneration. The introduction of these markers
into clinical practice has substantially helped the neurologist to
change the definition of AD from a syndromal to a molecular
construct (Jack et al., 2018). In particular, considering the well-
established A/T/(N) system (Jack et al., 2018), AD is now
defined by the presence of both brain amyloidosis (A+) and
tauopathy (T+), with neurodegeneration (N+) being a non-
necessary condition. The recent advent of automated platforms
for core AD biomarker assessment in CSF, has been of substantial
help in limiting both intra and inter-assay variability with

FIGURE 3 | Heatmap descriptive of the GMM cluster analysis results. For each diagnostic category with a sample size (N subjects) ≥ 5, the percentages of samples

in each cluster are shown. Hierarchical clustering was used for ordering diagnostic groups and clusters.
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respect to manual ELISA (Le Bastard et al., 2015). In this
work, we used the reproducibility of automated CSF core
AD biomarker determination to compare two large cohorts
of patients diagnosed with various neurological disorders and
enrolled in two centers with proven expertise in AD biomarkers.
After a small round-robin validation step on 40 CSF samples,
we were able to confirm the good reproducibility of the
determinations between the two centers using the automated
procedure. In order to overcome the diagnostic heterogeneity of
both AD and control groups, we applied unsupervised GMMs to
cluster the patients (n = 616) according to their CSF biomarker
profile and investigate the degree of overlap between the clinical
diagnosis and the data-driven classification of the subjects. The
data spontaneously grouped in six clusters, 4 of these (clusters 3–
6) contained the 95% of clinically defined AD patients (Figure 3),
characterized by low Aβ42/Aβ40 values and high values of p-tau
and t-tau (Figure 2C). Interestingly, high percentages (>50%)
of synucleinopathies with dementia (DLB and PDD) and CBD
(33%) fell in these clusters. This fact is not surprising, since
the presence of brain amyloidosis and tauopathy is a feature of
both DLB and PDD (Irwin et al., 2013; Irwin and Hurtig, 2018;
Bellomo et al., 2020b). Cluster 1 instead contained the majority
of OND subjects (77%), and PD (84%), MSA (87%), PSP (86%),
and MS (100%) patients, suggesting that AD pathology is not
frequent in these conditions. This result, together with the high
concordance between cut-off values for the OND vs. AD and
control cluster vs. AD clusters comparisons, suggest that these
conditions may be treated as controls with respect to core AD
biomarkers. The inclusion of NPH in control groups should be
instead avoided since neurodegeneration and dilution effects may
significantly alter the concentration of t-tau and Aβ peptides
(Graff-Radford, 2014), in a way that is not fully compensated by
computing their ratio. By considering the clusters with highest
and lowest frequencies of AD and OND subjects, we were able
to compute cluster-defined cut-off values. In our work, the cut-
off values calculated by the clustering method were concordant
to the ones calculated by relying on clinical diagnoses for AD
vs. OND, but this approach may be of more substantial help
while facing low numbers of well clinically characterized OND
and/or AD subjects. The cut-off values calculated for AD clusters
vs. control cluster were substantially unchanged considering age-
and gender-matched subsets of the clusters (Supplementary

Figure 2), thus reinforcing the reliability of the approach
used. Because of these advantages, unsupervised and partially
supervisedmachine-learning algorithms (like the one we applied)
have recently started to be applied in neurodegenerative diseases
diagnostics (Skillbäck et al., 2015; Racine et al., 2016; Toschi
et al., 2019). Moreover, these approaches represent a best choice
while dealing with a large number of biomarkers or candidate
biomarkers (Solorio-Fernández et al., 2020), e.g., in omics studies
(Lopez et al., 2018). The inclusion of a wide panel of CSF
markers, possibly linked to different biological pathways, may
help in differentiating synucleinopathies with dementia and FTD
from AD and synucleinopathies without dementia and PSP from
controls. As a limitation of our study, we must report the small
sample size of some diagnostic categories (e.g., MS, VAD and
PDD). Thus, the frequencies of these categories in clusters may

potentially be biased. Another limitation is the lack of amyloid
PET, which is of substantial help in identifying brain amyloidosis
and well correlates with brain amyloidosis markers such as CSF
Aβ42 and Aβ42/Aβ40 (Alcolea et al., 2019; Leitão et al., 2019).
However, this partially supervised approach is insensitive to the
presence of hidden interfering pathologies in control subjects
and to the presence of few AD misdiagnosis, which may occur
when the diagnosis is made prevalently by the examination of
clinical features. Since the definition of AD and control clusters
depended only on the prevalences of clinically defined AD and
OND subjects within each cluster, we expect that this approach
may provide reliable results as long as the diagnosis/exclusion
of AD is correct in the majority of the cases. As an example,
considering the biomarker distributions presented in this study,
to misclassify the control cluster it would have required at least
28 out of 71 OND subjects (40%) misdiagnosed for AD.

Overall, our findings suggest that automated assays are
amenable for large-scale biomarker studies across centers.
Furthermore, the use of unsupervised (or partially supervised)
machine learning approaches may help the biochemical
phenotyping of neurological disorders, being also a robust
option for the definition of cut-off values. The implementation
of such approaches in biomarker research could substantially
improve the development of adequate diagnostic protocols
and increase the quality of diagnostic tools for complex and
heterogeneous disorders presenting with overlapping clinical
syndromes, like dementias.
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