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ABSTRACT With the rapid development of the Internet of Things (IoT), malicious or affected IoT devices

have imposed enormous threats on the IoT environment. To address this issue, trust has been introduced

as an important security tool for discovering or identifying abnormal devices in IoT networks. However,

evaluating trust for IoT devices is challenging because trust is a degree of belief with regard to various

types of trust properties and is difficult to measure. Thus, a machine learning empowered trust evaluation

method is proposed in this paper. With this method, the trust properties of network QoS (Quality of Service)

are aggregated with a deep learning algorithm to build a behavioral model for a given IoT device, and the

time-dependent features of network behaviors are fully considered. Trust is also quantified as continuous

numerical values by calculating the similarity between real network behaviors and network behaviors

predicted by this behavioral model. Trust values can indicate the trust status of a device and are used for

decisionmaking. Finally, the proposedmethod is verifiedwith experiments, and its effectiveness is described.

INDEX TERMS Internet of Things, trust evaluation, network behaviors, machine learning-based method.

I. INTRODUCTION

As an emerging type of network, the Internet of Things (IoT)

has been under development for years. ‘‘Things’’ such as sen-

sors, monitors, and mobile devices are connected via various

network technologies. By interconnecting devices, the IoT

can collect information and provide information services to

the physical world. Many industries have benefitted from

IoT technology, such as smart cities, smart grids, and the

Internet of Vehicles, and a market with a value of more than a

billion dollars has developed using the IoT. However, security

issues hamper the further development of the IoT and its

applications. Devices that lack security considerations or that

have security vulnerabilities pose great risks to the entire IoT

environment. In 2016, a DDoS attack was launched by IoT

devices infected with Mirai [1], and many web services, such

as Twitter, Netflix, andNYTimes, were affected. As reported,

nowadays more than 25% of infected devices in Botnet are

IoT devices instead of traditional computers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Arafatur Rahman .

Traditional security mechanisms such as cryptology and

identity authentication [46] are adopted to address the secu-

rity issues in IoT. However, constrained by the unclear

network perimeter and weak computing capability of IoT

devices, the traditional mechanisms are not applicable for all

scenarios of IoT. Building trust is a useful method for security

issues and can identify problematic, suspicious, or ‘‘untrust-

worthy’’ devices on a network. Trust mechanisms have been

studied and applied in many fields, such as social network,

e-commerce, and peer-to-peer network [36]. Trust mecha-

nisms evaluate the trustworthiness of every entity in a net-

work environment, and the trust level or quantified numerical

trust value can be used for data fusion, decision making, and

service management [2], [3]. Additionally, trust management

in the IoT is an efficient security countermeasure. The con-

cept of trust in the IoT is a degree of belief with regard to

the behaviors of a specific entity and is based on experi-

ence or knowledge derived from interactions between IoT

entities. In IoT environments, trust can cope with malicious

nodes, misbehaving nodes or nodes affected by malicious

software.
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However, it is not easy to build trust for the IoT due to the

complexity of the experiences, knowledge, and relationships

between different devices, and it is not easy to calculate trust

based on various types of trust properties. Thus, there are

two key issues of trust evaluation in the IoT: trust metrics

and trust computational methods [2]. Trust metrics provide

a standard for evaluating trust, implying the information that

the trustor (the subject of the trust relationship) can obtain

from the trustee (the object of the trust relationship) and is

used to evaluate the trustee [4]. Trust computational methods

determine a trust level or numerical trust value of a trustee

with specific trust metrics [5].

Trust metrics should be designed based on trust proper-

ties that can describe the status of the corresponding entity.

As studied in the literature [6]–[8], trust metrics are based

on social properties such as intimacy, honesty, and common

interest derived from social relationships and on quality of

service (QoS) properties such as energy consumption and

latency derived from network status. There are also principles

of selecting trust properties, which include choosing proper-

ties that are generic, easy and legitimate to obtain. Compared

to social properties, QoS information is more generic and

easier to obtain, which makes it more convenient for build-

ing trust in the IoT. Therefore, QoS properties are widely

adopted in IoT trust studies. However, due to the diversity

of IoT devices, only partial QoS properties that are exclusive

to certain IoTs, such as wireless sensor networks (WSNs)

or mobile ad hoc networks (MANETs), are discussed in

the literature. With the development of the notion of edge

computing, edge devices can comprehensively and generi-

cally collect a network’s QoS information of IoT devices,

which is a useful trust property for trust evaluation. Addi-

tionally, trust computational schemes are another important

issue with respect to trust evaluation in the IoT and have

also been widely investigated [5], [9]. Trust computational

schemes concern an aggregation of trust properties and gen-

erate an assessment of the trustee. Certain schemes focus

on discriminating untrustworthy devices from trusted ones,

while other schemes focus on calculating a numerical trust

value for each device. In contrast, the discrimination scheme

is more arbitrary; however, the numerical value scheme is

more flexible and can be applied in more cases. The most

common numerical computational approaches for trust in

recent studies are the weighted sum method and regres-

sion [9]–[11]; however, these methods only take advantage

of limited trust properties instead of making full use of them.

Certain important trust properties, such as time-dependent

features, are not fully considered [36]. We thus believe

that the trust evaluation for a device is not a static binary

problem, and that it would be better to describe the trust

status with a set of dynamic and continuous numerical

values.

Because the proposed approach focusses on evaluating

the trustworthiness of IoT devices based on network QoS

properties with a numerical trust value, the contributions of

this paper include the following:

• Network behaviors are generic and easy-to-obtain trust

properties; thus, in this paper, trust metrics based on

comprehensive network behaviors are adopted in trust

evaluation.

• Different trust properties with different dimensions are

integrated to compute numerical trust values.

• Time dependence is an important feature for network

behaviors; thus, a time-series-based learning algorithm

is adopted for computation;

• The effectiveness of this method is evaluated in a simu-

lative environment.

The remainder of this paper is organized as follows.

In Section II, a brief introduction to trust computation and

management is given. In Section III, we describe the proposed

trust evaluation method. Next, experiments and results are

discussed in Section IV. Section V concludes this article.

II. RELATED WORK

The notion of trust derives from social science and has

been investigated in other areas, such as economics and

computer science. For computer science, research on trust

always focuses on security issues. Trust and security are

complementary to each other, and in most cases, trust is a

concern about when and where security mechanisms should

be deployed [3], [12]. Trust management in the IoT has been

studied for years and from many perspectives. [13], [14]

reviewed trust and reputation models in specific IoTs, such

as WSNs and ad hoc networks. [15] reviewed the application

of trust in WSNs and MANETs. In [16], trust metrics, attacks

on trust, and performance in MANETs were discussed, and

the author also summarized the research directions of trust

management in MANETs. Trust metrics, trust aggregation

and reputation were studied in [17], and trust computational

schemes were reviewed in [18]. A comprehensive review

of trust management in the IoT was given in [2], in which

the roles played in trust management were identified. Based

on trust computation schemes, trust models in the IoT were

classified in [19] for trust-based services management. [20]

summarized trust management in the IoT, and [3] provided

thematic taxonomy for trust in the IoT, including trust met-

rics, trust properties, trust computation schemes, and trust

applications.

Trust metrics and trust computation methods are two key

factors of trust management in the IoT. Trust metrics concern

‘‘what’’ to evaluate, and trust computation methods concern

‘‘how’’ to evaluate. Both factors have been widely studied.

Trust metrics are based on QoS properties or social proper-

ties [4]. The concept of QoS trust metrics is derived from

QoS information of computer systems or networks. For exam-

ple, [21] used energy consumption and the resent/delivery

ratio in WSNs as trust metrics. The result of storing and

transmitting data was chosen as a trust metric in [22]. [9]

used the performance of IoT services to evaluate the trustwor-

thiness of nodes. [23] considered QoS properties such as the

forwarding ratio, resent ratio, and forward latency. With the

notion of social network and social IoT, social properties were
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also adopted as trust metrics. The social properties of IoT

devices are derived from the owners and users of the devices,

such as honesty, colleague/friendship relations, intimacy, and

common interests. Social trust properties have been stud-

ied extensively in recent years. Friendship, social connec-

tions, and common interests were used to rank the services

provider in [6]. [25] utilized honesty, connections, intimacy,

and selfishness to evaluate social trust level. Comprehensive

aspects of service reputation and similarity were considered

in [26]. The REK model (reputation-evidence-knowledge

model) was proposed in [27], which considered both QoS

properties and social properties, and classified them into

three categories. Social properties are important and useful

information for evaluating trust in the IoT; however, they are

only applicable to the social IoT, while QoS properties are

more generic and easier to access and collect.

Trust computational methods are another important fac-

tor of trust management in the IoT. Typically, there are

three categories of major methods: weighted sum, inference

approaches, and regression analysis [4]. Weighed sum is a

common computational method, and the primary idea of

weighted sum is that the more important the trust property

is, the higher weight it will be assigned. [23] adopted the

weighted sum method to compute direct/indirect trust. [28]

used the weighted sum method to obtain an indirect trust

value with recommendations and feedback. Certain infer-

ence approaches such as fuzzy logic and Bayesian inference

are used to compute trust levels. [21] used fuzzy logic to

obtain a numerical trust value in (0,1). [23], [28], [29] took

advantage of Bayesian inference to express trust values as

expectations of a beta distribution. In recent years, regres-

sion analysis or machine-learning-based methods have been

adopted to measure trust with comprehensive trust properties

based on statistical methods, particularly the behaviors of

IoT nodes. LogitTrust [11] proposed a logic-regression-based

method to predict service performance with the properties of

energy consumption, service prices, and data transmission

ratio. K-means and support vector machines were adopted

in [30] to distinguish untrustworthy IoT nodes from trusted

ones. Recently, reinforcement learning and multiclass classi-

fication technique-based trust computational methods were

proposed in [31]–[33]. Regression or learning-based trust

computational methods have shown great potential at deter-

mining a more accurate numerical trust value with more

comprehensive trust properties. Also, in addition to the appli-

cation of trust evaluation for the IoT, machine learning tech-

niques have become a powerful tool with research on security

or privacy issues in the IoT environment [42]. For example,

federated learning was used on edge devices to reduce the

computational overhead of IoT devices in [39], and privacy

was also considered when edge devices collect data from IoT

devices [40]. In [41], reinforcement learning was adopted to

determine the offloading strategy for healthcare IoT devices

to protect location privacy and usage pattern privacy. In [43],

a reinforcement learning and blockchain based method was

proposed to address selfish edge attacks in edge computing

networks. In [44], data sharing problem in industrial Internet

of Things was formulated as a machine learning problem and

federated learning was adopted to ensure the data privacy was

maintained when sharing the data.

III. LEARNING-BASED TRUST COMPUTATIONAL METHOD

A. SYSTEM MODEL

With the concepts of edge computing and fog computing [37],

a layered architecture is formed for the IoT. As shown

in Figure 1, the architecture is composed of 3 layers: the

device layer, the edge and fog layer, and the cloud layer.

Various sensing devices are deployed in the device layer and

are finally connected to the cloud layer with edge and fog

layer which consists of multiple base stations and access

points.

FIGURE 1. 3-layer architecture of IoT.

In this architecture, sensing data collected from the device

layer will be transmitted to the edge and fog layer, and

eventually stored and processed in the cloud layer. However,

with more computational resources, energy, and capability,

devices in the edge and fog layers can preliminarily process

sensing data when it is transmitted to the edge and fog layers.

Base stations and access points can obtain the whole informa-

tion of network connections of the IoT devices connected to

them. Thus, in the proposed method, the edge and fog layer

plays an important role in collecting the network behaviors

of IoT devices and deploying learning algorithms.

B. ATTACK MODEL

Because the proposed method aims to evaluate the trust-

worthiness of IoT nodes based on the metrics of network

behaviors, the attack model is defined with the following

capabilities and incapabilities of the attacker.

1) CAPABILITIES

The attacker or malicious node can attempt to connect to

the C&C server (command & control) of the botnet using
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hard-coded network addresses and private protocols via the

access point or base station.

The attacker or malicious node can launch network attacks

by sending attack packets to the access point or base station.

2) INCAPABILITIES

The attacker or malicious node cannot compromise edge

devices in other word, the access point or base station is

trusted in the attack model.

The attacker or malicious node cannot bypass the access

point or base station, namely all network communications of

the IoT node must pass through edge devices.

C. FRAMEWORK OF THE PROPOSED METHOD

Because IoT devices are constantly connected to a network,

network behaviors are critical to identify devices. The essen-

tial aspect of the method proposed in this paper is to predict

the future behaviors of a specific device based on historical

experience. A learning algorithm is used in this paper to

capture not only the features of network behaviors but also

the time-dependent features implied in the network behav-

iors. The similarity between predicted behaviors and real

follow-up behaviors will be computed and used to obtain a

numerical trust value. There are two phases of the proposed

method: offline training and online computation. The frame-

work of the proposed method is shown in Figure 2.

FIGURE 2. Framework of learning-based trust computational method.

There are several independent steps in each phase. In

phase 1, the steps include gathering raw network flows, fea-

ture selection, preprocessing, and model training. In phase 2,

there are steps of predicting behaviors, computing similarity,

and calculating numerical trust value. Important symbols are

summarized in Table 1.

D. GATHERING RAW NETWORK FLOWS AND SELECTING

FEATURES

Utilizing the technique of sniffing, we can collect raw net-

work flows of the targeted IoT device from edge devices.

Considering the level of network activity of a device, a time

threshold is defined that describes for how long a single

network flow would be captured. The symbol THflow is used

to represent the time threshold.

Network behaviors are profiled by statistical information

derived from network flows. Thus, with the proposedmethod,

we must also select proper features that can describe the

behavior patterns of devices. Considering the significance of

TABLE 1. List of notations.

TABLE 2. Selected features for trust properties.

different features and based on [34], [35], we have chosen

14 features for the proposed method, as shown in Table 2.

Thus, with the proposed scheme, one network flow stands

for network information captured per THflow seconds. Using

xi = [f ii , f
2
i , . . . , f 14i ]T to denote a single network flow,

in which i indicates that it is the i-th network flow, the col-

lected network flows of the device are represented as X =

{x1, x2, . . . , xn}, where n is the total number of network flows.
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E. DATA PREPROCESSING

During preprocessing, two tasks are performed: normaliza-

tion and sequence generation.

Normalization: To eliminate the influence of different data

scales and dimensions in raw network flows, normaliza-

tion is used in the proposed method. Normalization adjusts

numerical values measured on different scales to a common

scale to reduce computational overhead and improve calcula-

tion accuracy. Considering the characteristics of the features

selected, we use min-max normalization with the proposed

method. For collected network flows X , normalization is

performed following formula (1):

f̄i =
fi − min (fi)

max (fi) − min (fi)
(1)

With min-max normalization, the values of all features

will be converted into the range of [0, 1]. The normalized

network flows will be denoted as X̄ = {x̄1, x̄2, . . . , x̄n}, and

the learning process will benefit from normalization.

Sequence Generation: With X̄ , we can build training sets

for the learning algorithm. Note that network flows are per-

formed by devices in a timed sequence. The data at a given

sampling time point are likely related to the data at the previ-

ous and next sampling time points. Therefore, the time depen-

dency of network flows is considered a hidden feature to

profile device behaviors. The purpose of the proposedmethod

is to train a model to predict future behaviors of devices based

on collected historical behaviors; thus, a typical regression

problem and supervised learning are required. It is assumed

that the collected network flows X̄ = {x̄1, x̄2, . . . , x̄n}; we

also use a sliding window to generate sequences for training

sets, as shown in Figure 3. First, we set up a window size

wn; in Figure 3, wn = 3. The window will slide from the

beginning of X̄ with a step size of s, as shown in Figure 3

s = 2. The network flows falling in the window, such as x̄1, x̄2
and x̄3, become a sequence of the training set, and the next

flow right after this sequence x̄4 is considered the ‘‘label’’ of

this sequence.

FIGURE 3. Sliding window for generating sequences.

With the sliding window mechanism, a training set with

⌊(n− wn)/s⌋ + 1 labeled records will be generated. This

training set will be used to train the model.

F. MODEL TRAINING

To cope with sequences that exhibit time dependencies,

a long short-term memory (LSTM) neural network structure

is adopted. LSTM can efficiently predict the objects of a

series of inputs, and it is widely used in security scenarios

such as threats hunting in IoT and malware detection [45].

The input layer of LSTM is associated with a time series,

and LSTM can evaluate the impact of different time steps and

influence the final output, which is the next network flow after

the input sequence in this paper. The structure of LSTM used

in the proposed method is shown in Figure 4.

FIGURE 4. LSTM structure.

The input of the LSTM is a 14×wnmatrix, and the output is

a 14-dimension vector. The output indicates the next network

flow after flows in the input. For every LSTM cell, the current

input x̄t (t ∈ [1,wn]) is calculated with three ‘‘gates’’ (a forget

gate, an input gate, and an output gate) and a cell state. This

process is described as follows.

First, the forget gate takes x̄t and ht−1, the output of the

hidden layer, as the input to calculate as follows:

Ft = σ
(

Wf · [ht−1, x̄t ] + bf
)

(2)

where σ (·) is the sigmoid function. The first step obtains a

value to determine how much information within cell state

Ct−1 is reserved.

Next, the input gate decides what information to update

with x̄t and ht−1, and a new cell state information C̃t will be

generated for updating:

It = σ (Wi · [ht−1, x̄t ] + bi) (3)

C̃t = tanh (WC · [ht−1, x̄t ] + bC ) (4)

With the forget and input gates, the LSTM cell updates the

cell state Ct with Ct−1 and C̃t as follows:

Ct = Ft ∗ Ct−1 + It ∗ C̃t (5)

The output gate will then decide what to output based on

xt and ht−1:

Ot = σ (Wo [ht−1 + bo]) (6)

As a hidden layer, the output will be:

ht = Ot ∗ tanh(Ct )

In this process, W and b are learnable parameters, which

are determined during training. The size of the sliding win-

dowwn and the step size s are hyperparameters for the model.

G. PREDICTION, COMPUTATION OF SIMILARITY AND

TRUST VALUE

With the trained model, we can predict the network behaviors

that the device is likely to perform in the future. As shown

in algorithm 1, the next k-step network behaviors will be

predicted for future analysis.

We can inspect the status of the device by checking the

similarity between predicted and collected real behaviors.
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Algorithm 1 PredictNetworkBehaviors

Input: Current network behaviors Queue Current, steps to

predict k

Output: Predicted network behaviors Predict

1: iter = 0

2: while (TRUE) do

3: if iter <= k then

4: next = LSTM(Current)

5: Current dequeue

6: Current enqueue next

7: else

8: Predict = Current

9: return Predict

10: end if

11: end while

Note that the predicted and real behaviors are represented

as two clusters of 14-dimension data points, and a scheme

is designed to compute the similarity.

It is assumed that the predicted cluster of data points

P = {p1, p2, . . . , pk} and the real cluster of data points

A = {a1, a2, . . . , ak}; every point in them has 14 dimensions.

First, we must determine the central points of A and P with

the mean value of the points in the clusters:






CenP =
∑k

i=1 pi
k

CenA =
∑k

i=1 ai
k

(7)

Next, the average distances between every two points in

every cluster are calculated as algorithm 2:

Algorithm 2 Calculate Average Distance

Input: Cluster of data points C

Output: Average distance of points in C AvgDistance

1: d = 0

2: for every Pair of Points P(p1,p2) in C do

3: d = d + Euclidean Distance(p1,p2)

4: end for

5: AvgDistance = 2∗d/Length(C)∗(Length(C)-1)

6: return AvgDistance

Second, with the central point and the average distance

in the cluster, we can determine the scale of the clusters.

The similarity between two clusters can also be determined

with the central point and average distance. We define the

difference between the average distance of A, the average

distance of P and the distance between central points of the

two clusters with (8):
{

Diff = AvgDistanceA − AvgDistanceP

DPA = EuclideanDisance(CenP,CenA)
(8)

where the further the distance between two central points

of two clusters, the less similar they are. With a short dis-

tance between central points, if the average distances vary

greatly, the two clusters are also not similar. Using this met-

ric, the trust value computation scheme is calculated with a

recurrent function as follows:

T (x) = T (x−1) + 1T (9)

where x is the number of sampling points, T (0) = T0 is

the initial trust value assigned to the device, and 1T is the

variance of the trust value:

1T =

{

1, Diff < 0 ∧ DPA < ADA

−tanh(|Diff | + DPA)∗t0, otherwise

(10)

where ADA indicates the average distance of the cluster of

real behaviors, and DPA is the distance between CenP and

CenA. In this scheme, we conduct a penalty mechanism and

a rewarding mechanism simultaneously. The penalty mech-

anism indicates that when there is a significant deviation

between predicted behaviors and real behaviors, the trust

value would decay based on the similarity between two

clusters of behaviors. A hyperbolic tangent function is used

to determine the decayed trust value, as shown in (9). The

rewarding mechanism indicates that if the predicted behav-

iors are nearly identical to the real behaviors, the trust value

would increasemarginally as a reward for the device. Because

a prediction occurs every k steps of behaviors, the trust value

is updated every k×THflow seconds. Thus, a series of dynamic

trust values will be generated to depict the status of the

evaluated device.

IV. EVALUATION AND DISCUSSION

A. DATE COLLECTION

Experiments were conducted to verify the proposed method.

First, network flows were collected in an experimental envi-

ronment, as shown in Figure 5.

FIGURE 5. Experimental environment.

In the experimental environment, two IoT devices (two

smart home cameras in this case) were connected to a

gateway. One of the devices is affected with Mirai, and

both devices send data packets to the controller. Net-

work flows were captured via the sniffer deployed on the
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controller. To learn the behavior patterns of the devices

in the normal state, we collected the network flows of

both devices without activating Mirai. The collected data

were used for offline training. In the proposed experi-

ment, THflow was set to 180 seconds, and 30,000 network

flows were collected for each device, which were denoted

as DataAbenign and Data
N
benign.

After collecting training data, we also collected validation

data. We manually set the affected device into an abnormal

state by activatingMirai right after capturing the training data

capture, and the next 100 network flows were captured as

validation data. For contrast, the same 100 network flows

of the normal device were also collected. The validation

data were denoted as V A
Bot and VN

benign. Figure 6 shows

the composition of the training data and validation

data.

FIGURE 6. Composition of collected data.

B. EXPERIMENTS AND EVALUATION

1) EXPERIMENT SETUP

Except for THflow, other hyperparameters were also deter-

mined before training the model, as shown in Table 3.

TABLE 3. Setup of hyperparameters.

With the chosen hyperparameters, a training set with

29,902 records was generated. Experiments were conducted

on a desktop server with an Intel i9-5820k CPU and 32 GB

of RAM. Keras with TensorFlow was used as the backend

along with scikit-learn in Python. At the beginning of the

experiment, we compared several different machine learning

models to achieve better performance, such as logistic regres-

sion (LR) in [11], support vector machine (SVM) in [30], and

LSTM in Section III. And not only the traditional LSTM was

adopted, but also the variants of LSTM, including stacked

LSTM and bidirectional LSTM (Bi-LSTM), wherein stacked

LSTM is a neural network with multiple hidden LSTM layers

and has greater model complexity, which can create a more

complex feature representation. Bi-LSTM considers input

data twice to train itself from two directions, which can

improve learning long-term dependencies and thus improve

model accuracy. In the proposed experiment, we used a

3-layer stacked LSTM.

2) EXPERIMENT RESULTS AND COMPARISON ANALYSIS:

TRAINING PERFORMANCE

To analyze the performance in the training phase, the models

were trained independently for comparison. We trained the

models independently with 20%, 50%, 80%, and 100% of the

training set. The results are illustrated in Figure 7.

We compared the accuracy and training time of all models

in the experiments. As shown in Figure 7(a), the perfor-

mance of linear models was not as good as LSTM based

models. With the increase of the data scale, the accuracy

of the linear models hasn’t changed significantly while the

accuracy of the LSTM based models has increased as well.

Note that the stated problem is not a binary classification

problem, and the time-dependent feature should be captured.

Therefore, LSTM-based models significantly outperformed

linear models such as logistic regression and support vector

machine.

In Figure 7(b), as the scale of the model parameters

increased, the training time also increased. The LSTM-based

models required more time to be trained than the linear mod-

els. However, because the training phase is offline, the extra

time consumption would not affect the overall performance

of the proposed method.

3) EXPERIMENT RESULTS AND COMPARISON ANALYSIS:

REGRESSION PERFORMANCE

We also calculated the mean square error (MSE) and

R-squared (R2) values of the models with different data

scales to evaluate the performance of regression using

(11) and (12):

MSE =
1

n

n
∑

i=1

(

yi − ŷi
)2

(11)

R2 = 1 −

∑

i

(

yi − ŷi
)2

∑

i (yi − ȳi)
2

(12)

The symbols yi, ŷi and ȳi represent the real value, predicted

value and mean value, respectively. The results are summa-

rized in Table 4. Those numerical results also indicate that the

regression performance of LSTM-based models is better than

that of linear models.

65072 VOLUME 9, 2021



W. Ma et al.: Machine Learning Empowered Trust Evaluation Method for IoT Devices

FIGURE 7. Training performance comparison of LSTM models and linear models.

TABLE 4. Regression performance of models.

4) EXPERIMENT RESULTS AND COMPARISON ANALYSIS:

ADVANCED PERFORMANCE COMPARISON AMONG

LSTM-BASED MODELS

Because the accuracy of LSTM-based models is similar,

we conducted experiments to compare the performance of

LSTM, stacked LSTM, and Bi-LSTM. We also applied

the method on V A
Bot with Algorithm 1 and Algorithm 2 to

compute AvgDistancea, DPA, and AvgDistancep by predict-

ing the next 10 network flows. Note that data were made

of 14-dimension points, and t-SNE was used to reduce

the dimensions for visualization. The results are shown

in Figure 8. Results showed that the Bi-LSTM model

achieved the best performance. With the LSTM model,

the benign cluster, the predicted cluster, and the bot cluster

were not distinctly separated. With stacked LSTM, although

the edges of the three clusters were distinguishable, the dis-

tance between the predicted cluster and the benign cluster

TABLE 5. Trust values in different sample point.

was greater than the distance between the bot cluster and

the benign cluster, which indicates that the prediction shifted

from normal behaviors. Only Bi-LSTM showed that it was

able to predict behaviors following the learned pattern. Thus,

Bi-LSTM was used to compute the numerical trust value in

this study.

5) EXPERIMENT RESULTS AND COMPARISON ANALYSIS:

TRUST VALUE COMPUTATION

We conducted an experiment to calculate the trust value with

the trained Bi-LSTM model. The experiment was designed

as follows. First, a time slot was set, and in a single time slot,

a certain number of network flows was captured. Network

flows with the same number are predicted with the trained

model. Next, the similarity between the captured network

flows and predicted flows was calculated to determine the

trust value of the device. This process was repeated to eval-

uate the device and generate a trust value in every time slot,

which allowed the model to learn the trends of the trust value.

Note that in every time slot, the data used for prediction were

the network flows that were actually captured in the last time

slot instead of the predicted flows. Conversely, the experi-

ment was conducted with both devices (the normal device and

the device with Mirai). In the experiment, there were 30 time

slots with 10 network flows captured per time slot, and we

activated Mirai on the affected device in the 10th time slot.
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FIGURE 8. Method verification with 3 models, LSTM, stacked LSTM and Bi-LSTM, wherein cen_dist indicates the distance between the central point of
the cluster of the training data and other clusters, the predicted data points and the bot data points. With LSTM, the perimeters of three data clusters
were unclear and the computed distances also demonstrate that the model cannot tell the difference between predicted data and bot data. The
perimeters were clearer with 3-LSTM and Bi-LSTM while only the values of distances calculated by Bi-LSTM were able to distinguish the bot data.

The initial trust value T0 was set as 20. The trust values in

different sample points are summarized in Table 5. And the

global changes of the trust value in the 30 time slots were

observed, as shown in Figure 9, in which Figure 9(c) is the
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FIGURE 9. Computed trust values in the experiment.

TABLE 6. Qualitive comparison with associated methods.

trust values calculated with our method and Figure 9(a) and

Figure 9(b) are the results with LR and SVM respectively.

For the normal device, there was no significant change in

the trust value across the 30 time slots. Marginal volatility

was found in the trend of the trust value; however, the value

remained near T0. However, for the affected device, the trust

value began to decay rapidly in the 10th time cycle and

dropped to near zero in the 20th time cycle. According to

(9) and (10) in Section III, the trust value never goes below

zero; however, the downward trend and a near-zero value can

indicate the status of the device. For comparison, we also

conducted experiments with LR in [11] and SVM in [30]

The trust value computed with LR and SVM decayed rapidly

at the beginning of the experiments regardless of whether it

was the normal device or the affected device due to the lower

accuracy of the two models.

C. DISCUSSION

With the results of the experiments, it is clear that the pro-

posed method can compute a series of numerical trust val-

ues for an IoT device. Considering certain related studies,

we present the qualitative comparison of the proposedmethod

in Table 5. Compared to the methods used in [11] and [30],

the proposed method takes advantage of comprehensive QoS

metrics, which are generic and easy to obtain. With edge

computing architecture, collecting network QoS information

is convenient, legitimate and able to describe the real states of

devices to defend against trust attacks such as on-off attacks
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and self-promoting attacks [4]. By capturing time-dependent

features, model performance in the proposed method yields a

higher accuracy.

Instead of simply classifying one device as ‘‘trusted’’ or

‘‘untrusted’’, the primary output of the proposed method

is intended to depict the trust status of the device con-

tinuously with continuously-changing numerical trust val-

ues. Thus, the feature of time dependence is important and

is also the primary reason why the linear models did not

perform well. The proposed method is thus beneficial for

an IoT environment in which devices are in a constant,

stable state.

Note that although the features we use with this method

are primarily from the TCP/IP enabled transport layer pro-

tocol, we have a strong belief that the idea implied in the

method is generic and flexible. With different trust metrics,

trust evaluation can be performed from different perspec-

tives. Thus, this method can be used in other IoT scenarios

with different network architectures if there are sufficient

collectable features. For example, it is assumed that an IoT

environment wherein IoT devices connect to a gateway with

the LoRa protocol, and the information in the MAC layer

and PHY layer of the LoRa protocol stack can be collected

by the gateway, such as the frame port, frame control flags,

device address and frame payload. In this scenario, collected

data are also time-dependent. Thus, with proper processing,

these data can be utilized as features for LSTM training with

the proposed method to learn the normal network behavioral

patterns. The trust evaluation could be performed based on

the trained model. In another scenario, it is assumed that

a service-oriented IoT network with a feedback mechanism

with which a service receiver can rate the received service

based on the quality of service. Using spk to denote the k-th

service provider and r ti to denote the rating score of the i-th

IoT device that belongs to spk at time t , the matrix spk =






r01 · · · r t1
...

. . .
...

r0i · · · r ti






is used to describe the service status of spk in a

time period. This data format is not appropriate for LSTM.

However, when training with appropriate models, such as

convolutional LSTM neural network or graph-based models,

the quality of service of spk can be predicted and evaluated.

Although the algorithms used are different, the essence of the

proposed method is the same.

In future work, we plan to focus on two research topics.

First, note that the process of calculating trust values is

based on a specific edge computing architecture of the IoT,

as shown in Figure 1; thus, we plan to investigate how to

improve the proposed method to be applicable in more flexi-

ble environments. Second, QoS metrics are practical with the

proposed method, and social metrics are useful to describe

the social relations between IoT entities. Third, although the

data collected with the proposedmethod from IoT devices are

not private, the privacy issue remains to be investigated [39].

Thus, in future work, we plan to consider taking advantage of

more metrics, including QoS metrics and social metrics, and

will consider the privacy of training data.

V. CONCLUSION

In this paper, we propose a trust evaluation method for IoT

devices. The proposed method is empowered by the LSTM

neural network to learn network behaviors patterns and time-

dependent relations. We first extract network behaviors from

the raw network flows of a specific device to build a training

set. The training set is then used to train a behavioral model,

which is used to predict the future behaviors of the device.

Next, the similarity between the predicted and real behaviors

is calculated, and numerical trust values are computed with

similarity. Finally, with experiments, this method is demon-

strated to produces promising results.
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