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Abstract 

Background: Rapid non-destructive measurements to predict cassava root yield over the full growing season 

through large numbers of germplasm and multiple environments is a huge challenge in Cassava breeding programs. 

As opposed to waiting until the harvest season, multispectral imagery using unmanned aerial vehicles (UAV) are 

capable of measuring the canopy metrics and vegetation indices (VIs) traits at different time points of the growth 

cycle. This resourceful time series aerial image processing with appropriate analytical framework is very important for 

the automatic extraction of phenotypic features from the image data. Many studies have demonstrated the useful-

ness of advanced remote sensing technologies coupled with machine learning (ML) approaches for accurate predic-

tion of valuable crop traits. Until now, Cassava has received little to no attention in aerial image-based phenotyping 

and ML model testing.

Results: To accelerate image processing, an automated image-analysis framework called CIAT Pheno-i was devel-

oped to extract plot level vegetation indices/canopy metrics. Multiple linear regression models were constructed at 

different key growth stages of cassava, using ground-truth data and vegetation indices obtained from a multispectral 

sensor. Henceforth, the spectral indices/features were combined to develop models and predict cassava root yield 

using different Machine learning techniques. Our results showed that (1) Developed CIAT pheno-i image analysis 

framework was found to be easier and more rapid than manual methods. (2) The correlation analysis of four pheno-

logical stages of cassava revealed that elongation (EL) and late bulking (LBK) were the most useful stages to estimate 

above-ground biomass (AGB), below-ground biomass (BGB) and canopy height (CH). (3) The multi-temporal analysis 

revealed that cumulative image feature information of EL + early bulky (EBK) stages showed a higher significant cor-

relation (r = 0.77) for Green Normalized Difference Vegetation indices (GNDVI) with BGB than individual time points. 
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Background
Cassava (Manihot esculenta Crantz), commonly referred 

as manioc (French), yuca (Spanish), and different names 

in local regions, is a tropical root crop native to South 

America [1], and relied by more than 800 million people 

as a staple food source [2]. Its versatile nature, it is often 

referred to as the “drought, war and famine crop of the 

developing world” [3], places it among the most adap-

tive crops during climate change. Early vigor, rapid root 

bulking, higher root yield, resistance to major pest and 

diseases, waxy cassava are the most important targeted 

traits in cassava breeding programs around the world [4]. 

Conventional breeding continues to be the main method 

for cassava varietal development worldwide and had a 

strong impact on addressing the constraints of cassava 

growers [5]. Traditional methods of selecting breeding/

germplasm lines are labor intensive and destructive to 

nature, limiting the quantitative and repeated assess-

ments in long-term research [6, 7]. �erefore, estab-

lishing a non-destructive and real time monitoring tool 

to measure above and below-ground cassava traits are 

very necessary [8]. Exploring non–destructive selection 

methods has always been a priority in cassava breeding 

programs. �erefore, efforts have been taken to reduce 

the cassava selection cycle and develop non-destructive, 

low-cost phenotyping methods that precisely meas-

ure the root characteristics in the field [8–12]. �ough 

good progress in digital phenotyping has been made, so 

far, no studies have been devoted to the development of 

non-invasive high-throughput field phenotyping (HTFP) 

tools and machine learning models that estimate cassava 

canopy traits and root yield prediction through aerial 

imaging. In cassava breeding programs, the establish-

ment of non-destructive phenotyping tools, root yield 

prediction models can allow the early selection of elite 

genotypes, allowing the optimization of resources and 

time [13]. Digital and rapid phenotyping approaches 

are increasingly considered important tools for rapid 

advancement of genetic gain in breeding programs [14].

UAV are being used to measure with high spatial and 

temporal resolution capable of generating useful infor-

mation for plant breeding tasks [15–17]. In the era of 

digital revolution, aerial image phenotyping [18–20] 

and ML models could predict crop yield performance 

[21–27] in a non-invasive means with a greater accu-

racy [28–31]. Efficient selection of desired phenotypes 

through HTP across large field populations could be 

achieved through incorporating ML methodologies 

such as, automated identification, classification, quan-

tification and prediction [20]. To be constructive to 

breeding programs, phenotyping methods must be 

robust, automated, sensitive, and amenable to plot 

sizes. �e ability to get more rapid growth responses 

of genetically different plants in the field and transmit 

these responses to individual genes, novel technologies 

such as proximal sensing, robotics, integrated compu-

tational algorithms and robust automated aerial image 

analytical frameworks are urgently needed [7].

Even though, UAV and sensor technologies (hard-

ware) shows greater progress with more automation 

and integration, processing the massive amount of 

generated image data such as data management, image 

analysis, and result visualization of large-scale pheno-

typic data sets [32] from aerial phenotyping systems 

requires robust analytical framework for data interpre-

tation [33]. Few commercial software are available that 

systematize image calibration and correction, obtain-

ing good field maps of the studied variable. But these 

platforms are often developed and delivered by specific 

enterprises where the original hardware and software 

are patent protected and henceforth cannot be adapted 

or modified to meet particular research needs [34]. 

Moreover, new developments target real-time pro-

cessing on-board in aerial imaging platforms, provid-

ing direct vegetation indices (VIs) maps to make rapid 

Canopy height measured on the ground correlated well with UAV (CHuav)-based measurements (r = 0.92) at late 

bulking (LBK) stage. Among different image features, normalized difference red edge index (NDRE) data were found 

to be consistently highly correlated (r = 0.65 to 0.84) with AGB at LBK stage. (4) Among the four ML algorithms used 

in this study, k-Nearest Neighbours (kNN), Random Forest (RF) and Support Vector Machine (SVM) showed the best 

performance for root yield prediction with the highest accuracy of  R2 = 0.67, 0.66 and 0.64, respectively.

Conclusion: UAV platforms, time series image acquisition, automated image analytical framework (CIAT Pheno-i), and 

key vegetation indices (VIs) to estimate phenotyping traits and root yield described in this work have great potential 

for use as a selection tool in the modern cassava breeding programs around the world to accelerate germplasm and 

varietal selection. The image analysis software (CIAT Pheno-i) developed from this study can be widely applicable to 

any other crop to extract phenotypic information rapidly.

Keywords: Automated aerial image processing, Above-ground biomass, Cassava, Machine learning, Multispectral 

UAV imagery, Root yield prediction



Page 3 of 19Selvaraj et al. Plant Methods           (2020) 16:87  

decisions [35]. Despite these improvements, there are 

middle steps that require some level of manual inter-

face, which slow the progress, such as the recognition 

of coded GCP, calibration panel recognition and cor-

rection, defining region of interest, extracting plot-level 

data [32], batch and multi-threading processing.

In this paper, we are describing a robust feature 

extraction platform for aerial image processing called 

CIAT Pheno-i, with which we validated the developed 

framework using cassava time series aerial images col-

lected from two consecutive field trials (2016–2018). 

Since no studies have been reported on UAV based 

cassava high-throughput phenotyping and root yield 

prediction, the specific objectives of this study is (1) to 

develop simple and rapid aerial image analysis frame-

work (CIAT Pheno-i) for retrieving cassava canopy 

variables and VIs from multispectral (MS) time series 

images; 2) to find promising image based canopy 

metrics and VIs to estimate above and below-ground 

biomass of cassava over different phenological stages; 

and (3) to develop robust ML models to predict cassava 

root yield using image features.

Materials and methods
Experimental site and trial conditions

To validate the performance of CIAT Pheno-i, two field 

trials, trial one was planted on December 2016 and 

harvested in November 2017; trial two was planted 

in December 2017 and harvested in December, 2018, 

these trials were conducted at the International Center 

for Tropical Agriculture (CIAT) headquarters Valle del 

Cauca, Cali, Colombia at 970.67  m.a.s.l (3°30′29.21″N 

− 76°20′53.98″W) (Fig.  1a). Climate and experimental 

conditions were characterized for both trials (Table  1). 

For both trials, we selected four contrasting geno-

types GM3893-65, CM523-7, MPER-183, and HMC-1, 

Fig. 1 Field trial site and remote sensing platform. a Trial one and two were conducted at the International Center for Tropical Agriculture (CIAT). b 

Unmanned aerial vehicle (UAV), DJI S1000s. c Multispectral camera, Micasense RedEdge 3. d Arduino nano. e Ground Control Point (GCPs). f GCPs 

installed in trial one. g RTK-GPS

Table 1 Field experimental conditions and images acquisition

The following de�nitions are related to cassava storage root development phases: Elongation (EL) stage is the initial growth phase of active �brous root development. 

Early bulking (EBK) is the root di�erentiation (from �brous and storage roots) phase, the beginning of storage root bulking and accumulation of assimilated reserves 

in the storage roots. Late bulking (LBK) stage is the rapid expansion and bulking of storage roots. Dry matter accumulation (DMA) stage is the starch accumulation in 

the storage roots

Trial conditions and images acquisition Trial one (Dec. 2016–Nov. 2017) Trial two (Dec. 2017–Dec. 2018)

Irrigation Surface irrigation Drip irrigation

Soil type Clay loam Clay loam

Experimental design Split plot design Randomized complete block design

No. of replication 3 4

Average annual precipitation (mm) 1435.10 1026.50

Average annual temperature (°C) 24.00 23.33

Total solar radiation (W/m2) 207.8 222.39

Average annual relative humidity (%) 81.30 78.90

Image acquisition Stages EL, LBK and DMA: EL, EBK, LBK and DMA
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representing three types of canopy architecture; cylin-

drical, open and compact [36] and morphological and 

agronomic growth descriptors are listed in Additional 

file 1: Tables S1 and S2. �e trial one was established in 

0.8 hectares under a split-plot design with three replica-

tions and a total of 135 plots (3.0, long × 9.6 wide) with 

staggered planting (Nine planting dates from December 

2016 to August 2017) (Table 1). Cuttings were planted of 

1.5 m between hills and 2.4 m between rows and water 

management was applied by the surface irrigation system 

from planting to 7 months, using approximately 4000 m3 

per hectare. �e second trial was planted in 0.6 hectares 

with four replications per genotype and plot size of 9.6 m 

long and 9.6 m wide (Table 1). Cuttings were planted of 

1.2 m between hills and 2.4 m between rows and water 

management was applied with an efficient drip irrigation 

system from planting to 7 months, using approximately 

900 m3 per hectare. In both trials, stem cuttings between 

20 to 25  cm were planted vertically into the soil, leav-

ing exposed three buds. Weeds were controlled by hand 

weeding, brush-cutter, and applying herbicides in late 

cassava stages. Standard agronomic, insects and diseases 

management practices were followed. A recommended 

dose of diammonium phosphate (DAP) and potassium 

chloride (KCL) were applied at the rate of 35.89 and 

179 kg ha−1, respectively.

Ground-truth measurements

Cassava agronomic traits such as leaf area index (LAI), 

canopy height (CH), above-ground biomass (AGB) and 

below-ground biomass (BGB) were acquired as ground-

truth measurements. Five plants per plot were measured 

using LICOR LAI-2200C Plant Canopy Analyzer [37] 

during trial two. CH was sampled from soil level to the 

upper canopy at all four important phenological stages: 

elongation (EL), early bulking (EBK), late bulking (LBK) 

and dry matter accumulation (DMA) in both the trials. 

Each phenological stage is defined in Table 1. CH of 21 

and five plants per plot were measured in trial one and 

two, respectively. �e AGB and BGB were measured at 

the harvest time in both the trials using a conventional 

scale with the accuracy of 1  g. For AGB, three and five 

plants per plot were sampled in trial one and two, respec-

tively. For BGB, 15 and 45 plants per plot were sampled 

in trial one and two, respectively.

UAV platform and images acquisition

In this study, aerial multispectral (MS) time-series images 

were obtained using a MS camera (MicaSense RedEdge 

3) mounted on a commercial UAV DJI S1000 octocop-

ter (Fig.  1b). �e MS camera has five spectral bands—

Blue, Green, Red, near-infrared (NIR), and Red Edge 

(RE) with the wavelengths of 455–495 nm, 540–580 nm, 

658–678 nm, 800–880 nm and 707–727 nm, respectively 

(Fig. 1c). �e camera was attached to UAV by one plate 

with a shock absorption rubber/spring damping suspen-

sion system to protect against any vibration and to ensure 

better quality of the images. Six automated PhotoScan 

coded target detection (concentric rings) as ground con-

trol points (GCPs) were printed on a 50 × 50 cm plastic 

sheet (Fig.  1e) and evenly distributed within the field 

trial (Fig.  1f ). �ese GCPs were georeferenced using 

the highly accurate RTK-GPS (Real-Time Kinematic 

Global Positioning System, South, Galaxy G1, China) 

with a horizontal accuracy of 0.25 m and a vertical accu-

racy of 0.5 m, which was used for geometric corrections 

(Fig. 1g). �ese GCPs were maintained until all the UAV 

images were acquired. �e automatic fly mission was 

performed using DJI Ground Station Pro Application 

(DJI GS Pro, China). Before each image acquisition, one 

image was taken to the MicaSense reflectance panel for 

radiometric calibration (Fig. 1h). Each image acquisition 

was taken between 10:00 to 14:00 UTC-05:00. In order 

to achieve overlapping of 75% vertically and horizontally, 

we triggered the camera using the UAV DJI A3 flight 

controller and Arduino Nano as an interface configured 

by DJI GS app (Fig.  1d). �e altitude for image acquisi-

tion was between 30 and 40 m above ground level (from 

2.7 to 5.4 cm per pixel). DJI S1000, batteries, and multi-

sensors weights 3  kg. DJI S1000 UAV includes a Global 

Navigation Satellite System (GNSS), an inertial measure-

ment unit (IMU), barometer and compass; all these com-

ponents aid in position accuracy and vertical stability of 

the UAV during image acquisitions. �e time series UAV 

images captured at different phenological stages at trial 

one and two are listed in Table 1 and these acquired time 

series images used to create the orthomosaic employed 

structure from motion (SfM) were listed in Additional 

file 1: Tables S1 and S2.

Image data processing

Generation of orthomosaic and digital elevation models

To ensure the reflectance quality of the orthomosaic, we 

followed the steps suggested by Agisoft and MicaSense 

RedEdge cameras (Agisoft, https ://bit.ly/32swt n2). �ese 

steps include the usage of the MicaSense downwelling 

light sensor to fix any illumination issues caused by the 

weather conditions and MicaSense reflectance calibra-

tion panel. �e acquired images were processed through 

Agisoft MetaShape Pro software (Version 1.2.2, Agisoft 

LLC, http://www.agiso ft.com) and its Python API (Appli-

cation Program Interface) generates and exports a five-

band orthomosaic and digital elevation models (DEM) 

automatically as GeoTIFF format. Our processing work-

flow includes following nine main steps (1) Uploading 

UAV images, (2) calibration, (3) GCPs detection and 

https://bit.ly/32swtn2
http://www.agisoft.com
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geo-tagging, (4) photo alignment, (5) camera optimiza-

tion (6) build dense point cloud, (7) build DEM, (8) build 

orthomosaic (9) export DEM and orthomosaic (Addi-

tional file  2: Figure S1). In step three, coded GCPs are 

automatically detected through Agisoft Metashape API 

(Fig. 1e).

Comparison of manual and automatic orthomosaic and DEM 

generation

In order to evaluate the efficiency of the Agisoft 

Metashape Python API, we generated orthomosaic and 

DEM using manual (M1–M8) and auto mode (A1–A8) 

from MS and RGB datasets. All data sets (MS and RGB) 

were processed using the image processing workflow 

listed in Additional file 2: Figure S1.

CIAT Pheno‑i image analysis framework

�e CIAT Pheno-i is a web-based application (http://

pheno -i.ciat.cgiar .org/), designed to extract UAV 

derived vegetation indices (VIs) and canopy metrics 

such as canopy height (CHuav), canopy cover (CCuav) 

and canopy volume (CVuav) rapidly. Canopy height 

defines the 95th percentile pixel height of the canopy 

point cloud. Canopy cover is the pixel surface area cov-

ered by the canopy. Canopy volume, is the total volume 

under observed canopy values, which is derived as fol-

lows 
∑

n

i
CCuavi ∗ CHuavi where i is the pixel associ-

ated to the plot. CIAT Pheno-i admits MS orthomosaics 

and DEM as an input and visualizes them as VIs maps 

(Additional file 2: Figure S2). Users have the privilege to 

select their Region of Interest (ROI) using shapefiles and 

perform radiometric calibration, if necessary. Currently, 

eight VIs (Table 2) [17, 38–43] and three canopy metrics 

could be rapidly generated through Pheno-i and users 

can visualize real-time data captured over multiple tim-

ing points during the crop development.

CIAT Pheno‑i software architecture

CIAT Pheno-i back-end On the top of a PostgreSQL data-

base model, two main components constitute the Pheno-i 

Table 2 Summary of  vegetation indices used in  this study. Camera channels B: blue, G: green, R: red, RE: red-edge, 

and NIR: near-infrared

Vegetation index Acronym Formula References

Normalized difference red-edge NDRE (NIR-Rededge)/(NIR + Rededge) [38]

Normalized difference vegetation index NDVI (NIR-Red)(NIR + Red) [39]

Green normalized difference vegetation index GNDVI (NIR-Green)/(NIR + Green) [40]

Blue normalized difference vegetation index BNDVI (NIR-Blue)/(NIR + Blue) [41]

Normalized difference vegetation index red-edge NDREI (Rededge-Red)/(Rededge + Red) [42]

Normalized pigment chlorophyll index NPCI (Rededge-Blue)/(Rededge + Blue) [43]

Green–red vegetation index GRVI (Green–Red)/(Green + Red) [17]

Normalized green–blue difference index NGBDI (Green–Blue)/(Green + Blue) [40]

CIAT Pheno-i

Python backend 

architecture hierarchy

Exp

Core

Data structures

Experimental/in 

progress methods
IO

Load and save methods

Tools

DataSet.py

Mosaic.py

Core

Experiment data 
description

Image.py

Raw images 
dataset

Orthomosaic
generation

Shape.py

ShapeFile
manipulation

TimeSeries.py

Orthomosaic
time series

Misc.py

Extra data 
structures

Tools 

FeaturesPre-

processing

FeatureExtractor.py

MS

RGB

Thermal

Calibration.py

Radiometric

ELC

Post-

processing

MachineLearning.py

Stastistical.py

Processing and 
analysis tools 

Fig. 2 CIAT Pheno-i data processing back-end Python architecture

http://pheno-i.ciat.cgiar.org/
http://pheno-i.ciat.cgiar.org/
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back-end: A Python library, where the core algorithms in 

the pipeline were implemented (Figs. 2 and 3), and a REST 

(REpresentational State Transfer) API that allows the data 

processing through HTTP protocol. Most of the functions 

in the library were optimized using Numba, a python 

package that translates Python functions to optimized 

machine code, which could be executed in a parallel way 

on the CPU or the GPU. In addition to this, geo-spatial 

data manipulation, machine learning algorithms, GDAL, 

and Scikit-Learn were also employed. �e following steps 

described below were coded in the CIAT Pheno-i python 

library:  

Step 1. Radiometric calibration: Using orthomosa-

ics (Fig.  3a), Pheno-i back-end implements Empiri-

cal Line Calibration (ELC) process (Fig.  3b) using 

ground targets, allowing the user to calibrate ortho-

mosaics after the flight. Before implanting the ELC 

process, the pixel digital numbers should range from 

0 to 65,535 corresponding to a 16-bit standard Geo-

TIFF format, after applying ELC the pixel values were 

converted to reflectance values between 0 and 1.

Step 2. Crop masking and Vegetation indices cal-

culation: To segment cassava canopy, the green 

minus red (GMR) processing was used [44]. �e 

binarization of GMR was determined by the Otsu 

method to perform clustering-based image thresh-

olding [45], which implies the reduction of a gray 

level image to two-pixel values (0 and 1) and this 

binary image was used to select and discard the 

pixels associated with the soil (Fig. 3c). Using five 

camera channels (B: blue, G: green, R: red, RE: red-

edge, and NIR: near-infrared), eight normalized 

vegetation indices (VIs) were intended (Table 2.)

Step 3. Plot-level data extraction: Using the cali-

brated version of the orthomosaic, the boundaries 

of each plot ids are defined using an ESRI Shapefile 

format polygon. �en, shapefile was further used to 

select and extract the pixel values to compute sta-

tistics such as mean, variance, median, standard 

deviation, sum, minimum and maximum (Fig. 3e).

CIAT Pheno-i web A single page app (SPA) was devel-

oped using React.js and Redux. �is web application 

can be executed using any modern web browser (IE 11, 

Edge ≥ 14, Firefox ≥ 52, Chrome ≥ 49, Safari ≥ 10). �e 

user interface follows the Material-UI v4.7.0 (https ://

mater ial-ui.com/) guide design, LeafletJS v1.6.0 API 

(https ://leafl etjs.com/) was used to draw the geo-refer-

Orthomosaic / DEM

Plot-level data 

extraction .CSV

Data modeling

Identification, classification, 

quantification, prediction.

Plot ROI* 

.SHP

Radiometric 

calibration
Crop masking

VI* Feature 

extraction

Spectral 

panels

a) b) c) d)

e)

f)

Fig. 3 CIAT Pheno-i workflow: Applying image processing for plot level data generation and use it on identification, classification, quantification 

and prediction

https://material-ui.com/
https://material-ui.com/
https://leafletjs.com/
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enced orthomosaics and polygons in an OpenStreetMap 

(https ://www.opens treet map.org/). Additional file  2: 

Figures  S3 and S4 shows the overall architecture and 

database schema implemented.

CIAT Pheno-i back-end performance To evaluate the 

CIAT Pheno-i back-end performance, a single and multi-

thread analysis were performed under server and work-

station platforms over 50 different datasets. Hardware 

and software specifications are listed in Additional file 1: 

Table S3.

Statistical analysis

To investigate the relationship between agronomic traits, 

VIs and canopy metrics, we conducted Pearson correla-

tions, where the traits were calculated using a pearsonr 

function from Python SciPy (https ://www.scipy .org/) 

package. Pearson’s correlation coefficients and a P value 

less than 0.05 was considered significant.

Dataset preparation

In order to validate Pheno-i analysis, a Comma Separated 

Values (CSV) file with 693 characteristics was generated. 

Four machine-learning algorithms such as Support Vec-

tor Machine (SVM), k-Nearest Neighbours (kNN), Ran-

dom Forest (RF) and Artificial Neural Networks (ANN) 

were evaluated to predict cassava root yield. For the pre-

processing, data scaling between -1 and 1 and a Box Cox 

transformation were performed to achieve a normal dis-

tribution [46]. Principal component analysis (PCA) and 

principal component regression (PCR) [47] was applied 

to compare performance and reduce the model com-

plexity providing a lower-dimensional representation 

of predictor variables and to avoid multi-collinearity 

between predictors [48–50]. To analyze the data at dif-

ferent growth stages, a multi-temporal VIs technique was 

applied [27]; this procedure increases the predictor vari-

ables from 77 to 693 per timing point accumulating the 

VIs value per phenological stage.

Machine learning (ML) model development

ML model used

We included four ML methods in our study and are 

briefly described below. �ese ML methods were used in 

the regression mode.

Random forest Random forest method is a non-para-

metric, supervised method, that can be used as both clas-

sification and regression. �e heart of tree-based learners 

is the decision tree, wherein a series of decision rules are 

chained and learned. In a decision tree, every decision 

rule occurs at a decision node [51]. �is model was pro-

posed by Tin Kam Ho and further adapted by Leo Brei-

man and Adele Cutler [52].

Support Vector Machine Support Vector machines 

[53] classify data by finding the hyperplane  that maxi-

mizes the margin between the classes in the train-

ing data. A support vector machine can be represented 

like: f (x) = β0 +
∑

i∈S αiK (xi, xî) , where β0 is the bias, 

S is the set of all support vector observations, α is the 

parameters in the model to be learned, (xi, xî) are pairs of 

two support vector operations and K is the kernel func-

tion which compares the similarity between xi, xî.

k Nearest Neighbors �e k-nearest Neighbors algorithm 

[54] is a supervised machine learning algorithm that can 

be used as both classification and regression problems, 

especially when there is little or no prior knowledge about 

the distribution of the data. Let Xi be an input sample 

with p features 
(

xi1, xi2, . . . xip
)

 , �e Euclidean distance 

between the sample xi and xl(l = 1, 2, . . . , n) is defined 

as d(X1,Xl) =

√

(xi1 − xl1)
2
+ · · · +

(

xip − xlp
)2

 , 

and its neighborhood as: 

Ri =
{

X ∈ Rp : d(X ,Xi) ≤: d(X ,Xm), ∀i �= m
}

 , where 

Ri represents the clusters of elements with class m , and 

X the set of points belong to it. �e predicted class of 

the new sample x is set equal to the most frequent class 

among the k nearest training samples, which follow the 

rule:d(mi,X) =

{

d(mi,X)
}

 , where d is the distance func-

tion.

Multi-Layer perceptron (MLP) A MLP is composed of 

multiple perceptrons or neurons, developed originally by 

Frank Rosenblatt [51], commonly arranged in three lay-

ers known as input layer, hidden layer (can have more 

than one stack of neurons) and output layer, and this 

kind of configuration is called Artificial Neural Net-

work (ANN). Each input of the neurons xi are associ-

ated with a weight wi and computed as a sum as follows 

z = x1w1 + · · · + xnwn = XTW  , then an activation func-

tion is calculated as f (z) , where f (z) can be any continu-

ously differentiable function like a linear function, sig-

moid or even the modern ReLU commonly used in deep 

learning [55].

Assessing the quality of the model

Based on the experimental field design, a total of 609 

samples were used to develop the models, three data 

repetitions (454 samples) were used to train and, one 

last repetition to test (155 samples). Regression model 

hyper-parameters were tuned using grid-search with ten-

fold cross-validation to reduce variability and over-fitting 

https://www.openstreetmap.org/
https://www.scipy.org/
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while modeling; methods provided with scikit-learn 

Python package. To assess the accuracy and performance 

between models root median square error (RMSE), 

relative root mean square error (RRMSE) and the coef-

ficient of determination  (R2) were used. Ten-fold cross-

validation was performed over SVM, RF and kNN to 

get optimal hyper-parameters that minimize the error 

and stochastic gradient descendant over ANN model to 

reduce the training error.

Results and discussion
CIAT Pheno–i: an automated image analysis framework 

for HTFP

�e increased use of UAVs in field phenotyping consid-

erably decreased the hardware costs, however, image 

processing is the major challenge to the crop phenotyp-

ing scientists around the world [56]. As mentioned in the 

introduction, midway steps to extract information from 

the plot level field experiments need full automation and 

integration. �erefore, a need for accurate, robust, and 

automated analysis framework building orthomosaics 

and extract phenotyping information corresponding to 

each image of micro-plots (breeding) or large scale (pre-

cision agriculture) field experiments is necessary. Here, 

we are describing the Pheno-i image analysis software 

(Additional file  3) developed by CIAT phenomics plat-

form (https ://pheno mics.ciat.cgiar .org/) and the auto-

mated orthomosaic generation pipeline. �e primary 

criterion for any image analysis software should be cost 

effective, easy-to-use and rapid generation of actionable 

data from time-series images irrespective of experimen-

tal plot sizes. Making use of Agisoft Metashape Python 

API, the orthomosaic and DEM generation process 

was automated (Additional file  2: Figure S1), achiev-

ing a reduction in time of ~ 30%, saving ~ 1.1  h for RGB 

imagery and ~ 0.33  h for MS imagery (Additional file  2: 

Figure S5), compared to our manual processing method. 

CIAT Pheno-i back-end image analysis software design 

brings a significant improvement over any regular single 

thread Python implementation reducing the processing 

time of MS imagery processing up to 5× (Fig. 4). Afore-

said processing time was calculated using two different 

CPU architectures as seen in Additional file 1: Table S3. 

Our CIAT Pheno-i front-end software design comes with 

the advantage for the user to create, upload, calibrate, vis-

ualize, and analyze orthomosaics in a map-based canvas, 

giving a privilege to a non-programmer to analyze his 

own data through the internet. �e image analysis report 

comes in CSV format with a timestamp and a reference 

to a quantified plot level data, in which the data can be 

used either to develop plant models or just to monitor 

the crop health status. We offered CIAT Pheno-i as a 

simple and easy to use solution to extract plot/plant-level 

information.

We validated the developed platform using proof-of-

concept experiments with cassava genotypes over the 

two seasonal field trials to demonstrate the end-to-end 

application. �e results obtained from the platform are 

described below.

High-throughput �eld phenomics for aerial imaging 

of cassava

UAV offers very attractive alternatives such as, con-

venient operation, high spatial and temporal resolu-

tions with reasonable spatial coverage [57–59], makes 

it possible to document the within-microplot variabil-

ity in phenotyping field experiments [60, 61]. UAV, a 

current and an invaluable tool for crop monitoring at 

large scale (e.g., [27, 59, 62–65], has been proved to 

be useful for estimating canopy height and biomass in 

crops including rice [65], wheat [66] maize [30], sor-

ghum [67] and peas [17]. However, in cassava, the UAV 

based high-throughput phenotyping methods need to 

be standardized for feasibility and accuracy in estimat-

ing various phenotyping parameters such as, biotic and 

abiotic stresses. So far, most studies have attempted to 

Fig. 4 CIAT Pheno-i back-end performance. Multispectral 5 band 

image analysis average time of 50 runs with 3870 × 3739 pixels. 

Workstation processing time compared against server processing 

time

https://phenomics.ciat.cgiar.org/
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correlate morpho-physiological data with the produc-

tive potential (root yield) of the genotypes at the end 

of the crop cycle [68]. Subsequently, these pre-breed-

ing field experiments go through long selection cycles, 

leading to high maintenance costs. �e correlation 

analysis between important breeding traits at differ-

ent phenological stages and UAV image derived VIs are 

discussed below.

Relationship between UAV images derived features 

and canopy height

Canopy height (CH) is a key factor in cassava root 

yield, dry matter, leaf area, and plant architecture [69]. 

Collecting CH within cassava field breeding programs 

are labor intensive and prone to assessment error. In 

this study, orthomosaics and DEMs were generated 

using Methashape Agisoft API. Canopy metrics (CHuav, 

CCuav and CVuav) and VIs derived from high-resolu-

tion MS images (2.7 cm x pixel) were extracted through 

our CIAT Pheno-i web-based application. �e pearson’s 

correlation analysis between UAV features (VIs, CHuav, 

CCuav and CVuav) and canopy height (CH) at EL and 

LBK stage showed that the UAV feature are positively 

correlated (Figs. 5c and 6a), except during the trial two, 

where most of the VIs showed low and negative correla-

tions at DMA stage (Fig. 6a). �is low or poor correlation 

Fig. 5 Pearson correlation analysis between remote sensing features versus shoot and root biomass at different cassava phenological stages under 

surface irrigation management during the trial one. a BGB. b AGB. c CH. P < 0.05: *, P < 0.01: **, P < 0.005: ***
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is mainly due to the saturation of VIs at later stages of 

growth and crop lodging. Significant correlation was 

found at EL stage between manually estimated CH and 

CHuav (Fig.  7a). However, the best relationship was 

reached at the late bulking stage for both the trials with 

r values 0.89 and 0.92, respectively (Figs. 5c, 6a, and 7b). 

Similar results were found in cotton using DEMs from 

MS cameras [70]. In trial one, among the VIs, NDRE 

index showed significant relationship with CH manu-

ally with an r value of 0.83 at LBK stage (Fig. 5c). �e CH 

data collected by the UAV were credible and the corre-

lation with ground-truth measurement was very high. 

Fig. 6 Pearson correlation analysis between remote sensing features versus canopy metric traits at different cassava phenological stages under drip 

irrigation management during the trial two. a CH. b LAI. P < 0.05: *, P < 0.01: **, P < 0.005: ***

Fig. 7 Comparison of canopy height UAV versus canopy height of cassava at EL (Elongation) and LBK (Late Bulking) during trial two
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�erefore, UAV based CH measurements in cassava has 

great potential for use in studies of physiological and 

genetic mapping experiments.

Relationship between UAV metrics and canopy structure 

related traits

Time series measurements of canopy related traits are 

very useful to develop crop growth curves. Estimating 

AGB traits such as canopy volume is laborious, destruc-

tive and time-consuming and therefore needs an easier 

and convenient method [71]. In cassava, AGB can pro-

vide valuable insights into understanding the carbon 

assimilation mechanism and storage root development. 

In this paper, canopy metrics such as CCuav and CVuav 

across the phenological stages showed positive signifi-

cant relationship with AGB. During the trial one and 

two, significant correlation (r = 0.80 and r = 0.54, respec-

tively) was found between CCuav and AGB at LBK stage 

(Figs.  5b and 8b). A similar relationship was previously 

reported between dry leaf biomass and UAV derived 

green CC [72]. Also, at LBK stage a similar relationship 

(r = 0.70) was found between CVuav and BGB during the 

trial one (Fig. 5a). High-throughput canopy metrics tools 

developed from this study could provide quantitative 

data for novel traits that define canopy structure. Recur-

rent measurement offers time-series data from which we 

can estimate growth rates and dynamics. Such non-inva-

sive measurements are very useful to understand geno-

type specific responses to environmental stresses during 

the growth period. Cassava canopy structure parameter 

data can also contribute to the development of root yield 

prediction models and could help cassava breeders in the 

selection procedure by providing early hints on the per-

formance of novel lines.

Correlation between LAI and UAV derived features

�e leaf area index (LAI) refers to the per unit area of 

the one-sided leaf per unit area of ground surface. �e 

maximum LAI in cassava ranges from 4 to 8, depending 

on the cultivar, the atmospheric and edaphic conditions 

that prevails during crop growth stages [73]. Selection 

for higher LAI should favor high root yield, since there 

is an optimum relationship between root yield and LAI 

[68]. Positive contribution of LAI with cassava yield 

has also been reported by [74], and [75] also reported 

significant high correlation between ground cover and 

LAI in grass, legume and crucifer crop. Measuring LAI 

is a tedious [76] and time-consuming process, and an 

image trait complimenting LAI can be very useful. In 

order to establish this relationship, in trial two, LAI was 

measured and the correlation analysis was performed 

with UAV derived canopy metrics and VIs. �e results 

of canopy metrics (CCuav and CVuav) and VIs showed 

highly significant and positive correlation with LAI 

in all the tested phenological stages, whereas, CCuav 

and CVuav correlated with DMA with r value of 0.56 

(Fig. 6b). Among the tested VIs, NDREI showed highly 

significant correlation with LAI at EL and DMA stage 

with r values of 0.53 and 0.63, respectively (Fig. 9a, d); 

whereas, the correlation decreased slightly with the 

Fig. 8 Pearson correlation analysis between remote sensing features versus shoot and root traits at different cassava phenological stages under 

drip irrigation management during the trial two. a BGB. b AGB. P < 0.05: *, P < 0.01: **, P < 0.005: ***
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bulking stages (EBK and LBK) (Fig. 9b, c). Additionally, 

highly significant correlations were found with LAI and 

NDVI at EL and DMA stages with r values of 0.55 and 

0.59, respectively (Fig. 6b). Strong correlation between 

NDVI and LAI using UAV images has also been 

reported in different crops such as rice [65], sorghum 

[67]; for NDREI in bread wheat [77]. �ese results indi-

cate that NDREI could explain the green leaf area dur-

ing senescence.

Relationship between UAV features and above-ground 

biomass

Breeding for early vigor, fast growing cassava genotypes 

is ideal to tackle several issues especially in early stages 

of crop management. Vigorous and early growth cul-

tivars were less sensitive to lack of weed control than 

non-vigorous slow growth types. Above-ground biomass 

(AGB) estimation in cassava, is a most laborious and 

time-consuming method, requires a multi-step process: 

crop sacrifice from the field plot, oven dried before being 

Fig. 9 Comparison of Normalized Difference Vegetation Index Red-Edge NDREI versus Leaf Area Index (LAI) at EL (Elongation), EBK (Early Bulking), 

LBK (Late Bulking), and DMA (Dry Matter Accumulation) of cassava during the trial two
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weighed to assess the fresh and dry biomass of each sam-

ple. �is multi-step destructive process is prone to error, 

from variability in the area within the plot sampled, to 

the potential loss of material while collecting and trans-

porting [6]. In this present study, we estimated fresh 

canopy biomass in cassava using remote aerial imaging 

methods. Our results from both the trials revealed sig-

nificant positive correlations between VIs (NDRE, NDVI, 

GNDVI, BNDVI, NDREI, NPCI and GRVI) and AGB, at 

three different phenological stages (EL, EBK and LBK). 

A further comparison between VIs and AGB at LBK 

stage, using NDRE values alone, also showed positive 

significant correlation in both the trials with r values of 

0.84 and 0.65, respectively (Figs. 5b,  8b continuously dif-

ferentiable function like a linear function). Across UAV 

derived canopy metrics at LBK stage, we found signifi-

cant correlation between CCuav and AGB above r = 0.54 

(Figs. 5b,  8b). Our results clearly indicate that EBK is one 

of the key phenological stages to predict AGB through 

remote sensing in cassava. Combining VIs at three phe-

nological stages (EL, EBK and LBK), the trial two showed 

good AGB relationship with NDRE, NDVI, GNDVI, 

BNDVI, NDREI, NPCI and GRVI with r values of 0.71, 

0.62, 0.66, 0.59, 0.64, 0.55, and 0.66, respectively (Figs. 8b 

and 10a).

Relationship between UAV derived VIs and below-ground 

biomass

Measuring root biomass through non-destructive meth-

ods over different cassava varieties will help cassava 

breeders in the efficient selection of cultivars with favora-

ble rooting architectures e.g. root area and harvesting 

[78]. �ereby, the impact of agronomic research through 

unique agricultural practices on root bulking can be 

assessed. Destructive root sampling in cassava requires 

sampling large populations and trials that are laborious 

and expensive [8]. Rapid and non-destructive process of 

estimating below-ground biomass (BGB) across differ-

ent environments would reduce time, cost and sample 

size requirements in phenotypic data collection. In this 

study, we determine the capability of MS aerial imaging 

to estimate BGB. In both trials, except at DMA stage, 

all the tested VIs showed positive and significant cor-

relation with fresh BGB at EL and LBK stages (Figs. 5a, 

8a). Our results revealed that the later stage (DMA) of 

cassava crop life was least correlated, attributing the 

fact that at the later crop stages (i.e. when the roots are 

actively accumulating dry matter), cassava canopy tends 

to senescence.

In both the trials, NDRE, NDVI, GNDVI, BNDVI, 

NDREI, NPCI, GRVI indices showed significant positive 

correlations with fresh root biomass with r values rang-

ing from 0.18 to 0.72 during the EL to LBK stage, where 

the highest correlation coefficient (r = 0.72) correspond 

to NDRE at the EL stage at trial two (Figs.  5a and 8a). 

On the other hand, canopy metrics (CCuav and CVuav) 

exhibited highest and stronger correlations with BGB at 

LBK in trial one with r = 0.70 and r = 0.70, respectively 

(Fig.  5a). Also, we found that the DMA stage showed 

poor and no significant correlation for some VIs, CHuav 

Fig. 10 Relationship between fresh above-ground biomass (AGB) and fresh below ground biomass (BGB) of cassava with multi-temporal VIs 

(Normalized Difference Red-Edge, NDRE and Green Normalized Difference Vegetation Index GNDVI) during trial two. a Ground truth AGB versus 

multi-temporal NDRE index at EL (Elongation), EBK (Early Bulking), and LBK (Late Bulking stage). b Ground truth BGB and multi-temporal GNDVI 

index at EL (Elongation) and LBK (Late Bulking) stage
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and CVuav metrics (Fig.  8a). In addition, the multi-

temporal analysis showed improved correlations with 

BGB, where we observed that the combination of VIs at 

[EL + EBK] stages showed highly significant correlation 

(r = 0.77) for GNDVI (Figs. 8a and 10b). Generally, from 

3 to 5 months after planting (MAP), intense development 

of the photosynthetic apparatus and aerial part of the 

cassava plants is observed. Consequently, a vigor in this 

phase causes the greatest enhancement of AGB with con-

sequent reflection in fresh root yield [13]. �e relation-

ship between aerial imaging features and BGB obtained 

from this study are encouraging and it can be an add-

on feature for our ongoing Ground penetrating Radar 

(GPR) research predicting BGB in cassava. Furthermore, 

all the data produced from above (UAV multispectral) 

and below ground sensors (GPR) could be merged using 

high precision Geographic Information System (GIS) to 

achieve more comprehensive estimation of BGB.

Cassava root yield predictions using ML models

Accurate estimation of crop yield is essential for plant 

breeders. Yield is a very important harvest trait observa-

tion that involves the cumulative effect of weather and 

management practices throughout the entire growing 

cycle. [79]. Early detection and crop management asso-

ciated with yield limitations can help increase produc-

tivity [4, 23, 80]. Crop yield prediction models could aid 

in early decision-making, optimizing the time required 

for field evaluation, thus reducing the resources allo-

cated to the research programs [81]. Furthermore, the 

predicted yield maps could also be used to implement 

variable rate technology (VRT) systems in spatial data-

bases, thereby accomplishing precise field-level inputs 

through the entire field [82]. Traditional cassava growth 

models have certain limitations, such as high input cost 

required to run the models, the lack of spatial informa-

tion, or the actual quality of input data [13]. Remote 

sensing approaches can provide growers with final yield 

assessments and show variations across the field [79]. In 

remote sensing, MS imagery can describe crop develop-

ment for potato tuber yield forecasting, across time and 

space, in a cost-effective manner [81, 82].

To our knowledge, there are no predictive models for 

cassava root yield using aerial imaging and ML tech-

niques. �erefore, ML technique was explored to pro-

vide a means of early prediction of cassava root yield 

using MS UAV remote sensing on a field scale. A PCA 

and PCR analysis was used to establish, with which 

more than 600 predictor variables were retained to train 

the models. �e PCA results showed that the contribu-

tion of the first 10 components explains 90% of variance 

(Fig. 11) and PCR after a 10 fold cross validations can 

achieve a  R2 of 0.89. With PCA, the most important 

component was PC1, explained 55.6% of total variance 

(Table 3). Using the first four components provided by 

PCA (80% of the total variance) and PCR, SVM, RF, 

kNN, and ANN models were built to predict BGB using 

multi-temporal VIs combinations and canopy met-

rics (Fig.  12). Among the four developed ML models, 

the results showed consistent performance with small 

differences between PCA and PCR techniques ranging 

from 0 to 9% along the metrics (Table 4). PCA was per-

formed little better than PCR in terms of RRMSE and 

R2 ranging from 20.51% to 22.73% and 0.61 to 0.67, 

Fig. 11 PCA scree plot of the percent of aforementioned variance 

during trial two

Table 3 Total variance explained by component

Component Total variance

PC1 0.556

PC2 0.145

PC3 0.061

PC4 0.038

PC5 0.027

PC6 0.018

PC7 0.014

PC8 0.014

PC9 0.011

PC10 0.009
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Fig. 12 Plots based on regression methods, validation dataset on the left and test dataset on the right. a RF parameters (max_features:4, trees: 100). 

b SVM parameter (C:2.1, kernel:”rbf“). c kNN parameters (algorithm: ball_tree, K: 38, weights: uniform). d ANN
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respectively. In this case, the RF model gave the most 

well-adjusted results, with high  R2 and lowest RMSE, 

indicating the importance of VIs and canopy metrics to 

predict BGB by MS sensors. Even though the accuracy 

of developed models is not very high, considering the 

laborious cassava phenotyping efforts, CIAT Pheno-i 

will still be handy for breeders to reduce their time and 

efforts. �is model accuracy can be easily improved by 

adding other features such as climate, soil, and more 

timing points.

Conclusions and future directions
�e use of UAV platforms in rapid acquisition of pheno-

typic information, such as key phenological stages and 

vegetation indices as described in this work, have great 

potential to be used as a selection tool in cassava breed-

ing programs. Automated image analytical framework 

(CIAT Pheno-i) developed in this study showed prom-

ising results and could be applied to other crops than 

cassava to accelerate germplasm and varietal selection. 

Machine learning model to predict cassava root yield 

using MS UAV imagery is encouraging however further 

validation in diverse sets of germplasm in different envi-

ronments is necessary. Furthermore, the validation of this 

ML models in large cassava core collection is currently 

under progress. In summary, UAVs equipped with MS 

sensors rapidly monitored canopy metrics, VIs and effec-

tively predicted cassava root yield in a non-destructive 

and cost effective way. As of now, we are also exploring 

other ground sensor technologies such as Ground pen-

etrating radar (GPR) to predict cassava root yield more 

accurately by integrating above and below-ground time 

series information. �rough different innovative remote 

sensing and image technologies it is highly possible to 

find out the hidden secrets of below-ground information 

in cassava which eventually bring higher accuracy in yield 

prediction.
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