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ABSTRACT The application of Machine Learning (ML) techniques to complex engineering problems has

proved to be an attractive and efficient solution. ML has been successfully applied to several practical tasks

like image recognition, automating industrial operations, etc. The promise of ML techniques in solving non-

linear problems influenced this work which aims to apply known ML techniques and develop new ones

for wireless spectrum sharing between Wi-Fi and LTE in the unlicensed spectrum. In this work, we focus

on the LTE-Unlicensed (LTE-U) specification developed by the LTE-U Forum, which uses the duty-cycle

approach for fair coexistence. The specification suggests reducing the duty cycle at the LTE-U base-station

(BS) when the number of co-channel Wi-Fi basic service sets (BSSs) increases from one to two or more.

However, without decoding the Wi-Fi packets, detecting the number of Wi-Fi BSSs operating on the channel

in real-time is a challenging problem. In this work, we demonstrate a novel ML-based approach which solves

this problem by using energy values observed during the LTE-U OFF duration. It is relatively straightforward

to observe only the energy values during the LTE-U BS OFF time compared to decoding the entire Wi-Fi

packet, which would require a full Wi-Fi receiver at the LTE-U base-station. We implement and validate

the proposed ML-based approach by real-time experiments and demonstrate that there exist distinct patterns

between the energy distributions between one and many Wi-Fi AP transmissions. The proposed ML-based

approach results in a higher accuracy (close to 99% in all cases) as compared to the existing auto-correlation

(AC) and energy detection (ED) approaches.

INDEX TERMS LTE, Unlicensed Spectrum, Wi-Fi, Machine Learning.

I. INTRODUCTION

The growing penetration of high-end consumer devices like

smartphones and tablets running bandwidth hungry applica-

tions (e.g. mobile multimedia streaming) has led to a commen-

surate surge in demand for mobile data (pegged to soar up to

77 exabytes by 2022 [1]). An anticipated second wave will re-

sult from the emerging Augmented/Virtual Reality (AR/VR)

industry [2] and more broadly, the Internet-of-Things that will

connect an unprecedented number of intelligent devices to

next-generation (5 G and beyond) mobile networks as shown

in Fig. 1. Existing wireless networks, both cellular and Wi-

Fi, must therefore greatly expand their aggregate network

capacity to meet this challenge. This is being achieved by

a combination of approaches including use of multi-input,

multi-output (MIMO) techniques [3], network densification

(i.e. deploying small cells [4]) and more efficient traffic man-

agement and radio resource allocation.

Since licensed spectrum is a limited and expensive re-

source, its optimal utilization may require spectrum shar-

ing between multiple network operators/providers of different

types -increasingly licensed-unlicensed sharing is being con-

templated to enhance network spectral efficiency, beyond the

more traditional unlicensed-unlicensed sharing. As the most

common unlicensed incumbent, Wi-Fi is now broadly de-

ployed in the unlicensed 5 GHz band in North America where

approximately 500 MHz of bandwidth is available. However,

these 5 GHz unlicensed bands are also seeing increasing de-

ployment of cellular services such as Long Term Evolution
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FIGURE 1. Future applications on unlicensed spectrum band.

(LTE) Licensed Assisted Access (LTE-LAA). Recently, the

Federal Communications Commission (FCC) sought to open

up 1.2 GHz of additional spectrum for unlicensed operation

in the 6 GHz band through a Notice of Proposed Rule Making

(NPRM) [5]. This allocation of spectrum for unlicensed oper-

ation will thus only accelerate the need for further coexistence

solutions among heterogeneous systems.

However, the benefits of spectrum sharing are not devoid of

challenges, the foremost being the search for effective coex-

istence solutions between cellular (LTE and 5 G) and Wi-Fi

networks whose medium access control (MAC) protocols are

very different. While cellular systems employ a Time Divi-

sion Multiple Access (TDMA)/Frequency Division Multiple

Access (FDMA) scheduling mechanism, Wi-Fi depends on

the Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) mechanism. The 5 GHz band being unlicensed

and offering 500 MHz of available bandwidth has prompted

several key players in the cellular industry to develop the

LTE-LAA specification within the Third Generation Partner-

ship Project (3GPP). Specification differences between LTE

and the incumbent Wi-Fi will lead to many issues due to

the incompatibility between the two standards. Therefore, to

ensure fair coexistence, certain medium access protocols have

been developed as an addition to the licensed LTE standard.

In addition to LTE-LAA, there also exists LTE-U which was

developed by an industry consortium called the LTE-U Forum

and will be the main focus of this paper.

LTE-LAA was proposed by 3GPP [6], [7] and its working

mechanism is similar to the Carrier Sense Multiple Access

with Collision Avoidance (CSMA/CA) protocol used by Wi-

Fi. In LTE-LAA, an LAA base station (BS) acts essentially

similar to a Wi-Fi access point (AP) in terms of channel

access, i.e., a BS needs to ensure that the channel is free before

transmitting any data, otherwise it will perform an exponential

back-off procedure similar to CSMA/CA in Wi-Fi. Therefore,

there is no need to precisely determine the number of coexist-

ing Wi-Fi APs, due to the channel sensing and back-off mech-

anism which is adaptable to varying channel occupancy. How-

ever, LTE-U which was developed by the LTE-U forum [8],

uses a simple duty-cycling technique where the LTE-U BS

will periodically switch between ON and OFF states in an

interval set according to the number of Wi-Fi APs present

in the channel. In the ON state, the BS transmits data as a

normal LTE transmission while in the OFF state, the BS does

not transmit any data but passively senses the channel for the

presence of Wi-Fi. The number of sensed Wi-Fi APs is then

used to properly adjust the duty cycle interval, and this process

is known as Carrier Sense Adaptive Transmission (CSAT).

Therefore, accurately determining the number of coexisting

Wi-Fi APs is important for optimum operation of the CSAT

procedure.

Existing literature addresses the LTE-U and Wi-Fi coexis-

tence in terms of optimizing the ON and OFF duty cycle [9],

power control [10], hidden node problem [11], etc. On the

other hand, the LTE-U specification does not specify, and

there has been relatively less work on, how a LTE-U operator

should detect the number of Wi-Fi APs on the channel to

adjust the duty cycle appropriately. There are a number of

candidate techniques to determine the number of Wi-Fi APs

as follows:
� Header-Based CSAT (HD): Wi-Fi APs transmit beacon

packets every 102.4 ms, containing important informa-

tion about the AP, such as the Basic Service Set Identi-

fication (BSSID) which is unique to each AP. This is a

straightforward way to identify the Wi-Fi AP, but it adds

additional complexity since the LTE-U BS would require

a full Wi-Fi decoder to obtain this information from the

packet.
� Energy-Based CSAT (ED): Rather than a full decoding

process, it is hypothesized that sensing the energy level

of the channel is enough to detect the number of Wi-Fi

APs on the channel. However, it is still a challenging

problem since the energy level may not correctly corre-

late to the number of APs under varying conditions (e.g.,

different category of traffic, large number of Wi-Fi APs,

variations in transmission powers, multipath, etc).
� Autocorrelation-Based CSAT (AC): To detect the Wi-

Fi signal at the LTE-U BS, one can develop an auto-

correlation (AC) based detector where the LTE-U BS

performs auto-correlation on the Wi-Fi preamble, with-

out fully decoding the preamble. This is possible since

all Wi-Fi preambles1 contain the legacy short training

field (L-STF) and legacy long training field (L-LTF)

symbols which contain multiple repeats of a known se-

quence. However, the AC function can only determine

whether a signal is a Wi-Fi signal and cannot derive any

distinct information pertaining to each APs.

Table 1 lists the different types of CSAT approaches

with their own pros and cons. We studied energy detection

(ED) and AC based detection of Wi-Fi APs in our previous

work [12], [13],2 and proved that our algorithms performed

reasonably well under various scenarios.

1All Wi-Fi frames, even those in newer specifications like 802.11ax, begin
with the legacy short training field (L-STF) symbol.

2The latest version can be found here: http://bit.ly/2LDVWWo
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TABLE 1. Different Types of LTE-U CSAT

FIGURE 2. Dense LTE Wi-Fi Co-existence deployment setup.

Of late, Machine Learning (ML) approaches are beginning

to be used in wireless networks to solve problems such as

agile management of network resources using real-time an-

alytics based on data. The advantage of ML is that it has the

ability to learn useful information from input data, which can

help improve network performance. ML models enable us to

replace heuristics with more robust and general alternatives.

In this paper, we propose observing the Wi-Fi AP energy

values during LTE-U OFF duration and using the data to train

different ML models [14]. We also apply the models in an

online experiment to detect the number of Wi-Fi APs. Finally,

we demonstrate significant improvement in the performance

of the ML approach as compared to the ED and AC detectors.

Fig. 2 illustrates an example of a dense LTE-U/Wi-Fi coex-

istence, where a number of Wi-Fi APs and one LTE-U BS are

operating on the same channel, with multiple clients associ-

ated with each AP and BS. In such a situation, it is crucial that

LTE-U reduce its duty-cycle proportional to the number of

Wi-Fi APs, else with a duty-cycle of 50% the Wi-Fi APs will

be starved of air-time. As the number of Wi-Fi APs increase

on the channel, it becomes increasingly important to detect

the number of APs accurately at the LTE-U BS with out any

co-ordination i.e., in a distributed manner. According to the

LTE-U forum, it is expected that the LTE-U BS will adjust its

duty cycle when one or more Wi-Fi APs turned off, and vice

versa. With a large number of Wi-Fi APs, it becomes harder

to detect the number accurately using either energy-based or

correlation-based approaches. In this work, our goal is to infer

the presence of one or more Wi-Fi APs accurately from the

collected energy level data using ML algorithms that have

been trained on real data. We accomplish this by creating

a realistic open lab experimental scenarios using a National

Instruments (NI) USRP RIO board with a LTE-U module, five

Netgear Wi-Fi APs, and five Wi-Fi clients.

The rest of the paper is organized as follows. Section II

presents a brief overview of existing studies on ML as ap-

plied to wireless networks and LTE/Wi-Fi coexistence in the

unlicensed spectrum. Section III explains the channel access

procedure in Wi-Fi using CSMA/CA and the LTE-U duty

cycle mechanism. Section IV presents the coexistence system

model and the impact of LTE-U and Wi-Fi transmissions on

each other. Section VI explains the HD, ED and AC based

LTE-U duty cycle adaptation algorithms. Section V describes

the experimental set-up used to measure energy values and

gather statistics of the energy level in the presence of one or

more Wi-Fi APs. Section VII then evaluates various ML algo-

rithms and chooses the most appropriate one for adjusting the

duty cycle based on the collected data. Experimental results

are presented in Section VIII. Section IX presents the perfor-

mance (in terms of successful detection, delay and different

ML methods) comparison between HD, ED, AC and ML for

fixed and different configuration. Finally, Section X concludes

the paper with the main contributions and future work in this

area.

II. RELATED WORK

In this section, we briefly discuss (a) the existing work on LTE

Wi-Fi coexistence without ML, (b) the use of ML in general

wireless networks and (c) the application of ML to LTE Wi-Fi

coexistence.

A. EXISTING WORK ON LTE AND WI-FI COEXISTENCE

There has been a significant amount of research, from both

academia and industry, on the coexistence of LTE and Wi-

Fi that discuss several key challenges such as: Wi-Fi client

association, interference management, fair coexistence, re-

source allocation, carrier sensing, etc. Coexistence scenarios

are well studied in simulations for both LAA/Wi-Fi and LTE-

U/Wi-Fi deployments [15]–[17]. These papers examine coex-

istence fairness in varying combinations of detection thresh-

old and duty-cycle. However, the auto-correlation based and

energy based methods for spectrum sensing in this coexistence

context have not been well studied. Recently, we proposed

an energy-based CSAT for duty cycle adaptation in LTE-U

[12], [18], [19], and studied this approach via rigorous the-

oretical and experimental analyses. The energy-based CSAT

algorithm can infer the number of coexisting Wi-Fi APs by
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detecting the energy level in the channel, which is then used

to adjust the duty cycle accordingly. Using a threshold of

−42 dBm, the algorithm is able to differentiate between one

or two Wi-Fi APs, with a successful detection probability

PD of greater than 80% and false positive probability PFA of

less than 5%. Hence, this initial work proved the feasibility

of stand-alone energy-based detection, without the need for

packet decoding. In our succeeding work, we proposed a

novel algorithm that utilizes auto-correlation function (AC)

[13] to infer the number of active Wi-Fi APs operating in

the channel. The AC function is performed on the preamble

of a signal to determine if the signal is a Wi-Fi signal. This

work further improved the performance of the energy-based

approach, with PD of 0.9 and PFA of less than 0.02, when using

an AC threshold NE of 0.8. In both [12], [13], the maximum

number of Wi-Fi APs considered on the channel was two.

In realistic dense deployment scenarios, we can expect more

than 2 APs on the same channel. Hence, in this paper we

study the performance of ED and AC for more realistic dense

deployment scenarios.

B. ML AS APPLIED TO WIRELESS NETWORKS

In [20], several state-of-the-art applications of ML in wire-

less communication and unresolved problems have been de-

scribed. Resource management in the MAC layer, networking

and mobility management in the network layer, and localiza-

tion in the application layer are some topics that have been

identified as being suitable fo ML approaches. Within each

of these topics, the authors provide a survey of the diverse

ML based approaches that have been proposed. In [21], [22],

a comprehensive tutorial has been provided on the use of

artificial neural networks-based machine learning for enabling

a variety of applications in wireless networks. In particular,

the authors presented an overview of a number of key types of

neural networks such as recurrent, spiking, and deep neural

networks. For each type, the basic architecture as well as

the associated challenges and opportunities have been pre-

sented, followed by an overview of the variety of wireless

communication problems that can be addressed using artificial

neural networks (ANNs). This work further investigated many

emerging applications including unmanned aerial vehicles,

wireless virtual reality, mobile edge caching and computing,

Internet of Things, and multi-Random Access Technology

(RAT) wireless networks. For each application, the author

provided the main motivation for using ANNs along with their

associated challenges while also providing a detailed example

for a use case scenario.

C. ML AS APPLIED TO LTE WI-FI COEXISTENCE

A learning-based coexistence mechanism for LTE

unlicensed based heterogeneous networks (HetNets) was

presented in [23]. The motivation was to maximize the

normalized throughput of the unlicensed band while

guaranteeing the Quality of Service (QoS) of users: the

authors thus considered the joint resource allocation and

network access problem. A two-level framework was

developed to decompose the problem into two subproblems,

which were then solved using learning-based approaches.

The outcome of the proposed solution achieves near-optimal

performance and is more efficient and adaptive due to the

distributed and learning-based approach. Authors in [24]

provide an overview of earning schemes that enable efficient

spectrum sharing using a generic cognitive radio setting as

well as LTE and Wi-Fi coexistence scenarios. Most LTE-U

duty cycle solutions rely on static coexistence parameter

configurations, which may not be applicable in real-life

scenarios which are dynamic. Hence in [25], the author

uses the Markov decision process modeling along with

a solution based on a ML CSAT algorithm which adapts

the LTE duty-cycle ratio to the transmitted data rate, with

the aim of maximizing the Wi-Fi and LTE-U aggregated

throughput. A ML based approach was proposed in [26] for a

model-free decision-making implementation of opportunistic

coexistence of LTE-U with Wi-Fi, which enabled the LTE-U

BS to dynamically identify and further exploit white spaces

in the Wi-Fi channel, without requiring detailed knowledge

of the Wi-Fi system. By adaptively adjusting the LTE-

U duty cycle to Wi-Fi activity, the proposed algorithm

enabled maximal utilization of idle resources for LTE-U

transmissions, while decreasing the latency imposed on Wi-Fi

traffic. The proposed approach also provided a means to

control the trade-off between LTE-U utilization and Wi-Fi

latency in the coexisting networks.

In [27], the author analytically analyzes the LTE-U scheme

when it coexists with Wi-Fi and introduces a ML technique

that can be used by an LTE-U network to learn the wireless

environment and autonomously select the transmission op-

portunity (TXOP) and muting period configurations that can

provide fair coexistence with other co-located technologies.

Simulation results show how ML can assist LTE-U in finding

optimal configurations and adapt to changes of the wireless

environment thus providing the desired fair coexistence. Au-

thors in [28] propose a convolutional neural network (CNN)

that is trained to perform identification of LTE and Wi-Fi

transmissions which can also identify the hidden terminal

effect caused by multiple LTE transmissions, multiple Wi-Fi

transmissions, or concurrent LTE and Wi-Fi transmissions.

The designed CNN has been trained and validated using

commercial off-the-shelf LTE and Wi-Fi hardware equipment.

The experimentation results show that the data representation

affects the accuracy of CNN. The obtained information from

CNN can be exploited by the LTE-U scheme in order to pro-

vide fair coexistence between the two wireless technologies.

The above papers on ML in wireless and unlicensed spec-

trum do not address the problem of accurately identifying the

number of Wi-Fi APs which is a crucial first step in address-

ing fair coexistence for LTE-U/Wi-Fi coexistence. Hence, in

this paper, we modify the classical ML approaches to de-

velop algorithms that can identify the number of Wi-Fi APs

on air faster and more reliably than existing methods. Our

approach is based on collecting data in realistic coexistence

environments for both training and testing. We also compare
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FIGURE 3. Wi-Fi CSMA/CA transmission.

the performance of the ML-based approaches with the more

conventional ED and AC methods described above.

III. CHANNEL ACCESS PROCEDURE FOR WI-FI AND LTE-U

In this section, we discuss the differences in the channel

access procedures for Wi-Fi, using CSMA/CA and LTE-U,

using the duty cycle mechanism.

A. WI-FI CSMA/CA

The Wi-Fi MAC distributed coordination function (DCF) em-

ploys CSMA/CA as illustrated in Fig. 3. Each node attempting

transmission must first ensure that the medium has been idle

for a duration of DCF Interframe Spacing (DIFS) using the

ED and Carrier Sensing (CS) mechanism. If either ED or CS

is true, the Clear Channel Assessment (CCA) is set to be busy.

If the channel is idle and the station has not just completed

a successful transmission, the station transmits. Otherwise, if

the channel is sensed busy during the DIFS sensing period

or the station is contending after a successful transmission,

the station persists with monitoring the channel until it is

measured idle for a DIFS period, then selects a random back-

off duration (counted in units of slot time) and counts down.

Specifically, a station selects a back-off counter uniformly at

random in the range of [0; 2i W0 − 1] where the value of i

(the back-off stage) is initialized to 0 and W0 is the minimum

contention window chosen initially. Each failed transmission

due to packet collision results in incrementing the back-off

stage by 1 (binary exponential back-off or BEB) and the

node counts down from the selected back-off value; i.e., the

node decrements the counter every σ (µs) corresponding to a

back-off slot as long as no other transmissions are detected. If

during the countdown a transmission is detected, the counting

is paused (freeze the back-off counter), and nodes continue

to monitor the busy channel until it goes idle; thereafter the

medium must remain idle for a further DIFS period before

the back-off countdown is resumed for accessing the channel.

Once the counter hits zero, the node transmits a packet. When

a transmission has been completed successfully, the value of

i is reset to 0. The maximum value of back-off stage i is m

with the maximum contention window size of Wm and it stays

in m-th stage for one more unsuccessful transmission with

the same contention window size Wm, i.e. the retry limit is

1. The value of W0 and m is determined in the standard. If

the last transmission was unsuccessful, the node drops the

packet and resets the backoff stage to i = 0. If a unicast

transmission is successful the intended receiver will transmit

FIGURE 4. LTE-U duty cycle transmission.

an Acknowledgment frame (ACK) after a Short Interframe

Spacing (SIFS) duration post successful reception; the ACK

frame structure which consists of preamble and MAC header.

The ACK frame chooses the highest basic data rate (6 Mbps,

12 Mbps, or 24 Mbps) for transmitting the MAC header which

is smaller than the data rate used for data transmission.

B. LTE-U DUTY CYCLE

LTE-U uses a duty-cycling approach (i.e. alternating the ON

and OFF period, where the LTE BS is allowed to transmit

only during the ON duration) where the duty cycle (ratio of

ON duration to one cycle period) is determined by perceived

Wi-Fi usage at the LTE-U BS, using carrier sensing. During

the ON period, the LTE-U BS schedules DL transmissions to

UEs, unlike Wi-Fi in which transmissions are governed by the

CSMA/CA process. Fig. 4 shows the LTE-U transmission for

the duty cycle of 0.5. LTE-U uses the basic LTE subframe

structure, i.e., the subframe length of 1 ms; each sub-frame

consists of two 0.5 ms slots. Each subframe consists of 14

OFDM symbols of which 1 to 3 are Physical Downlink Con-

trol Channel (PDCCH) symbols and the rest are Physical

Downlink Shared Channel (PDSCH) data. LTE-U BSs start

downlink transmissions synchronized with slot boundaries,

for (at least) one subframe (2 LTE slots) duration. After

transmission, the intended receiver (or receivers) transmits the

ACK on the uplink via the licensed band if the decoding is

successful.

In LTE, a Resource Block (RB) is the smallest unit of radio

resource which can be allocated to a user equipment (UE),

equal to 180 kHz bandwidth over a Transmission Time Inter-

val (TTI) of one subframe (1 ms). Each RB of 180 kHz band-

width contains 12 subcarriers, each with 14 OFDM symbols,

equaling 168 Resource Elements (REs). Depending upon the

modulation and coding schemes (QPSK, 16-QAM, 64-QAM),

each symbol or resource element in the RB carries 2, 4

or 6 bits per symbol, respectively. In the LTE system with

20 MHz bandwidth, there are 100 RBs available.

IV. SYSTEM MODEL AND IMPACT OF LTE-U AND WI-FI ON

EACH OTHER

In this section, we describe the coexistence system model

assumed in the paper followed by the mutual impact of LTE-U

and Wi-Fi on each other.

A. COEXISTENCE SYSTEM MODEL

We assume a deployment where LTE-U and Wi-Fi are oper-

ating on the same unlicensed 20 MHz channel in the 5 GHz

band. The LTE-U BS transmits only downlink packets on the
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FIGURE 5. Wi-Fi impact on LTE-U on transmission.

unlicensed spectrum, while all uplink transmissions are on

the licensed spectrum. Control and data packets are trans-

mitted using PDCCH and PDSCH respectively. The LTE-U

BS operates at maximum transmit power using all possible

resource blocks and the highest modulation coding scheme

(i.e., 64-QAM). We assume that the Wi-Fi APs also operate at

maximum transmission power, transmitting a full buffer video

traffic. CSMA/CA and duty-cycle adaptation mechanism are

used for channel access for Wi-Fi and LTE-U, respectively.

Both Wi-Fi and LTE-U follow their respective retransmission

schemes such that when a packet transmission is unsuccess-

ful (packet or acknowledgement lost), the packet will be re-

transmitted. Finally, we assume that the Wi-Fi APs support

both active and passive scanning mode, i.e., both beacon and

probe response packets are transmitted by the AP during the

association process.

B. IMPACT OF WI-FI ON LTE-U DURING THE ON PERIOD

In order to observe the impact of Wi-Fi on LTE-U during the

ON period (i.e., LTE-U is ON without appropriate sensing

of a Wi-Fi transmission), we deploy a NI based LTE-U BS

(Section V describes the experiment set-up in detail) on chan-

nel 165 which is a 20 MHz channel and five Wi-Fi APs on

the same channel. Each client is associated with one Wi-Fi

AP with full buffer video transmission. Fig. 5(a) shows the

constellation of received signals when there is no Wi-Fi AP on

the channel, that is, LTE-U BS can transmit the data with high

modulation coding scheme of 64-QAM. Similarly, Fig. 5(b)

shows the energy value observed when there are 5 Wi-Fi APs

on the same channel, where X-axis represents time and Y-axis

represents energy values. Fig. 5(c) shows the effect of Wi-Fi

transmissions on LTE-U during the ON period, when Wi-Fi

APs are unaware of the sudden LTE-U ON cycle starting

in the middle of an ongoing Wi-Fi transmission: clearly the

constellation is distorted. This clearly points to the inefficient

use of the spectrum and the need for the LTE-U BS to sense

or learn the medium to identify the number of Wi-Fi APs on

the air and scale back its duty cycle accordingly.

C. IMPACT OF LTE-U ON TRANSMISSION ON WI-FI DATA

In case of Wi-Fi/Wi-Fi coexistence where 5 Wi-Fi APs are

deployed at the distance of 6F, we observe successful trans-

mission of packets as shown in Fig. 6(a) and (b). We see that

the CSMA mechanism works well for Wi-Fi/Wi-Fi coexis-

tence, since the number of packets in error with no LTE-U is

FIGURE 6. LTE-U impact on Wi-Fi transmission.

FIGURE 7. LTE-U duty cycle mechanism.

similar that when Wi-Fi coexists with Wi-Fi. Fig. 6(c) shows

the packet transmission errors when Wi-Fi coexists with a

fixed, LTE-U duty cycle: the number of Wi-Fi packets in

error increase. To solve the above problem, the LTE-U forum

proposed the dynamic CSAT approach [8], [12], [13] based on

the number of Wi-Fi APs on the same channel. Fig. 7 shows

the LTE-U duty cycle adaptation process when detecting a

varying number of Wi-Fi APs. When no AP is detected on

the channel, an LTE-U BS will operate at the maximum 95%

duty cycle [8] (i.e., minimum of 1 ms OFF duration). When

one AP is detected (assumed using a predetermined sensing

technique), the BS will scale back to 50% duty cycle (i.e.,

20 ms ON time and 20 ms OFF time). If a new Wi-Fi AP

starts transmitting, it will contend with the existing AP only

during the OFF time which is 50% of the available medium.

Since this is unfair to the Wi-Fi APs, the LTE-U specification

recommends scaling the duty cycle back to 33% when more

than one Wi-Fi AP is using the channel. However, there is no

specific mechanism proposed to detect the number of coexist-

ing Wi-Fi APs in both sparse and dense deployment scenarios.

V. EXPERIMENTAL SETUP FOR MACHINE LEARNING

BASED DETECTION

Our experimental set-up consists of one LTE-U BS and a

maximum of five Wi-Fi APs. To emulate the LTE-U BS, we

use the National Instruments USRP 2953-R software defined

radio (SDR) which is equipped with the LTE-U radio frame-

work. There are five Netgear Wi-Fi APs and five Wi-Fi clients

deployed in a static configuration. The Wi-Fi clients are

combination of laptops and smartphones capable of Wi-Fi
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TABLE 2. Experimental Set-Up Parameters

802.11 ac connection. As soon as the client connects to the

Wi-Fi AP, it starts a live video streaming application to sim-

ulate a full-buffer transmission. The experimental setup is

shown in Fig. 9 and the complete experimental parameters are

described in Table 2.

We set the BS and APs to be active in the same 20 MHz

channel in the 5 GHz band (i.e., Wi-Fi channel 165 and LTE

band 46 EARFCN 53540). We separated the APs and BS into

six cells, with five cells (Cell A, C, D, E, and F) as Wi-Fi

cells and one cell (Cell B) as the LTE-U cell. Each Wi-Fi cell

consists of one AP and one client, while the LTE-U BS and

UE are contained within the same USRP board.

The BS transmits full buffer data at maximum power by

enabling all of its resource blocks with the highest modulation

coding scheme (i.e., 64-QAM). It operates at a 50% duty

cycle during the experiment, and listens to the configured

unlicensed channel during the OFF period for RF power and

AC measurement. The RF power measurement is configured

in the LTE block control module of the NI LTE application

framework, which outputs energy value as defined in VI-B.

The AC function is also configured in the LTE block control

module of the same framework and outputs the AC events as

defined in VI-C. The energy values observed from Algorithm

2 are given as input to the ML algorithm (explained in detail in

Section VII) to classify the number of Wi-Fi APs on the chan-

nel. Each Wi-Fi AP transmits full buffer downlink data and

beacon frames, with occasional probe responses if it receives

probe requests for clients in the vicinity. We also ensure that

there is no extra interference in the channel from other Wi-Fi

APs.

We measure the energy, AC value and ML (same energy

value as input to ML) at the LTE-U BS for the following

scenarios:
� Scenario 0: No Wi-Fi APs are deployed and only one

LTE-U cell (i.e., Cell B) is deployed.
� Scenario 1: One Wi-Fi AP (i.e., Cell A) and one LTE-U

(i.e., Cell B) is deployed.
� Scenario 2: Two Wi-Fi APs (i.e., Cell A & C) and one

LTE-U (i.e., Cell B) are deployed.
� Scenario 3: Three Wi-Fi APs (i.e., Cell D, E, & F) and

one LTE-U (i.e., Cell B) are deployed.
� Scenario 4: Four Wi-Fi APs (i.e., Scenario 1: Cell A,

Scenario 3: Cell D, E, & F) and one LTE-U (i.e., Cell B)

are deployed.

FIGURE 8. LTE-U duty cycle adaptation algorithm.

� Scenario 5: Five Wi-Fi APs (i.e., Cell A, C, D, E, & F)

and LTE-U (i.e., Cell B) are deployed.

In all scenarios, Cell B measures the energy and AC values

during the LTE-U OFF period, while the rest of the Wi-Fi

cells are transmitting full buffer downlink transmission. We

also vary the distances and the LOS and NLOS environment

of each cell. In NLOS setup, the wall act as a obstruction

between the LTE-U and Wi-Fi APs. We measure the received

Wi-Fi AP signals at the LTE-U BS for different 6 feet (For

example in Scenario 5, where all the 5 Wi-Fi APs placed at

6 feet from the LTE-U BS), 10 feet and 15 feet distances.

Our previous work focused only on detecting Scenarios 1

and 2 (i.e., 1 and 2 Wi-Fi APs coexisting with LTE-U) [12],

[13]. Also, we demonstrated that Scenario 0 can be easily

distinguished from other scenarios [19].

VI. LTE-U DUTY CYCLE ADAPTATION ALGORITHMS

In order to solve the problems identified in the previous

section, we propose header (HD), energy (ED) and auto-

correlation (AC) based detection algorithms for a dense de-

ployment scenario to identify the number of Wi-Fi APs on

the channel. Fig. 8 explains how different sensing algorithms

work based on the known Wi-Fi packet structure.

A. HEADER-DECODING BASED LTE-U DUTY CYCLE

ADAPTATION ALGORITHM

We assume that there is either a common preamble [29], [30]

between the LTE-U and Wi-Fi systems or the LTE-U BS has

a full Wi-Fi decoder that will allow it to decode the Wi-Fi

MAC header and hence obtain the BSSID. Doing so, one can

accurately detect the number of Wi-Fi APs on the channel

and hence header-based decoding is the most accurate method

compared to energy, auto-correlation, and ML. However, the

decision algorithm to adapt the duty cycle needs to be de-

signed carefully to avoid misclassification. We define a simple

algorithm shown in Algorithm 1, to classify the number of
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active Wi-Fi APs at each time slot. In brief, the algorithm

counts the number of beacon of each uniquely identifiable

BSSID, for a defined time slot. Since we can expect that an AP

in a real deployment may hop between channels frequently,

it is important to collect beacons for a longer period of time

rather than deciding based on just one beacon. We initially set

a time slot of 10 beacons (i.e., 1.024 s) and count the number

of beacons for each BSSID in the time slot. We set a threshold

of 9 beacons for an AP to be considered as active, this means

that there is 90% confidence that the AP is actually active.

The length of the time slot determines the inference delay,

hence one would like this delay to be as small as possible.

We reduced the time slot to 5 beacons (0.512 s), but to get the

same accuracy we need to set the threshold to 4 beacons which

means that the confidence rate is at a lower 80%. Thus, with

a slightly lower confidence rate, we can reduce the inference

time to half without compromising the detection accuracy.

B. ENERGY BASED LTE-U DUTY CYCLE ADAPTATION

ALGORITHM

The experiment setup is shown in Fig. 9. We measure the

received energy at the LTE-U BS for different distances

between the LTE-U BS and Wi-fi APs and obtain histograms

of the measured signal when one or more Wi-Fi APs are trans-

mitting at 6, 10 and 15 feet from the LTE-U BS. We then fit

the measured histograms to probability distribution functions

as described in [12] to develop a classification algorithm. In

Algorithm 2, an energy-based detection listens to the energy

level in the channel and according to a set threshold [12],

decides whether to scale back the duty cycle or not. Since

the measured energy threshold depends on the the number of

detected Wi-Fi APs, the choice of threshold is important to the

algorithm. Finally, we implement the algorithm in the LTE-U

BS NI hardware and validate it experimentally.

First, we modify the NI LTE application framework to mea-

sure RF power during the LTE-U OFF period. The collected

energy values are then averaged over one second time duration

and used for algorithm input. If the averaged energy value is

greater than the specified threshold α1, i.e., if energy value

≥ α1 then there is a possibility of Wi-Fi packets (beacon,

probe request, probe response, data, or ACK) transmitted in

the channel. The BS then can declare whether one, two, three,

four, or five AP is present, based on the other thresholds: α2,

α3, α4, α5 (e.g., if α3 ≤ energy value ≤ α4 then there are 4

APs in the channel). By keeping count of correct and incorrect

decisions made by the algorithm, we calculate the probability

of correct detection and false positive on predicting the num-

ber of Wi-Fi APs in the unlicensed spectrum. These probabil-

ity values are used as a metric to determine the performance

of the threshold, such that we pick a set of threshold with high

probability of correct detection and low probability of false

positive.

C. AC BASED LTE-U DUTY CYCLE ADAPTATION ALGORITHM

In the same experiment setup as shown in Fig. 9, we count

the total number of AC events that are above a threshold for

every one second over the duration of 90 seconds. We measure

the total number of events above the AC threshold at the
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FIGURE 9. LTE Wi-Fi Co-existence experimental setup.

LTE-U BS for 6, 10 and 15 feet distances. Then, we observe

the PDF distribution of the number of AC events above the

threshold [13] for Scenario 0 to 5 described above. We make

use of this key observation to develop a classification algo-

rithm (i.e., Algorithm 3) for both LOS and NLOS scenarios.

The algorithm uses AC functions and optimal thresholds to

determine the number of Wi-Fi APs in the channel, therefore

the selection of threshold is also important and will be shown

in this section. We implement the algorithm in the LTE-U

BS hardware and validate it experimentally. The AC function

is performed at LTE-U BS to sense the spectrum for Wi-Fi

preamble signals (i.e., L-STF). The output of the function is

an AC value which determine the likelihood that the signal

is a Wi-Fi preamble. We observed on many experiments, that

the threshold thρ of 0.25 is sufficient to determine that the

captured signal is a Wi-Fi signal (beacon, probe request, probe

response, data, or ACK). Using the threshold, we predicted the

number of Wi-Fi signals in every one second period. Next, we

calculate the ratio [13] and then compared to Ri which is a

threshold determined during a preliminary experiment with i

Wi-Fi AP and no LTE-U on the channel. The Ri is determined

such that the true positive rate is as high as possible and

false positive rate is as low as possible during the preliminary

experiment. Since it is not possible for the observed ratio to

be higher than Ri, we set a correct prediction that i Wi-Fi AP

is present in the channel if the ratio is less than or equal to the

threshold Ri, and false prediction otherwise.

VII. ML ALGORITHMS FOR LTE-U DUTY CYCLE ADAPTION

ML models enable us to replace heuristics with more robust

and general alternatives. For the problem of distinguishing

between different numbers of Wi-Fi APs, we train a model

to detect a pattern in the signals instead of finding a specific

energy threshold in a heuristic manner. The state-of-the-art

ML models leverage the unprecedented performance of neural

network models that are able to surpass human performance

on many tasks, for example, image recognition [31], and help

us answer complex queries on videos [32]. This efficiency is

a result of large amounts of data that can be collected and

labeled as well as usage of highly parallel hardware such as

GPUs or TPUs [33], [34]. In the work described in this paper,

we train our neural network models on NVidia GPUs and

collect enough data samples that enable our models to achieve

high accuracy. Our major task is a classification problem to

distinguish between zero, one, two, three, four, or five Wi-Fi

BSSs.

We consider machine learning models that take time-series

data of width w as input, giving an example space of X ∈ Rw,

where R denotes the real numbers. Our discrete label space

of k classes is represented as Y ∈ {0, 1}k . For example, k = 3

classes, enables us to distinguish between 0, 1, and 2 Wi-Fi

APs. Machine learning models represent parametrized func-

tions (by a weight vector θ ) between the example and label

spaces f (x; θ ) : X �→ Y . The weight vector θ is iteratively

updated during the training process until the convergence of
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the training accuracy or training loss (usually determined by

very small changes to the values despite further training),

and then the final state of θ is used for testing and real-time

inference.

A. DATA PREPARATION

The training and testing data is collected over an extended

period of time with a single scenario taking about 8 hours.

For ease of exposition, we consider the case with one and

two Wi-Fi APs. We collect data for each Wi-Fi AP indepen-

dently and store the two datasets in separate files. Each file

contains more than 2.5 million values and the total raw data

size in CSV format is of about 60 MB. Each file is treated as

time-series data with a sequence of values that are first divided

into chunks. We overlap the time-series chunks arbitrarily by

three-fourths of their widths w. For example, for chunks width

w = 128, the first chunk starts at index 0, the second chunk

is formed starting from index 32, the third chunk starts at

index 64, and so on. This is part of our data augmentation

and a soft guarantee that much fewer patterns are broken on

the boundary of chunks. The width w of the (time-series data)

chunk acts as a parameter for our ML model. It denotes the

number of samples that have to be provided to the model to

perform the classification. The longer the time-series width w,

the more data samples have to be collected during inference.

The result is higher latency of the system, however, the more

samples are gathered, the more accurate the predictions of the

model. On the other hand, with smaller number of samples per

chunk, the time to collect the samples is shorter, the inference

is faster but of lower accuracy. We elaborate more on this topic

in Section VIII.

The collection of chunks are shuffled randomly. We divide

the input data into training and test sets, each 50% of the

overall data size. The aforementioned shuffling ensures that

we evenly distribute different types of patterns through the

training and test sets so that the classification accuracy of both

sets is comparable. Each of the training and test sets contain

roughly the same number of chunks that represent one or two

Wi-Fi APs. We enumerate classes from 0. For the case of 2

classes (either one or two Wi-Fis), we denote by 0 the class

that represents a single Wi-Fi AP and by 1 the class that

represents 2 Wi-Fi APs. Next, we compute the mean µ and

standard deviation σ only on the training set. We check for

outliers and replace the values that are larger than 4σ with the

µ value (e.g., there are only 4 such values in class 1).

The data for the two classes have different ranges (from

about −45.46 to −26.93 dBm for class 0, and from about

−52.02 to about −22.28 dBm for class 1). Thus, we normalize

the data D in the standard way: ND = (D−µ)
σ

, where ND is the

normalized data output, µ and σ are the mean and standard

deviation computed on the training data. We attach the appro-

priate label to each chunk of the data. The overall size of the

data after the preparation to detect one or two Wi-Fi APs is

about 382 MB, where the Wi-Fi APs are on opposite sides of

the LTE-U BSS and placed at 6 feet distance from the LTE-U

BSS). We collect data for many more scenarios and present

them in Section VIII. The final size of the collected data is

3.4 GB.

For training, we do not insert values from different num-

bers of Wi-Fi APs into a single chunk. The received signal

in the LTE-U BSS has higher energy on average for more

Wi-Fi APs, thus there are differences in the mean values

for each dataset. Our data preparation script handles many

possible numbers of Wi-Fi APs and generates the data in

the format that can be used for model training and inference

(we follow the format for datasets from the UCR archive). In

the future, we plan on gathering additional data samples for

more Wi-Fi APs and making the dataset more challenging for

classification.

B. NEURAL NETWORK MODELS: FC, VGG AND FCN

Our data is treated as a uni-variate time-series for each chunk.

There are many different models proposed for the standard

time-series benchmark [35].

First, we test fully connected (FC) neural networks. For

simple architectures with two linear layers followed by the

ReLU non-linearity the maximum accuracy achieved is about

90%. More linear layers, or using other non-linearities (e.g.

sigmoid) and weight decays do not help to increase the ac-

curacy of the model significantly. Thus, next we extract more

patterns from the data using the convolutional layers.

Second, we adapt the VGG network [36] to the one dimen-

sional classification task. We changed the number of weight

layers to 6 (we also tested 7, 5, and 4 layers, but found that

6 gives the highest test accuracy of about 99.52%). However,
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the drawback is that with fewer convolutional layers, the fully

connected layers at the end of VGG net become bigger to the

point that it hurts the performance (for 4 weight layers it drops

to about 95.75%). This architecture gives us higher accuracy

but is rather difficult to adjust to small data.3

Finally, one of the strongest and flexible models called FCN

is based on convolutional neural networks that find general

patterns in time-series sequences [37]. The advantages of the

model are: simplicity (no data-specific hyper-parameters), no

additional data pre-processing required, no feature crafting

required, and significant academic and industrial effort into

improving the accuracy of convolutional neural networks [38],

[39].

The architecture of the FCN network contains three blocks,

where each of them consists of a convolutional layer, followed

by batch normalization f (x) = x−µ√
σ 2+ǫ

(where ǫ is a small

constant added for numerical stability) and ReLU activation

function y(x) = max(0, x). There are 128, 256, and 128 filter

banks in each of the consecutive 3 layer blocks, where the

sizes of the filters are: 8, 5, and 3, respectively. We follow

the standard convention for Convolutional Neural Networks

(CNNs) and refer to the discrete cross-correlation operation

as convolution. The input x to the first convolution is the time-

series data chunk with a single channel c. After its convolution

with f filters, with filters denoted as y, the output feature map

o has f channels. For training, we insert s = 32 time-series

data chunks into a mini-batch. We have j ∈ f and the discrete

convolution [40] that can be expressed as:

o = x ∗ y (1)

and in the Einstein notation:

o(s, j) =
∑

i∈c

x(s,i) · y( j,i) (2)

C. ML MODELS FROM SCIKIT-LEARN

To diversify the machine learning models used in our com-

parison, we select the most popular models from the scikit-

learn (also denoted as sklearn) library.4 The library exposes

classical machine learning algorithms implemented in Python.

This is a common tool used for science and engineering. We

run our experiments using sklearn version 0.19.1 with Python

3.6. We analyze how the following models perform on our

WiFi data and report their test accuracy. The decision tree is

a simple classifier that learns decision rules inferred from the

data features. The deeper the tree, the more complex the deci-

sion rules and the fitter the model. The decision tree classifier

achieves accuracy of 79.46% for the task of distinguishing

between one or two Wi-Fi APs. The AdaBoost [41] classifier

is one of the best out-of-the-box models in the sklearn library

that creates an ensemble of classifiers. In our experiments,

AdaBoost begins by fitting a decision tree classifier on the

3The dimensionality of the data is reduced slowly because of the small
filter of size 3.

4https://scikit-learn.org/stable/index.html

original dataset and then fits additional decision tree classi-

fiers on the same dataset but where the weights of incorrectly

classified instances are modified such that subsequent clas-

sifiers focus more on difficult cases. It is tuned by adjusting

the maximum number of the decision tree classifiers used.

AdaBoost achieves accuracy of 94.57%. Random Forest is

an averaging algorithm based on randomized decision trees.

Its test accuracy is 79.87%. We find that the best tested

model from the sklearn library is AdaBoost. The highest test

accuracy achieved for AdaBoost for the standard case with

two Wi-Fi APs is worse by about 5% when compared to the

overall best FCN model (described in Section VII-B), which

achieves accuracy of 99.38% for the same configuration (with

2 Wi-Fi APs, 512 chunk size, NLOS, and 6 feet distance). For

more than 5 classes, Random Forest model achieves higher

accuracy than AdaBoost.

D. TIME-SERIES SPECIFIC MODELS

BOSS in Vector Space (BOSS VS) model [42] is a time-series

classification algorithm, whose properties make it suitable for

our task. This algorithm is characterized by fast inference,

tolerance to noise that enable us to achieve high test accu-

racy, moderate training time, which allows for periodic model

updates. Moreover, BOSS VS achieves best test accuracy for

repetitive and long time-series data. Within the time-series

specific models, we also compared to WEASEL [43], which

yielded lower test accuracy despite much longer training

time.

We run the BOSS VS time-series specific model for the

NLOS 6 feet case. Other time-series models train much longer

(in the order of days) on our large (a few GBs) time-series data

or do not fit even into 128 GB of RAM memory provided. We

observe that from 2 to up to 4 WiFi APs, the performance

of the BOSS VS model is on-par with the performance of

FCN model. However, for the scenario where we have to

distinguish between 0 to 5 WiFi APs, the accuracy of the FCN

model is higher by about 7%. One concern with the BOSS VS

model is that we have to use a machine with 128 GB of RAM

to train the model and for larger data sizes, the out of memory

exception is thrown as well (the model is implemented in

Java). For the FCN, we are able to scale to arbitrary amount

of data. Based on the thorough experimental analysis, we see

the FCN model and other neural network based models as the

most accurate and scalable models that can be used to predict

the number of Wi-Fi APs.

E. FFT COMPRESSION

We use the FFT-based convolution with compression pro-

posed in [38] and here describe its essential component. We

express input x and filter y as discrete functions that map

tensor index positions n to values x[n]. Their correspond-

ing Fourier representation re-indexes tensors in the spectral

domain:

Fx[ω] = F (x[n]) Fy[ω] = F (y[n])
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This mapping is invertible x = F−1(F (x)). Convolutions

in the spectral domain correspond to element-wise

multiplications:

x ∗ y = F−1(Fx[ω] · Fy[ω])

For natural data, such as time-series data, a substantial portion

of the high-frequency domain is close to 0. This observation

allows us to compress the data.

Let Mc[ω] be a discrete indicator function defined as:

Mc[ω] =

{

1, ω ≤ c

0, ω > c

Mc[ω] is a mask that limits the input data and filters to a

certain band of frequencies. The FFT-based convolution with

compression is defined as follows:

x ∗c y = F−1{(Fx[ω] · Mc[ω]) · (Fy[ω] · Mc[ω])} (3)

The mask Mc[ω] is applied to both the signal Fx[ω] and

filter Fy[ω] (in equation 3) to indicate the compression of both

arguments.

VIII. EXPERIMENTAL RESULTS

In this section we discuss the model training, inference and

transition between different classes. The code for our project

can be found on github: http://bit.ly/2Ob5kAr.

A. TRAINING AND INFERENCE

Each model is trained for at least 100 epochs. We experiment

with different gradient descent optimization algorithms, e.g.

Stochastic Gradient Descent (SGD) and Adaptive Moment

Estimation (Adam).5 For the SGD algorithm, we grid search

for the best initial learning rate and primarily use 0.0001. The

learning rate is reduced on plateau by 2X after 50 consecutive

iterations (scheduled patience). SGD is used with momentum

value 0.9. We use standard parameters for the Adam optimiza-

tion algorithm. The batch size is set to s = 32 to provide high

statistical efficiency. The weight decay is set to 0.0001. For

our neural network models, the dataset is relatively simple.

The Wi-Fi data can be compared in its size and complexity

to the MNIST dataset [44] or to the GunPoint series from the

UCR archive [35].

B. TIME-SERIES WIDTH

The number of samples collected per second by the LTE-U BS

is about 192. The inference of a neural network is executed in

milliseconds and can be further optimized by compressing the

network. The final width of the time-series chunk imposes a

major bottleneck in terms of the system latency. The smaller

the time-series chunk width w, the lower the latency of the

system. However, the neural network has to remain highly

accurate despite the small amount of data provided for its

inference. Thus, we train many models and systematically

vary the chunk width w from 1 to 2048 (see Fig. 10). In

5A very good explanation can be found here: http://bit.ly/2Y9XaQ8

FIGURE 10. The test accuracy (%) for a model trained and tested for a
given chunk size (ranging from 1 to 2048) to distinguish between 2 classes
(either 1 or 2 Wi-Fi APs), 3 classes (distinguish between 0, 1, or 2 Wi-Fi
APs), 4 classes (distinguish between 0, 1, 2, or 3 Wi-Fi APs), and 5 classes
(distinguish between 0, 1, 2, 3 or 4 Wi-Fi APs).

FIGURE 11. Number of Wi-Fi APs. The values of the energy (in dBm)
captured for 2048 samples in LTE-U BS while there are 1 Wi-Fi, 2, and 3
Wi-Fis scenarios at 6 Feet, NLOS. The more Wi-Fi APs active, the more
energy picks we observe.

this case, each model is trained only for the single scenario

(placement of the Wi-Fi APs) and with zero, one, two, or three

active Wi-Fi APs. When we decrease the chunk sizes to the

smaller chunk consisting of a single sample, the test accuracy

deteriorates steadily down to the random choice out of the 3

or 4 classes (accuracy of about 33% and 25%, respectively)

and for the 2 classes, its performance is very close to the ED

(Energy-based Detection) method.

We present the energy of the signals captured in different

configurations: (1) Fig. 11 shows the values of energy cap-

tured for different number of Wi-Fi APs (one, two and three),

(2) Fig. 12 demonstrates the scenario with different distances

of Wi-Fi APs from the LTE-U, and (3) Fig. 13 gives insight

into energy of the signal in NLOS and LOS scenarios.

We consider in detail the signal from about 1500th sam-

ple to 2000th sample in Fig. 11. It is challenging to distin-

guish between two or three Wi-Fis.6 The visual inspection

of the signals suggests that width of the time-series chunk

6The Energy values for 4 and 5 Wi-Fi APs are more dense and challenging.
In order to better visualize we plotted only 1, 2 and 3 Wi-Fi APs
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FIGURE 12. Distances from LTE-U. The values of the energy (in dBm)
captured for 2048 samples in LTE-U BS while there are 2 Wi-Fi APs at 6, 10,
and 15 Feet, NLOS. The closer the Wi-Fi APs are to the LTE-U, the higher
energy is captured.

FIGURE 13. NLOS vs LOS. The values of the energy (in dBm) captured for
2048 samples in LTE-U BS while there are 2 Wi-Fi APs at 6 Feet, in NLOS
and LOS scenarios. The fewer obstructions, the higher energy is captured.

should be longer than 500 samples. Signals with width of

384 achieve test accuracy below 99% and signals with width

512 can be trained to obtain 99.68% of test accuracy. Based

on the experiments in Figs. 10 and 11, we find that the best

trade-off between accuracy and inference time is achieved for

chunk of size 512.

C. TRANSITIONS BETWEEN CLASSES

When we switch to another class (change the state of the

system in terms of the number of Wi-Fis), we account for

the transition period. If in a given window of 1 second a

new Wi-Fi is added, the samples from this first second with

new Wi-Fi (or without one of the existing Wi-Fis - when it is

removed), the chunk is containing values from n and n + 1

(or n − 1) number of Wi-Fis. An easy workaround for the

contaminated chunk is to change the state of the system to

new number of Wi-Fis only after the same class is returned by

the model in two consecutive inferences (classifications).

D. REAL-TIME INFERENCE

We deploy the model in real-time, which is similar to the

energy data collection experiment setup, and is shown in

Fig. 14. We prepare the model only for the inference task

in the following steps. Python scripts load and deploy the

FIGURE 14. The schema of the inference process, where the input
received by the LTE-U BS is signals from Wi-Fis and the output is the
predicted number of Wi-Fis.

trained PyTorch model. We set up the Wi-Fi devices and

generate some network load for each device. The LTE-U BS

is connected to a computer with the hardware requirements

of at least 8 GB RAM (Installed Memory), 64-bit operating

system, x64-based processor, Intel(R) Core i7, CPU clock

2.60 GHz. The energy of the Wi-Fi transmission signal in a

given moment in time is capture using NI LabVIEW. From

the program, we generate an output file or write the data to a

pipe. The ML model reads the new values from the file until it

reaches the time-series chunk length. Next, the chunk is nor-

malized and passed through the model that gives a categorical

output that indicates the predicted number of Wi-Fis in the

real-time environment.

IX. PERFORMANCE COMPARISON BETWEEN HD, ED, AC

AND ML METHODS

We analyze and study the performance differences between

HD, ED, AC and ML methods for different configuration

setups and discus the inference delay. In ML method, we

validate the performance on ML real-time inference data. For

the final evaluation, we train a single Machine Learning model

that is based on the FCN network and used for all the follow-

ing experiments. The model is trained on the whole dataset of

size 3.4 GB, where the train and test sets are of the same size

of about 1.7 GB.

A. COMPARISON BETWEEN ML METHODS

We present comparison between ML methods in Fig. 15.

The time-series specific neural network models, such as FCN

(VII-B) as well as BOSS VS (VII-D), perform much bet-

ter than the general purpose models from scikit-learn library

(described in Section VII-C). The middle-ground between

the two options is a simple two-layer convolutional network

called LeNet. The main benefit of using FCN (MEDIUM) or

BOSS VS is greater model learning capacity than LeNet or

scikit-learn models. There is a negligible difference in terms

of test accuracy between the FCN and BOSS VS models.

However, the FCN models can scale to much bigger data sizes

and we observe that the BOSS VS model often goes out of

memory for more than a few GBs of input data. Thus, we

select FCN as our main Machine Learning (ML) model for

all the remaining experiments.
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FIGURE 15. Comparison of test accuracy for different ML methods.
Number of Wi-Fi APs equals to 2 denotes the Case D configuration (NLOS,
6 feet). Thus, 2 on the x axis corresponds to distinguishing between 1 and
2 Wi-Fi APs, whereas 3 denotes distinguishing between 0, 1, or 2 Wi-Fi
APs. Similarly, the values on the x axis (4,5) denote distinguishing from 0
to (x-1) WiFi APs.

FIGURE 16. Comparison of results for successful detection between ED,
AC and ML methods. ML results are presented for the test data (denoted
as MLt :) and for the real time inference (denoted as MLr :).

B. SUCCESSFUL DETECTION AT FIXED DISTANCE

We compare the ML performance with HD,7 ED and AC ap-

proaches using the NI USRP platform as shown in Fig. 9. Sim-

ilarly we compare the performance of HD by analyzing the

Wi-Fi BSSID through wireshark capture. In the experiment,

Wi-Fi APs are transmitting full buffer data, along with bea-

con and probe response frames following the 802.11 CSMA

specification. We performed different experiments with 6 ft,

10 ft and 15 ft for LOS and NLOS scenarios. Fig. 16 shows

the performance of detection for LOS and NLOS scenarios. In

ED and AC based approach the proposed detection algorithm

achieves the successful detection on average at 93% and 95%

for LOS scenario. Similarly, the algorithm achieves 80% and

90% for the NLOS scenario. In this work, we show that ML

approach can achieve close to 100% successful detection rate

7The successful Wi-Fi detection in HD for LOS and NLOS scenario is
100%. Hence we have not included in the Fig. 9.

for both LOS and NLOS, and different distance scenarios (6 ft,

10 ft & 15 ft). We observe the ML approach works close to the

performance of HD.

Table 3 shows the performance of detection for fixed dis-

tance configuration setup. From, this table the number of Wi-

Fis columns represents the number of Wi-Fi APs deployed in

the coexistence setup. The number of Wi-Fi AP 2 corresponds

to distinguishing between 1 and 2 Wi-Fi APs, whereas 3

denotes distinguishing between 0, 1, or 2 Wi-Fi APs and so

on. In all cases the performance of ML is close to 100%.

C. SUCCESSFUL DETECTION AT DIFFERENT

CONFIGURATIONS

We verify how the detection works in different configurations.

We placed more than two Wi-Fi APs on the same side of the

LTE-U BS, unlike the above configuration (i.e., 6 ft, 10 ft and

15 ft) where they were on opposite sides. Wi-Fi AP 1, Wi-Fi

AP 2, Wi-Fi AP 3, Wi-Fi AP 4 and Wi-Fi AP 5 are placed

at distances of 6 feet, 10 feet and 15 feet from the LTE-U

BS respectively. We measured the performance of detection

with LOS and NLOS configurations. The goal in this section is

to observe the performance of detection in the ML compared

with HD, ED, and AC. Some of the possible cases are listed

below.
� Case A: Only the Wi-Fi AP 1 at 6 feet is ON.
� Case B: Only the Wi-Fi AP 2 at 10 feet is ON.
� Case C: Only the Wi-Fi AP 3 at 15 feet is ON.
� Case D: Wi-Fi AP 1 at 6 feet is ON and Wi-Fi AP 2 at 6

feet is ON.
� Case E: The Wi-Fi AP 1 at 6 feet and Wi-Fi AP 3 at 15

feet is ON.
� Case F: The Wi-Fi AP 1 at 10 feet and Wi-Fi AP 3 at 15

feet is ON.
� Case G: Wi-Fi AP 1 and Wi-Fi AP 2 at 6 feet is ON and

Wi-Fi AP 3 at 15 feet is ON.
� Case H: Wi-Fi AP 1 at 6 feet is ON, Wi-Fi AP 2 at 10

feet is ON, and Wi-Fi AP 3 at 15 feet is ON.
� Case I: Wi-Fi AP 1 and Wi-Fi AP 2 at 6 feet is ON,

Wi-Fi AP 3 at 10 feet is ON and Wi-Fi AP 4 at 15 feet is

ON.
� Case J: Wi-Fi AP 1 at 6 feet is ON, Wi-Fi AP 2 and

Wi-Fi AP 3 at 10 feet is ON and Wi-Fi AP 4 at 15 feet is

ON.
� Case K: Wi-Fi AP 1 and Wi-Fi AP 2 at 6 feet is ON,

Wi-Fi AP 3 and Wi-Fi AP 4 at 10 feet is ON and Wi-Fi

AP 5 at 15 feet is ON.
� Case L: Wi-Fi AP 1 at 6 feet is ON, Wi-Fi AP 2, Wi-Fi

AP 3 and Wi-Fi AP 4 at 10 feet is ON and Wi-Fi AP 5 at

15 feet is ON.
� Case M: Wi-Fi AP 1 at 6 feet is ON, Wi-Fi AP 2 at 10

feet is ON, Wi-Fi AP 3, Wi-Fi AP 4 and Wi-Fi AP 5 at

15 feet is ON.
� Case N: Wi-Fi AP 1 and Wi-Fi AP 2 at 6 feet is ON,

Wi-Fi AP 3 at 10 feet is ON, Wi-Fi AP 4 and Wi-Fi AP

5 at 15 feet is ON.

186 VOLUME 1, 2020



TABLE 3. Performance of Detection for Fixed Distance Configuration Setup

TABLE 4. Performance of Detection for Different Configuration Setup (From Case A to G)

TABLE 5. Performance of Detection for Different Configuration Setup (From Case H to N)

The different configurations are for LTE-U when it coexists

with different number of Wi-Fi APs (from 1 to 5). Table 4

shows the better performance for ED and AC compared to the

Table 5. This is due to fewer number of Wi-Fi AP deployments

from Case A to G compared to Case H to N. Hence, the the ED

and AC methods can detect the number of Wi-Fi APs close to

80% for ED and up to 90% for AC. As the number of Wi-Fi

APs increases from 3 to 5 Wi-Fi APs (i.e., Case H to N), we

observe substantial degradation in ED performance (to 56%)

and AC performance (to 63%). Tables 4 and 5 show that there

is no such degradation in the performance of ML as compared

to ED and AC. Hence, we believe that the ML approach is the

preferred method for a LTE-U BS in a dense environment to

detect the number of Wi-Fi APs and scale back the duty cycle

efficiently.

D. ADDITIONAL DELAY TO DETECT THE WI-FI AP

To study the additional delay to detect a Wi-FI AP, we con-

sider a 5 Wi-Fi AP deployment scenario, where, Wi-Fi AP

1 and Wi-Fi AP 2 at 6 feet are ON, Wi-Fi AP 3 and Wi-Fi

AP 4 at 10 feet are ON and Wi-Fi AP 5 at 15 feet is ON.

We observe a large number of Wi-Fi packets on the air and

moreover the LTE-U ON cycle interference impacts the delay

in Wi-Fi transmissions. In HD, the total time for the LTE-U

TABLE 6. Other Additional Delay to Detect the Wi-Fi AP Due to the NI
Hardware

BS to decode the BSSID is 1.4 seconds (i.e., Wi-Fi 1st BSSID

beacon packet + LTE-U detects K beacon + Additional layer

complexity + NI USRP RIO hardware processing time). In

ED, the total time for the energy based CSAT algorithm to

adopt or change the duty cycle from 50% to 33% is 5.9

seconds (i.e., Wi-Fi 1st beacon transmission time + LTE-U

detects K beacon (or) data packets time + NI USRP RIO

hardware processing time) as shown in Table 6. In AC, the

total time for the AC based CSAT algorithm to change the

duty cycle from 50% to 33% is 4.8 seconds (i.e., Wi-Fi 1st

L-STF packet frame + LTE-U detects L-STF frame time + NI

USRP RIO hardware processing time). In ML, the total time

for the CSAT algorithm to adopt the duty cycle from 50% to

33% is about 3.1 seconds. This approach is dependent on the

chunk size (in this case set to 512).
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FIGURE 17. Effect of FFT compression embedded into the convolutional
layers of the FCN model on test accuracy. We use the Case D configuration
for 2 classes and the same configuration with NLOS and 6 feet for the
remaining classes.

E. FFT COMPRESSION

We test the FCN model using the FFT based convolutional

layers with compression [38]. The results are presented in

Fig. 17. We observe that for 2 and 3 classes the data is highly

compressible and we can allow up to even 60% compression

with the test accuracy preserved on the level of above 99%. As

we increase the number of classes, the accuracy of the model

gracefully degrades and the 60% compression rate allows us

to retain the test accuracy of about 90% for 5 classes.

We do not observe a significant difference between the

cases with 2 and 3 classes. For 2 classes, we have 1 or 2 Wi-Fi

APs and for 3 classes, we distinguish between 0, 1, or 2 Wi-Fi

APs. The signal for no Wi-Fi APs is very different and hence

easier to classify, than for the remaining signals with active

Wi-Fi APs.

X. CONCLUSIONS AND FUTURE WORK

We have presented a comprehensive experimental study of

different kinds of ML algorithms that could be used to address

the problem of identifying the number of active Wi-Fi APs

on the air to aid in setting the LTE-U duty cycle appropri-

ately. Additionally, we have compared the performance of

the optimum ML algorithm to conventional methods using

energy detection and auto-correlation detection and demon-

strated superior performance in multiple configurations. We

believe that this is the first result that demonstrates the fea-

sibility of using ML on energy values in real-time, instead

of packet decoding [15], to reliably distinguish between the

presence of different number of Wi-Fi APs. Such a result can

have applications beyond LTE-U duty-cycle adaptation, for

example in better Wi-Fi frequency management.

We aim to extend this work in the future by distinguish-

ing between LTE-LAA BS and Wi-Fi APs for the coexis-

tence scenario between Wi-Fi, LTE-U and LTE-LAA, thus

enabling even finer duty cycle adjustments of a LTE-U BS

and improved coexistence with Wi-Fi. Also, we are inter-

ested in developing a ML framework that predicts the type

of Wi-Fi traffic i.e., voice, video, or data which in turn can

further ensure fair access to the unlicensed spectrum since

each traffic-type requires different transmission opportunity

times (TXOPs) and per-traffic fairness is more important than

per node (Wi-Fi AP) fairness. Similar concepts can also be ap-

plied to LTE-LAA/Wi-Fi coexistence deployments and future

NR-U/Wi-Fi coexistence in the 6 GHz band.

REFERENCES

[1] V. CISCO, “CISCO visual networking index: Forecast and trends,
2017–2022,” White Paper, vol. 1, 2018.

[2] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource alloca-
tion for mobile edge computing-based augmented reality applications,”
IEEE Wireless Commun. Lett., vol. 6, no. 3, pp. 398–401, Jun. 2017.

[3] G. Gampala and C. Reddy, “Massive MIMO beyond 4G and a basis for
5G,” in Proc. IEEE Int. Appl. Comput. Electromagn. Soc. Symp., 2018,
pp. 1–2.

[4] V. Sathya, A. Ramamurthy, and B. R. Tamma, “On placement and
dynamic power control of femtocells in LTE HetNets,” in Proc. IEEE

Global Commun. Conf., 2014, pp. 4394–4399.
[5] F. C. Commission, “Notice of proposed rulemaking on unlicensed use of

the 6 GHz band,” 2018. [Online]. Available: https://docs.fcc.gov/public/
attachments/FCC-18-147A1.pdf

[6] G. P. Project, “3GPP release 13 specification,” [Online]. Available: http:
//www.3gpp.org/release-13/, 2015, Accessed: Dec. 12, 2019.

[7] M. Mehrnoush, S. Roy, V. Sathya, and M. Ghosh, “On the fairness of
Wi-Fi and LTE-LAA coexistence,” IEEE Trans. Cogn. Commun. Netw.,
Dec. 2018. [Online]. Available: http://dx.doi.org/10.1109/TCCN.2018.
2867032

[8] L. Forum, LTE-U CSAT Procedure TS V1.0, 2015.
[9] M. K. Singh, A. M. Baswade, and B. R. Tamma, “Wi-Fi user’s video

QoE in the presence of duty cycled LTE-U,” in Proc. 24th Annu. Int.

Conf. Mobile Comput. Netw., 2018, pp. 720–722.
[10] F. S. Chaves et al., “LTE UL power control for the improvement of

LTE/Wi-Fi coexistence,” in Proc. IEEE 78th Veh. Technol. Conf., 2013,
pp. 1–6.

[11] T. A. Atif, A. M. Baswade, B. R. Tamma, and A. A. Franklin, “A
complete solution to LTE-U and Wi-Fi hidden terminal problem,” IEEE

Trans. Cogn. Commun. Netw., 2019, pp. 920–934.
[12] V. Sathya, M. Merhnoush, M. Ghosh, and S. Roy, “Energy detection

based sensing of multiple Wi-Fi BSSs for LTE-U CSAT,” in Proc. IEEE

Global Commun. Conf., 2018, pp. 1–7.
[13] V. Sathya, M. Mehrnoush, M. Ghosh, and S. Roy, “Auto-correlation

based sensing of multiple Wi-Fi BSSs for LTE-U CSAT,” in Proc. IEEE

90th Veh. Technol. Conf., 2019, pp. 1–7.
[14] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and

wireless networking: A survey,” IEEE Commun. Surv. Tut., vol. 21,
no. 3, pp. 2224–2287, Jul.-Sep. 2019.

[15] E. Chai, K. Sundaresan, M. A. Khojastepour, and S. Rangarajan, “LTE
in unlicensed spectrum: Are we there yet?” in Proc. ACM 22nd Annu.

Int. Conf. Mobile Comput. Netw., 2016, pp. 135–148.
[16] C. Cano and D. J. Leith, “Unlicensed LTE/WiFi coexistence: Is LBT

inherently fairer than CSAT?” in Proc. IEEE Int. Conf. Commun., 2016,
pp. 1–6.

[17] Q. Chen, G. Yu, and Z. Ding, “Optimizing unlicensed spectrum sharing
for LTE-U and Wi-Fi network coexistence,” IEEE J. Sel. Areas Com-

mun., vol. 34, no. 10, pp. 2562–2574, Oct. 2016.
[18] V. Sathya, M. Mehrnoush, M. Ghosh, and S. Roy, “Association fairness

in Wi-Fi and LTE-U coexistence,” in Proc. IEEE Wireless Commun.

Netw. Conf., 2018, pp. 1–6.
[19] V. Sathya, M. Mehrnoush, M. Ghosh, and S. Roy, “Analysis of CSAT

performance in Wi-Fi and LTE-U coexistence,” in Proc. IEEE Int. Conf.

Commun. Workshops, May 2018. [Online]. Available: http://dx.doi.org/
10.1109/ICCW.2018.8403510

[20] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
machine learning in wireless networks: Key techniques and open is-
sues,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp. 3072–3108, Oct.-
Dec. 2019.

188 VOLUME 1, 2020

https://docs.fcc.gov/public/attachments/FCC-18-147A1.pdf
http://www.3gpp.org/release-13/
http://dx.doi.org/10.1109/TCCN.2018.2867032
http://dx.doi.org/10.1109/ICCW.2018.8403510


[21] M. Chen, U. Challita, W. Saad, C. Yin, and M. Debbah, “Artificial
neural networks-based machine learning for wireless networks: A tu-
torial,” IEEE Commun. Surv. Tut., vol. 21, no. 4, pp. 3039–3071, Oct.-
Dec. 2019.

[22] A. Zappone, M. Di Renzo, and M. Debbah, “Wireless networks design
in the era of deep learning: Model-based, AI-based, or both?” 2019,
arXiv:1902.02647.

[23] J. Tan, S. Xiao, S. Han, and Y.-C. Liang, “A learning-based coexistence
mechanism for LAA-LTE based HetNets,” in Proc. IEEE Int. Conf.

Commun., 2018, pp. 1–6.
[24] S. Bayhan and G. Gür, “IEEE tutorial on machine learning for spectrum

sharing in wireless networks.”
[25] P. M. de Santana, V. A. de Sousa, F. M. Abinader, and J. M. d. C. Neto,

“DM-CSAT: A LTE-U/Wi-Fi coexistence solution based on reinforce-
ment learning,” Telecommun. Syst., pp. 1–12, 2019.

[26] N. Rastegardoost and B. Jabbari, “A machine learning algorithm for
unlicensed LTE and Wi-Fi spectrum sharing,” in Proc. IEEE Int. Symp.

Dyn. Spectr. Access Netw., 2018, pp. 1–6.
[27] V. Maglogiannis, D. Naudts, A. Shahid, and I. Moerman, “A Q-learning

scheme for fair coexistence between LTE and Wi-Fi in unlicensed
spectrum,” IEEE Access, vol. 6, pp. 27 278–27 293, 2018.

[28] V. Maglogiannis, A. Shahid, D. Naudts, E. De Poorter, and I.
Moerman, “Enhancing the coexistence of LTE and Wi-Fi in unlicensed
spectrum through convolutional neural networks,” IEEE Access, vol. 7,
pp. 28 464–28 477, 2019.

[29] I. L. (Quantenna), “Efficient and fair medium sharing enabled by a
common preamble,” [Online]. Available: http://grouper.ieee.org/groups/
802/11/Workshops/2019-July-Coex/Quantenna_Contribution.pdf,
2019.

[30] R. AT&T, “Common preamble design in the 6 GHz band
merits and challenges,” AT&T Labs, Austin, TX, USA, 2019,
[Online]. Available: http://grouper.ieee.org/groups/802/11/Workshops/
2019-July-Coex/att_coex_ws_final.pdf

[31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. IEEE Int. Conf. Comput. Vision, 2015, pp. 1026–1034.

[32] S. Krishnan, A. Dziedzic, and A. J. Elmore, “Deeplens: Towards a
visual data management system,” 2018, arXiv:1812.07607.

[33] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput.

Architecture, 2017, pp. 1–12.
[34] S. Chetlur et al., “CUDNN: Efficient primitives for deep learning,”

2014, arXiv:1410.0759.
[35] Y. Chen et al., “The UCR time series classification archive,” 2018. [On-

line]. Available: https://www.cs.ucr.edu/∼eamonn/time_series_data_
2018

[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[37] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Proc. IEEE Int. Joint

Conf. Neural Netw., 2017, pp. 1578–1585.
[38] A. Dziedzic, J. Paparrizos, S. Krishnan, A. Elmore, and M. Franklin,

“Band-limited training and inference for convolutional neural net-
works,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 1745–1754.

[39] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” in Proc. IEEE Conf. Comput. Vision Pattern Recognit., 2016,
pp. 4013–4021.

[40] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and
Y. LeCun, “Fast convolutional nets with FBFFT: A GPU performance
evaluation,” 2014, arXiv:1412.7580.

[41] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class AdaBoost,”
Statist. Its Interface, pp. 349–360, 2009.

[42] P. Schfer, “Scalable time series classification,” Data Mining Knowl.

Discovery, vol. 30, 2015.
[43] P. Schäfer and U. Leser, “Fast and accurate time series classification

with weasel,” in Proc. ACM Conf. Inf. Knowl. Manage., 2017. [Online].
Available: https://doi.org/10.1145/3132847.3132980

[44] L. Deng, “The MNIST database of handwritten digit images for ma-
chine learning research,” IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 141–142, Nov. 2012.

VOLUME 1, 2020 189

http://grouper.ieee.org/groups/802/11/Workshops/2019-July-Coex/Quantenna_Contribution.pdf
http://grouper.ieee.org/groups/802/11/Workshops/2019-July-Coex/att_coex_ws_final.pdf
https://www.cs.ucr.edu/&sim;eamonn/time_series_data_2018
https://doi.org/10.1145/3132847.3132980

