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Machine learning enabled autonomous microstructural

characterization in 3D samples
Henry Chan 1*, Mathew Cherukara1, Troy D. Loeffler1, Badri Narayanan1,2 and Subramanian K. R. S. Sankaranarayanan1,3*

We introduce an unsupervised machine learning (ML) based technique for the identification and characterization of microstructures
in three-dimensional (3D) samples obtained from molecular dynamics simulations, particle tracking data, or experiments. Our
technique combines topology classification, image processing, and clustering algorithms, and can handle a wide range of
microstructure types including grains in polycrystalline materials, voids in porous systems, and structures from self/directed
assembly in soft-matter complex solutions. Our technique does not require a priori microstructure description of the target system
and is insensitive to disorder such as extended defects in polycrystals arising from line and plane defects. We demonstrate
quantitively that our technique provides unbiased microstructural information such as precise quantification of grains and their size
distributions in 3D polycrystalline samples, characterizes features such as voids and porosity in 3D polymeric samples and micellar
size distribution in 3D complex fluids. To demonstrate the efficacy of our ML approach, we benchmark it against a diverse set of
synthetic data samples representing nanocrystalline metals, polymers and complex fluids as well as experimentally published
characterization data. Our technique is computationally efficient and provides a way to quickly identify, track, and quantify complex
microstructural features that impact the observed material behavior.
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INTRODUCTION

Characterization of microstructural and nanoscale features in full
3D samples of materials is emerging to be a key challenge across a
range of different technological applications. These microstruc-
tural features can range from grain size distribution in metals,
voids and porosity in soft materials such as polymers to
hierarchical structures and their distributions during self- and
directed-assembly processes. It is well known that there is a strong
correlation between microstructural/nanoscale features in materi-
als and their observed properties. For the most part, however,
grain size characterization is performed on 2D samples and the
information from 2D slices is collated to derive the 3D
microstructural information, which is inefficient and leads to
potential loss of information. As such, a direct 3D classification
approach for arbitrary polycrystalline microstructure is crucial and
highly desirable, especially given the advancement in 3D
characterization techniques such as tomography,1 high energy
diffraction microscopy (HEDM),2 and coherent diffraction X-ray
imaging.
Most industry relevant structural materials are polycrystalline in

nature, and often contain thousands or millions of grains. Within
each grain, the lattice arrangement of atoms is nearly identical,
but the atomic orientations are different for each adjoining grain.
Grain boundaries are interfaces where two grains or crystallites
having different orientations meet without a disruption in the
continuity of the material. Note that the thermodynamic
equilibrium state of these polycrystalline materials is single
crystal.3 It is, however, well known that materials are often
arrested or trapped in local minima, i.e., in the polycrystalline state.
Grain formation in polycrystalline films during their growth and
processing is a complex process and is highly sensitive to several
parameters such as temperature, deposition rate, dopant con-
centration, pressure, and impurity concentration to name a few.

Nuclei when formed are nanoscopic – critical sizes start from tens
of atoms – and lead to nanocrystalline solids that subsequently
consolidate into larger grains. These ubiquitous phenomena, from
“rare events” such as nucleation to the subsequent phase
transformation in crystalline solids, lie at the heart of a spectrum
of physico-chemical processes that govern nanoscale material
transformation. They have been a fundamental problem in
materials science and are also relevant to a broad range of
energy applications.
Average grain size and grain distribution are critical micro-

structural features that impact several physical, mechanical,
optical, chemical, and thermal properties to name a few, and
represent fundamental quantities to characterize polycrystalline
materials.4–9 For example, the Hall–Petch relationship10,11 states
that the final average grain size after the transformation is directly
related to the strength, hardness, stress–strain properties and
fatigue of a material. Several previous investigations have shown
that grain size distribution has a significant effect on mechanical
properties. For example, Berbenni et al.12 showed that for a given
average grain size, broadening of the grain size dispersion reduces
the strength of a material. The classification and quantification of
polycrystalline microstructure is therefore critically important in
predicting material responses. A microstructural understanding is
also important for the design and discovery of new materials with
tailored properties, such as stronger materials that minimize
fatigue failures of a machine component during their operation
lifetime.
The ubiquitous connection between microstructure (mainly,

grain-size distribution) of a material and its physical properties has
motivated numerous studies on developing robust techniques to
analyze microscopy/tomography images.13–18 ASTM outlines the
industry standard for grain identification in 2D data,16 which
consists of methods such as matching, planimetric, and intercept
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methods. These methods, albeit can achieve high accuracy (±0.25
grain size units) and reproducibility, can be severely impaired
when the intersection criterion (for distinguishing grains) is poorly
chosen or the grain-size distribution is non-uniform.16 In addition,
these technique often require tedious manual measurements, and
automation is challenging due variability in etching level or
contrast differences although electron back scattering diffraction
methods have been recently proposed to eliminate subjectivity
surrounding existence/location of grain boundaries.15,19 Auto-
mated methods for grain identification in 2D data have been
developed over the years. For example, there are supervised
convolutional neural network (CNN) based methods,20 as well as
unsupervised clustering or Voronoi based methods. Supervised
methods once trained can achieve high accuracy, but the required
prior training to target data makes them specific to the material
system that they are trained for. Unsupervised methods based on
a combination of histogram thresholding, watershed algorithms,
and k-mean clustering can sometimes perform on par with
supervised methods when a priori information (e.g., number of
grains, crystal structure/orientation) and optimized hyperpara-
meters are given, but in that case they inherent the same
specificity of a material system due to the required information
from specific dataset or experimental technique. Unsupervised
methods that rely on just local density of atoms/electrons are
applicable to a much wider range of material systems and
experimental techniques, but at the expense of accuracy. Never-
theless, existing grain-analysis techniques are largely focused on
2D images and extending them to 3D images is not trivial.
Extension of 2D based techniques to 3D is routinely done via stack
of 2D image slices, which can be impacted by number of slices or
orientation of slices and often leads to time-consuming proces-
sing. Evidently, a fast, general, reliable, and accurate way of
identifying and analyzing grains in 3D images is still elusive.
With the advent of fourth generation synchrotron X-ray sources

which possess extreme brightness and increased coherence, it has
become possible to image materials over time in 3D (i.e., 4D
imaging). Such advanced imaging is particularly invaluable
especially when seeking information about material response
under in-situ or operando conditions. For polycrystalline materials,
a few imaging modalities including diffraction contrast tomogra-
phy (DCT), Laue diffraction and HEDM have been used to create
3D maps of the polycrystalline state of the sample.21

Segmentation or the appropriation of the resulting image into
discrete domains is often a challenge especially in tomographic
images. When the contrast between regions or segments is faint,
simple thresholding is often insufficient and more advanced
techniques such as clustering, deformable models or gradient
based techniques are required, which have been employed with
varying degrees of success.21 The ability to rapidly and accurately
segment images not just for polycrystalline materials but also to
identify inclusions and precipitates within a matrix would be
invaluable for real-time characterization of materials.
Here, we present a method that combines topology classifica-

tion, image processing, and unsupervised machine learning
including clustering algorithms to enable rapid microstructural
characterization in 3D samples. Our method provides grain size
distribution of samples derived from either simulations or
experiments. We demonstrate the method on synthetic data of
several representative polycrystal types – metals (fcc, bcc, hcp)
and ice (hexagonal/cubic), as well as experimentally collected data
of Ni-based superalloy. The method is insensitive to the presence
of extended defect structures such as stacking faults and semi-
amorphous domains which stymie standard classification meth-
ods. We have also extended the method to the characterization
other microstructural features such as voids in porous materials22

(i.e., polymer matrices) and micellar distribution in complex
solutions. The technique is computationally efficient and enables
fast identification, tracking, and quantification of microstructural
features that affect material properties. We envision this approach
to be vital for future real time analysis of data obtained from large
characterization facilities such as synchrotrons and broadly
applicable to any 3D crystallographic data. The approach also
enables characterization across a broad class of materials from
polycrystalline inorganics such as metals and ceramic to soft
materials such as polymers and self/directed assembled structures
in complex fluids.

RESULTS

Microstructural characterization
Figure 1 illustrates the major steps in our ML method for
autonomous microstructural characterization. These steps can be
loosely organized into three main processes, analogous to that in

Fig. 1 A schematic showing the major steps of our ML method for autonomous microstructural characterization of 3D polycrystalline
samples. a Identification of local structures using topological classifiers. b Voxelization improves the processing efficiency and enables image-
based processing techniques. c Thresholding enhances the distinction between microstructures and boundaries. d Clustering algorithm
identifies individual microstructures. e Refinement process improves the size estimation and distribution of identified microstructures. c An
optional back-mapping step transforms voxel data back to atomistic representation.
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a data science process (i.e., data collection and cleaning, data
analysis, and data finishing).

Process 1: Preconditioning and topological classifiers
The first step in our microstructural analysis is to distinguish
between the microstructures (e.g., grains) and their boundaries
(Fig. 1a). For atomistic polycrystalline systems, this can be done via
local structure identification using topological classifiers, such as
common neighbor analysis (CNA) for fcc, bcc, hcp structure types
that require topological information up to 1st nearest neighbors,
and extended CNA for diamond (hexagonal/cubic) structure types
that require up to 2nd nearest neighbors. These classifiers assign
local structure labels to atoms based on their topological
relationships with nearby neighbors. Unknown atom types
(amorphous) or unlabeled atoms are typically excluded from the
microstructural analysis. For soft materials, the labeling can be
done via atom type assignment based on chemical elements,
bond topology, and local charges, etc. Next, voxelization (Fig. 1b)
is performed on the labeled (e.g., crystalline) atoms/beads, which
makes possible efficient data preconditioning using standard
image processing techniques. Lastly, preconditioning procedures
such as image filters (e.g., uniform blur, local variance, etc.) and
thresholding are applied on the voxelized data or experimental
images to identify boundaries of microstructures (Fig. 1c).

Process 2: Unsupervised machine learning
Microstructural analysis is performed via clustering of the
preconditioned voxels (Fig. 1d). Voxels of similar local structure
labels are clustered. The number of clusters and their volumes,
e.g., number of grains and their sizes, provide an estimate of the
size distribution. Furthermore, individual microstructure is
assigned a unique cluster label that can be utilized for
visualization purpose. The choice of clustering algorithms (e.g.,
K-Means, DBSCAN, Mean-Shift, Gaussian mixture models) depends
on the amount of pre-existing knowledge about the system,
which can include the number of microstructures, characteristics
of the boundaries, etc. Although in the results section, we
demonstrate that density-based clustering algorithms (e.g.,
DBSCAN) can effectively handle all the tested polycrystal types
and soft material systems even with limited pre-existing
knowledge.

Process 3: Refinements and back-mapping
The number and size estimate of microstructures obtained from
the unsupervised machine learning process can be improved via a
refinement step. Techniques such as label propagation and label
spreading can effectively be used to assign cluster label to
unlabeled voxels/atoms nearby the boundaries (Fig. 1e). This step
recovers information that might have been lost during the
preconditioning process (e.g., thresholding and blur filters). Finally,
for atomistic systems, a quick back-mapping based on the spatial
relationship between voxels and atom coordinates can be used to
transform voxels back to their corresponding atomistic represen-
tation (Fig. 1f).

Microstructural characterization applied to example systems
To demonstrate the generality of the described approach, we
apply our ML method for the characterization of microstructural
features in both polycrystalline materials and in soft materials such
as polymers and micelles. In the former, the goal is to characterize
the grain size distribution in 3D polycrystalline samples whereas in
the latter, the ML algorithm is used to identify porosity and voids
in soft materials such as polymer matrix and micellar distribution
during a typical aggregation process in complex fluids. To adapt
the ML method for these systems, mainly the preconditioning
process (local structure classification, voxelization bin size, etc.)

needs to be customized, and the details are discussed case-by-
case. Below, we first describe our approach for the clustering and
refinement processes.
In all the above described systems, the number of micro-

structures is not known, and the microstructures can be irregularly
shaped, so we choose to use a local density-based clustering
algorithm, DBSCAN, for the microstructural analysis. The algorithm
has two hyperparameters in its clustering criterion: neighborhood
cutoff (ε) and the minimum required number of neighbors (Nmin).
For simplicity, we define ε to include only 1st nearest voxels of
each voxel and start with the strictest criterion (Nmin= 27 for 3D or
9 for 2D) and loosen it until the total number of clusters is
maximized. Refinement of the clusters is done by assigning
unlabeled voxels to neighboring cluster labels of maximum
occurrence, with priority given to unlabeled voxels close to
smaller microstructures. Finally, to recover an atomistic represen-
tation from voxels, atoms are assigned cluster labels of the voxels
that they are located in.

Case 1: Grain size distribution in metal polycrystals
Four metal samples (aluminum, iron, silicon, and titanium) are
chosen as representatives of common polycrystal types (fcc, bcc,
diamond, and hcp). For benchmarking, we prepared synthetic
polycrystalline samples with a known size distribution (see
Methods). The preconditioning process begins with local structure
identification of atoms using standard CNA for fcc, bcc, and hcp
structures, and extended CNA for diamond structures. The atoms
are classified as either “crystalline” or “boundary” types. Voxeliza-
tion of atoms is done based on number densities of crystalline
atoms using a uniform bin size (4.5 Å for fcc Al, 4.1 Å for bcc Fe,
4.0 Å for diamond Si, and 4.4 Å for hcp Ti). A 40-percentile
thresholding of non-zero voxels is applied in all samples to
exclude grain boundary voxels from the clustering process.
Results of the ML grain analysis for the four metal samples are

shown in Fig. 2. For each polycrystal type, a plot shows the target
(in red) and predicted (in blue) grain size distributions sampled
using gaussian kernel density estimation. The snapshots next to
each plot visualize the polycrystallinity of these samples, where
individual grains are colored by their sizes (smallest in red, largest
in blue). Comparison between the target and predicted distribu-
tions indicates that our unsupervised method has achieved >94%
accuracy in predicting the number of grains, and correctly
identifying grains that are larger than ~200 atoms in size.

Case 2: In situ visualization and 3D analysis of simulation
trajectories
The high computational efficiency of our ML method makes it
suitable for in-situ post-processing of molecular dynamics (MD)
trajectories. To demonstrate this, we apply the grain analysis on
the entire > 1 µs MD simulation trajectory (with a frame every
0.1 ns) of a polycrystalline ice sample, which was previously
performed using a coarse-grained (CG) model of water.23 The
preconditioning process is similar to that of diamond Si, where
extended CNA was used to identify hexagonal, cubic, and stacking
disordered phases of ice. Due to the larger sizes of CG beads
compared to atoms, a larger bin size of 5 Å was used in the
voxelization process. The voxelization is done based on number
densities of cubic and hexagonal beads.
Figure 3 shows two representative snapshots at t= 330 ns

(smaller grains) and t= 669 ns (larger grains). The bottom left of
each snapshot shows the result of the grain analysis, where
individual grains are colored by their sizes. Despite performing the
analysis on an uncorrelated frame-by-frame basis, the coloring is
relatively consistent due to the sorting by grain sizes. However,
changes in number of grains across frames can lead to
inconsistent assignment of cluster labels, which makes it difficult
to isolate one grain and track its time evolution. We envision this
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to be resolved in future works by introducing correlation across
frames based on spatial proximity and lattice orientation of the
individual grains.

Case 3: Characterization of porosity and voids in polymer matrix
The described ML based approach can be easily extended for void
analysis in porous material samples. To demonstrate this, high
density polysiloxane and polyethylene samples were prepared
(see Methods). These samples were equilibrated and densified
using MD simulations. The preconditioning process is simply
voxelization of the system based on the number densities of the
polymer atoms. A bin size of 3 Å was used in the voxelization step
to sample larger void spaces, although smaller bin sizes (higher
resolution) can be used to sample much smaller spaces. Results of
the void analysis are shown in Fig. 4. The method can handle large
voids (Fig. 4a) as well as small voids (Fig. 4c). The method provides
size distributions of voids, such as those shown in Fig. 4b, d, which
can be used to characterize the porosity nature of the matrix
samples.

Case 4: Characterization of micellar size distribution in complex
fluids
The described ML based approach is also suitable for the structural
analysis of hierarchical soft materials in complex fluids. The
dynamics of ions and mesoscale structure in complex organic fluids
is a fascinating fundamental science problem with deep implications
for many important energy, chemical, and biological systems. Many
recent studies24–27 have indicated that ion dynamics and transport
can be strongly influenced by the hierarchical mesoscale ordering
and internal interfaces that often occur in these systems.28,29 The
formation of such hierarchical structures provides a broad
opportunity to design new materials with outstanding performance
for diverse applications such as battery electrolytes, MRI contrast
reagents, sensors, catalysts, and solvent extraction systems.30

Although the equilibrium structure and phase behavior of complex
fluids has been the subject of much study, there is a need to
characterize the dynamics to understand and control ion transport,
complexation, and aggregation processes. Here, we use our ML
algorithm to characterize the micellar size distribution during the

Fig. 3 Demonstration of our unsupervised ML grain analysis method on large-scale MD simulations. Snapshots from a 2-million molecules
simulation of polycrystalline ice performed using a CG model of water.23 The right side of each snapshot shows the hexagonal/cubic stacking
disordered ice grains and their grain boundaries. Bottom left of each snapshot shows the result of the grain analysis, where individual grains
are colored by their sizes.

Fig. 2 Application of our ML method on several representative polycrystalline metal samples. Each of the samples (aluminum, iron, silicon,
and titanium) is ~20 nm × 20 nm × 20 nm in size (~500,000 atoms). All samples have 300 grains. The plots show the target (in red) and
predicted (in blue) grain size distributions. The distributions are normalized such that the shared area equates to the total number of grains.
Polycrystallinity of these samples are visualized by snapshots shown next to the plots, where individual grains are colored by their sizes
(smallest in red, largest in blue). The sample set consists of common polycrystal types: a fcc, b bcc, c diamond, d hcp.
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aggregation process in a 3D colloidal sample obtained from
molecular simulation trajectory.
To demonstrate this, we obtained a configuration of reverse

micelles from CG MD simulations (see Methods). The precondi-
tioning process includes voxelization of the system based on the
number densities of water beads. Due to the high 4:1 CG ratio of
this model, a large bin size of 8 Å is used in the voxelization step.
Figure 5a shows the water clusters within individual equilibrated
micelles colored by their sizes, and Fig. 5b shows the micellar size
distribution as a function of these water cluster sizes.

Case 5: Grain size distribution in superalloy sample from
experiment
The described ML based approach can be applied to images
collected from experiments. Unlike voxelized atomistic data, 3D
images obtained from experimental characterization techniques,
such as tomography and coherent diffraction X-ray imaging, contain
more noise and artifacts. Furthermore, these images can be of

bright-field or dark-field types and the grains can span a range of
pixel/voxel intensity values, which require grain boundaries detec-
tion techniques beyond thresholding with just one cutoff. Figure 6
shows examples of such images and demonstrates the use of a local
variance filter to effectively identify boundaries of microstructures.
Our method utilizes the same boundary detection method as
outlined earlier. Figure 7 demonstrates the use of our method on an
IN100 Ni-based superalloy sample collected from serial-sectioning
experiments. The processing pipeline on such data is illustrated in
Fig. 7a and the resulting grain size distribution is shown in Fig. 7b–d
demonstrate the same processing pipeline applied to input images
of lower resolutions, which result in significant speedup in
processing albeit at the expense of lower feature detection
resolution.

DISCUSSION

The robustness of our microstructural analysis method can be
assessed by the deviation in results upon introducing variations to

Fig. 4 Demonstration of our unsupervised ML method on the analysis of voids in polymeric systems. The figure shows polysiloxane
sample (top) and polyethylene sample (bottom). a, c Snapshots from atomistic MD simulations showing the identified void spaces. Individual
voids are colored by their sizes. b, d Plots showing the size distribution of the voids. The distributions are normalized such that the shaded
area equates to the total number of voids.

Fig. 5 Demonstration of our unsupervised ML method on the size distribution analysis of reverse micelles in a complex solution.
a Snapshots from CG MD simulations showing cluster of water beads within individual micelles colored by their sizes. b Plot showing the size
distribution of the micelles as a function of the water cluster sizes. The distribution is normalized such that the shaded area equates to the
total number of micelles.
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the data and hyperparameters at each of the major steps in the
processing pipeline (Fig. 1). The cascade of operations leads to the
possibility of errors earlier in the processing pipeline propagating
downstream. Out of the 6 major steps, only the first 4 steps (i.e.,
local structure classification, voxelization, thresholding, and
clustering) are likely to be affected by the variations in data or
the choice of hyperparameters. Furthermore, hyperparameters in
the clustering step can be optimized on-the-fly based on the
number of identified clusters.

Here, we provide a quantitative assessment of error sensitivities
associated with the remaining 3 steps. We use the fcc Al system as
an example and manually introducing variations to the data and
hyperparameters. Figure 8a–c shows snapshots of a sample with
~0%, 15%, and 25% randomly perturbed local structure labels.
These incorrect labels in atomistic data affect the identification of
grain boundaries (i.e., crystalline versus amorphous atoms), which
is analogous to introducing noise to images from experimental
measurements. The grain size distribution plots in Fig. 8d–e

Fig. 7 Demonstration of our unsupervised ML method on grain identification of an IN100 Ni-based superalloy sample collected from
serial-sectioning experiments. a 3D input image reconstructed from electron backscatter diffraction (EBSD) data15 and the corresponding
target grain segmentation labeled using inverse pole figure (IPF) coloring. In our method, the input image is pre-processed using a local
variance filter and thresholding prior to the clustering and refinement step. b The predicted grain size distribution and grain segmentation
obtained using our method. Boundary and unidentified voxels are colored by green and gray. c, d Lower resolution input images obtained by
down sampling and the corresponding grain segmentation predicted by our method. The effect of down sampling is analogous to using a
large bin size in the voxelization step for atomistic data. Down sampling significantly speeds up the processing but at the expense of accuracy
(i.e., ability to detect small and fine features).

Fig. 6 Examples illustrating the use of local variance filter for grain boundary identification. 2D images of polycrystalline grain samples are
reproduced with permission from Campbell et al.36 and Groeber et al.15 The method can handle both bright field and dark field images and is
only sensitive to local variance of pixel intensity which eliminates problems associated with direct thresholding based on absolute pixel
intensity.
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demonstrate that our method is resilient to such noise. For
instance, the method can handle up to ~25% variation in the fcc
Al data when the voxelization bin size is 5.5 Å, and up to ~15%
data variation when the bin size is 4.5 Å. This robustness is
attributed to the various down-sampling operations (e.g., vox-
elization and local variance/uniform filters) and the use of a
density-based clustering algorithm that can handle noise
(i.e., DBSCAN). As the voxelization bin size increases, the amount
of data averaging increases, which makes it more resilience to
variations in the data. There is, however, a trade-off. Larger bin size
also leads to more efficient processing (Fig. 7c, d), but this comes
at the expense of losing information of small features or fine
details in the grain size distribution. Also note that the use of local
variance filter for boundary identification alleviates the sensitivity
of the method to different bin sizes, but the method remains
sensitive to the thresholding cutoff value in the thresholding step.
We found that a 90-percentile thresholding of non-zero voxels
works well for atomistic data from simulations, and a 40-percentile

thresholding generally works for images from experiment. This
thresholding cutoff, similar to the hyperparameters (ε and Nmin)
associated with the DBSCAN clustering algorithm, can potentially
be optimized on-the-fly based on the number of identified grains.
Future studies might investigate techniques analogous to Otsu
thresholding for choosing such cutoff in a deterministic manner.
The efficiency of our method can be analyzed based on the

time complexity of the steps in the workflow. Excluding the time
that it takes to load the input data, the major time-consuming
steps are voxelization, clustering, and refinement. The voxelization
step has a time complexity of O(n) since each atom/bead is
processed once during the conversion into voxels. However, this
operation provides a significant time saving in return for the
remaining steps in the workflow since the voxelized system is
typically ~25% of the original system size which is further reduced
via subsequent preconditioning and thresholding. The clustering
step, in particular DBSCAN clustering in 3D space, has a typical
time complexity of O(n log(n)), where n is the remaining number

Fig. 8 Error sensitivity of our unsupervised ML method on grain identification. a–c Snapshots of the atomistic fcc Al sample with varying
number of randomly perturbed local structure labels. d–f Grain size distribution plots of the system. Local variance filter with a 90-percentile
thresholding is used for grain boundary identification, which alleviates the error sensitivity of the method to different voxelization bin sizes.
Plots from left to right correspond to the amount of data variation in a–c, whereas from top to bottom, the voxelization bin size changes from
5.5 Å to 4.5 Å to 3.5 Å. As the bin size increases, the method become more resilient to variations in data due to more data averaging from
down-sampling. This however comes at the expense of losing fine structures in the grain size distribution.
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of voxels after thresholding in the preconditioning process. The
clustering step is supported by a k-d tree (incorporating periodic
boundary conditions) for fast nearest neighbor search, which has a
worst-case time complexity of O(n log(n)) to build and average
time complexity of O(log(n)) for each neighbor query. The same k-
d tree is used in the refinement step, where repeated query is
performed on voxels with no cluster labels. The time spent in the
refinement step varies depending on nature of the (grain)
boundaries.
In conclusion, we summarized the importance and challenges in

microstructural analysis of polycrystalline samples in full 3D and
outlined an unsupervised ML approach to solve this major
problem. Our ML method starts with data preconditioning using
local structure topological classifier, voxelization, and image
processing. An unsupervised ML clustering algorithm was then
used to obtain statistics and distribution of the microstructures.
Finally, techniques such as label spreading was used to refine the
results and back-mapping is performed to recover the atomistic
representation. We demonstrated the efficacy of our method on
several different classes of materials ranging from polycrystalline
solids to soft materials such as polymers and complex fluids. The
technique is applicable for the characterization of grain size
distribution, voids, porosity and similar microstructural features
across a broad class of inorganic and soft material systems. The
technique can be applied to synthetic data samples, as well as
experimentally measured data. We also highlighted the computa-
tional efficiency and error sensitivity of the method and
emphasized its suitability for future real time analysis of data
from large characterization facilities.

METHODS

Polycrystal sample preparation
Synthetic polycrystalline metal samples of a fixed number of grains (300)
were prepared using Voronoi tessellation. Each sample is ~20 nm ×
20 nm × 20 nm in size (~500,000 atoms) with periodic boundaries applied
in the x-, y-, and z- directions. Grain size distribution curves of these
samples were obtained for the purpose of benchmarking, where atoms at
the grain (Voronoi) boundaries were identified and excluded from the
grain size distribution curves to provide a more accurate grain size count.
The identification of boundary atoms was done using standard CNA for fcc,
bcc, and hcp lattice types and extended CNA for diamond lattice types.

Polycrystalline ice simulation
Polycrystalline ice samples were obtained from previously performed CG
MD simulations of homogeneous nucleation runs23 using LAMMPS.31 The
sample size is ~40 nm × 40 nm × 40 nm (~2-million water molecules) and
the microstructure analysis was performed on the entire trajectory for up
to t= 1.2 μs for a frame every 0.1 ns.

Polymer sample preparation
Two types of polymer matrix samples, polysiloxane and polyethylene, were
prepared using atomistic fixed bond models. The sample sizes were
~5 nm × 6 nm × 6 nm box (~17k atoms) and ~8 nm × 9 nm × 8 nm box
(~33k atoms), respectively. These samples were minimized and equili-
brated for up to 200 ns in LAMMPS31 using an empirical class2 potential
with parameters from the COMPASS and PCFF force fields.32,33 An
isothermal-isobaric (NPT) ensemble at T= 300 K and varying pressures
was used to densify the samples.

Micelle sample preparation
A sample of complex solution was prepared using a CG model (4:1
mapping). The sample size was ~82 nm × 82 nm × 90 nm, containing
125,000 water molecules, 1,500,000 dodecane molecules, and 120,400
surfactant-like molecules. The sample was minimized and equilibrated for
up to 200 ns in NAMD34 using the MARTINI force field35 to obtain a
configuration of reverse micelles. An isothermal-isobaric (NPT) ensemble at
T= 300 K and P= 1 bar was used for the equilibration.
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