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Abstract 

In vivo toxicity testing remains a costly and time-consuming component of any pre-clinical drug 
development campaign. In particular, LD50 measurements require the loss of animal life but remain a 
critical component in preventing lethal compounds from entering the clinic. With advances in machine 
learning, in silico LD50 prediction now has the potential to greatly reduce this burden. We study various 
types of machine learning models to predict acute oral LD50 measurements in rats as regression and 
classification problems. We demonstrate that transfer learning a ResNet34 model pretrained on ImageNet 
with test time augmentation generates the best performing regression model and that random forest 
augmented with conformal prediction provides a robust methodology to perform classification. 

Introduction 

Chemical compounds must pass a battery of in vitro and in vivo tests to assess potentially lethal or adverse 
effects prior to human administration. While essential, these tests are not only time consuming and costly, 
but also require the loss of animal life. As such, LD50 measurements remain a particularly difficult end 
point in the preclinical drug development pipeline. As part of the “Toxicity Testing in the Twenty First 
Century” initiative1,2, the development of accurate and fast in silico models are increasingly being looked 
towards to relieve this burden3. The machine learning field in particular was emboldened when deep neural 
networks recently demonstrated state of the art predictive capability on 12 in vitro toxicology assay 
endpoints in the blinded Tox21 challenge4. However, the ability to predict LD50 measurements has 
remained comparatively understudied to date due to the lack of quality curated datasets for machine learning 
training. Prior works suggest that machine learning is suitable for LD50 prediction5–10, but they have largely 
used data sets curated by academics or have used random splits which are known to inflate model 
performance metrics11.  

Deep convolutional neural networks (ConvNets) have revolutionized the field of image analysis, with many 
applications to cell based imaging arising in drug discovery12,13. One of the main strengths of ConvNets is 
the ability to perform feature extraction in a data driven fashion directly from image data14,15. However, this 
method is sparingly used in the field of cheminformatics for quantitative structure activity relationship 
(QSAR) prediction, in part due to data quantity limitations. Rather, model types such as gradient boost, 
random forest, support vector machine, k-nearest neighbor, and fully connected neural networks remain the 
prominent models of choice for QSAR applications16,17. To date, ConvNet studies have employed either 
semi supervised pretraining strategies or trained directly from scratch on the data set at hand. For example, 
Chemception18 was trained from scratch and showed comparable performance to feed forward networks 
(FFN) on various QSAR benchmark data sets, such as free energy of solvation, inhibition of HIV 
replication, and Tox21. The same authors then developed Chemnet19, a semi-supervised pretraining 
approach to reproduce a suite of directly computable chemical properties where the pre-trained model was 
subsequently trained via transfer learning on various QSAR benchmark datasets.  With no pre training at 
all, Toxic Colors demonstrated the utility of ConvNets on the Tox 21 dataset20. KekuleScope21 was the first 
application of ConvNets pretrained on ImageNet for QSAR applications via transfer learning21. 
KekuleScope21 transfer learned AlexNet22, DenseNet-20123, ResNet15224 and VGG-1925 models pretrained 
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on ImageNet for the purpose of predicting compound-cell line pIC50 measurements. It was demonstrated 
that transfer learned ConvNets obtained competitive performance to state of the art random forest models 
for predicting cell line sensitivity directly from compound images. However, the impact of test time 
augmentation (TTA), where data augmentation is applied to items in the validation set, and the final 
prediction being the average over the augmented items, was not explored. In addition, Meyer et al. have 
recently compared RF models and ConvNets to predict drug classification and again show the competitive 
performance of ConvNet models for drug discovery applications26. 

Herein, we describe machine learning results for LD50 regression and classification using the high quality, 
recently released, EPA LD50 dataset. In particular, we compare the performance of random forest (RF), 
gradient boost (GB), fully connected neural networks (NN) models, and a ResNet34 ConvNet model 
transfer learned on the training data. In total, we find that the ResNet34 model with TTA achieves superior 
performance to all other model types for regression, but an ensemble model averaging the RF and ResNet34 
predictions yields the highest predictive accuracy. This demonstrates the utility of transfer learning 
pretrained ConvNet models to low data set size scenarios typical in drug discovery. Finally, RF models 
with conformal prediction proves to be a promising methodology for classification, potentially allowing the 
prioritization of compound based off a toxin/non-toxic classification. 

Materials and Methods.  

Data Set Source 

As part of its push to replace in vivo animal studies with predictive models for acute oral systemic toxicity 
determination, the EPA recently released a dataset containing measured LD50 values obtained from 
literature data provided by the Dow Chemical Company, REACH data from eChemportal, HSDB 
(Hazardous Substances Data Bank), RTECS data from Leadscope, and the training set used by TEST 
(Toxicity Estimation Software Tool) (https://ntp.niehs.nih.gov/go/tox-models). The dataset provides 
11,854 data points classified into either toxic or non-toxic categories, along with 8891 annotated LD50 
values.  

Data Set Preparation 

Molecule SMILES strings were first standardized and canonicalized using the charge parent function in 
MolVS27. Only molecules with molecular weights in the range of 75 to 800 Da were retained. Molecules 
without an explicit LD50 measurement were dropped from further analysis. For tabular model learning 
(RF, GB, and FFN), SMILES strings were featurized using 4096 bit length ECFP6 fingerprints, molecular 
weight, topological surface area, number of hydrogen donors, number of hydrogen acceptors, LogP, heavy 
atom count, number of rotatable bonds, and ring count with RDKit28. Non ECFP6 bit values were scaled 
using the standard scaler function in Scikit-learn29. For the ResNet34 model, SMILES strings were 
converted to png files using RDKit using the procedure outlined by Cortes-Ciriano et al21. Molecules were 
split into training and validation sets following a Murcko scaffold split. Finally, the LD50 target values 
were log transformed, and scaled using the robust scaler in RDKit28. 

Machine Learning Model Training 

Random Forest models were trained using the Scikit-learn29 library via a grid search hyperparameter 
optimization strategy.  The following hyperparameter values were explored: 250,500,750, and 1000 for the 
number of estimators; sqrt, log2, 0.3, 0.5, and 1.0 for max features; 1,3,5,10,25 for min samples leaf; and 
‘balanced’ and ‘None’ for class_weight. Gradient boost models were trained using the XGBoost library via 
Bayesian optimization with the following possible ranges for hyperparameters: 1e-6 to 1 For the learning 
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rate; 0 to 5 for gamma; 0 to 1 for colsample by tree; 1 to 16 for max depth; number of estimators either 50, 
100, 500 or 1000; and 1 to 10 for the min child weight. The ResNet34 model was trained using methods in 
Fast.ai. Specifically, we transfer learned a ResNet34 model pretrained on ImageNet directly on molecular 
images. The Fast.ai default image augmentation methods were used throughout, with the addition of vertical 
flipping and rotation (20.0 degrees). During test time on the validation set, TTA was also explored to see 
the impact on performance metrics. Here, test time data (validation set) are augmented and the predictions 
averaged to yield the final prediction. To train the ResNet34, the head of the network, i.e the fully connected 
layers appended to the ResNet34 architecture, was trained for 200 epochs with the upper layers frozen. The 
learning rate was determined via the lr_find function in Fast.ai which yielded 6e-3 to be a suitable learning 
rate for the fully connected layers during this stage. Specifically, this was determined by choosing a learning 
rate approximately 10 times smaller than the learning rate at which the loss obtains a minimum from the 
lr_find function30. After this initial head training, all layers of the network were unfrozen, and the optimal 
learning rate for the higher layers was determined again using the lr_find function again resulting in a lr of 
5e-5. The full model was then trained for 1000 epochs using a discriminative learning rate across the layers, 
varying from 1e-5 at the initial layers to 0.006/5 at the lower layers. During all phases of training the 
ConvNet, a cyclical learning rate was employed using the fit_one_cycle function in Fast.ai30. The mean 
squared error (MSE) loss was used as the optimization function. FFN models were trained using Fast.ai as 
well. Here, ECFP6 bit vectors were treated as categorical variables whose embeddings were optimized via 
backpropagation during model training. A 2-layer model was employed with 1000 nodes in the first layer 
and 500 nodes in the second layer. The weight decay was set to 0.2, and dropout of 0.001 and 0.01 was 
used in the first and second layer respectively. All other Fast.ai tabular model defaults were used. Again, 
the FFN model was trained with the fit_one_cycle30 method with a max_lr value of 0.0005. All models 
were then analyzed using MSE, Pearson correlation coefficient, and Kendall’s Tau ranking. The ResNet34 
and FFN tabular models were trained using fp16 precision. 

Conformal Prediction  

Conformal prediction defines a machine learning model’s applicability domain, i.e the region of chemical 
space where predictions are reliably accurate31–37. Conformal prediction produces a confidence region 
where the true value lies with a probability determined by a user specified confidence threshold. This stands 
in contrast to traditional machine learning models that produce point predictions, giving the user no sense 
of what degree of confidence should be placed on the prediction made. A conformal predictor is considered 
valid if for a chosen confidence level 1-𝜀, the number of prediction errors made does not exceed 𝜀. For 
classification problems, the conformal predictor will assign a class label to a new molecule if the new 
molecule is similar enough to prediction outcomes made on the calibration set. Here, similarity is 
determined by a non-conformity measure which measures similarity to previously seen data. If the non-
conformity measure is greater than 1-𝜀  , a class label is assigned. This is done for all classes in the 
calibration set. Non-conformity can be quantified using auxiliary models, or directly from the model itself38. 
For binary classification, a new molecule could be labeled either, neither, or both of the two classes. We 
use conformal prediction to gather model statistics for molecules with only one class label, hence defining 
the applicability domain for a given 𝜀. Mondrian conformal prediction (MCP) was subsequently developed 
to deal with data sets with class imbalance, a frequent issue in cheminformatics33. A MCP model sets a 
significance level for each individual class, hence guaranteeing their respective validity33. All conformal 
prediction code was generated using the nonconformist python library39. For a full thorough discussion of 
the theory and application of conformal prediction in QSAR, we direct the reader to a recent review of the 
material37. 

Results 
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Regression 

For each of the models studied herein, we present the resulting performance metrics on the validation set 
in Table 1: 

Table 1: Regression performance metrics on the validation set for all model types 

Model type MSE (e-2) Pearson correlation Kendall’s Tau 
ResNet34 5.27 0.462 0.308 
ResNet 34 (TTA) 5.04 0.481 0.313 
Random Forest 5.16 0.460 0.283 
FFN 5.55 0.420 0.246 
Gradient Boost 5.6 0.393 0.218 
Ensemble 4.86 0.512 0.333 

 

In total, LD50 regression on this data set proved to be a challenging problem, with the best models achieving 
only 0.512 Pearson correlation between predictions and the scaled LD50. This suggests that further 
improvement in model quality is still needed which may come from training on larger in house pharma 
ADME data sets with more diverse scaffolds or the inclusion of biological information (transcriptomic etc.). 
In total, the ResNet34 model with TTA is the best performing individual model, outperforming all others 
in all metrics. TTA of the ResNet34 model led to an approximately 5% performance increase on the 
validation set. Both the RF and ResNet34 models outperform the gradient boost and FFN models by 10-
20% in the Pearson metric. In all, the performance of the ResNet34 demonstrates their ability to learn 
mappings from color coded pixels and target LD50 values in a data driven fashion. This work further 
demonstrates the utility of transfer learning and data augmentation to generate state of the art models with 
the limited data scenarios present in drug discovery. 

The correlation between the TTA ConvNet and RF model residuals is high (r2=0.84). Despite the observed 
correlation, an improvement in performance is still observed with model ensemble averaging. Here, the 
predictions from the TTA ConvNet and RF are averaged. As reported in Table 1, this resulted in roughly a 
10% boost in performance across all metrics, similar to the performance boost seen in the work of Cortés-
Ciriano et al21.	The RF and TTA ConvNet model distribution of residuals displays long tails, conveying 
that only a few compounds in the validation set contribute extensively to the reported MSE in Table. In 
fact, the median squared error across the full validation set is only 0.014 for the TTA ConvNet model, 
which is a 72% reduction relative to the value reported in Table 1. The Kendall’s Tau ranking of the target 
values in the validation set by the residuals is 0.74 for the RF model and 0.68 for the TTA ResNet34, 
respectively, further demonstrating the non-random distribution of residuals. The long tailed residual 
distribution is a result of the skewed distribution of LD50 values in the original training set, with a few 
compounds possessing exceedingly large LD50 values relative to the rest of the distribution. These 
compounds with large LD50 values contribute most heavily to the overall MSE. The correlation plot of 
TTA ConvNet and RF residuals, distribution of residuals for the RF and TTA ConvNet individual models, 
and the distribution of scaled LD50 values in the training set can be found in Figure 1. 

Analysis of the RF feature importance demonstrates that a small set of features are of immense importance, 
as shown in figure 2. Here, 5/10 physical property features rank in the top 10 features by importance 
including MolLogP, MolWt, HeavyAtomCount, TPSA, NumRotatableBonds. A csv file containing the 
feature importance of each feature used herein is provided in Supplementary Table 1. These physical 
properties correlate with promiscuity, a known risk factor for toxicity. 
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Classification 

Encouraged by the performance and ease of training of the RF model for regression, we elected to only 
optimize RF models for classification. We optimized the RF parameters to obtain the maximum ROC-AUC 
score on the validation set. This was achieved with 250 estimators, 0.3 for max_features, and a balanced 
class weight. the RF model displays quality performance on the full validation set with the following 
performance metrics: 0.704 ROC-AUC; 0.292 MCC; and 0.476 F1-score. We next trained a MCP model 
with an RF model as the base estimator with the optimal set of hyperparameters. Table 2 and Figure 3 show 
the MCP model results as a function of the confidence threshold and the MCP validities respectively. We 
define the local/total recall to be the recall of compounds in the applicability domain for a given confidence 
threshold, or the full data set, respectively. All statistics for the MCP model can be found in Supplementary 
Table 1. 

Table 2: Classification performance classification metrics on validation set for varying MCP thresholds 

Model 
(threshold) 

Efficiency Total recall Local Recall ROC-AUC MCC F1-score 

MCP (0.05) 0.13 0.20 0.94 0.83 0.54 0.81 
MCP (0.1) 0.35 0.39 0.90 0.77 0.41 0.68 
MCP( 0.15) 0.59 0.52 0.81 0.73 0.33 0.62 

 

In total, the MCP performance metrics increase monotonically with decreasing confidence threshold, 
obtaining a final ROC-AUC of 0.83 at a 0.05 confidence level. At a 0.1 confidence level, we are able to 
obtain a 0.77 ROC-AUC while retaining 35% of the validation set for predictions. Most importantly, we 
recall 39% of all actives from the full validation set. Within the applicability domain, the recall is 90% of 
all positive molecules. These classification statistics show that the MCP model could assist in selecting 
predicted non-toxic molecules at high accuracy for advancement in the clinical pipeline in a data driven 
manner. This has the potential to reduce the financial and animal loss of life burdens during preclinical 
LD50 measurement testing. 

Conclusion 

Acute oral toxicity testing remains a time consuming, cost intensive portion of preclinical drug discovery. 
Herein, we analyze the performance of machine learning models for both rat oral LD50 regression and 
classification. In particular, we demonstrate that ResNet34 models pretrained on ImageNet and RF models 
are the best models for this data set and split. TTA and ensemble averaging of the ConvNet and RF models 
led to a 10% increase in the Pearson correlation coefficient for LD50 regression. For regression, the work 
herein demonstrates that ConvNets are able to determine relevant chemical features in a data driven fashion 
that are complementary to those in the traditional ECFP6 fingerprint. However, regression remains a 
challenging problem with the highest Pearson correlation coefficient obtained on this data set with a Murcko 
split only being 0.51. For classification, we demonstrated the utility of MCP with a RF base estimator for 
LD50 classification into toxic/non-toxic classes. Specifically, we demonstrated that model performance can 
be calibrated through suitable tuning of the MCP confidence threshold. 
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Figure  1: A) residual correlation B) TTA ConvNet residual distribution C) RF residual distribution D) 
Scaled LD50 distribution in training set 
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Figure  2: A) feature rank vs. feature importance as determined by the RF regression model 
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Figure  3: A) conformal prediction calibration plot of predicted vs observed error. Green dots are conformal 
predictor points, with red dots corresponding to y=x for comparison. 

	

 


