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Machine Learning (ML) delivers an accurate and quick prediction outcome and
it has become a powerful tool in health settings, offering personalized clinical
care for stroke patients. An application of ML and Deep Learning in health care
is growing however, some research areas do not catch enough attention for sci-
entific investigation though there is real need of research. Therefore, the aim of
this work is to classify state-of-arts on ML techniques for brain stroke into 4 cate-
gories based on their functionalities or similarity, and then review studies of
each category systematically. A total of 39 studies were identified from the
results of ScienceDirect web scientific database on ML for brain stroke from the
year 2007 to 2019. Support Vector Machine (SVM) is obtained as optimal models
in 10 studies for stroke problems. Besides, maximum studies are found in stroke
diagnosis although number for stroke treatment is least thus, it identifies a
research gap for further investigation. Similarly, CT images are a frequently
used dataset in stroke. Finally SVM and Random Forests are efficient techniques
used under each category. The present study showcases the contribution of vari-
ous ML approaches applied to brain stroke.
Keywords: Support vector machine—Machine learning—Deep learning—Stroke
diagnosis—Stroke prevention—Stroke prognostication
© 2020 Elsevier Inc. All rights reserved.
Introduction

Nowadays, stroke is a major health-related challenge
[52]. Stroke, also known as cerebrovascular accident,
consists of a neurological disease that can result from
ischemia or hemorrhage of the brain arteries, and usu-
ally leads to heterogeneous motor and cognitive impair-
ments that compromise functionality [34]. Annually,
stroke affects about 16 million individuals worldwide
and is associated with enormous societal costs. In recent
years, ML has rapidly grown and evolved in several
applications in a wide variety of health care systems.
Figure 1 shows the latest global health estimates by
S, Quinta da Torre, Campus Universit�ario,
gal; †University of Madeira, Rua Dos Ferre-
Portugal; and ‡University of Coimbra, Rua
5, Coimbra.
0; revision received July 8, 2020; accepted

E-mail: manisha.sirsat2015@gmail.com.
matter
rights reserved.
6/j.jstrokecerebrovasdis.2020.105162

ebrovascular Diseases, Vol. 29, No. 10 (October
cause for from the year 2000-2016. It identifies ischae-
mic heart disease and stroke as the two leading causes
of mortality and disability [38] Worldwide. According
to the American Heart Association, stroke is considered
a severe health issue due to its high mortality rate [9].
Also, the cost of hospitalization for stroke is increasing
[17] and consequently, there is an increased need of
advanced technologies that can assist in clinical diagno-
sis, treatment, predictions of clinical events, recommen-
dation of promising therapeutic interventions,
rehabilitation programs [2], etc. Early detection of
stroke is a crucial step for efficient treatment and ML
can be of great value in this process. To
be able to do that, Machine Learning (ML) is an ultimate
technology which can help health professionals make
clinical decisions and predictions. During the past few
decades, several studies were conducted on the
improvement of stroke diagnosis using ML in terms of
accuracy and speed. With that consideration, the cur-
rent work classifies some of those studies based on their
similarity, reviews each classification methodically and
provides valuable information regarding the
), 2020: 105162 1
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Fig. 1. Figure ranks estimated mortality by cause [69], recorded in 2016.

1For detailed overview of ML see [27].
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application of ML-based methods in brain stroke. To the
best of our knowledge there is no detailed review about
the application of ML for brain stroke. In the Section 2,
we review some literature about ML and brain stroke
field whereas, Section 3 presents the study design and
selection, search strategy, and categorization of the
studies per category. Section 4 explains outcomes of the
studies by each category. Finally, Section 5 discusses
insights of reviewed studies.

Background

Machine Learning

This section provides a brief overview of ML sub
types. ML is a crucial branch of Artificial Intelligence
(AI). ML is the study of algorithms that have the ability
to learn and improve from past data without being
explicitly programmed. There are several sub types of
ML, however in this review, we focus on supervised
learning, unsupervised learning and deep learning are
focused types in the current study. Supervised learning
trains a model that maps an input to an output based
on observations and predicts the output. It is categor-
ised into classification and regression. Classification
[23] is to classify discrete target variable using predic-
tors. Logistics Regression (LR) [41], naive bayes classi-
fier [37], Support Vector Machines (SVM) [10] are some
classification techniques. Regression investigates the
relationship between numerical target variable and pre-
dictors. The study [24] has done extensive experimental
analysis of 77 regression techniques from 19 ML fami-
lies over 84 datasets. Unsupervised learning [22] is used
to group the observations for making clusters based on
their similarity. Clustering [70], association analysis
and dimensionality reduction are types of unsupervised
learning [1,20,59]. Deep learning (DL) develops a
computational model [44] with multi-processing layers
to learn a data progressively from raw input. Some DL
architectures are Convolutional Neural Networks
(CNN) and Recurrent neural network (RNN) and they
are mostly used to solve image processing [63] prob-
lems. Some of the top applications of DL are self-driv-
ing cars, natural language processing, fraud detection,
health care, etc. Eventually, ML has a great implementa-
tion in the several fields like medicine, social network-
ing, agriculture, sales and marketing, environmental
science, etc. using several ML algorithms.1
Stroke

Stroke consists of a heterogeneous group of disorders
characterized by a sudden and focal disruption of the
brain’s vascular supply, causing neurologic symptoms
that persist more than 24 hours [33]. Broadly, strokes can
be classified as either ischaemic, which are the most com-
mon, happening in approximately 85% of the cases, or
haemorrhagic. Ischaemic strokes occur when blood ves-
sels are occluded by a thrombus or an embolus, resulting
in brain ischemia [31]. Haemorrhagic strokes are caused
by the rupture and bleeding of a weakened blood vessel
into the surrounding brain tissue, which normally leads
to intracranial pressure [31]. There are many risk factors
that can precipitate a stroke; these can be categorized as
non-modifiable and modifiable. The first set of risk factors
include age, gender, race and ethnicity. In contrast, modi-
fiable risk factors are related to clinical conditions, such as
cardiac diseases (e.g., hypertension, atrial fibrillation,
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hypercholesterolemia) and diabetes mellitus, and life-style
factors, namely sedentarism, obesity, poor nutrition,
tobacco use and alcohol consumption [16,53]. Early identi-
fication and better control of modifiable risk factors is
determinant for stroke prevention and to avoid the latter
development of vascular dementia [58]. Stroke diagnosis
involves a detailed medical history, a physical and neuro-
logical examination, and a brain imaging test (e.g., com-
puted tomography (CT) scan or magnetic resonance
imaging (MRI)) in order to rule out other stroke mimics
(e.g., brain tumors, subdural hematomas) and to deter-
mine the type of stroke, its location and the extent of the
brain injury [64]. Treatment will depend on the cause and
severity of the stroke and it can include surgical proce-
dures (e.g., thrombectomy in case of ischemic stroke), spe-
cific medication to dissolve blood clots (e.g., thrombolytic
therapy for ischaemic strokes) or to manage cardiovascu-
lar risk factors (e.g., statins used in the treatment of hyper-
cholesterolaemia) and rehabilitation (e.g., motor and
neurocognitive) [15,42,66]. It is important to note that
since poststroke survival rate is increasing, stroke patients
tend to live longer with innumerous sequalae, which are
not only physical, but also cognitive and emotional, and
negatively influence their quality of life and functionality.
Despite this fact, rehabilitation after stroke is still primar-
ily directed towards motor function and, therefore, should
follow an interdisciplinary and holistic approach in order
to overcome and/or mitigate the multidimensional post-
stroke impairments [30,33]. Finally, prognosis prediction
following stroke is extremely relevant, namely in treat-
ment selection (e.g., identifying which patients will bene-
fit from a specific type of treatment), in determining long-
term outcomes (e.g., motor, cognitive, functional) and in
planning rehabilitation by establishing appropriate goals,
in light of the previous outcome predictions, and redefin-
ing unrealistic expectations that could hamper the
patient’s motivation and engagement in the rehabilitation
process [8,61].
Table 1. Research questions to analyze each study one-by-

one.

(1) Which was the stroke problem addressed?

(2) What was the ML or DL approach employed?

(3) Which features were used?
Methodology

Study Design

The goal of the present study is to review the contribu-
tion of ML in solving some stroke-related problems (e.g.,i.
e., prevention/risk factor identification, diagnosis, treat-
ment and prognostication). It considers the most system-
atic approach because it reviews best of studies and
writes a result and discussion with some interesting
insights, get from all studies which are definitely valuable
for further investigation.
(4) How many samples were used?

(5) What were the classes used?

(6) Is there any pre-processing like feature selection, data

augmentation, etc.?

(7) What were the performance metrics used?

(8) What are the clinical implications?
Search Strategy

We analysed studies from 2007 to 2019, in fact all avail-
able studies. Studies were identified from the results of
ScienceDirect web scientific database. Below search term
was searched in the research title, abstract or author-speci-
fied keywords of ScienceDirect database.
[”machine learning”] AND [”stroke”]
Study Selection

Study selection was done with the help of a Psychol-
ogy expert. We identified a total of 74 studies, accessed
on 7th November 2019; 73 studies were written in
English and 1 was written in Spanish. We have only
considered studies written in English. We excluded 34
studies that were not related to our topic (e.g., pen
stroke, stroke trajectories in a hand drawn pen-and-ink
hatching, Chinese character recognition, electric power
systems, thai document images, Alzheimer’s disease,
osteoporosis detection, composition and declarative
gesture description, estimation of mass damper param-
eters, monitor physical activity in children, and more).
Therefore, after checking the relevance of each study,
we included 39 studies in the review. All included
studies were then analyzed individually, considering 8
research questions, specified in the Table 1:
Category

All studies were grouped into 4 categories based on
their similarity with the help of a psychologist. We consid-
ered the following categories: (a) stroke prevention, (b)
stroke diagnosis, (c) stroke treatment, and (d) stroke prog-
nostication/outcome prediction.
Results

After screening all studies by title, abstract and conclu-
sion, we found 8 studies about stroke prevention, 18 stud-
ies about stroke diagnosis, 4 studies about stroke
treatment, and 9 studies about stroke prognostication. ML
applications for stroke problems are several, although we
only present the most advanced studies of each category,
given in the Table 3, 5, 4, 6, 7. The Table 2 briefly explains
the list of performance measures used in the reviewed
studies.



Table 2. List of performance measures involved in 39 studies.

1. Classification Accuracy: It is the fraction of the number of correct predictions by the total number of predictions.

2. Precision: It is also known as positive predictive value, It shows the correctness achieved in positive prediction.

3. Recall or sensitivity: it is the fraction of the total amount of relevant instances that were actually retrieved.

4. Precision-recall curve: It shows the trade-off between the true positive rate and the positive predictive value for a classifier at

all classification thresholds.

5. Specificity: It is the measure of negative examples labeled as negative by classifier.

6. F-score: It is a weighted average of the recall and precision.

7. Receiver Operating Characteristic (ROC): It is a trade-off between the true positive rate and the false positive rate for a clas-

sifier at all classification thresholds.

8. Area Under the Curve (AUC): It measures the entire 2D area underneath the entire ROC curve.

9. Negative predictive value: It is the fraction of number of true negatives and number of negative calls.

10. Paired t-test: It is used to compare two population means from the same unit or subject.

11. Root Mean Square Error (RMSE): It can be considered as the standard deviation of residual.

12. Correlation (R): It shows the relationship between pairs of variables.

13. Coefficient of determination (R2): It is the proportion of the variance in the output variable that is predictable from the input

variables.

14. Computational time: It is the amount of time required to perform computational processes.
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Stroke Prevention

In this category, we have considered studies that focus
on the early detection or identification of stroke; some
studies mention important stroke risk factors and post-
stroke complications, namely familiar hypercholesterolae-
mia, atherosclerosis, body max index and cerebral edema,
respectively, while others refer to specific techniques that
can aid stroke detection, such as genome-wide transcrip-
tional profiling and the use of spiking neural networks..
Table 3 shows 8 stroke prevention studies, ML approach
to solve those problems, features, number of samples,
results achieved by ML approach and lastly, clinical
implications. Familial hypercholesterolaemia is a genetic
condition characterized by the presence of a high
ammount of low-density lipoprotein (LDL), which can
lead to premature heart disease and stroke. Since most
individuals with familial hypercholesterolaemia remain
undiagnosed, [55] aimed to predict the familial hypercho-
lesterolaemia score (responsible for early detection of
heart-related injuries) using [14] Random Forest (RF). The
FIND FH model (or RF model) parameter optimization
was done by 5-fold cross validation and got precision of
0.85 and recall 0.45, shown in the Table 3. Similarly,
carotid-artery atherosclerosis (CA) can also increase the
risk of ischaemic strokes due to the accumulation of pla-
ques in the carotid arteries - the main supply of blood to
the brain.SVM was used for 4-class classification problem
[11] with the aim of classifying subjects with CA from
magnetic resonance images. Cerebral edema is a major
poststroke complication that is associated with high mor-
tality. Considering that, RF model was developed [18] for
the segmentation of cerebrospinal fluid on Computed
Tomography (CT) scan images and concluded that RF is
better than Hounsfield Unit thresholding. This approach
accomplished an accuracy rate of 97.5%. For stroke moni-
toring, carotid intima-media thickness (cIMT) is used as
an important biomarker. Study [12] presented 2-level DL
based system for cIMT measurements. In the first level,
feature extraction and image segmentation were done
and second layer consisted of ML regression for smooth-
ing the raw inner lumen and outer interadventitial bor-
ders which are used for the cIMT measurements.
Additionally,[51] proposed a fully automatic strategy by
identifying the Intima-Media Thickness boundaries from
ultrasound common carotid artery images using Artificial
Neural Networks (ANN) and training computational
time is 1.4s. Genome-wide transcriptional profiling can be
useful in stroke detection.Study [56] identified a 10-gene
pattern of differential expression using ML technique
(here, genetic algorithm/kNN) which has enough ability
for stroke detection.
The study [40] presented personalised modelling of spa-

tio or spectro-temporal data (SSTD) and early prediction of
stroke events for each individual by using Spiking Neural
Networks (SNN) with accuracy 94%. Last but not least,
Body Mass Index (BMI) is a good indicator of early stroke
prediction thus, the study [45] classified BMI status into
three classes (normal, overweight and obese) on imbal-
anced data by LR, bagging and RF ensemble techniques.
Stroke Diagnosis

This section includes a total of 18 studies about stroke
diagnosis. Table 5 and 4 present 18 objectives on stroke
diagnosis, ML techniques, features, sample size, result of
optimal ML model and clinical implications. MRI and CT
scans are frequently used in stroke diagnosis. Bio-imaging
is an important process in stroke classification or lesion
extraction because it identifies the damaged area of the
brain, thus more studies focus on this problem to achieve
high precision. To target this problem, [57] presented a
new approach to the classification of stroke subtypes, spe-
cifically haemorrhagic and ischaemic strokes, using SVM,



Table 3. Machine learning techniques for brain stroke identification. Note: Support Vector Machine (SVM), Deep Learning (DL Random Forest (RF), Logistic Regression (LR), k-near-

est neighbors (kNN), Artificial Neural Networks (ANN)

Sr. No Objective Reference ML-based

approach

Samples Features ptimal Results Clinical Implications

1 Identify subjects with Carotid-

artery Atherosclerosis (CA)

from a heterogeneous cohort of

magnetic resonance brain

images

[11] SVM 401 MRI images M ACC= 97.5% Early identification of

patients with CA will help

prevent ischemic stroke

by providing the proper

diagnosis and treatment.

2 The carotid intima-media thick-

ness (cIMT), Biomarker for

cardiovascular diseases and

stroke monitoring.

[12] DL for segmenta-

tion, ML-based

joint coefficient

method

203 396 B-mode ultra-

sound images of the

right and left com-

mon carotid artery

ror on test set DL1=

.126§ 0.134

DL2=0.124§ 0.100mm

Measuring the cIMT can help

prevent and manage cardiovas-

cular diseases (CDV) that may

lead to stroke.

3 Develop an automated technique

for cerebrospinal fluid (CSF)

segmentation via integration of

RF with geodesic active con-

tour (GAC) segmentation

[18] RF 38 Serial Computed

Tomography (CT)

images

ired t-test: p<10{-

} in baseline p<10

- 5} in early follow-

p

Early identification of

patients at risk of develop-

ing malignant cerebral

edema, which is a major

complication following

ischemic stroke.

4 Develop method and system for

personalised modelling of Spa-

tio/Spectro-Temporal data

(SSTD) and prediction of

events.

[40] Spiking neural net-

works (SNN)

40 SSTD CC = 94% Developed PMeSNNr

framework provides much

higher accuracy than con-

ventional ML methods

5 Prediction of body mass index

status from voice signals using

ML

[45] LR, bagging and

RF

1,568 voice features on imbalanced data

UC = 0.569-0.731

Estimating the body mass

index (BMI) through

voice signals can enhance

early identification and

detection of people at risk

of having a stroke or other

clinical conditions (e.g.,

CDV and diabetes).

6 An early diagnosis of

atherosclerosis

[51] ANN 55 B-mode ultrasound

images

mputation time per

rocessed image:

ime = 1.4s

Assessing the intima-media

thickness (IMT) of the

common carotid artery

(CCA) can contribute to
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Multi-Layer Perceptron (MLP), minimal learning machine,
Linear Discriminant Analysis (LDA), and Structural Co-
Occurrence Matrix (SCM). According to this study, SCM is
the best to extract the most discriminant structural informa-
tion concerning stroke suptype without parameters. These
authors used 300 CT scans images (100 are normal, 100 are
hemorrhagic stroke, and 100 are ischemic) that were
obtained from a tomograph model GE Medical HiSpeed
System (GEMSH). The SCM in the frequency domain pre-
sented high accuracy i.e. 98% in stroke classification. The
study [60] aimed to extract the image features by analyzing
CT scans brain tissue densities and used those features for
stroke classification. Optimum Path Forest (OPF) classifier
with Analysis of Brain Tissue Density (ABTD) feature selec-
tion algorithm got 99.30% of accuracy. Like earlier
research, [68] worked on perfusion imaging and developed
ANNmodel for identification of CT perfusion deficits with
accuracy 85.8%. The CNN was used for anatomy segmen-
tation of the brain lesions. Moreover, [28] studied raw per-
fusion MRI images to predict the final lesion in acute
ischemic stroke using simple SVM technique and it demon-
strated 95% accuracy. Since feature vectors size was quite
large, in order to overcome dimensional problem, PCA
was used and it preserved only the first principal vectors
which allowed to explain 90% of total variance, contained
in the training set. To access the generalizability of the clas-
sifier, K-fold cross-validation technique was implemented.
Classifier SVM worked optimal because data points of
binary classes are linearly separable. Ischaemic lesion seg-
mentation is used to measure the damaged brain area(s);
nonetheless, this procedure is time-consuming and less
accurate when done manually. Study [39] presented deep
supervised Fully Convolutional Network (FCN) to seg-
ment lesion using multimodel MRI imaging datasets with
70% accuracy.
Each dataset contained four modalities, namely T1, T2,

DWI, and FLAIR. Intracerebral hemorrhage (ICH) is
another one of the causes for high mortality rate therefore,
[49] focused on multivariate analysis to predict hematoma
expansion in spontaneous ICH with routinely available
information using SVM and it scored 83.3% accuracy.
Besides, randomized 179 search strategy was imple-
mented for parameter tuning and recursive feature 180
elimination was used for feature selection in this study.
Another important aspect is concerned with patient selec-
tion for thrombolytic procedures. In this regard, [5] CNN
and ANN techniques were used for the prediction of func-
tional thrombolysis outcomes in order to improve clinical
decision making. Accuracy by CNN+ANN was 74% for
the prediction of ‘mRS90’ (modified Rankin Scale (mRs) 0-
1 in 90 days) and for ‘NIHSS24’ (National Institutes of
Health Stroke Scale of greater than equals to 4 points in 24
hours) scored 71% accuracy.
Cerebral stroke is also caught an attention as a global

health problem and if this could predict or classify auto-
matically then that actually contributes to clinical



Table 4. Continued: Machine learning techniques for brain stroke Diagnosis. Note: Natural Language Processing (NLP), Gradiant Boosting Machines (GBM), Logistic Regression (LR),

recurrent neural network (RNNs), gated recurrent unit (GRU), Magnetic Resonance Imaging (MRI), modified Rankin Scale (mRS), density-based spatial clustering of applications

(DBSCAN), Intracerebral Hemorrhage (ICH), Structural Co-Occurrence Matrix (SCM), Linear Discriminant Analysis (LDA)

Sr. No Objective Reference ML-based approach Samples Features Optimal Results Clinical Implications

10 Segmentation of ischemic

lesion using Fully Con-

volutional Network

(FCN)

[39] FCN 4,284 multimodal MRI images

ISLES 2015 dataset

mean ACC= 70% Enhanced diagnosis and

management following

ischemic stroke.

11 Classification of different

walking conditions for

hemiparetic subjects.

[43] SVM 7 kinematic data by two

sensors

ACC= 97.5% Contribution to pathologi-

cal gait recognition,

analysis and monitoring

during the performance

of activities of daily liv-

ing (ADL).

12 Identification of incorrect

stroke outcome assess-

ments using density-

based outlier detection

methods

[47] DBSCAN, hierarchical

DBSCAN (HDBSCAN)

and local outlier factor

(LOF).

1,00,000 4 different NINDS stroke

registry datasets

DBSCAN: high mean

ACC= 99.2§ 0.7 at

mRS of 4 and low

ACC= 92.0§ 4.6 at

mRS of 3

13 Prediction of hematoma

expansion in spontane-

ous ICH from routinely

available variables by

using SVM

[49] S VM 1,157 CT scan images sensitivity= 81.3% speci-

ficity of 84.8% ACC=

83.3% AUC= 89%

Early identification of

hematoma expansion

after ICH and imple-

mentation of preventive

or remediate treatments.

14 Prediction of stroke by

hybrid ML technique on

incomplete and imbal-

anced medical data.

[50] RF for imputation, auto-

mated hyperparameter

optimization

(AutoHPO)

43,400 physiological data AutoHPO: ACC= 71.6%

sensitivity= 67.4%

15 Classification of hemor-

rhagic and ischemic

strokes by SCM tech-

nique using CT images

of the brain

[57] SCM, SVM, multilayer

perceptron, minimal

learning machine, LDA

300 CT images SCM: specificity= 99.1%

sensitivity= 97%

FScore= 98% ACC=

98%

Enhanced stroke classifi-

cation and diagnosis.

16 Propose noval approach to

extract CT scan image

features based on human

brain tissue densities

and classify stroke

(healthy brain or ische-

mic or hemorrhagic

[60] For feature extraction:

Analysis of Brain Tissue

Density (ABTD) For

classification: MLP,

SVM, kNN, OPF and

Bayesian

420 CT images ABTD with OPF: ACC=

99.30%

Early and more efficient

stroke detection and

diagnosis.

(Continued)
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diagnosis. Therefore, a step was took by [50] and devel-
oped a ML model for stroke prediction using a hybrid ML
approach on incomplete and imbalanced medical dataset.
The RF was used for data imputation and automated
hyperparameter optimization(AutoHPO) which is based
on deep neural network (DNN) applied for stroke predic-
tion. It obtained 71.6% accuracy and 67.4% sensitivity
using 43,400 physiological data points. Another efforts
were made by [21] for classification of stroke types
(healthy brain, an ischemic or a hemorrhagic stroke) from
420 CT scans images by employing Convolutional Neural
Networks (CNN) with 100% accuracy. The posturography
is a well-known technique to measure the postural control
and this was investigated by [29] using time series of data
of 38 center of pressure displacements (19 are post stroke
adults and 19 are healthy). Findings of the paper were for
fractal features 77.6% accuracy, for entropy features
68.4%, and for both features 76.3% accuracy. Likewise,
joint disorders happen in hemiparetic patient after a
stroke. Study [43] was investigated automated movement
detection using SVM classification technique and kine-
matic sensors data. Total 7 patients walked in different
conditions such as stair descent, stair ascent, level ground,
downslope, and upslope. The SVM improved accuracy
up to 97.5% and it performed superior than ANN and
radial basis function neural networks (RBF). Manual clas-
sification of stroke sub types is not an easy task thus, to
automatize the process of sub typing ischemic stroke, [25]
used several advanced ML techniques with NLP of over
1,091 of EHR text records for the classification of TOAST
(sub types of ischemic stroke) sub types. Finally, the
authors compared their performances with a manual clas-
sification. In these experiments, the optimal performing
techniques were stacking with LR and XGBoost, followed
by GBT, RF, extra trees, SVM and finally KNN. Com-
monly used measures of clinical outcome after stroke are
mRS and Barthel Index (BI). An alternate solution for the
above mentioned measures was [47] developed using an
unsupervised density-based outlier detection technique
which identifies potentially incorrect measurements to
assess the measurement quality without manual review.
Optimal classifier Density-based spatial clustering of

applications with noise (DBSCAN) obtained 99.2% accu-
racy at mRs of 4 using 1,00,000 data points, data was gath-
ered from stroke registry in Taiwan. Pneumonia is a
general post-stroke consequence thus, the accurate and
timely prediction of post-stroke pneumonia is crucial in
clinical practice. Three classical ML techniques such as
LR, SVM and XGBoost were used along with neural net-
works MLP and RNN i.e., attention based gated recurrent
unit (GRU). Optimal classifier was attention-based GRU,
achieved 0.928 AUC with 7 days of post-stroke and 0.905
within 14 days [26]. Ultimately, it leads DL models are
more feasible for stroke management and achieve the best
accuracy compared to classic ML Techniques. Besides, to
discriminate between floating intraluminal thrombus



Table 5. Machine learning techniques for brain stroke Diagnosis. Note: Convolutional Neural Network (CNN), Electrocardiograph (ECG), Computed Tomography (CT), Artificial Neu-

ral Networks (ANN), Multivariate Pattern Analysis (MVPA), Random Forest (RF), Bayesian Classifier, Multilayer Perceptron, k-Nearest Neighbor, Random Forest and Support Vector

Machines, Digital Imaging and Communications in Medicine (DICOM)

Sr. No Objective Reference ML-based approach Samples Features Optimal Results Clinical Implications

1 To detect the electrocar-

diographic signature of

Atrial Fibrillation (AF)

present during normal sinus

rhythm

[4] CNN 1,80,922 ECG data AUC= 0.90 Sensitivity=

82.3% specificity to

83.4% F1 score= 45.4%

ACC= 83.3%

Proper screening of AF

and management of

patients with stroke due

to an unknown cause,

which can help prevent

future strokes

2 To develop ML models for

the prediction of National

Institutes of Health Stroke

Scale (NIHSS24) and modi-

fied Rankin Scale (mRS90)

[5] CNN, ANN 204 clinical data CT brain

scans

for NIHSS24: ACC=0.71

F1 score=0.74 for

mRS90: ACC=0.74 F1

score=0.69

Facilitate the identifica-

tion and selection of

patients that could bene-

fit from intravenous

thrombolysis following

acute ischemic stroke.

3 To identify disability-rele-

vant spatial neglect based

on connectivity.

[7] MVPA 18 motor-attention network,

connectivity data

sensitivity=0.85 specific-

ity= 0.72 precision=

0.75 negative predictive

value= 0.83

Important insights for

developing combined

spatial and motor reha-

bilitation to improve

spatial neglect.

4 To detect undiagnosed post-

stroke spasticity cases in

United Kingdom

[19] RF, CART, AdaBoost 45,613 healthcare resource,

socioeconomic status,

body mass index, age

and number of previous

stroke events

data-trained algorithm:

RF= 75% clinician-

trained algorithm:

RF=72%

Enhanced identification of

post-stroke spasticity

could facilitate the man-

agement and treatment

of this physical deficit.

5 Classification of types of

stroke using CT scan

images

[21] CNN combined with RF,

MLP, KNN, SVM (Lin-

ear), Bayes

420 CT images from DICOM ACC=100% Contribution to stroke

identification and

classification.

6 Classification of Ischemic

Stroke Subtype using ML

and NLP

[25] KNN, RF, SVM, Extra

Trees, GBM,

XGBOOST, stacking

using LR

1,091 text notes from electronic

health records (EHR)

Kappa for stacking: radi-

ology reports=0.25 clini-

cal notes= 0.57

combined data=0.57

Determining ischemic

stroke subtype will

enhance outcome pre-

diction and selection of

patients for clinical trials

(e.g., large-scale epide-

miological studies).

7 Prediction of post-stroke

pneumonia in the stroke

population in China

[26] LR, SVM, XGBoost,

MLP and RNN (i.e.,

attention based GRU)

13,930 EHR data within 7 days of post-

stroke by GRU: AUC=

0.928

Early detection of post-

stroke pneumonia will

help to provide

(Continued)
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(FFT) from atherosclerotic plaque is significant and diffi-
cult therefore, [67] employed LR on CT angiography and
identified 5 quantitative shape descriptors of carotid FFT.
Atrial fibrillation is another clinical issue which can lead
to stroke or heart-related complications. Hence, the
research [4] was done on the identification of the patient
with atrial fibrillation during sinus rhythm using CNN
(83.3% accuracy, 45.4% F1 score) and 1,80,922 electrocar-
diograph data points. Spatial neglect neglect is a common
post-stroke sequalae, which leads to asymmetric func-
tional actions. Such patient normally has asymmetric
functional actions. Multivariate pattern analysis classifier
[7] classified disability-relevant spatial neglect based on
18 motor-attention network and connectivity data of
stroke patients with 0.85 sensitivity and 0.72 specificity. In
United Kingdom, stroke is one of the three highest mortal-
ity causes so [19] the RF, classification and regression tree,
adaBoost techniques are applied on 45,613 UK primary
care data points to explore potential under recording of
post stroke spasticity.

Stroke Treatment

Table 6 follows the same structure like other tables
mentioned in the Section 4.2 however, only 4 studies were
found under this category. Several classification techni-
ques were applied to modify the real-time display of vir-
tual reality system to monitor a particular state of the
patients based on their physiological reactions [6]. How-
ever, SVM with RBF achieved 91.43% of accuracy, shown
in the Table 6. Improving the functional movements of
the arm after stroke is significant part of stroke treatment,
basically research idea [13] is to capture the linear acceler-
ation and angular velocity of patient’s Upper Extremity
(UE) using sensor positioned on patient’s wrists and this
data is correctly classified with an average accuracy
94.80% in controls and 88.38% in stroke.
Moreover, [46] focuses to maintain and enhance the

stroke patient’s engagement at time of stroke rehabilitation
practicals. The classifiers ANN and Naive Bayes (NB) were
able to learn the association between the actual engage-
ment and applied stimulation on 500 data points of Electro-
myography (EMG), Electroencephalography (EEG), eye
movements and facial expression. Remote quantitative
Fugl-Meyer Assessment (FMA) is proposed framework for
the stoke patients by [71] which is in the clinical and home
settings. Ensemble Machine Learning (ELM) was
employed to learn the relation between the 2 accelerometer
and 7 flex sensors data to clinical FMA scores.

Stroke Prognostication

Last but not least is stroke prognostication. Table 7
presents 9 studies on stroke diagnosis and its structure
explained in the Section 4.2. Thrombolysis is a treatment
to diffuse wild clots in blood vessels and improves flow of
blood although, devastating complication in such



Table 6. Machine learning techniques for brain stroke treatment. Note: Perceptron Learning Algorithm (PLA), K-Center with Radial Basis Functions (RBF), Quadratic discriminant

analysis (QDA), Linear discriminant analysis (LDA), Na€ave Bayes (NB), Random Forest (RF), artificial neural network (ANN), multilayer perceptron neural network (MLPNN), Extreme

Learning Machine (ELM), coefficient of determination (R2), Activities of Daily Living Clinical Assessment Protocol (ADLCAP)

Sr. No Problem Reference ML-based approach Features Samples Optimal Results Clinical Implications

1 Present the classification

model to adaptively and

dynamically modify the

therapy and real-time

displays of a virtual real-

ity system with the spe-

cific state of each patient

using their physiological

reactions.

[6] PLA, KNN, LR, NB,

SVM with RBF, Linear

SVM, RBF QDA, LDA

physiological signals

(relaxed, medium stress

level, over-stressed

7 SVM with RBF ACC=

91.43%

Robot-assisted therapy

can be automatically

adapted to the patient

needs.

2 Method to separate upper

extremity functional use

from nonfunctional

movement after stroke

using a single wrist-

worn accelerometer.

[13] RF sensor data 20 ACC= 91.53% for con-

trols ACC= 70.18% for

stroke

Important insights for the

improvement of restor-

ative and routine clinical

treatments for

hemiparesis.

3 Develop and validate of a

cyber-physical stroke

rehabilitation system

(CP-SRS)

[46] ANN, NB EMG, EEG, eye move-

ment, facial expression

500 ACC=NB>60% Enhanced efficiency of

rehabilitation exercises

for stroke patients.

4 Propose remote quantita-

tive Fugl-Meyer assess-

ment (FMA) model to

predict the FMA scores

[71] ELM, RRelief (for feature

selection)

wearable sensor data 24 R2= 0.917 Remote assessment and

rehabilitation of various

mobility-related func-

tional activities.
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Table 7. Machine learning techniques for brain stroke prognostic or outcome prediction. Note: Machine Learning (ML), Computerized Tomography (CT), Area Under receiver-operat-

ing-characteristic Curve (AUC), Artificial Neural Network (ANN) and Support Vector Machine (SVM), Residual Neural Network (ResNet), Structured Receptive Fields (RFNN), auto-

encoders (AE), Gaussian Process model Regression (GPR), Corticospinal Tract (CST), Regions Of Interest (ROIs)

Sr. No Objective Reference ML-based

approach

Samples Features Optimal Results Clinical Implications

1 Identify factors influencing outcome

in brain arteriovenous malforma-

tions (BAVM) treated with endo-

vascular embolization

[3] ANN, SVM 199 demographics and

clinical details

ACC= 97.5% Determination of patients with

brain arteriovenous malfor-

mations that can benefit from

endovascular treatments and

implementation of individu-

alized interventions.

2 Predict thrombolysis-associated

haemorrhage

[10] SVM 116 CT brain images

and clinical

variables

AUC= 0.744 Differentiation between

patients that will positively

and negatively respond to

thrombolysis can impact

treatment selection.

3 Present a novel scoring system for

predicting functional outcome

after ICH at 3 and 12 months fol-

low-up

[32] RF for feature

selection, LR

575 intracerebral Hem-

orrhage

Outcomes

for predicting functional

status: AUC= 0.89 (3

months) AUC= 0.87

(12 months)

Comprehensive prediction and

higher discrimination of

functional outcomes in

patients with ICH.

4 Predict good reperfusion after endo-

vascular treatment (EVT) and

good functional outcome

[35] ResNet with RFNN 1,301 CT angiography

images.

AUC= 0.71 Enhanced functional outcome

prediction after acute ische-

mic stroke can potentially

improve treatment selection

(e.g., to only consider

patients with a good response

to endovascular treatment).

5 Predict speech production skills in

stroke patients.

[36] GPR 270 cross-sectional,

longitudinal

patient data

R2= 0.84 Realistic long-term behavioral

outcome predictions after

stroke (e.g., severity of

speech production impair-

ments) with the purpose of

answering stroke patients’

expectations, i.e., when and

to what extent they should

expect to improve.

6 Predict activities of daily living

(Barthel index as the indicator) is

crucial for post-stroke patients.

[48] LR, SVM, RF 313 assessments for BI status:LR and RF

AUC= 0.79 for BI

score: SVM, MAE=

9.86 LR, MAE= 9.95

Realistic goal setting and

development of a specific and

individual discharge plan due

to the accurate prediction of
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treatment is Symptomatic intracranial hemorrhage (SICH)
can lead mortality. The SVM was used for the prediction
of SICH using CT scan images of 116 acute ischaemic
stroke patients and has obtained 0.744 AUC. The perfor-
mance of the SVM was compared with SEDAN and HAT
scores (prognostication tools). Similarly, RF was
employed [32] to identify factors or feature selection from
575 intracerebral hemorrhage (ICH) outcomes and devel-
oped LR model for prognosticating functional status
(mRS score, 0 to 3 is good and mRS score, 4 to 6 is poor)
based on these factors. LR model reported 0.89 AUC for 3
months and 0.87 for 12 months. Generated results were
then compared with ICH score. Brain arteriovenous mal-
formation consist of a set of abnormal blood vessels in the
brain. Research [3] focused on identification of outcome
which influences outcome in the brain. Two approaches
ANN and SVM were employed on 199 demographics an
clinical data points and recorded 97.5% accuracy. More-
over, DL approach, structured receptive field neural net-
works-residual neural network was applied on 1,301 CT
angiography images for predicting outcomes of acute
ischemic stroke patients [35], reported AUC= 0.71. It got
higher accuracy than radiological image biomarkers for
outcome prediction.
Besides, MRI images were used to extract lesion infor-

mation which were injected to Gaussian process model
regression [36] for the prediction of behavioural outcomes
and recovery of speech production after stroke. The LR,
SVM, and RF techniques were applied on 15 rehabilitation
assessments from 313 individuals for the prediction of
Barthel Index (BI) status and score at discharge of post-
stroke patients. Specifically, LR, SVM, and RF were used
for BI status and SVM and LR used for BI scores. Stroke
topography has widely been mapped with functional out-
come using manual lesion segmentation. Therefore, pro-
posed [54] powerful ML based technique (SVM) that
improved median accuracy (82.8%) using 297 stroke
images as well as provided an important insight on criti-
cal brain areas for long-term functional outcome (good or
poor). Similarly, linear SVM employed [65] on functional
and clinical data of 55 individuals. The authors investi-
gated the exact role of common inflammatory biomarkers
in the prediction of motor and cognitive improvement
after rehabilitation in the early stages of stroke. Eventu-
ally, improved ML or DL based predictions of stroke out-
come enhance clinical efficacy. Gaussian Process
Regression [62] was used to decode post-stroke motor
function from 50 structural brain images of chronic stroke
patients and results are showed in the Table 7.
Discussion

In this work, we discussed many stroke related prob-
lems from the state-of-art. The reviewed studies were
grouped in several categories based on their similarities.
We note that it is difficult to compare studies as they
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employed different performance metrics for different
tasks, considering different datasets, techniques, and tun-
ing parameters. Hence, we only mention the research
areas which were targeted in more than one study and
the studies which report highest classification accuracy in
each section. The stroke prevention category contains 2
studies on carotid-artery atherosclerosis and the stroke
diagnosis category consists of 5 studies on classification of
stroke types. We identified that 4 out of 39 studies are
focused on regression. Hence, the current review has
more articles on classification, we present classification
accuracy of an optimal model from each category. For
example, [60] has achieved the highest 99.30% accuracy in
stroke diagnosis. For stroke prevention, [21] mentioned
100% accuracy for classification of ischemic stroke sub
types. If we see the results in stroke treatment category,
[6] got optimal result, accuracy 91.43% and in prognosti-
cation, [3] received 97.5% accuracy. Figure 2 signifies 3
layers, consists of stroke category, dataset and outer layer
represents optimal model of particular study. Here, we
Fig. 2. Multi-level pie chart of ML approaches and types of data used for
try to visualize 39 studies in one figure to get some valu-
able insights or conclusions.

1. After reviewing all studies, we found 4main categories of
stroke problem such as prevention, diagnosis, treatment
and prognostication, mentioned in the first ring of the
Figure 2.

2. The second ring comprises names of the dataset of each
category. It shows 7 studies fromCT images under stroke
diagnosis, 2 from prognostication category, and 1 from
prevention. After that, MRI images are used in 5 studies,
each 2 from diagnosis and prognostication, 1 from pre-
vention, 2 times sensor data and ultrasound images. ML
powered by DL for the task of image processing, has
emerged rapidly in recent years. Consequently, CT scan
image is the most frequently used data in a stroke field.

3. Finally, the third ring presents an optimal model of
each study. 10 studies appeared with SVM as optimal
model, then RF (6 times), LR (4 times), ANN and
CNN (each 3 times) from 4 categories. Thus, SVM is a
stroke prevention, stroke diagnosis, treatment, and prognostication.
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commonly used technique as well as highly efficient
to map a data in a stroke field.

4. SVM and RF are applied and obtained as an optimal
models in at least 1 study from each category.

5. Since 18 studies are found in the stroke diagnosis cate-
gory, the rest of the categories require to implement
more research ideas. Specifically in stroke treatment.

6. In this review, the majority of research problems are
classification and only 4 studies are related to regres-
sion. It seems general nature of problem in stroke field
is classification.

This review was intended to showcase ML approaches
employed on various datasets used for solving various stroke
problems for better healthcare system as well as further inves-
tigation. We believe that it allows a better understanding and
valuable insights into the effectiveness of ML-based stroke
problems in enhancing medical practices.
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